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We propose a modification to the standard hybrid inflation model [A. D. Linde, Hybrid inflation,
Phys. Rev. D 49, 748 (1994).], that connects a successful hybrid inflation scenario to the standard model
Higgs sector, via the electroweak vacuum stability. The proposed model results in an effective inflation
potential of a hilltop type, with both the trans-Planckian and sub-Planckian inflation regimes consistent
with the recent Planck/BICEP combined results. Reheating via the inflation sector decays to right-handed
neutrinos is considered. An upper bound on the reheating temperature TR ≲ 2 × 1011ð1 × 1013Þ GeV, for
large (small) field inflation, will suppress contributions from one-loop quantum corrections to the inflation
potential. This may push the neutrino Yukawa couplings to be Oð1Þ and affect the vacuum stability. We
show that the couplings of the SM Higgs field to the inflation sector can guarantee the electroweak vacuum
stability up to the Planck scale. The so-called hybrid Higgs-inflaton model leads to a positive correction for
the Higgs quartic coupling at a threshold scale, which is shown to have a very significant effect in
stabilizing the electroweak vacuum. We find that even with Oð1Þ neutrino Yukawa couplings, threshold
corrections leave the SM vacuum stability intact.
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I. INTRODUCTION

The Standard Model of cosmology (SMC), and the
Standard Model of particle physics (SM) are extremely
successful in describing the observations of the Cosmic
Microwave Background (CMB), and the low-energy exper-
imental results of particle colliders, respectively. It turns out
that elementary scalar particles play an important role in
both particle physics and the early universe. In fact, the
detection of the SM Higgs boson in 2012 [1,2] was the first
successful signature of an elementary scalar playing a
crucial role in particle physics. However, this discovery
left unanswered questions, indicating that the SM is not
the ultimate theory, such as the hierarchy problem and the
problem of stability of the electroweak (EW) vacuum.

On the other hand, a scalar field (the inflaton ϕ) is
believed to play another pivotal role in the early universe,
where it may be responsible for the cosmic inflation.
The latter resolves the problems of flatness and horizon
of the SMC, and the absence of early phase transition
remnants can be justified. It is tempting to investigate
possible connections between the two sectors of inflation
and particle physics as well as impacts on both high- and
low-energy physics. One portal to such a connection is
the reheating process after the end of inflation, where the
inflaton oscillates around its true minimum and decays
into the SM particles when the Hubble parameter and the
inflaton decay are of the same order, H ∼ Γϕ. In non-
oscillatory models [3–5], where the inflaton keeps rolling
in a runway direction, reheating after inflation is achieved
via different mechanisms such as gravitational reheating,
instant preheating, or curvaton reheating for example.
Other connections between the two sectors can be achieved
via a messenger that interacts with both sectors and
influences physics in both of them as studied in [6–10].
The SM Higgs vacuum stability is one of the issues that

raises concerns in both beyond standard model particle
physics and cosmology of the early universe. The EW
vacuum is stable up to an instability scale ΛI ∼ 1011, where
for higher scales the SM Higgs quartic coupling is driven to
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negative values by the dominant contribution of the top
quark Yukawa coupling to the RGEs. As a matter of fact,
the EW vacuum stability is very sensitive to the precision
measurements of the top quark mass mt and less sensitive
to the strong coupling αs [11–13]. According to these
uncertainties, the instability scale lies between 109 ≲ ΛI≲
1012 GeV. However, in the presence of a deeper minimum
of the Higgs potential, at much larger field value [14,15],
the EW vacuum may be metastable if its lifetime is larger
than the age of the universe. The current measurements
of the top quark mass mt and the Higgs mass mh support
the hypothesis that the EW vacuum is metastable [11,16].
However, this situation may be subject to change for more
precise measurements of mt, and even considering new
physics that explains the neutrino masses. Accordingly,
the EW vacuum may move to the instability region.
Moreover, quantum fluctuations may push the Higgs
potential over its barrier causing destabilization of the
Higgs vacuum during inflation [17–19]. If typical momen-
tum, which is of the same order as the hubble scale during
inflation k ∼Hinf , is greater than the potential barrier, then
the EW vacuum can decay. Therefore, considering the
inflation sector may even worsen the situation of the EW
vacuum stability/metastability. These problems can be
avoided if new physics arises at the instability scale ΛI
or by defining a direct coupling between the inflaton and
the Higgs boson [10,17,20,21].
The hybrid inflation model (HI) [22] combines the

inflation potential with a spontaneous symmetry breaking
potential, where the inflation ends by a waterfall phase
triggered by the inflaton ϕ. In its simplest form, this class
of models predicts a large spectral index ns ∼ 1 and very
small tensor-to-scalar ratio r if the field variations are
taken to be as small as sub-Planckian values [22,23]. On the
other hand, if field variations are super-Planckian, we have
r > 0.1. Both limits of the model are ruled out by Planck
observations [24,25]. In Ref. [23], it was indicated that
including one-loop quantum corrections to HI tree-level
potential can improve the ns and r values. It was assumed
that the inflation scalars interact with right-handed neu-
trinos (RHN), that acquire large masses through the water-
fall scalar vev. In this case, the neutrino Yukawa coupling
with SM Higgs field can be ∼Oð1Þ, which worsens the EW
vacuum stability [12] and may even be dangerous for the
metastability.
In this paper, we propose a connection between the SM

Higgs sector and the hybrid inflation sector. We introduce
a new scalar field χ that is interacting with the hybrid
inflation sector to improve the inflation observables for a
tree-level scalar potential on one hand, and on the other
hand, stabilizes the EW vacuum up to the Planck scale. We
will make use of the threshold modifications to the running
of the SM Higgs coupling due to the inflation sector fields.
The paper is organized as follows. In Sec. II, we provide

the details of the modified hybrid inflation model as well as

the inflation dynamics and the effective inflation potential.
In Sec. III, we study the parameter space and the observ-
ables predictions of the model. Then we explore constraints
from reheating, neutrino masses, and quantum corrections
in Sec. IV. Section V is devoted to investigate the low-
energy consequences such as the stability of the SM Higgs
vacuum. Finally, we give our conclusions in Sec. VI.

II. MODIFIED HYBRID INFLATION MODEL

We propose a modified version of the hybrid inflation
model [22] (MHI). It consists of three SM singlet real
scalars, the inflaton ϕ, and the waterfall field ψ as well as an
extra scalar field χ, with full scalar potential of the form

VMHIðϕ;ψ ; χÞ ¼ λψ

�
ψ2 −

v2ψ
2

�
2

þm2

2
ϕ2 þ 2λϕψϕ

2ψ2

− 2λϕχϕ
2χ2 þ λχ

�
χ2 −

v2χ
2

�
2

þ 2λψχ

�
ψ2 −

v2ψ
2

��
χ2 −

v2χ
2

�
; ð2:1Þ

where m, vψ , vχ are mass dimensionful scales while
λψ ; λχ ; λϕψ ; λϕχ ; λψχ are dimensionless couplings. The first
three terms correspond to the known hybrid inflation
model [22]. The last three terms give the modification
on the HI.1 The negative coefficient in the fourth term
of (2.1) can be justified in the context of the inverted hybrid
inflation (IHI) [27] and may be obtained in some contexts
such as supersymmetry [27].2 We will work in Planck units
where the reduced Planck mass MP ¼ 1. The global
minimum of the potential (2.1) is located at

hϕi ¼ 0; hψi ¼ vψffiffiffi
2

p ; hχi ¼ vχffiffiffi
2

p ; ð2:2Þ

at which V ¼ 0. Since the inflaton ϕ acquires a zero vev, it
does not mix with the other two fields ψ , χ in the mass
matrix and it is separated with a squared mass

m2
ϕ ¼ m2 þ 2λϕψv2ψ − 2λϕχv2χ : ð2:3Þ

On the other hand, the mass matrix in the basis ðψ ; χÞ is
given by

1Similarmodifications on chaotic inflationwere also proposed in
[9,26], based on shift symmetry arguments.

2In fact, we do not consider supersymmetry in this paper, and
we focus on linking our modified hybrid inflation model to the
EW vacuum stability in a non-SUSY case. However, if super-
symmetry is considered as a UV completion to the SM, with
a very large breaking scale, the EW vacuum stability is still
questionable.
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M2
ψχ ¼ 4

 
λψv2ψ λψχvψvχ

λψχvψvχ λχv2χ

!
ð2:4Þ

with the following squared masses:

m2
ψ ;χ ¼ 2

h
λψv2ψ þ λχv2χ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλψv2ψ − λχv2χÞ2 þ 4λ2ψχv2ψv2χ

q i
:

ð2:5Þ

It is clear that in the absence of the mixing λψχ between ψ
and χ, the squared masses are given by m2

ψ ¼ 4λψv2ψ ;
m2

χ ¼ 4λχv2χ .
The inflationary trajectory is obtained by minimizing the

MHI potential (2.1) with respect to the ψ and χ fields. It
turns out that during inflation, ψ is frozen at the origin
while χ is shifted to a nonzero value on the trajectory

ðψ ; χÞ ¼
 
0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λϕχ
λχ

ϕ2 þ λψχ
2λχ

v2ψ þ 1

2
v2χ

s !
: ð2:6Þ

Using the field-dependent squared mass matrix, a critical
value ϕc that triggers the waterfall phase has the form

ϕc ¼
vψffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λψλχ − λ2ψχ

λχλϕψ þ λϕχλψχ

s
!ðλψχ→0Þ vψffiffiffi

2
p

ffiffiffiffiffiffiffi
λψ
λϕψ

s
: ð2:7Þ

In that respect, the inflation effective potential takes the
form

V infðϕÞ ¼ V0 þ αϕ2 − βϕ4; ð2:8Þ

with the following parameters:

V0 ¼
v4ψ
4

�
λψ −

λ2ψχ
λχ

�
; α ¼ m2

2
− λϕχ

�
v2χ þ

λψχ
λχ

v2ψ

�
;

β ¼ λ2ϕχ
λχ

: ð2:9Þ

Here, the vacuum energy V0 should be positive, hence
λψλχ > λ2ψχ . The latter condition is consistent with the
requirement of having a real value for ϕc. Since the
coefficient β is positive, with the negative sign term in
(2.8), there is a possibility that the inflaton rolls down from
a hilltop close to ϕ ¼ 0, if α is negative as well. This case
will be similar to the inverted hybrid inflation [27].
However, the system, in this case, is unstable as ϕ should
be larger than ϕc, in order for the mass squared of ψ to be
positive during the inflation. Therefore, the only possibility
is that α being positive, such that the potential shape is as
illustrated in Fig. 1 by the (blue) solid curve. Accordingly,
the inflaton will roll down from large value close to the

maximum, ϕm, towards the origin. This introduces a
hilltop-type inflation [28,29].3

It turns out that the potential curvature is negative around
the maximum, hence the slow-roll parameter η will be
negative. This will alleviate the usual problem of large
spectral index ns that is associated with hybrid inflation
models. On the other hand, the tensor to scalar ratio r
will not be so small as the usual situation in the ordinary
hybrid inflation.
It is customary to write the inflation potential in terms

of the dimensionless parametrized field ϕ̃ ¼ ffiffiffiffiη0
2

p
ϕ, as

follows:

V infðϕ̃Þ ¼ V0ð1þ ϕ̃2 − γϕ̃4Þ; ð2:10Þ

where the dimensionful parameter η0 and the dimensionless
parameter γ are

η0 ¼
2α

V0

; γ ¼ 4β

η20V0

: ð2:11Þ

Thus

ϕ̃c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2η0V0

2λϕψv2ψ þ η0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλψv4ψ − 4V0ÞγV0

q
vuut : ð2:12Þ

In Sec. III, we use the following set of independent
parameters: λψ ; λϕψ ; λϕχ ; vψ ; vχ and V0; η0; γ, after solving
(2.9) and (2.11) for λχ ; λψχ and m in terms of V0, η0, and γ.

FIG. 1. The solid (blue) curve represents the MHI inflation
potential (2.8), while the dashed (yellow) curve represents the
standard hybrid inflation potential.

3In Ref. [23], it was indicated that one-loop quantum correc-
tions to the hybrid inflation potential results in a hilltop-type
potential. The dominant contribution comes from the RHN sector.
This may be dangerous from the point of view of vacuum
stability, which may become worse for large neutrino Yukawa
couplings.
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The Hubble scale during inflation is given by

Hinfðϕ̃Þ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V infðϕ̃Þ

3

s
: ð2:13Þ

Now, we move to discuss the stability of the inflation
trajectory (2.6). In Sec. V, we couple the SM Higgs field, h,
to the inflation sector as indicated in Eq. (5.1). Therefore,
minimizing the total potential with respect to the SM Higgs
field h as well implies that h will be frozen at the origin
during inflation with very large mass mhðϕÞ compared
to the Hubble scale as shown in Fig. 2. We demonstrate
that only the direction of the inflaton field ϕ is light,
whereas the other three fields ψ , χ, and, h are heavy during
inflation. Figure 2, depicts the logarithm of the ratios of the

field-dependent masses miðϕÞ of the heavy fields to the
Hubble scale HinfðϕÞ versus the inflaton field ϕ̃, during
inflation, for two benchmark points (BP1 and BP2 of
Tables I and II). Since the ratios are greater than 1, ψ , χ, and
h will not perturb the single field inflation dynamics in the
ϕ direction, that is realized by the potential (2.13).
We conclude this section by discussing the end of

inflation. When ϕ ¼ ϕc, the waterfall phase starts, hence
ending the inflation, and all fields stabilize at their true
minimum values [22]. This assumption is valid if the
waterfall phase happens in a short time Δt ∼H−1, starting
from the time tc at which ϕ ¼ ϕc. In this case, ϕ rolls to the
origin within a time duration much smaller than H−1.
It turns out that this is the case in our setup as well.
We solve the equations of motion of the scalar fields

FIG. 2. The logarithm of the ratios of the field-dependent masses of the heavy fields mi: mh (red dotted), mχ (blue solid), and mψ

(green dashed) to the Hubble scale Hinf versus the inflaton field ϕ̃ during inflation, for both the trans-Planckian BP1 (left panel) and the
sub-Planckian BP2 (right panel) of Tables I and III.

TABLE I. BPs of the MHI model which produce the observables in Table II. (a) Benchmark points (BPs) for dimensionless
couplings of the MHI potential (2.1) which produce the observables in Table II. (b) BPs for dimensionful parameters (inMP) of the MHI
potential (2.1) which in addition to (Table I(a)), produce the observables in Table II. (c) BPs of the effective inflation potential (2.13)
corresponding to parameters’ values in Tables I(a) and I(b) which produce the observables in Table II.

Par λψ λχ λϕψ λϕχ λψχ

BP1 1.00 × 10−3 7.15 × 10−8 9.80 × 10−10 1.5 × 10−11 3.48 × 10−7

BP2 3.75 × 10−7 3.30 × 10−2 3.75 × 10−8 1.60 × 10−7 1.11 × 10−4

BP3 1.60 × 10−6 5.89 × 10−3 3.41 × 10−21 1.80 × 10−9 2.66 × 10−5

Par m vψ vχ ϕ� ϕc

BP1 2.24 × 10−6 1.862 × 10−2 1.30 × 10−7 17.0596 12.8191
4.16 × 10−8

BP2 2.48 × 10−5 7.52 × 10−1 5.00 × 10−9 0.97000 0.11403
1.70 × 10−10

BP3 9.67 × 10−7 3.16 × 10−6 3.53 × 10−16 19.4091 6.75 × 10−5

Par V0ðM4
PÞ η0ðM−2

P Þ γ ϕ̃� ϕ̃c

BP1 3.00 × 10−11 1.65 × 10−1 1.54 × 10−2 4.90 3.682
BP2 1.40 × 10−10 4.67 × 10−2 10.15 1.48 × 10−1 1.74 × 10−2

BP3 3.70 × 10−29 2.5 × 1016 9.5 × 10−20 2.17 × 109 7.547 × 104

IBRAHIM, ASHRY, ELKHATEEB, AWAD, and MOURSY PHYS. REV. D 107, 035023 (2023)

035023-4



S̈i þ 3H _Si þ ∂iVMHI ¼ 0 ð2:14Þ

where Si denote all scalar fields in the inflation sector,

H ¼ 1ffiffi
3

p
MP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

P
i
_Si
2 þ VMHI

q
is the Hubble scale, ∂i is the

derivative with respect to the scalars Si, and we used the
parameter values in Tables I and III. We found that the time
duration spent by the inflaton ϕ from tc to reach its
minimum is ≪ H−1. Therefore, inflation ends once ϕ
reaches ϕc.

III. INFLATION OBSERVABLES

In this section, we explore the parameter space that
provides consistent inflation observables. The slow roll
parameters of inflation are given by

ϵ ¼ η0
4

 
V inf
ϕ̃

V inf

!
2

; η ¼ η0
2

 
V inf
ϕ̃ ϕ̃

V inf

!
; ð3:1Þ

and the number of e-foldings is given by

Ne ¼
1ffiffiffiffiffi
η0

p
Z

ϕ̃�

ϕ̃e

dϕ̃ffiffiffiffiffiffiffiffiffi
ϵðϕ̃Þ

q ð3:2Þ

where ϕ̃� and ϕ̃e ¼ ϕ̃c are the field values at the time of
horizon exit, and the end of inflation, respectively. The
spectral index ns, the tensor to scalar ratio r, and the scalar
amplitude As are given respectively as

ns ¼ 1 − 6ϵ� þ 2η�

¼ 1 − 2η0
6γ2ϕ̃�6 − 5γϕ̃�4 þ 2ð1þ 3γÞϕ̃�2 − 1

ð1þ ϕ̃�2 − γϕ̃�4Þ2
; ð3:3Þ

r ¼ 16ϵ� ¼ 16η0

�
ϕ̃� − 2γϕ̃�3

1þ ϕ̃�2 − γϕ̃�4

�
2

; ð3:4Þ

As ¼
V inf�

24π2ϵ�
¼ V0ð1þ ϕ̃�2 − γϕ̃�4Þ3

24π2η0ðϕ̃� − 2γϕ̃�3Þ2
; ð3:5Þ

where the subscript “*” means that all quantities are
calculated at horizon exit time.
As advocated in the previous section, in order to have

successful inflation, the condition ϕ̃c < ϕ̃� < ϕ̃m ¼ 1ffiffiffiffi
2γ

p ,

should be fulfilled. Hence we differentiate between two
cases: when ϕ̃� ≫ 1, (corresponding to γ ≪ 1), and ϕ̃� ≪ 1,
(corresponding to γ ≫ 1), where ϕ̃� value is close to ϕ̃m
value. It turns out that the field excursion during inflation
occurs mostly in the negative curvature part of the potential
(with negative η), before the inflaton reaches the inflection
point of the potential, which reduces ns.

A. Case I: Large ϕ̃� regime (trans-Planckian)

We expand for large ϕ̃�, after expressing γ in terms of ϕ̃m

that is close to ϕ̃�. Therefore, the slow-roll parameters can
be approximated as

ϵ ≃
16η0
ϕ̃4�

ðϕ̃m − ϕ̃�Þ2; η ≃ −
4η0
ϕ̃2�

þ 20η0
ϕ̃3�

ðϕ̃m − ϕ̃�Þ;

ð3:6Þ

hence, we have

ns ≃ 1−
8η0
ϕ̃2�

þ 40η0
ϕ̃3�

ðϕ̃m − ϕ̃�Þ; r≃
256η0
ϕ̃4�

ðϕ̃m − ϕ̃�Þ2:

ð3:7Þ

TABLE II. Inflation observables and scalar masses (in GeV) corresponding to the parameters values given in Table I.

Obs Ne ns r As mϕ mψ mχ

BP1 59.6 0.9688 0.0165 1.98 × 10−9 5.80 × 1012 2.86 × 1015 1.41 × 108

5.25 × 107

BP2 52.3 0.9669 0.0049 1.97 × 10−9 4.97 × 1014 2.21 × 1015 2.97 × 108

1.07 × 107

BP3 162.2 0.9664 0.0030 2.10 × 10−9 2.34 × 1012 1.94 × 1010 125.06

TABLE III. Effective thresholds’ free parameters boundary values used in Fig. 5.

Par λ2hχ jΛI
λ2χ jΛI

λ3hϕjΛ2I
λ3ϕχ jΛ2I

λ3ϕjΛ2I
λhψ jΛ3I

BP1
7.45 × 10−5 6.82 × 10−8 9.21 × 10−8 −1.30 × 10−11 8.00 × 10−15 1.60 × 10−4

7.55 × 10−5 3.70 × 10−8 3.19 × 10−9 −1.24 × 10−11 8.00 × 10−14 1.00 × 10−6

BP2
5.70 × 10−2 3.40 × 10−2 1.00 × 10−5 −1.60 × 10−7 7.00 × 10−5 1.60 × 10−6

1.83 × 10−3 1.02 × 10−2 1.07 × 10−2 −3.00 × 10−7 3.16 × 10−10 3.16 × 10−6
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In this case, it is estimated that 0.05≲ η0 ≲ 31, for
changing γ ∈ ½10−4; 0.25�. In this regard, a correlation
between γ and η0 is shown in the left panel of Fig. 3,
where the intersection region between the four curves is
allowed by the observational constraint on ns and r.
In the latter figure, the contours correspond to different
values of ns and r, where ϕ̃� values were chosen to be
close to ϕ̃m ¼ 1ffiffiffiffi

2γ
p . This case represents large field

inflation, where ϕ� values are trans-Planckian as indi-
cated by the region below the red dotted curve that
corresponds to ϕ� ¼ 5MP.
Figure 3 (left panel) implies that γ decreases as η0

increases. For very small values of γ, η0 becomes very large
hence ϕ̃� is very large. We may control the value of vχ in
order to reduce mχ ≲ Λχ and make use of the threshold
effect and stabilize the EW vacuum. We may consider the χ
being the SM-like Higgs boson if vχ ∼ 10−16 as in BP3 of
Table I. Accordingly, the SM-like Higgs boson with
squared mass eigenvalue is given as

m2
χ ≃ 4v2χ

�
λχ −

λ2ψχ
λψ

�
: ð3:8Þ

However, we need to reduce mψ ∼ ΛI , with threshold

correction given by λ2ψχ
λψ

≳ 0.1 [16], hence λχ > 0.1 guar-

antees real ϕc and mχ . In this case, V0 is very small and
insufficient for accounting for the inflation energy scale
and As limits. However, trans-Planckian values of ϕ� can
account for the inflation obesrvables and the inflation
scale is fixed by m as indicated by the benchmark point
BP3 in Tables I and II. In fact, the only problem of this
scenario is that the inflation will not end after 60e-folds
since ϕc is always small, constrained by the value of
mψ ∼ ΛI .

B. Case II: Small ϕ̃� regime (sub-Planckian)

If γ ≫ 0.5, then ϕ̃� ≪ 1. Expanding for small ϕ̃�, the
slow-roll parameters ϵ and η can be approximated as

ϵ ≃ η0ϕ̃
2�; η ≃ η0 − ð6γ þ 1Þη0ϕ̃2�; ð3:9Þ

hence ns and r have the following approximated forms:

ns ≃ 1þ 2η0 − 4ð3γ þ 2Þη0ϕ̃2�; r ≃ 16η0ϕ̃
2�: ð3:10Þ

This case corresponds to sub-Planckian values of ϕ� as
shown in Fig. 3, right panel, for the region above the red
dotted curve. In Tables I and II, we give one benchmark
point (BP2) that accounts for this case. It turns out that vχ is
not constrained, so we have chosen it such that mχ ∼ ΛI

hence it can modify the SM RGEs rendering the EW
vacuum stable.
In Fig. 4, we present the predictions of our model for

both cases of large and small field regimes, versus the
observed constraints on ns and r by [24]. The cyan patch
presents the large field inflation predictions. We scanned
over γ ∈ ½0.001; 0.1�, η0 ∈ ½0.18; 0.21� and ϕ̃� ∈ ½5; 6�.
The black curves correspond to fixed η0, ϕ̃� and number of
e-folds for each, namely, Ne ¼ 50; η0 ¼ 0.18 ϕ̃� ¼ 5.25
and Ne ¼ 60; η0 ¼ 0.21, ϕ̃� ¼ 5.4, while γ changes along
each curve. On the other hand, the orange patch represents
the small-field inflation predictions. We scanned here over
γ ∈ ½5; 100�, η0 ∈ ½0.01; 0.1�, and ϕ̃� ∈ ½0.090; 0.099�. The
black lines correspond to fixed η0, ϕ̃� and number of
e-folds for each, with Ne ¼ 50; η0 ¼ 0.04 ϕ̃� ¼ 0.098 and
Ne ¼ 60; η0 ¼ 0.2, ϕ̃� ¼ 0.0945, while γ changes along
each line. The observed value of the scalar amplitude As ≃
2.1 × 10−9 fixes V0 ∼ 10−11 − 10−10 in both cases of large
and small field inflation. The solid (black) dot and square

FIG. 3. Contours in the η0 − γ plane corresponding to different values of ns and r, for both cases of large field inflation (left panel) and
small field inflation (right panel).
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correspond to parameters’ values and obervables given in
Tables I and II for BP1 and BP2, respectively.

IV. REHEATING AND QUANTUM CORRECTIONS

In this section, we discuss the reheating where the
inflation decays into RH neutrinos N and possible quantum
corrections that may modify the inflation effective poten-
tial. The complete Lagrangian that is responsible for
neutrino masses and reheating contains the SM-like
Higgs field h and left-handed neutrinos νL and has the form

Lν ¼ Yνhν̄LN þ YϕϕN̄N þ YψψN̄N þ YχχN̄N þmNN̄N

ð4:1Þ

where mN is a mass scale that is constrained by reheating
and the seesaw mechanism of generating the neutrino
masses. Accordingly, the tiny neutrino masses are given by

mν ¼
Y2
νv2

MN
; ð4:2Þ

where MN ¼ mN þ Yψvψ þ Yχvχ . The reheating temper-
ature is given by [30–36]

TR ¼
�

40

gsπ2

�
1=4 ffiffiffiffiffiffiffiffiffiffi

ΓMP

p
ð4:3Þ

where gs is the effective number of light degrees of freedom
in a thermal bath at temperature TR and Γ is the total decay
width of the inflation sector fields that is given by

Γ ¼
X3
i¼1

Γi→NN ¼
X3
i¼1

Y2
i mi

8π
; ð4:4Þ

where i runs over Si ¼ ϕ;ψ ; χ and the decay Γi→NN is
kinematically allowed if mi > 2MN . Our model is non-
SUSY, so gravitino overproduction constraints on TR, are
not applicable here.4 We will consider TR ≲ 2 × 1011 GeV.
In case of large field inflation (BP1 in Table I), kinemat-
ically allowed decays for reheating implies Yϕ≲
4.77×10−4, Yψ≲1.9×10−5 and Yχ≲1. Accordingly,
MN ≃mN þ 2.7 × 1011 GeV, hence mν ∼ 0.1 eV implies
that Yν ∼ 0.03, if mN is subdominant. There is no worry
regarding reducing the SM EW instability scale ΛI , as the
contribution to the beta function of the SM Higgs quartic
coupling is proportional to Y4

ν ∼ 10−6, which is negligible
compared to the top quark Yukawa coupling contribution.
Decay kinematics constrains mN≲1015GeV. If mN is
dominant, then Yν can be Oð1Þ. In this case, mχ should
be reduced to mχ ≲ ΛI ∼ 105 GeV. In that case, one
solution is to reduce mN such that Yν ≪ 1 with negligible
effects on the RGEs.
On the other hand, for small field inflation (BP2 in

Table I), a reheating temperature TR ≲ 1 × 1013 GeV,
implies Yϕ ≲ 1.5 × 10−4, Yψ ≲ 5 × 10−3 and Yχ ≲ 1.
Accordingly, MN ≃mN þ 3.8 × 1014 GeV, and seesaw
mechanism fixes Yν ∼Oð1Þ. This will affect the instability
scale ΛI ∼ 105 GeV. Therefore, we need to reduce
mχ ≲ ΛI. In both cases, if TR is reduced sufficiently, then
the value of Yν will be reduced with negligible contribu-
tions to the RGEs. However, the case of sizable values of Yν

may be interesting, from the point of view of low-energy
phenomenology signatures.

A. Quantum corrections

The Lagrangian (4.1) implies an additional contribution
to the inflation potential via the one-loop corrections [14].
Following Ref. [23], the inflation potential (2.13) will
have the following form, after including the quantum
correction:

V infðϕ̃Þ ¼ V0ð1þ ϕ̃2 − γ̃ϕ̃4Þ; ð4:5Þ

where γ̃ ¼ γ þ 4
V0η

2
0

Y4
ϕ

16π2
log
�

ϕ̃
ϕ̃c

�
. An upper bound on the

reheating temperature TR ≲ 2 × 1011ð1 × 1013Þ GeV, for
large (small) field inflation, results in tiny contributions
from quantum corrections to the inflation potential and
the inflation observables will not alter. Beyond these
constraints, quantum corrections have substantial contri-
butions. In this case, inflation observables discussed
in the previous section will not hold. However, adjusting

0.955 0.960 0.965 0.970 0.975 0.980
0.00

0.02

0.04

0.06

0.08

ns

r

N
e
50N
e
60

1

Planck TT,TE,EE lowE lensing

BK18 BAO

Ne 50

Ne 60

1

FIG. 4. Predictions of the MHI model in the ðns; rÞ plane are
given by the cyan patch (trans-Planckian) and the orange patch
(sub-Planckian). The blue contours are the observed constraints
extracted from Planck 2018, and they correspond to the observed
68% and 95% C.L. constraints in ðns; rÞ plane when adding
BICEP/Keck and BAO data [24,25]. The two BPs indicated by
the solid dot and square are BP1 and BP2 presented in Table I.

4See Ref. [37] and other references therein.
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η0 can take us back to the observables given in the
previous section.

V. HIGGS VACUUM STABILITY

The SM Higgs doublet couples to the singlet scalar
fields of the MHI potential (2.1) to give the full scalar
potential5

VðH;ϕ;ψ ; χÞ ¼ VMHIðϕ;ψ ; χÞ þ λh

�
h2 −

v2

2

�
2

þ 2

�
h2 −

v2

2

��
λhϕϕ

2 þ λhψ

�
ψ2 −

v2ψ
2

�

þ λhχ

�
χ2 −

v2χ
2

��
: ð5:1Þ

A. Matching conditions

Following the procedure of Ref. [16], at high scale
∼OðGUTÞ, the superheavy field ψ is integrated out via its
equation of motion and considering that it is a background
static and homogeneous field by neglecting its kinetic term
(∂V
∂ψ ¼ 0), the field ψ is given in terms of the other fields h,
χ, and ϕ

ψ2 ¼ v2ψ
2
−
λϕψ
λψ

ϕ2 −
λψχ
λψ

χ2 −
λhψ
λψ

h2: ð5:2Þ

At a lower energy scale, the potential can be read off by
substituting Eq. (5.2) into the full potential (5.1). We find
that the effective 3-field potential of h;ϕ, and χ contains
the following quartic terms which are relevant to the EW
vacuum stability:

V3effðh;ϕ; χÞ ⊃ λ3hh4 þ λ3ϕϕ
4 þ λ3χχ

4 þ 2h2½λ3hϕϕ2

þ λ3hχχ
2� þ 2λ3ϕχϕ

2χ2; ð5:3Þ

where the numerical values of the running couplings
are matched to their corresponding ones in the full
potential at the heavy mass mψ scale threshold at the ψ
integration out boundary via the following matching con-
ditions (MCs)

λ3S ¼ λS −
λ2Sψ
λψ

; S ¼ h; χ;ϕ; ð5:4Þ

λ3S1S2 ¼ λS1S2 −
λS1ψλS2ψ

λψ
; S1 ¼ h;ϕ; S2 ¼ ϕ; χ;

S1 ≠ S2; ð5:5Þ

where each λϕχ must be replaced with −λϕχ as mentioned in
footnote 5.6 After that, at the lower scale mϕ ≪ mψ , the
second heaviest field ϕ is integrated out by considering that
∂V3eff
∂ϕ ¼ 0, where we find

ϕ2 ¼ −
m2

3

4λ3ϕ
−
λ3hϕ
λ3ϕ

h2 −
λϕχ
λ3ϕ

χ2; ð5:6Þ

and the effective 2-field potential of h, χ includes the
following quartic terms:

V2effðh; χÞ ⊃ λ2hh4 þ λ2χχ
4 þ 2λ2hχh2χ2: ð5:7Þ

The matching conditions of the couplings at the mϕ

threshold are

λ2S ¼ λ3S −
λ23Sϕ
λ3ϕ

; S ¼ h; χ; ð5:8Þ

λ2hχ ¼ λ3hχ −
λ3hϕλ3ϕχ

λ3ϕ
: ð5:9Þ

Finally, the remaining χ field is integrated out at the SM
instability scale ∼mχ ∼Oð108Þ GeV and the SM Higgs
quartic coupling is modified at this scale as in the following
matching condition:

λ≡ λSM ¼ λ2h −
λ22hχ
λ2χ

: ð5:10Þ

Generally, when a field S̄ ¼ ϕ;ψ ; χ ¼ ðS1; S2; S3Þ is inte-
grated out, the parameters of the remaining fields S; S1; S2 ¼
ðh;ϕ;ψ ; χÞ have the following MCs at the mS̄ scale:

λiS ¼ λiþ1;S −
λ2iþ1;SS̄

λiþ1;S̄
; S ≠ S̄; ð5:11Þ

5In Sec. V, each λϕχ must be replaced with −λϕχ for the
negative sign convention of the MHI potential (2.1).

6It is worth noticing that due to the ϕ − ψ interaction in (2.1),
when ψ is integrated out at mψ , an effective self-interaction
quartic term λ3ϕϕ

4 is generated at a low scale belowmψ due to the
form of the ψ-integration out solution of Eq. (5.2). This ϕ4 term
was avoided in the inflation potential (5.1) in order not to spoil
the inflation as mentioned above after (2.1). Since λ4ϕ ≡ λϕ ≡ 0,
we see from Eq. (5.4) that the MC of the ϕ field quartic coupling

reads λ3ϕ ¼ −
λ2ϕψ
λψ
. Despite the fact that this condition cannot be

verified for real values of parameters, with λ3ϕ; λψ > 0 as
demanded by the boundedness from the below conditions of
the potential at different scales, we should not worry about it,
since the running of λ3ϕ is only up to mψ , while λϕψ and λψ run

starting only from mψ , and the boundary condition λ3ϕ ¼ −
λ2ϕψ
λψ

at

mψ is either verified for tiny values of λ3ϕ ≈
λ2ϕψ
λψ

≈ 0 or λ3ϕ is
discontinuous at the Λ3I threshold for λ3ϕ ≳ 0 and λϕðtÞ≡ 0 for
t ¼ log10 ðQ=GeVÞ ≥ Λ3I and this does not affect the running of
the Higgs coupling at all scales and the EW vacuum stability, as
clarified below.
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λiS1S2 ¼ λiþ1;S1S2 −
λiþ1;S1S̄λiþ1;S2S̄

λiþ1;S̄
; ð5:12Þ

where each λϕχ must be replaced with −λϕχ as mentioned in
footnote 5.

B. Renormalization group equations

The relevant one-loop renormalization group equations
(RGEs) of the Higgs and Si’s quartic coupling take the form
(for S; S1; S2 ¼ ϕ;ψ ; χ; i ¼ 2, 3, 4)

16π2

logð10Þ
dλih
dt

¼ βih ¼ βSMh þ βinth ; ð5:13Þ

16π2

logð10Þ
dλihS
dt

¼ βihS ¼ βSMhS þ βinthS; ð5:14Þ

16π2

logð10Þ
dλiS
dt

¼ βiS; ð5:15Þ

16π2

logð10Þ
dλiS1S2
dt

¼ βiS1S2 ; ð5:16Þ

where

βSMh ðλihÞ ¼
27g41
200

þ 9g21g
2
2

20
þ 9g42

8
− 9

�
g21
5
þ g22

�
λih

þ 24λ2ih þ 12λihY2
t − 6Y4

t ; ð5:17Þ

βSMhS ðλihSÞ ¼
λihS
10

ð−9g21 − 45g22 þ 120λih þ 80λihS

þ 80λiS þ 60Y2
t Þ; ð5:18Þ

where all the couplings λ4h; λ4hS; λ4S; λ4S1S2 are identified
with their corresponding full potential couplings λh; λhS; λS;
λS1S2 and the beta functions β4hS ≡ βhS; β4S ≡ βS; β4S1S2 ≡
βS1S2 while β4ϕ ≡ βϕ ≡ 0. The interaction beta functions
βinth ðλhSÞ, βinthSðλhS; λS1S2Þ, and βS;S1S2ðλhS; λS; λS1S2Þ are given
explicitly in each case below.
For t ¼ log10 ðQ=GeVÞ ∼ ½16; 20�, where the energy

scale Q is in GeV, the beta functions of the Higgs quartic
coupling λh where the full potential of Eq. (5.1) is
considered are (for S; S1; S2 ¼ ϕ;ψ ; χ)

βh ¼ βSMðλhÞ þ 4ðλ2hϕ þ λ2hψ þ λ2hχÞ; ð5:19Þ

βhS ¼ βSMhS ðλhSÞ þ 4ðλhS1λSS1 þ λhS2λSS2Þ;
S1; S2 ≠ S; S1 ≠ S2; ð5:20Þ

βS ¼ 8λ2hS þ 20λ2S þ 4ðλ2SS1 þ λ2SS2Þ; S1; S2 ≠ S; ð5:21Þ

βS1S2 ¼ 8ðλhS1λhS2 þ λS1S2ðλS1S2 þ λS1 þ λS2ÞÞ þ 4λSS1λSS2 ;

S1; S2 ≠ S; ð5:22Þ

where each λϕχ must be replaced with −λϕχ as mentioned
in footnote 5.
Also, the beta functions of the effective 3-field model of

Eq. (5.3) for t ∼ ½12; 16� (for S; S1; S2 ¼ ϕ; χ) read as

β3h ¼ βSMh ðλ3hÞ þ 4ðλ23hϕ þ λ23hχÞ; ð5:23Þ

β3hS ¼ βSMhS ðλ3hSÞ þ 4λ3hS1λ3SS1 ; S1 ≠ S; ð5:24Þ

β3S ¼ 8λ23hS þ 20λ23S þ 4λ23SS1 ; S1 ≠ S; ð5:25Þ

β3S1S2 ¼ 8ðλ3hS1λ3hS2 þ λ3S1S2ðλ3S1S2 þ λ3S1 þ λ3S2ÞÞ;
S1; S2 ≠ S: ð5:26Þ

Finally, the beta function of the effective 2-field model of
Eq. (5.7) for t ∼ ½8; 12� reads as

β2h ¼ βSMh ðλ2hÞ þ 4λ22hχ ; ð5:27Þ

β2hχ ¼ βSMhχ ðλ2hχÞ; ð5:28Þ

β2χ ¼ 8λ2hχ
2 þ 20λ22χ : ð5:29Þ

Generally, for an i-field case with Si’s fields of ðϕ;ψ ; χÞ ¼
ðS1; S2; S3Þ and S ¼ S1;…; Si, i ¼ 1;…;≤ 3 read as

βih ¼ βSMh ðλihÞ þ 4
X
S

λ2ihS; ð5:30Þ

βihS ¼ βSMhS ðλihSÞ þ 4
X
S1≠S

λihS1λiSS1 ; ð5:31Þ

βiS ¼ 8λ2ihS þ 20λ2iS þ 4
X
S1≠S

λ2iSS1 ; ð5:32Þ

βiS1S2 ¼ 8ðλihS1λihS2 þ λiS1S2ðλiS1S2 þ λiS1 þ λiS2ÞÞ
þ 4λiSS1λiSS2 ; S1; S2 ≠ S; ð5:33Þ

where each λϕχ must be replaced with −λϕχ as mentioned in
footnote 5.
The solutions of the RGEs of Eqs. (5.19), (5.23), and

(5.27) with the boundary conditions of Eqs. (5.4), (5.5),
(5.8), (5.9), and (5.10) are shown in Fig. 5 for BP1
presented in Tables I and III. It is worth mentioning that
this BP is shown by the black solid point in the heart of
MHI Planck patch in Fig. 4.
We notice from Eq. (5.17) and from the general

Eq. (5.30) of all cases [Eqs. (5.19), (5.23), (5.27)] that
the coupling of the SM Higgs field to the scalars from the
beyond SM (BSM) of the MHI helps the SM Higgs

MODIFIED HYBRID INFLATION, REHEATING, AND … PHYS. REV. D 107, 035023 (2023)

035023-9



potential to continue more stable up to a scale at which the
SM is assumed valid. This comes by the addition of the
positive contribution βinth ¼ 4

P
S λ

2
ihS to the SM contribu-

tion of (5.17) which is dominated by the negative Yt
contribution loops. At a certain threshold of the initial
parameter values, this BSM contribution dominates the SM
Yt up to the Planck scale as in Fig. 5. Below the parameter
threshold, the SM Yt dominates again making the SM
vacuum stable only up to OðGUTÞ scale or even earlier
depending on the initial jump of the parameters. Moreover,
we notice that this behavior is easily achievable at high
scales where the contribution comes from the Higgs
coupling to more fields and hence the positive contribution
in Eq. (5.30) will be due to many parameters. Not only
this but also the decreasing running of the Yt to lower
values relaxes its negative contribution domination at the
EW to the ΛI scale. It is also clear from Eq. (5.32) that the
inflation parameters λS run always increasingly in all cases
[Eqs. (5.21), (5.25), (5.29)] in Eq. (5.15) as their beta
functions are always positive βiS > 0. Finally, the form of
the RGEs Eqs. (5.14) and (5.16) and the beta functions
(5.18), the interaction beta function βinthS¼4

P
S1≠SλihS1λiSS1

in (5.31) and (5.33) with the negative sign of the ϕ − χ
interaction term in the MHI potential (2.1), all alter
domination of terms at different scales according to
their initial values and the running of the parameters λhS
and λS1S2 in all cases [Eqs. (5.20), (5.24), (5.28) and
Eqs. (5.22) and (5.26)].
Numerically, in the 2-field model of V2effðh; χÞ, the two

parameters λ2χ ; λ2hχ have free initial boundary values at the
instability scale log10 ΛI ∼ 8. The Higgs quartic coupling
λ2h boundary value at ΛI is matched to the SM Higgs
quartic coupling according to the inverted relation of
Eq. (5.10) as

λ2hjΛI
¼
�
λSM þ λ22hχ

λ2χ

�				
ΛI

≈
λ22hχ
λ2χ

				
ΛI

; ð5:34Þ

where λSMðΛIÞ ≈ 0 and λ2hjΛI
represents the first coupling

jump at ΛI in Fig. 5 as determined by the values given in
Table III. Similarly, from Eq. (5.8)

λ3hjΛ2I
¼
�
λ2h þ

λ23hϕ
λ3ϕ

�				
Λ2I

ð5:35Þ

where log10 Λ2I ∼ 12 is the instability scale of the effective
2-field model V2effðh; χÞ and the fraction in Eq. (5.36)
represents the second coupling jump in Fig. 5 at Λ2I ∼ 12.
Finally, the third jump at the instability scale log10Λ3I ∼ 16
of the 3-field V3effðh;ϕ; χÞ model is determined by
Eq. (5.4) as follows:

λhjΛ3I
¼
�
λ3h þ

λ23hψ
λ3ψ

�				
Λ3I

: ð5:36Þ

Nevertheless, we see that the λ2h coupling contribution
stabilizes the EW Higgs vacuum up to the GUT scale and
even beyond, and that the behavior is safe as the contri-
bution from λ3h and λh improve the situation. Suitable
numerical values of the free parameters can be set so that
λ3h;2h;h coincide at high scales so that the left figure of
Fig. 5 appears in the right one.
The contribution of the RHN coupling Yν of (4.1)

modifies the SM top-Yukawa coupling Yt and Higgs
quartic coupling λh one-loop βt- and βh-functions by
βtν ¼ YtY2

ν and βhν ¼ 2Y2
νð4λh − Y2

νÞ, respectively. Also
the Yν RGE is

16π2

logð10Þ
dYν

dt
¼ βν ¼ Yν

�
5

2
Y2
ν þ 3Y2

t −
9

4
g22 −

3

4
g21

�
:

ð5:37Þ

As mentioned in Sec. IV, the contribution of the Yν (βtν > 0
and βHν < 0) in the instability of the SM Higgs vacuum
are negligible, compared to their SM counterparts, as long

FIG. 5. Running of the Higgs quartic coupling versus the renormalization scale t≡ log10 ðQ=GeVÞ for the trans-Planckian BP1 of
Tables I and III without/with the inclusion of RHN (left/right). Blue: SM. Orange, green, red: SMþMHI at different scales and
thresholds. Dotted: thresholds’ effects. Similar figures for the sub-Planckian BP2 and the minimal model BP3 can be produced.
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as Yν ≲ 0.3, as dictated by the sub-Planckian case of
inflation. Moreover, if Yν ≲ 0.6, this would bring the
SM instability scale ΛI to about Oð106Þ GeV, and the
stability of the potential is insured by the Higgs couplings
to the inflation sector fields as in Fig. 5 (right panel). In
either case, the Yν RGE (5.37) clarifies that Yν is increasing
and contributions from the V3 eff model (5.3) at the Λ2I
scale, and maybe the full V model (5.1) at the Λ3I scale,
should be included as in Fig. 5 (right panel) to ensure the
vacuum stability up to the Planck scale. For Yν ≲ 0.6, a
lower limit is set from Eq. (4.2) on the RHN mass is
set MN ≳ Y2

νv2=mν ∼ 1010 GeV.
At this point, we mention the effect of the SM Higgs

mixing with the MHI scalars on the SM Higgs mass and
interactions. As a very good approximation, we consider
the effective 2-field model V2effðh; χÞ. In this case, the
2 × 2 mass matrix of h and χ is

M2
hχ ¼ 2

�
λ2hv2 λ2hχvvχ

λ2hχvvχ λ2χv2χ

�
ð5:38Þ

with exact squared masses

m2
h;χ ¼ λ2hv2 þ λ2χv2χ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ2hv2 − λ2χv2χÞ2 þ 4λ22hχv

2v2χ
q

ð5:39Þ

and the couplings were substituted at the EW scale such
that λ2hχ jEW ∼ 5.79 × 10−5 and λ2χ jEW ∼ 6.51 × 10−8 con-
sistent with Table III, where the EW scale at the top-quark
mass mt ¼ 172.69 GeV. As discussed in Ref. [16], for
m2

ψ ≳m2
ϕ ≫ λ2χv2χ ≫ λ2hv2, the masses squared eigenval-

ues are expanded to the first order of v2=v2χ and the
“seesaw-like" corrected masses at the EW scale are

m2
h ≈ 2v2

�
λ2h −

λ22hχ
λ2χ

�				
EW

; ð5:40Þ

m2
χ ≈ 2v2χ

�
λ2χ þ

λ22hχ
λ2χ

v2

v2χ

�				
EW

: ð5:41Þ

Accordingly, for the SM Higgs mass mh ¼ 125.25 GeV,
we have the following boundary constraint for the SM
effective Higgs quartic coupling:

λeff ¼
�
λ2h −

λ22hχ
λχ

�				
EW

∼ 0.12: ð5:42Þ

That is, the SM MC relation (5.34) holds at the EW scale
too for the BPs in Table III: for BP1 with ðλ2hχ ; λ2χÞjEW ¼
ð5.68 × 10−5; 6.50 × 10−8Þ, while for fixing mh, λ2hjEW ∼
1.79 × 10−1 consistent with (5.42). Also, for BP2 with
ðλ2hχ ; λ2χÞjEW ¼ ð4.07 × 10−2; 3.05 × 10−2Þ and for fixing

mh, λ2hjEW ∼ 1.84 × 10−1 consistent with (5.42). Also, the
mixing angle

tan 2θhχ ¼
2λ2hχvvχ

λ2χv2χ − λ2hv2

				
EW

∼Oð10−7Þ; ð5:43Þ

and this preserves the SM Higgs physics up to the Planck
scale for the BPs in Tables I and III as checked for the
running of the mixing angle (5.43).
Now we discuss Higgs quantum fluctuations during

inflation; the EW vacuum may be destabilized during
inflation by quantum fluctuations of the Higgs field if
Hinf > ΛI [10,20,21,38,39]. In fact, our model is safe
against this kind of destabilization, since the effective
Higgs mass during inflation mhðϕÞ ≫ HinfðϕÞ as indicated
in Fig. 2 in both cases of large and small field inflation.
In that case, the quantum fluctuations are suppressed.
In addition, quantum fluctuations may destabilize the
EW vacuum after inflation if the Higgs inflaton coupling
>3 × 10−8 for typical Higgs quartic coupling λh ¼ −10−2
as indicated in Ref. [10]. However, in our model Higgs
quartic coupling λh is positive up to the Planck scale.
Therefore, again we expect that our model is safe against
quantum fluctuations after inflation ends.
A final comment is in order. As the Higgs interactions

with the other inflation fields is exploited to maintain the
Higgs vacuum stability, conversely, the effect of the running
couplings on the inflation observables is also considered.
The running couplings initial values were taken such that
they give rise to consistent inflation observables, and thus
ensured the validity of the observables values.

VI. CONCLUSIONS

We studied the connection of a modified hybrid inflation
model to the standard model electroweak vacuum stability.
We have extended the inflation sector with an extra scalar χ,
which is, as well as ϕ and ψ , a SM singlet. The scalar χ may
be an extra Uð1Þ Higgs field and ψ can be assigned as a
GUT gauge group Higgs field while the inflaton ϕ is singlet
under all gauge groups. The complete discussion of a more
general model with a specific gauge group extending the
SM one, and its phenomenology will be provided in a
future work.
The modification results in an inflation potential in

which the inflaton rolls down near a hilltop in the valley
of the other hybrid fields which are stabilized at their false
vacua during the inflation. The usual hybrid inflation
problem of large spectral tilt is then resolved since the
inflation occurs mostly in the negative curvature part of the
potential, before the inflection point.
The parameter space was analyzed and the inflation

observables were calculated in both trans-Planckian and
sub-Planckian cases in consistency with the recent Planck/
BICEP observations. We have provided the couplings of
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the SM Higgs with the inflation singlet in order to stabilize
the electroweak vacuum up to the Planck scale. We have
studied the decays of the inflation to right-handed neu-
trinos, that allow for reheating the universe. Moreover,
quantum corrections to the inflation potential were taken
into account. We found that an upper bound on the
reheating temperature will suppress the contributions of
quantum corrections to inflation effective potential. We
found that the neutrino Yukawa coupling can be of order
Oð1Þ, which reduces the instability scale of the EW

vacuum. We have shown that the threshold corrections
will stabilize the EW vacuum even in this case.
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