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We discuss the definition of conserved quantities in asymptotically locally de Sitter spacetimes. One may
define an analog of holographic charges at future and past infinity and at other Cauchy surfaces It as
integrals over the intersection of timelike surfaces C and the Cauchy surface It. In general, the charges Qt

defined on the Cauchy surface It depend onC, but if gravitational flux is absent the charges are independent
of C. On the other hand, if there is a net gravitational flux entering or leaving the spacetime region bounded
by C1, C2 and two Cauchy surfaces then ΔQtðC1; C2Þ ¼ QtðC1Þ −QtðC2Þ changes by the same amount.
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I. INTRODUCTION

Isolated systems with no dynamical gravity have con-
served energy and momentum originating from transla-
tional invariance. These charges may be obtained from a
conserved local energy-momentum tensor via appropriate
integrals over a Cauchy surface. If a system is open there
may be flux of energy and momentum through its boun-
dary, which is again encoded by the energy-momentum
tensor. A prime example of flux is that of electromagnetic
radiation originating from a localized source and propa-
gating out to infinity. When gravity is dynamical the
corresponding symmetries are local and as such the
corresponding charges would be zero if there are no
boundaries or asymptotic regions.
The study of (conserved) charges in gravitational theories

and of gravitational radiation has a long history going back to
(at least) [1–5]. Diffeomorphism invariance implies that the
charges should be defined by surface integrals at infinity, but
due to the infinite volume of spacetime any such definition
requires a subtraction, potentially making the charges
ambiguous. Most of the initial work concerned asymptoti-
cally flat gravity, and in this context charges were defined
relative to flat spacetime. With such asymptotics one may
also define outgoing gravitational radiation through null
infinity, as illustrated in Fig. 1. In the presence of a
cosmological constant the asymptotic structure changes
and new issues arise.
With negative cosmological constant, the AdS=CFT

correspondence suggests that one should be able to

formulate the problem in exactly the same way as when
gravity is nondynamical. Indeed, one can show that such
spacetimes are always equippedwith a covariantly conserved
symmetric tensor which may be used to construct conserved
charges. This tensor is identified with the (expectation
value of the) energy-momentum tensor of the dual conformal
field theory (CFT) in the AdS=CFT correspondence [6].
Asymptotically locally anti–de Sitter (ALAdS) spacetimes
have a timelike conformal boundary and an associated
boundary conformal structure. In the neighborhood of the
conformal boundary the metric admits the following
Fefferman-Graham form [7],

ds2 ¼ l2AdS
ρ2

ðdρ2 þ gabðρ; xÞdxadxbÞ; ð1Þ

where lAdS is the curvature radius and in four dimensions:

FIG. 1. Penrose diagram illustrating the flux of gravitational
radiation through null infinity, Iþ, in an asymptotically flat
spacetime. The hypersurfaces C1, C2 are taken to be null
(“instants of retarded time”) although they could also have been
chosen to be spacelike.
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gab ¼ gð0Þab þ ρ2gð2Þab þ ρ3gð3Þab þ � � � : ð2Þ

Throughout this paper for concreteness we specialize to four
dimensions. Most of the discussion generalizes straightfo-
wardly to other dimensions, modulo issues associated with
the holographic conformal anomaly in odd dimensions [8].
Here gð0Þ is the representative of the boundary conformal
structure and the holographic energy momentum tensor is
given by

Tab ¼
3lAdS
16πG

gð3Þab; ð3Þ

where G is Newton’s constant. If the boundary conformal
structure admits conformalKillingvectors ζa then the energy-
momentum tensor may be used to construct associated
conserved charges via a surface integral over a spacelike
surface at infinity,

Qξ ¼
Z
∂C

dsaTa
bζ

b; ð4Þ

where ∂C is the intersection of the bulk spacelike surface C
with the conformal boundary. It was shown in [9] using
Noether’s method and covariant phase space methods that (4)
are the bulk gravitational charges. These charges are well
defined due to the boundary counterterms introduced by
holographic renormalization [6,8,10,11]. In fact the counter-
terms are also required for well posedness of the variational
problem when the boundary conformal structure is fixed [9].
The purpose of this paper is to address the analogous

issues for spacetimes with positive cosmological constant.
ALdS spacetimes share a number of properties with ALAdS
spacetimes, but there are also important differences. The
conformal boundary of ALdS spacetimes is spacelike and
typically has two causally connected components, one at past
infinity and one at future infinity (in contrast the AdS
conformal boundary is typically connected1). Near each
component the structure of the spacetime is related by
analytic continuation to that of a corresponding ALAdS
spacetime [13], with results analogous to (1), (2), (3)
(recovering the asymptotic expansion first presented in
[14]). ALdS spacetimes are spatially compact so one
cannot define conserved charges as integrals at spatial
infinity. Nevertheless, explicit solutions (for example the
Schwarzschild dS solution) have integration constants that
traditionally are interpreted as the values of conserved
charges (like mass and angular momentum). These charges
are associated with conformal Killing vectors of the con-
formal structure at future infinity and may be computed by
integrals of the energy momentum tensor at future infinity.
However, they are not conserved in the usual sense, i.e.,
under time evolution. Instead these charges are conserved

under spatial translations if there is no gravitational radiation,
as we discuss below.
The discussion of gravitational charges in de Sitter space-

times goes back to at least [15], and there has been renewed
interest in this topic since our Universe appears to have
positive cosmological constant and gravitational waves have
been observed. Recent works include those of Ashtekar et al.
[16–21] (which builds upon earlierwork [22,23]) that discuss
charges and radiation for linearized fields on dS, and
Chruściel et al. [24–26] where different approaches to the
computation of energy and linear fluxes between null cones
in dS are considered, see also [27–31]. A number of other
approaches to examining radiative bodies in dS can be found
in [32–37]. As outlined above, there are many similarities
between dS and AdS and works that use the similarity to
define charges and fluxes include [38–46].
Our work significantly develops understanding of

charges and fluxes in de Sitter. Earlier works were focused
on asymptotically de Sitter spacetimes but our analysis
holds for the general class of asymptotically locally de
Sitter spacetimes. Restricting to asymptoticially de Sitter
does not allow for gravitational waves propagating to the
conformal boundary and therefore misses important physi-
cal effects. In our work divergences associated with the
conformal boundary are treated systematically with holo-
graphic renormalization i.e., covariant boundary counter-
terms. This approach leads to unambiguous results for
changes that are intrinsic to the spacetime rather than
defined relative to a reference spacetime and hold for
general asymptotically locally de Sitter spacetimes.
Another key difference with previous works is that we

focus on the qualitative new issues that arise in de Sitter,
relative to AdS and flat space. One such key difference is
the observation that there are contributions to charges from
both end points of the timelike surfaces used to define the
charges. In previous literature contributions from inner
boundaries were often set to be zero by imposing falloff
conditions on fields but we do not need to impose any such
restrictions. We explain that one needs to consider fluxes
through box regions in generic dynamical situations and we
give a precise characterization of this gravitational flux. In
particular, we obtain a quantity that is conserved under time
evolution in the absence of fluxes and equals the flux when
gravitational flux is present.

II. COVARIANT PHASE SPACE FORMALISM

Themain tool we use in our analysis is the covariant phase
space [47–52] (see also the recent works [53,54] and
references therein, and [55] for an alternative but equivalent
formalism). The key object is the (d − 1)-form symplectic
current ω. Starting from a diffeomorphism covariant
Lagrangian d-formLðψÞ, the symplectic current is given by

ωðψ ; δ1ψ ; δ2ψÞ ¼ δ1Θðψ ; δ2ψÞ − δ2Θðψ ; δ1ψÞ; ð5Þ1See [12] for general results regarding the Euclidean AdS case.
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where Θ is the total derivative in the on shell variation of
LðψÞ, δL ¼ dΘ (ψ denotes the metric and other fields).
A crucial property of ω is that it is closed on shell,

dω ¼ 0: ð6Þ
Consider now on shell configurations ψ whose variations

δψ are also on shell. For a diffeomorphism generated by ξ
the corresponding Hamiltonian Hξ is given by

δHξ ¼
Z
C
ωðψ ; δψ ;LξψÞ; ð7Þ

with C a (d − 1)-dimensional slice, which for many appli-
cations is a Cauchy surface, and Lξ is the Lie derivative.
Given such a diffeomorphism we can associate a (d − 1)-
form Noether current, JðξÞ ¼ Θðψ ;LξψÞ − iξL, where iξ is
the interior product. The current J is closed on shell and is
thus locally exact: JðξÞ ¼ dQðξÞwith (d − 2)-form Noether
charge Q, the variation of Hξ may be written as

δHξ ¼
Z
∂C

ðδQðξÞ − iξΘðψ ; δψÞÞ; ð8Þ

where ∂C is the boundary of C.
One can integrate this equation to obtainHξ if and only if

the right-hand side is a total variation, requiring
Z
∂C

iξΘðψ ; δψÞ ¼ δ

Z
∂C

iξBðψÞ: ð9Þ

Note that one can also express the condition for existence of
Hξ in terms of ½δ1; δ2�Hξ ¼ 0:

Z
∂C

iξωðψ ; δ1ψ ; δ2ψÞ ¼ 0: ð10Þ

The difference between Hamiltonians at two different Cs is
given by

δHξj∂C2
− δHξj∂C1

¼ −
Z
B12

ωðψ ; δψ ;LξψÞ; ð11Þ

where B12 is a hypersurface with boundary ∂C1⊔∂C2. If
(10) is satisfied by virtue of ωjB12

¼ 0, then Eq. (11) tells us
that Hξ is independent of the slice C. We now review the
application of this formalism to ALAdS spacetimes, before
discussing ALdS spacetimes.

III. ASYMPTOTICALLY LOCALLY
ANTI–DE SITTER:

This case was fully analyzed in [9]. The slice C in (7) is a
bulk spacelike surface that ends on the boundary of ALAdS.
Considering Dirichlet conditions,2 where the conformal

class ½gð0Þ� is kept fixed, and a ½gð0Þ� that admits conformal
Killing vectors, the integrability criterion (10) is automati-
cally satisfied byvirtue ofωðgμν; δgμν;LξgμνÞjB12

¼ 0, where
here ξ is an asymptotic conformal Killing vector; i.e., it
approaches the conformal Killing vectors ζ at the boundary,
see Appendix B of [9] for the specific fall-off conditions)
Then the Wald Hamiltonian integrates to (4).
When there is gravitational radiation from the interior, it

will reach the conformal boundary at finite proper time. As
a result, radiative AdS spacetimes have a time-dependent
boundary conformal structure, as was confirmed recently in
[56]. In such cases there are no conserved charges because
the boundary conformal structure does not admit conformal
Killing vectors. However, if the gravitational flux arrives in
finite time intervals, so that the boundary geometry outside
these intervals admits conformal Killing vectors, there will
be piecewise constant gravitational charges, and the differ-
ence in their values between two instances of time will
account for the gravitational flux arriving at the conformal
boundary, see Fig. 2. More generally, if the spacetime
admits a limit where conserved quantities exist, then one
can discuss the flux of such quantities away from that limit.
An example is the Robinson-Trautmann solution which we
will discuss below in the context of Λ > 0.

IV. ASYMPTOTICALLY LOCALLY DE SITTER:

We now consider ALdS spacetimes with Dirichlet
boundary conditions, i.e., we keep fixed a conformal class
at each end. Different boundary conditions may be imple-
mented as discussed in footnote 2. One may adapt
straightforwardly all steps of Λ < 0 case to Λ > 0; in
most formulas this amounts to differences in signs. How-
ever, there are important conceptual differences. The analog
of the surface C in (7) we used in the ALAdS case is now
timelike, and because the conformal boundary has two
components, one at future infinity and another at past

FIG. 2. Illustrating flux in an ALAdS spacetime. If flux arrives
in B12, then the gravitational charge at C2 will differ from that in
C1. The conformal boundaryI is a timelike hypersurface and the
C1, C2 are spacelike.

2Other boundary conditions may be obtained by adding finite
boundary terms that implement this change of boundary con-
dition and tracking their contributions, see also [45,46].
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infinity, such a C will have two ends. Let us consider the
case where both past and future infinity admit conformal
Killing vectors and a hypersurface C that extends from
future infinity to past infinity. Let ξ be a bulk vector that is
an asymptotic conformal Killing vector near both past and
future conformal infinity, approaching a boundary con-
formal Killing vector ζb� at I�. Then

Hξ½C� ¼ Qþ
ξ −Q−

ξ ; ð12Þ

whereQ�
ξ ½C� ¼

R
∂Cð�Þ dsaTa

ð�Þbζ
b
�; T

a
ð�Þb is the holographic

energy momentum tensor, and ∂C� are the two ends of C.
Now consider two such surfaces C1 and C2, see Fig. 3.
Then (11) implies

ΔQþ
ξ ðC1; C2Þ ¼ ΔQ−

ξ ðC1; C2Þ ¼ 0; ð13Þ

whereΔQ�
ξ ðC1; C2Þ ¼ Q�

ξ ½C1� −Q�
ξ ½C2�. The first equality

in (13) follows from ωðgμν; δgμν;LξgμνÞjB�
12
¼ 0 and the

second from applying Stokes’s theorem to ΔQ�
ξ independ-

ently atB�
12, using the explicit formulas forQ�

ξ . It follows that
while the values of the charges may change fromI − toIþ,
their difference is zero. Recall thatI� are Cauchy surfaces
and consider any other Cauchy surface It. Then as we
now argue, ΔQt

ξ ¼ ΔQ−
ξ , where ΔQt

ξðC1; C2Þ ¼ Qt
ξ½C1�−

Qt
ξ½C2�, and Qt

ξ½C� ¼
R
C∩It dsa2π

a
bξ

b, with πab as the con-
jugate momentum of the induced metric at It (here, for
simplicity, we assume that we deal with pure gravity). In
other words, ΔQt

ξ is conserved under time evolution, i.e.,
independent of the Cauchy surface It. To see this, note that
sinceω is closed, its integral over the boundary of the region
enclosed byC1; C2; It;I − is zero, soΔQ−

ξ must be equal to
ΔQt plus any flux passing through Bt

12. However, there
cannot be such flux, since any flux would eventually reach
future infinity and as a result the conformal class at Iþ
would not admit conformal Killing vectors. Sincewe assume
that future infinity admits conformal Killing vectors, there
cannot be gravitational flux in the interior, and we find
ΔQ−

ξ ¼ ΔQt
ξ. SowhileQ

t
ξ may depend in t,ΔQt

ξ ¼ 0 for all

t. One may also check that known solutions such as Kerr–de
Sitter have ΔQþ

ξ ¼ 0.
In our discussion we consider timelike slices C that

extend from the future infinity to past infinity. One may
also consider hypersurfaces that start and end at future
infinity. Such Cmay be obtained by using the portion of the
hypersurface C1 from future infinity till It, then join Bt

12

and return to future infinity using (the time reverse of) C2.
Let us now consider the effects of radiation; i.e., we

consider the case when Iþ admits no conformal Killing
vectors. In this case the same argument implies that ΔQþ

ξ

will differ from ΔQt
ξ by the amount of net radiation in the

region bounded by Iþ; C1; C2 and It. In many previous
discussions the contribution from It is either ignored or
argued to be zero by postulating suitable decay rates in the
deep interior. Assuming ΔQt

ξ ¼ 0, any nonzero ΔQþ
ξ will

be due to gravitational radiation at Iþ, captured explicitly
via the future flux formula [39,43,45]

ΔQþ
ξ ðC1; C2Þ ¼ −

Z
Bþ
12

Fξð0Þ ; ð14Þ

where

Fξð0Þ ¼
�
−
1

2

ffiffiffiffiffiffiffi
gð0Þ

p
TabLξð0Þg

ð0Þ
ab

�
ϵ3: ð15Þ

Using our formalism, we can also consider the case of
ΔQt

ξ ≠ 0, i.e., account for radiation passing through the
interior hypersurface It. The past flux formula is

ΔQt
ξðC1; C2Þ ¼ −

Z
Bt
12

Gξ; ð16Þ

where

Gξ ¼ ð− ffiffiffi
γ

p
πabLξγabÞϵ3: ð17Þ

In summary, the effect of gravitational radiation is to spoil the
conservation of spacelike separated charges. Combining
Eqs. (14) and (16), we see that the explicit difference is
given by

ΔQþ − ΔQt ¼ −
Z
Bþ
12

Fξð0Þ þ
Z
Bt
12

Gξ: ð18Þ

V. ROBINSON-TRAUTMAN

To conclude we discuss an example of a class of radiative
dS solutions: the Robinson-Trautman (RT) family. RT [57]
describes an isolated system which relaxes to equilibrium
by radiating excess energy via gravitational waves, becom-
ing Schwarzschild dS. The solution exists for any value of
the cosmological constant, and here we discuss the Λ > 0
case. The metric is

FIG. 3. Timelike C1, C2 intersecting spacelike conformal
boundaries I� in ALdS spacetime.
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ds2 ¼ −ΦΛdu2 − 2dudrþ 2r2P−2dζdζ̄; ð19Þ
where P ¼ Pðu; ζ; ζ̄Þ and

ΦΛ ¼ Δ lnP − 2rðlnPÞ;u −
2m
r

−
Λ
3
r2: ð20Þ

Δ ¼ 2P2
∂
2=∂ζ∂ζ̄ and P satisfies the Robinson-Trautman

equation:

ðlnPÞ;u þ
1

12M
ΔΔðlnPÞ ¼ 0: ð21Þ

Using results from [58], a representative of the con-
formal class at Iþ is

ds2ð0Þ ¼ gð0Þabdxadxb ¼ dy2 þ 6

Λ
P̂−2dζdζ̄; ð22Þ

where P̂ denotes the boundary value of P. This metric
generically possesses no conformal Killing vectors and
thus we cannot define charges. However, as y → ∞ the
solution approaches Schwarzschild dS which has an
isometry related to mass, and therefore we may discuss
its flux. Let us consider a vector field which in this limit is
associated with Bondi “time” translation along the boun-
dary (note that it is spacelike). The vector generating these
translations is

ξað0Þ∂a ¼
P̂0

P̂
∂y; ð23Þ

where P̂0 ¼ 1þ ζζ̄=2 is the limit of P̂ as y → ∞. The
normalization of this vector relates to the RTdS metric (19)
needing to undergo a coordinate transformation to be
expressible in Bondi gauge [59]. Exploiting results from
[58], one can show that

Qþ
ξ ¼ 2m

κ2

Z
∂Cþ

�
P0

P

�
3

dμ0; ð24Þ

where dμ0 is the area element on the unit S2. This quantity
is analogous to the Bondi mass, MB, of RT in the
asymptotically flat setting [4]. It has been previously
observed [58,60,61] that the quantity defined in Eq. (24)
is monotonically decreasing regardless of the sign of Λ.
Our construction thus illustrates explicitly how the Bondi
mass of the asymptotically flat RT solution arises in the
current context.
Since we have not used an asymptotic conformal Killing

vector to construct MB, we should expect to discover
additional flux through Bþ

12 ⊂ Iþ when comparing the
difference in Bondi mass between the hypersurfaces C1 and
C2. Applying Eqs. (14) and (15) to the RT solution, we find
the following equation for the flux through Bþ

12:

ΔQþ
ξ ¼ MBj∂Cþ

1
−MBj∂Cþ

2
¼ −

Z
Bþ
12

Fξð0Þ ; ð25Þ

where

Fξð0Þ ¼ −
2m
κ2

∂y

�
P0

P

�
3

ffiffiffi
σ
∘

q
ϵ3 ð26Þ

and σ
∘
ABdxAdxB ¼ 2P−2

0 dζdζ̄ is the metric on the unit
round S2. This flux formula gives

MBj∂Cþ
1
−MBj∂Cþ

2
≤ 0 ð27Þ

by monotonicity of the expression defined in Eq. (24)
[60,61]. We note that the existence of this monotonically
decreasing charge is unlikely to be a feature of all ALdS
spacetimes, where charges may obey flux-balance laws
similar to those proposed in [44]. However, this analysis
proves that all metrics in the RT(A)dS family possess such
a charge.
It would be interesting to compute ΔQt

ξ and confirm
monotonicity in u. For this we would need to know the
form of Bondi time translation vector field in the deep
interior of the RT spacetime. We leave this computation to
future work.

VI. CONCLUSIONS

We have discussed the definition of charges in asymp-
totically locally de Sitter spacetimes. We show that the
difference of charges ΔQt

ξðC1; C2Þ defined using timelike
surfaces C1 and C2 at the Cauchy surface It is zero if
gravitational flux is absent. If there is gravitational flux the
corresponding quantities differ by the net amount of flux.
We illustrated the latter with the example of Robinson-
Trautmann dS and derived a bound on the flux (27). It
would be interesting to exemplify our discussion with
further explicit examples, investigate possible connections
with work on gravitational wave memory [62–69], and
analyze possible relevance to present and future gravita-
tional wave observations. Covariant phase space has been
instrumental in formulating in generality and obtaining a
deep understanding of the first law of black hole thermo-
dynamics [49,50]. Thermodynamics of black holes with de
Sitter asymptotics is still poorly understood and we believe
the framework we develop here and the issues we uncover
are important in this context as well.
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