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Euclidean time windows in the integral representation of the hadronic vacuum polarization contribution
to the muon g − 2 serve to test the consistency of lattice calculations and may help in tracing the origins of a
potential tension between lattice and data-driven evaluations. In this paper, we present results for the
intermediate time window observable computed using OðaÞ improved Wilson fermions at six values of the
lattice spacings below 0.1 fm and pion masses down to the physical value. Using two different sets of
improvement coefficients in the definitions of the local and conserved vector currents, we perform a
detailed scaling study which results in a fully controlled extrapolation to the continuum limit without any
additional treatment of the data, except for the inclusion of finite-volume corrections. To determine the
latter, we use a combination of the method of Hansen and Patella and the Meyer-Lellouch-Lüscher
procedure employing the Gounaris-Sakurai parametrization for the pion form factor. We correct our results
for isospin-breaking effects via the perturbative expansion of QCDþ QED around the isosymmetric theory.
Our result at the physical point is awinμ ¼ ð237.30� 0.79stat � 1.22systÞ × 10−10, where the systematic error
includes an estimate of the uncertainty due to the quenched charm quark in our calculation. Our result
displays a tension of 3.9σ with a recent evaluation of awinμ based on the data-driven method.

DOI: 10.1103/PhysRevD.106.114502

I. INTRODUCTION

The anomalousmagneticmoment of themuon,aμ, plays a
central role in precision tests of the Standard Model (SM).
The recently published result of the direct measurement
of aμ by the Muon g − 2 Collaboration [1] has confirmed
the earlier determination by the E821 experiment at
Brookhaven National Laboratory [2]. When confronted

with the theoretical estimate published in the 2020 White
paper [3], the combination of the two direct measurements
increases the tension with the SM to 4.2σ. The SM
prediction of Ref. [3] is based on the estimate of the
leading-order hadronic vacuum polarization (HVP) contri-
bution, ahvpμ , evaluated from a dispersion integral involving
hadronic cross section data (“data-driven approach”) [4–9],
which yields ahvpμ ¼ ð693.1� 4.0Þ × 10−10 [3]. The quoted
error of 0.6% is subject to experimental uncertainties
associated with measured cross section data.
Lattice QCD calculations for ahvpμ [10–24] as well as

for the hadronic light-by-light scattering contribution ahlblμ

[25–39] have become increasingly precise in recent
years (see [40–42] for recent reviews). Although these

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 106, 114502 (2022)

2470-0010=2022=106(11)=114502(33) 114502-1 Published by the American Physical Society

https://orcid.org/0000-0001-6906-6823
https://orcid.org/0000-0002-8839-7166
https://orcid.org/0000-0002-3318-3566
https://orcid.org/0000-0002-0955-9228
https://orcid.org/0000-0003-1852-9562
https://orcid.org/0000-0003-3668-411X
https://orcid.org/0000-0001-8951-7898
https://orcid.org/0000-0002-2567-4824
https://orcid.org/0000-0001-5402-2633
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.106.114502&domain=pdf&date_stamp=2022-12-13
https://doi.org/10.1103/PhysRevD.106.114502
https://doi.org/10.1103/PhysRevD.106.114502
https://doi.org/10.1103/PhysRevD.106.114502
https://doi.org/10.1103/PhysRevD.106.114502
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


calculations do not rely on the use of experimental data,
they face numerous technical challenges that must be
brought under control if one aims for a total error that
can rival or even surpass that of the data-driven approach.
In spite of the technical difficulties, a first calculation of
ahvpμ with a precision of 0.8% has been published recently
by the BMW Collaboration [20]. Their result of ahvpμ ¼
ð707.5� 5.5Þ × 10−10 is in slight tension (2.1σ) with the
White paper estimate and reduces the tension with the
combined measurement from E989 and E821 to just 1.5σ.
This has triggered several investigations that study the
question whether the SM can accommodate a higher value
for ahvpμ without being in conflict with low-energy hadronic
cross section data [43] or other constraints, such as global
electroweak fits [44–47]. At the same time, the consistency
among lattice QCD calculations is being scrutinized with a
focus on whether systematic effects such as discretization
errors or finite-volume effects are sufficiently well con-
trolled. Moreover, when comparing lattice results for ahvpμ

from different collaborations, one has to make sure that
they refer to the same hadronic renormalization scheme that
expresses the bare quark masses and the coupling in terms
of measured hadronic observables.
Given the importance of the subject and in view of the

enormous effort required to produce a result for ahvpμ at the
desired level of precision, it has been proposed to perform
consistency checks among different lattice calculations in
terms of suitable benchmark quantities that suppress
(respectively, enhance) individual systematic effects.
These quantities are commonly referred to as “window
observables,” whose definition is given in Sec. II.
In this paper we report our results for the so-called

“intermediate” window observables, for which the short-
distance as well as the long-distance contributions in the
integral representation of ahvpμ are reduced. This allows
for a straightforward and highly precise comparison with
the results from other lattice calculations and the data-
driven approach. This constitutes a first step toward a
deeper analysis of a possible deviation between lattice
and phenomenology. Indeed, our findings present further
evidence for a strong tension between lattice calculations
and the data-driven method. At the physical point we
obtain awinμ ¼ ð237.30� 1.46Þ × 10−10 [see Eq. (45) for a
detailed error budget], which is 3.9σ above the recent
phenomenological evaluation of ð229.4� 1.4Þ × 10−10

quoted in Ref. [48].
This paper is organized as follows: We motivate and

define the window observables in Sec. II, before describing
the details of our lattice calculation in Sec. III. In Sec. IV we
discuss extensively the extrapolation to the physical point,
focusing specifically on the scaling behavior, and present
our results for different isospin components and the quark-
disconnected contribution. Sections V and VI describe our
determinations of the charm-quark contribution and of

isospin-breaking corrections, respectively. Our final results
are presented and compared to other determinations in
Sec. VII. In-depth descriptions of technical details and
procedures, as well as data tables, are relegated to several
Appendices. Details on how we correct for mistunings of the
chiral trajectory are described in Appendices A and B, and
the determination of finite-volume corrections is discussed in
Appendix C, while the estimation of the systematic uncer-
tainty related to the quenching of the charm quark is
presented in Appendix D. Ancillary calculations of pseu-
doscalar masses and decay constants that enter the analysis
are described in Appendix E. Finally, Appendix F contains
extensive tables of our raw data.

II. WINDOW OBSERVABLES

The most widely used approach to determine the leading
HVP contribution ahvpμ in lattice QCD is the “time-
momentum representation” [49], i.e.,

ahvpμ ¼
�
α

π

�
2
Z

∞

0

dtK̃ðtÞGðtÞ; ð1Þ

where GðtÞ is the spatially summed correlation function of
the electromagnetic current

GðtÞ ¼ −
a3

3

X3
k¼1

X
x⃗

hjemk ðt; x⃗Þjemk ð0Þi;

jemμ ¼ 2

3
ūγμu −

1

3
d̄γμd −

1

3
s̄γμsþ

2

3
c̄γμcþ � � � ; ð2Þ

K̃ðtÞ is a known kernel function (see Appendix B of
Ref. [10]), and the integration is performed over the
Euclidean time variable t. By considering the contribu-
tions from the light (u, d), strange, and charm quarks to
GðtÞ one can perform a decomposition of ahvpμ in terms of
individual quark flavors. It is also convenient to consider
the decomposition of the electromagnetic current into an
isovector (I ¼ 1) and an isoscalar (I ¼ 0) component
according to

jemμ ¼ jI¼1
μ þjI¼0

μ þ��� ;

jI¼1
μ ¼1

2
ðūγμu− d̄γμdÞ; jI¼0

μ ¼1

6
ðūγμuþ d̄γμd−2s̄γμsÞ;

ð3Þ

where the ellipsis in the first line denotes the missing charm
and bottom contributions.
One of the challenges in the evaluation of ahvpμ is

associated with the long-distance regime of the vector
correlator GðtÞ. Owing to the properties of the kernel K̃ðtÞ,
the integrand K̃ðtÞGðtÞ has a slowly decaying tail that
makes a sizable contribution to ahvpμ in the region t≳ 2 fm.
However, the statistical error in the calculation of GðtÞ
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increases exponentially with t, which makes an accurate
determination a difficult task. Furthermore, it is the
long-distance regime of the vector correlator that is mostly
affected by finite-size effects.
The opposite end of the integration interval, i.e., the

interval t≲ 0.4 fm, is particularly sensitive to discretization
effects which must be removed through a careful extrapo-
lation to the continuum limit, possibly involving an Ansatz
that includes subleading lattice artifacts, especially if one is
striving for subpercent precision.
At this point it becomes clear that lattice results for ahvpμ

are least affected by systematic effects in an intermediate
subinterval of the integration in Eq. (1), as already
recognized in [49]. This led the authors of Ref. [13] to
introduce three “window observables,” each defined in
terms of complementary subdomains with the help of
smoothed step functions. To be specific, the short-distance
(SD), intermediate distance (ID) and long-distance (LD)
window observables are given, respectively, by

ðahvpμ ÞSD ≡
�
α

π

�
2
Z

∞

0

dtK̃ðtÞGðtÞ½1 − Θðt; t0;ΔÞ�; ð4Þ

ðahvpμ ÞID ≡
�
α

π

�
2
Z

∞

0

dtK̃ðtÞGðtÞ½Θðt; t0;ΔÞ−Θðt; t1;ΔÞ�;

ð5Þ

ðahvpμ ÞLD ≡
�
α

π

�
2
Z

∞

0

dtK̃ðtÞGðtÞΘðt; t1;ΔÞ; ð6Þ

where Δ denotes the width of the smoothed step function Θ
defined by

Θðt; t0;ΔÞ≡ 1

2
ð1þ tanh½ðt − t0Þ=Δ�Þ: ð7Þ

The widely used choice of intervals and smoothing width
that we will follow is

t0 ¼ 0.4 fm; t1 ¼ 1.0 fm and Δ ¼ 0.15 fm: ð8Þ

The original motivation for introducing the window
observables in Ref. [13] was based on the observation that
the relative strengths and weaknesses of the lattice QCD
and the R-ratio approach complement each other when the
evaluations using either method are restricted to non-
overlapping windows, thus achieving a higher overall
precision from their combination. Since then it has been
realized that the window observables serve as ideal bench-
mark quantities for assessing the consistency of lattice
calculations, since the choice of subinterval can be regarded
as a filter for different systematic effects. Furthermore,
the results can be confronted with the corresponding
estimate using the data-driven approach. This allows for

high-precision consistency checks among different lattice
calculations and between lattice QCD and phenomenology.
In this paper, we focus on the intermediate window and

use the simplified notation

awinμ ≡ ðahvpμ ÞID: ð9Þ

We remark that the observable awinμ , which accounts for
about one-third of the total ahvpμ , can be obtained from
experimental data for the ratio

RðsÞ≡ σðeþe− → hadronsÞ
σðeþe− → μþμ−Þ ð10Þ

via the dispersive representation of the correlator (2) [49].
How different intervals of center-of-mass energy contribute
to the different window observables in the data-driven
approach is investigated in Appendix B; similar observa-
tions have already been made in Refs. [48,50,51]. For the
intermediate window awinμ , the relative contribution of the
region

ffiffiffi
s

p
< 600 MeV is significantly suppressed as com-

pared to the quantity ahvpμ . Instead, the relative contribution
of the region

ffiffiffi
s

p
> 900 MeV, including the ϕ meson

contribution, is somewhat enhanced.1 Interestingly, the
region of the ρ and ω mesons between 600 and
900 MeV makes about the same fractional contribution
to awinμ as to ahvpμ , namely 55%–60%. Thus if the spectral
function associated with the lattice correlator GðtÞ was for
some reason enhanced by a constant factor (1þ ϵ) in the
interval 600 <

ffiffiffi
s

p
=MeV < 900 relative to the experi-

mentally measured spectral function RðsÞ=ð12π2Þ, it
would approximately lead to an enhancement by a factor
ð1þ 0.6ϵÞ of both ahvpμ and awinμ . Finally, we note that the
relative contributions of the three

ffiffiffi
s

p
intervals are rather

similar for awinμ as for the running of the electromagnetic
coupling from Q2 ¼ 0 to Q2 ¼ 1 GeV2.

III. CALCULATION OF Awin
μ ON THE LATTICE

A. Gauge ensembles

Our calculation employs a set of 24 gauge ensembles
generated as part of the Coordinated Lattice Simulations
(CLS) initiative using Nf ¼ 2þ 1 dynamical flavors of
nonperturbatively OðaÞ improved Wilson quarks and the
tree-level Oða2Þ improved Lüscher-Weisz gauge action
[52]. The gauge ensembles used in this work were
generated for constant average bare quark mass such that
the improved bare coupling g̃0 [53] is kept constant along
the chiral trajectory. Six of the ensembles listed in Table I
realize the SUð3Þf -symmetric point mu ¼ md ¼ ms corre-
sponding to mπ ¼ mK ≈ 420 MeV. Pion masses lie in the

1Contributions as massive as the J=ψ , however, make again a
smaller relative contribution to awinμ than to ahvpμ .
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range mπ ≈ 130–420 MeV. Seven of the ensembles used
have periodic (antiperiodic for fermions) boundary con-
ditions in time, while the others admit open boundary
conditions [54]. All ensembles included in the final
analysis satisfymπL≳ 4. Finite-size effects can be checked
explicitly for mπ ¼ 280 and 420 MeV, where in each case
two ensembles with different volumes but otherwise
identical parameters are available. The ensembles with
volumes deemed to be too small are marked by an asterisk
in Table I and are excluded from the final analysis.
The QCD expectation values are obtained from the CLS

ensembles by including appropriate reweighting factors,
including a potential sign of the latter [56]. A negative
reweighting factor, which originates from the handling of
the strange quark, is found on fewer than 0.5% of the gauge
field configurations employed in this work.
For the bulk of our pion masses, down to the physical

value, results were obtained at four values of the lattice
spacing in the range a ¼ 0.050–0.086 fm. At and close to
the SUð3Þf -symmetric point, four more ensembles have
been added that significantly extend the range of available
lattice spacings to a ¼ 0.039–0.099 fm, which allows us to
perform a scaling test with unprecedented precision.

B. Renormalization and OðaÞ improvement

To reduce discretization effects, on-shell OðaÞ improve-
ment has been fully implemented. CLS simulations are
performed using a nonperturbatively OðaÞ improved
Wilson action [57]; therefore, we focus here on the
improvement of the vector current in the ðu; d; sÞ quark
sector. To further constrain the continuum extrapolation
and explicitly check our ability to remove leading lattice
artifacts, two discretizations of the vector current are used,
the local (L) and the point-split (C) currents

JðLÞ;aμ ðxÞ ¼ ψ̄ðxÞγμ
λa

2
ψðxÞ; ð11aÞ

JðCÞ;aμ ðxÞ ¼ 1

2

�
ψðxþ aμ̂Þð1þ γμÞU†

μðxÞ λ
a

2
ψðxÞ

− ψ̄ðxÞð1 − γμÞUμðxÞ
λa

2
ψðxþ aμ̂Þ

�
; ð11bÞ

where ψ denotes a vector in flavor space, λ are the Gell-
Mann matrices, and UμðxÞ is the gauge link in the direction
μ̂ associated with site x. With the local tensor current

TABLE I. Parameters of the simulations: the bare coupling β ¼ 6=g20, the lattice dimensions, the lattice spacing a in physical units
extracted from Ref. [55], the pion and kaon masses and the physical size of the lattice, the number of gauge field configurations used for
the connected light- and strange-quark contributions (penultimate column) and for the disconnected contribution (last column).
Ensembles with an asterisk are not included in the final analysis but used to control finite-size effects. The ensembles A653, A654,
B450, N451, D450, D452, and E250 have periodic boundary conditions in time; all others have open boundary conditions.

Id β ðLaÞ3 × T
a a (fm) mπ (MeV) mK (MeV) mπL L (fm) # confs conn # confs disc

A653 3.34 243 × 96 0.0993 421(4) 421(4) 5.1 2.4 4000 � � �
A654 243 × 96 331(3) 451(5) 4.0 2.4 4000 � � �
H101 3.40 323 × 96 0.08636 416(4) 416(4) 5.8 2.8 2000 � � �
H102 323 × 96 352(4) 437(4) 4.9 2.8 1900 1900
H105* 323 × 96 277(3) 462(5) 3.9 2.8 2000 1000
N101 483 × 128 278(3) 461(5) 5.8 4.1 1500 1300
C101 483 × 96 219(2) 470(5) 4.6 4.1 2000 2000
B450 3.46 323 × 64 0.07634 415(4) 415(4) 5.1 2.4 1500 � � �
S400 323 × 128 349(4) 440(4) 4.3 2.4 2800 1700
N451 483 × 128 286(3) 461(5) 5.3 3.7 1000 1000
D450 643 × 128 215(2) 475(5) 5.3 4.9 500 500
D452 643 × 128 154(2) 482(5) 3.8 4.9 900 800
H200* 3.55 323 × 96 0.06426 416(5) 416(5) 4.3 2.1 2000 � � �
N202 483 × 128 412(5) 412(5) 6.4 3.1 900 � � �
N203 483 × 128 346(4) 442(5) 5.4 3.1 1500 1500
N200 483 × 128 284(3) 463(5) 4.4 3.1 1700 1700
D200 643 × 128 200(2) 480(5) 4.2 4.1 2000 1000
E250 963 × 192 128(1) 489(5) 4.0 6.2 600 1000
N300 3.70 483 × 128 0.04981 419(4) 419(4) 5.1 2.4 1700 � � �
N302 483 × 128 344(4) 450(5) 4.2 2.4 2200 1000
J303 643 × 192 257(3) 474(5) 4.1 3.2 1000 500
E300 963 × 192 174(2) 490(5) 4.2 4.8 600 500
J500 3.85 643 × 192 0.039 411(4) 411(4) 5.2 2.5 1200 � � �
J501 643 × 192 332(3) 443(4) 4.2 2.5 400 � � �
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defined as Σa
μνðxÞ ¼ − 1

2
ψðxÞ½γμ; γν� λa2 ψðxÞ, the improved

vector currents are given by

JðαÞ;a;Iμ ðxÞ ¼ JðαÞ;aμ ðxÞ þ acðαÞV ðg0Þ∂̃νΣa
μνðxÞ; α ¼ L;C;

ð12Þ

where ∂̃ is the symmetric discrete derivative ∂̃νfðxÞ ¼
ð1=2aÞðfðxþ aÞ − fðx − aÞÞ. The coefficients cðαÞV have
been determined nonperturbatively in Ref. [58] by impos-
ing Ward identities in large volume ensembles and inde-
pendently in Ref. [59] using the Schrödinger functional
(SF) setup. The availability of two independent sets allows
us to perform detailed scaling tests, which is a crucial
ingredient for a fully controlled continuum extrapolation.
The conserved vector current does not need to be further

renormalized. For the local vector current, the renormal-
ization pattern, including OðaÞ improvement, has been
derived in Ref. [60]. Following the notations of Ref. [58],
the renormalized isovector and isoscalar parts of the
electromagnetic current read

JðLÞ;3;Rμ ðxÞ ¼ Z3J
ðLÞ;3;I
μ ðxÞ; ð13aÞ

JðLÞ;8;Rμ ðxÞ ¼ Z8J
ðLÞ;8;I
μ ðxÞ þ Z80J

ðLÞ;0;I
μ ðxÞ; ð13bÞ

where J0μ ¼ 1
2
ψ̄γμψ is the flavor-singlet current and

Z3 ¼ ZV½1þ 3b̄Vamav
q þ bVamq;l�; ð14aÞ

Z8 ¼ ZV

�
1þ 3b̄Vamav

q þ bV
3
aðmq;l þ 2mq;sÞ

�
; ð14bÞ

Z80 ¼ ZV

�
1

3
bV þ fV

�
2ffiffiffi
3

p aðmq;l −mq;sÞ: ð14cÞ

Here, mq;l and mq;s are the subtracted bare quark masses
of the light and strange quarks, respectively, defined in
Appendix E and mav

q ¼ ð2mq;l þmq;sÞ=3 stands for the
average bare quark mass. The renormalization constant
in the chiral limit, ZV, and the improvement coefficients
bV and b̄V have been determined nonperturbatively in
Ref. [58]. Again, independent determinations using the
SF setup are available in Refs. [59,61]. The coefficient fV,
which starts at order g60 in perturbation theory [58], is
unknown but expected to be very small and is therefore
neglected in our analysis.
Thus, in addition to having two discretizations of the

vector current, we also have at our disposal two sets of
improvement coefficients that can be used to benchmark
our continuum extrapolation:

(i) set 1, using the improvement coefficients obtained in
large-volume simulations in Ref. [58], and

(ii) set 2, using ZV and cV from Ref. [59] and bV and b̄V
from Ref. [61], using the SF setup.

Note, in particular, that the improvement coefficients cV,
bV and b̄V have an intrinsic ambiguity of order OðaÞ. Thus,
for a physical observable, we expect different lattice
artifacts at order OðanÞ with n ≥ 2. This will be considered
in Sec. IV C.

C. Correlation functions

The vector two-point correlation function is computed
with the local vector current at the source and either the
local or the point-split vector current at the sink. The
corresponding renormalized correlators are

GðLLÞ;RðtÞ ¼ Z2
3G

ðLLÞ;33;IðtÞþ 1

3
Z2
8G

ðLLÞ;88;IðtÞ

þ 1

3
Z8Z80ðGðLLÞ;80;IðtÞþGðLLÞ;08;IðtÞÞ; ð15aÞ

GðCLÞ;RðtÞ ¼ Z3GðCLÞ;33;IðtÞ þ 1

3
Z8GðCLÞ;88;IðtÞ

þ 1

3
Z80GðCLÞ;80;IðtÞ; ð15bÞ

with the improved correlators

GðαLÞ;ab;IðtÞ ¼ −
a3

3

X3
k¼1

X
x⃗

hJðαÞ;a;Ik ðt; x⃗ÞJðLÞ;b;Ik ð0Þi;

α ¼ L;C: ð16Þ

In the absence of QED and strong isospin breaking, there
are only two sets of Wick contractions, corresponding to
the quark-connected part and the quark-disconnected part
of the vector two-point functions. The method used to
compute the connected contribution has been presented
previously in Ref. [17]. In this work we have added several
new ensembles and have significantly increased our
statistics, especially for our most chiral ensembles. The
method used to compute the disconnected contribution
involving light and strange quarks is presented in detail in
Ref. [62]. Note that we neglect the charm-quark contribu-
tion to disconnected diagrams in the present calculation.

D. Treatment of statistical errors and autocorrelations

Statistical errors are estimated using the jackknife
procedure with blocking to reduce the size of autocorre-
lations. In practice, the same number of 100 jackknife
samples is used for all ensembles to simplify the error
propagation. In a fit, samples from different ensembles are
then easily matched.
Our analysis makes use of the pion and kaon masses,

their decay constants, and the Wilson flow observable t0,
as well as the Gounaris-Sakurai parameters entering the
estimate of finite-size effects. These observables are always
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estimated on identical sets of gauge configurations and
using the same blocking procedure, such that correlations
are easily propagated using the jackknife procedure.
The light and strange-quark contributions have been

computed on the same set of gauge configurations, except
for A654 where only the connected strange-quark contri-
bution has been calculated. The quark-disconnected con-
tribution is also obtained on the same set of configurations
for most ensembles (see Table I). When it is not, corre-
lations are not fully propagated; this is expected to have a
very small impact on the error, since the disconnected
contribution has a much larger relative statistical error.
The charm-quark contribution, which is at the one-

percent level, is obtained using a smaller subset of gauge
configurations. Since its dependence on the ratio of pion
mass to decay constant ðmπ=fπÞ is rather flat, the error of
this ratio is neglected in the chiral extrapolation of the
charm contribution.
In order to test the validity of our treatment of statistical

errors, we have performed an independent check of the
entire analysis using the Γ method [63] for the estimation
of autocorrelation times and statistical uncertainties. The
propagation of errors is based on a first-order Taylor series
expansion with derivatives obtained from automatic differ-
entiation [64]. Correlations of observables based on over-
lapping subsets of configurations are fully propagated and
the results confirm the assumptions made above.

E. Results for awinμ on individual ensembles

For the intermediate window observable, the contribu-
tion from the noisy tail of the correlation function is
exponentially suppressed and the lattice data are sta-
tistically very precise. Thus, on each ensemble, awinμ is
obtained using Eq. (5) after replacing the integral by a
discrete sum over time slices. Since the time extent of our
correlator is far longer than t1 ¼ 1.0 fm, we can safely
replace the upper bound of Eq. (5) by T=2, with T the time
extent of the lattice. The results for individual ensembles
are summarized in Tables VIII–X. On ensemble E250,
corresponding to a pion mass of 130 MeV, we reach a
relative statistical precision of about two permille for both
the isovector and isoscalar contributions. The integrands
used to obtain awinμ are displayed in Fig. 1.
Our simulations are performed in boxes of finite volume

L3 with mπL≳ 4, and corrections due to finite-size effects
(FSE) are added to each ensemble individually prior to
any continuum and chiral extrapolation. This is the only
correction applied to the raw lattice data. FSE are domi-
nated by the ππ channel and mostly affect the isovector
correlator at large Euclidean times. For the intermediate
window observable, they are highly suppressed compared
to the full hadronic vacuum polarization contribution.
Despite this suppression, FSE in the isovector channel
are not negligible and require a careful treatment. They are
of the same order of magnitude as the statistical precision

for our most chiral ensemble and enhanced at larger pion
masses. In the isoscalar channel, FSE are included only at
the SUð3Þf point where mπ ¼ mK . The methodology is
presented in Appendix C, and the corrections we have
applied to the lattice data are given in the last column of
Tables VI and V, respectively, for strategy 1 and 2. In our
analysis, we have conservatively assigned an uncertainty
of 25% to these finite-size corrections, in order to account
for any potential effect not covered by the theoretical
approaches described in Appendix C. In addition to the
ensembles H105 and H200 that are only used to cross-
check the FSE estimate, ensembles S400 and N302 are also
affected by large finite-volume corrections. We exclude
those ensembles in the isovector channel.

IV. EXTRAPOLATION TO THE PHYSICAL POINT

A. Definition of the physical point in isosymmetric QCD

Our gauge ensembles have been generated in the isospin
limit of QCD with ml ≡mu ¼ md, neglecting strong
isospin-breaking effects and QED corrections. Naively,
those effects are expected to be of order Oððmd −
muÞ=ΛQCDÞ ≈ 1% and OðαÞ ≈ 1% and are not entirely
negligible at our level of precision. In Ref. [65], although
the authors used a different scheme to define their iso-
symmetric setup, those corrections have been found to be of
the order of 0.4% for this window observable. A similar
conclusion was reached in Ref. [13] although only a subset
of the diagrams was considered. This correction will be
discussed in Sec. VI. Only in full QCDþ QED is the
precise value of the observable unambiguously defined:
The separation between its isosymmetric value and the

FIG. 1. Integrands used to compute the intermediate window
awinμ for the isovector, isoscalar and charm-quark contributions.
The isoscalar contribution does not include the charm-quark
contribution. The data have been obtained on ensemble E250,
which has close-to-physical quark masses, using two local
vector currents and set 1 of renormalization and improvement
coefficients.
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isospin-breaking correction is scheme dependent. In
Sec. IV D, we provide the necessary information to trans-
late our result into a different scheme.
Throughout our calculation, we define the “physical”

point in the ðmπ; mKÞ plane by imposing the conditions
[66–68]

mπ ¼ ðmπ0Þphys; ð17Þ

2m2
K −m2

π ¼ðm2
Kþ þm2

K0 −m2
πþÞphys: ð18Þ

Inserting the PDG values [69] on the right-hand side, our
physical isosymmetric theory is thus defined by the values

mπ ¼ 134.9768ð5Þ MeV; mK ¼ 495.011ð10Þ MeV:

ð19Þ

We note that since our gauge ensembles have been
generated at constant sum of the bare quark masses, the
linear combination ðm2

K þm2
π=2Þ is approximately con-

stant. Two different strategies are used to extrapolate the
lattice data to the physical point.

1. Strategy 1

We use the gradient flow observable t0 [70] as an
intermediate scale and the dimensionless parameters

Φ2 ¼ 8t0m2
π; Φ4 ¼ 8t0

�
m2

K þ 1

2
m2

π

�
ð20Þ

as proxies for the light and the average quark mass as the
physical point is approached. In the expressions of Φ2 and
Φ4, t0 is the pion- and kaon-mass dependent flow observ-
able; we use the notation tsym0 to denote its value at the
SUð3Þf -symmetric point. We adopt the physical-point valueffiffiffiffiffiffi
8t0

p ¼ 0.4081ð20Þð37Þ fm from Ref. [71], obtained by
equating the linear combination of pseudoscalar-meson
decay constants

fKπ ¼
2

3

�
fK þ 1

2
fπ

�
ð21Þ

to its physical value, set by the PDG values of the decay
constants given below. Reference [71] is an update of the
work presented in Ref. [55] and includes a larger set
of ensembles, including ensembles close to the physical
point. We note that in Refs. [55,71] the absolute scale
was determined assuming a slightly different definition of
the physical point: The authors used the meson masses
corrected for isospin-breaking effects as in Ref. [72],
mπ ¼ 134.8ð3Þ MeV and mK ¼ 494.2ð3Þ MeV. Using
the NLO χPT expressions, we have estimated the effect
on fKπ of these small shifts in the target pseudoscalar

meson masses to be at the subpermille level and therefore
negligible for our present purposes.

2. Strategy 2

Here we use fπ rescaling, which was already presented
in our previous work [17], and express all dimensionful
quantities in terms of the ratio fphysπ =ðaflatπ Þ, where aflatπ can
be computed precisely on each ensemble. In this case, the
intermediate scale t0 is not needed and we use the following
dimensionless proxies for the quark masses:

ỹ ¼ m2
π

8πf2π
; yKπ ¼

m2
K þ 1

2
m2

π

8πf2Kπ
: ð22Þ

As Φ4, the proxy yKπ is approximately constant along our
chiral trajectory. Since all relevant observables have been
computed as part of this project, this method has the
advantage of being fully self-consistent, and all correlations
can be fully propagated. It will be our preferred strategy.
We use the following input to set the scale in our
isosymmetric theory [69,73]:

fπ ¼ 130.56ð14Þ MeV: ð23Þ

The quantity yKπ is only used to correct for a small
departure of the CLS ensembles from the physical value
of this quantity, which we obtain using fK ¼
157.2ð5Þ MeV [69,73]. The latter, phenomenological value
of fK implies a ratio fK=fπ that is consistent with the latest
lattice determinations [74–76]. The impact of the uncer-
tainty of fK on awinμ is small,2 δawinμ ≃ 0.10 × 10−10, and
occurs mainly through the strange contribution. In the
isosymmetric theory, we take the phenomenological values
of the triplet ðmπ; mK; fπÞ as part of the definition of the
target theory and therefore only include the uncertainty
from fK in our results. By contrast, in the final result
including isospin-breaking effects, which we compare to a
data-driven determination of awinμ , we include the exper-
imental uncertainties of all quantities used as input.
The observables mπ , mK , fπ and fK, as well as t0=a2

have been computed on all gauge ensembles and corrected
for finite-size effects [77]. Their values for all ensembles
are listed in Table VII.

B. Fitting procedure

We now present our strategy to extrapolate the data to the
physical point in our isosymmetric setup. The ensembles
used in this work have been generated such that the
physical point is approached keeping

XK ¼ fΦ4; yKπg ð24Þ

2The sensitivity of awinμ to the value of fK can be derived from
Table II.
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approximately constant, where the two entries correspond,
respectively, to strategy 1 and 2. To account for the small
mistuning, only a linear correction in ΔXK ¼ Xphys

K − XK is
thus considered. To improve the fit quality, a dedicated
calculation of the dependence of awinμ on XK has been
performed, which is described in Appendix A. This
analysis does not yet include all ensembles in the final
result, and hence we decided to not apply this correction
ensemble by ensemble prior to the global extrapolation to
the physical point. Instead, we have used ΔXK to fix
suitable priors on the fit parameter γ0 in Eq. (26), which
parametrizes the locally linear dependence on XK. The
values of these priors are given in Appendix A.
To describe the light quark dependence beyond the linear

term in

Xπ ¼ fΦ2; ỹg ð25Þ

(respectively, for strategy 1 and 2), we allow for different fit
Ansätze encoded in the function fchðXπÞ. The precise
choice of fch is motivated on physical grounds and depends
on the quark flavor. The specific forms will be discussed

below. Since on-shell OðaÞ improvement has been fully
implemented, leading discretization artifacts are expected
to scale as a2=t0 up to logarithmic corrections [78,79]. In
the case of the vacuum polarization function, a further
logarithmic correction proportional to a2 log a was dis-
covered in Ref. [80]. Contrary to standard logarithmic
corrections, it does not vanish as the coupling g0 goes to
zero due to correlators being integrated over very short
distances. However, the intermediate window strongly
suppresses the short-distance contribution, so that we do
not expect this source of logarithmic enhancement to be
relevant here. However, in the absence of further infor-
mation on the relevant exponents of log a in full QCD
[79], we still consider a possible logarithmic correction
with unit exponent. Moreover, to check whether we are in
the scaling regime, we consider higher-order terms pro-
portional to a3. Finally, we also allow for a term ∝ X2

aXπ

that describes pion-mass dependent discretization effects
of order a2.
Thus, for each discretization of the vector correlator, the

continuum and chiral extrapolation is done independently
assuming the most general functional form

awin;fμ ðXa; Xπ; XKÞ ¼ awin;fμ ð0; Xexp
π ; Xexp

K Þ þ β2X2
a þ β3X3

a þ δX2
aXπ þ ϵX2

a logXa

þ γ0ðXK − Xphys
K Þ þ γ1ðXπ − Xexp

π Þ þ γ2ðfchðXπÞ − fchðXexp
π ÞÞ; ð26Þ

where “f” can be any flavor content and Xa ¼ a=
ffiffiffiffi
t0

p
parametrizes the lattice spacing. Despite the availability of
data from six lattice spacings and more than 20 ensembles,
trying to fit all parameters is not possible. Thus each
analysis is duplicated by switching on and off the param-
eters β3, δ and ϵ that control the continuum extrapolation.
In addition, for each functional form fch of the chiral
dependence, different analyses are performed by imposing
cuts in the pion mass (no cut, < 400 MeV, < 300 MeV)
and/or in the lattice spacing.
Since several different fit Ansätze can be equally well

motivated, we apply the model averaging method presented
in Refs. [81,82] where the Akaike information criterion
(AIC) is used to weight different analyses and to estimate
the systematic error associated with the fit Ansatz (see
also [20,83]). Thus, to each analysis (n) described above
(defined by a specific choice of fch, applying cuts in the
pion mass or in the lattice spacing, and including or
excluding terms proportional to β3, δ, ϵ) we associate a
weight wn given by

wn ¼ N exp

�
−
1

2
ðχ2 þ 2k − 2nÞ

�
; ð27Þ

where χ2 is the minimum value of the chi-squared of the
correlated fit, k is the number of fit parameters and n is the

number of data points included in the fit.3 The normali-
zation factor N is such that the sum over all the analyses’
weights are equal to one. Each analysis is again duplicated
by either using the local-local or the local-conserved
correlators. For those analyses, we use a flat weight.
Finally, when cuts are performed, some fits may have very
few degrees of freedom, and hence we exclude all analyses
that contain fewer than three degrees of freedom. The
central value of an observable O is then obtained by a
weighted average over all analyses

Ō ¼
X
n

wnOn; ð28Þ

and our estimate of the systematic error associated with the
extrapolation to the physical point is given by

ðδOÞ2syst ¼
X
n

wnðOn − ŌÞ2: ð29Þ

3Different definitions of the weight factor have been pro-
posed in the literature. In Ref. [20] the authors used wn ¼
N exp ½− 1

2
ðχ2 þ 2k − nÞ� which, applied to our data for a given

number of fit parameters, tends to favor fits that discard many
data points. This issue will be discussed further below.
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The statistical error is obtained from the jackknife pro-
cedure using the estimator defined by Eq. (28).

C. The continuum extrapolation
at the SUð3Þf-symmetric point

To reach subpercent precision, a good control over the
continuum limit is mandatory [79,80]. As discussed below,
it is one of the largest contributions to our total error
budget. Thus, before presenting our final result at the
physical point, we first demonstrate our ability to perform
the continuum extrapolation. We have implemented three
different checks: First, two discretizations of the vector
correlator are used and the extrapolations to the physical
point are done independently. Both discretizations are
expected to agree within errors in the continuum limit.
Physical observables computed using Wilson-clover quarks
approach the continuum limit with a rate ∝ a2 once the
action and all currents are nonperturbatively OðaÞ
improved [53]. To check our ability to fully remove
OðaÞ lattice artifacts in the action and the currents, two
independent sets of improvement coefficients are used:
Both of them should lead to an a2 scaling behavior but
might differ by higher-order corrections. Finally, we have
included six lattice spacings at the SUð3Þf -symmetric point,
all of them below 0.1 fm and down to 0.039 fm, to
scrutinize the continuum extrapolation. In this section,
we discuss those three issues, with a specific focus on
the ensembles with SUð3Þf symmetry.
Ensembles with six different lattice spacings in the range

½0.039∶0.099� fm are available for mπ ¼ mK ≈ 420 MeV.

Since the pion masses do not match exactly, we first des-
cribe our procedure to interpolate our SUð3Þf -symmetric
ensembles to a single value of Xπ ¼ X⋆

π , to be able to focus
solely on the continuum extrapolation. This reference point
X⋆
π is chosen to minimize the quadratic sum of the

shifts δXπ ¼ Xπ − X⋆
π .

We start by applying the finite-size effect correction
discussed in the previous section to all ensembles. Then, a
global fit over all the ensembles and simultaneously over
both discretizations of the correlation function is performed
using the functional form of Eq. (26) without any cut in the
pion mass. Thus ðγ0; γ1; γ2Þ are fit parameters common to
both discretizations, while the others are discretization
dependent. For the isovector contribution, we use the
choice fchðXπÞ ¼ 1=Xπ that leads to a reasonable
χ2=d:o:f: ¼ 1.1. The good χ2, and more importantly the
good description of the light-quark mass dependence,
ensures that the small interpolation to X⋆

π is safe and that
we do not bias the result. In practice, we have checked
explicitly that using different functional forms fch to
interpolate the data leads to changes that are small
compared to the statistical error. Thus, for both choices
of the improvement coefficients (set 1 and set 2), and for
both discretizations LL and CL, the data from an SUð3Þf -
symmetric ensemble are corrected in the pseudoscalar
masses to the reference SUð3Þf -symmetric point at the
same lattice spacing. The correction is obtained by taking
the difference of Eq. (26) evaluated with the reference-point
arguments ðXa; X⋆

π ; X⋆
KÞ and the ensemble arguments

ðXa; Xπ; XKÞ, resulting in

awin;f;αμ ðXa; X⋆
π ; X⋆

KÞ ¼ awin;f;αμ ðXa; Xπ; XKÞ − δX2
aðXπ − X⋆

πÞ − γ0ðXK − X⋆
KÞ − γ1ðXπ − X⋆

πÞ − γ2ðfchðXπÞ − fchðX⋆
πÞÞ;

ð30Þ

where α ¼ ðLLÞ; ðCLÞ stands for the discretization. Note
that X⋆

K ¼ X⋆
π and XK ¼ Xπ in view of the SUð3Þf

symmetry. Throughout this procedure, correlations are
preserved via the jackknife analysis.
In a second step, we extrapolate both discretizations of

the correlation function to a common continuum limit,
using data at all six lattice spacings and assuming a
polynomial in the lattice spacing:

awin;f;αμ ðXa; X⋆
πÞ ¼ awin;fμ ð0; X⋆

πÞð1þ βðαÞ2 X2
a þ βðαÞ3 X3

aÞ:
ð31Þ

The two datasets obtained using the two different sets of
improvement coefficients are fitted independently. The
results are displayed in Fig. 2 for two cases: either applying
fπ rescaling (left panel) or using t0 to set the scale (right
panel). For set 1 of improvement coefficients, we observe a

remarkably linear behavior over the whole range of lattice
spacings, whether fπ rescaling is applied or not. The
second set of improvement coefficients (set 2) leads to
some visible curvature, but the continuum limit is perfectly
compatible provided that lattice artifacts of order a3 are
included in the fit.
We also tested the possibility of logarithmic corrections

assuming the Ansatz

awin;f;αμ ðXa;X⋆
πÞ¼awin;fμ ð0;X⋆

πÞð1þβðαÞ2 X2
aþϵðαÞX2

a logXaÞ;
ð32Þ

which is shown as the red symbol and red dashed curve in
Fig. 2. The result is again compatible with the naive a2

scaling, albeit with larger error. We conclude that loga-
rithmic corrections are too small to be resolved in the data.
We also remark that it is difficult to judge the quality of the
continuum extrapolation based solely on the relative size of

WINDOW OBSERVABLE FOR THE HADRONIC VACUUM … PHYS. REV. D 106, 114502 (2022)

114502-9



discretization effects between our coarsest and finest lattice
spacing, as this measure strongly depends on the definition
of the improvement coefficients.
We tested the modification of the continuum extrapola-

tion via X2
a → ðαsð1=XaÞÞΓ̂X2

a as proposed in Refs. [79,84]

for awin;I1μ and awin;I0;=cμ in our preferred setup, using fπ
rescaling and set 1 of improvement coefficients. The strong
coupling constant αs has been obtained from the three-
flavor Λ parameter of Ref. [85]. Several choices of Γ̂ in the
range from 0.76 to 3 were tested. The curvature that is
introduced by this modification, especially for larger values
of Γ̂, would lead to larger values of awinμ in the continuum
limit. However, such curvature is not supported by the data,
as indicated by a deterioration of the fit quality when Γ̂ is
increased. Therefore, only small weights would be assigned
to such fits in our model averaging procedure, where the
modification has not been included.

D. Results for the isospin and flavor decompositions

Having studied the continuum limit at the SUð3Þf -
symmetric point, we are ready to present the result of
the extrapolation to the physical point. The charm-quark
contribution is not included here and will be considered
separately in Sec. V.
For the isovector or light quark contribution we

use the same set of functional forms as in Ref. [17],
fchðXπÞ ¼ flogXπ;X2

π; 1=Xπ;Xπ logXπg. The data show
some small curvature close to the physical pion mass. Thus,
the variation fch ¼ 0 is excluded as it would significantly
undershoot our ensemble at the physical pion mass (E250).
We use set 1 of improvement coefficients as our preferred
choice and will use set 2 only as a cross-check. A typical
extrapolation using fchðỹÞ ¼ 1=ỹ without any cut in the
data is shown in the left panel of Fig. 3. We find that
the specific functional form of fch has much less impact on

FIG. 3. Left: one typical extrapolation of the isovector contribution using fchðỹÞ ¼ 1=ỹ. The data correspond to the local-conserved
discretization of the correlator using set 1 of improvement coefficients. Error bands are the results from the fit for each of the six lattice
spacings. The black line is the chiral extrapolation in the continuum limit. The black point is the result at the physical point. Right: the
same for the isoscalar contribution but using fchðỹÞ ¼ 0.

FIG. 2. Continuum extrapolation for the isovector quark contribution at the SUð3Þf -symmetric point. Left: using fπ rescaling. Right:
with t0 to set the scale. The blue and green points correspond to the two different sets of improvement coefficients (see Sec. III). For
clarity, the extrapolated results have been shifted to the left.
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the extrapolation as compared to the inclusion of higher-
order lattice artifacts. For the isoscalar and strange quark
contributions, we restrict ourselves to functions that are not
singular in the chiral limit: fchðXπÞ ¼ f0;X2

π;Xπ logXπg.
Again, the extrapolation using fchðỹÞ ¼ ỹ log ỹ with δ ≠ 0
and without any cut in the data is shown in the right panel
of Fig. 3.
Using the fit procedure described above, the AIC

estimator defined in Eq. (28) leads to the following results
for the isovector (I ¼ 1) and the isoscalar contribution,
charm excluded:

awin;I1μ ¼ ð186.30� 0.75stat � 1.08systÞ × 10−10; ð33Þ

awin;I0;=cμ ¼ ð47.41� 0.23stat � 0.29systÞ × 10−10; ð34Þ

where the first error is statistical and the second is the
systematic error from the fit form used to extrapolate our
data to the physical point. In Table II, we also provide the
derivatives

X
∂awin;fμ

∂X
; X ∈ fmπ; mK; fπ; fKg; f ∈ fI1; I0g;

ð35Þ

to translate our result to a different isosymmetric scheme.

We also note that both discretizations of the vector
correlator yield perfectly compatible results. For the iso-
vector contribution, and in units of 10−10, we obtain
186.14ð0.87Þstatð1.29Þsyst for the local-local discretization
and 186.47ð0.79Þstatð0.79Þsyst for the local-conserved discre-
tization, with a correlated difference of −0.33ð0.72Þ. For the
isoscalar contribution, we find 47.39ð0.24Þstatð0.36Þsyst for
the local-local discretization and 47.43ð0.20Þstatð0.19Þsyst for
the local-conserved discretization, with a correlated differ-
ence of −0.04ð0.10Þ.
As an alternative to the fit weights given by Eq. (27), we

have tried applying the weight factors used in Ref. [20]; see
the footnote below Eq. (27). While a major change occurs
in the subset of fits that dominate the weighted average, the
results do not change significantly. In particular, the central
value of the isovector contribution changes by no more than
half a standard deviation.
Finally, we have also performed an extrapolation to the

physical point using the second set of improvement
coefficients. Since our study at the SUð3Þf -symmetric point
shows curvature in the data, we exclude those continuum
extrapolations that are only quadratic in the lattice spacing.
The other variations are kept identical to those used for
the first set. The results are slightly larger but compatible
within one standard deviation. A comparison between the
two strategies to set the scale and the two sets of improve-
ment coefficients is shown in Fig. 4 for both the isovector
and isoscalar contributions.
In order to facilitate comparisons with other lattice

collaborations, we also present results for the light, strange
and disconnected contributions separately. For the light and
strange-quark connected contributions, we obtain

awin;udμ ¼ ð207.00� 0.83stat � 1.20systÞ × 10−10; ð36Þ

awin;sμ ¼ ð27.68� 0.18stat � 0.22systÞ × 10−10: ð37Þ

TABLE II. Derivatives of the window quantity awinμ (in units of
10−10), for both the isovector and isoscalar contributions, as
defined by Eq. (35).

X mπ mK fπ fK

I1 −7ð5Þ −11ð7Þ −66ð84Þ 7(5)
I0 2(1) −34ð2Þ −29ð9Þ 25(2)

FIG. 4. Comparison of the isovector and isoscalar contributions (without the charm) using different variations (either using fπ or t0 to
set the scale, and with both sets of improvement coefficients). The blue point is our final estimate obtained from the rescaling method
with set 1 of improvement coefficients.
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For the disconnected contribution, the correlation function
is very precise in the time range relevant for the inter-
mediate window, and a simple sum over lattice points is
used to evaluate Eq. (5). The data are corrected for finite-
size effects using the method described in Appendix C.
Since our ensembles follow a chiral trajectory at fixed
bare average quark mass, we can consider awin;discμ as being,
to a good approximation, a function of the SUð3Þf -breaking
variable Δ2 ¼ f8t0ðm2

K − m2
πÞ; ðm2

K − m2
πÞ=ð8πf2KπÞg

(respectively, for strategy 1 and 2), with the additional
constraint that the disconnected contribution vanishes
quadratically in Δ2 for Δ2 → 0. We apply the following
Ansatz:

awin;discμ ðXa;Xπ;XKÞ¼Δ2
2ðαþγ0ðXK−Xphys

K Þþβ2X2
aÞ

þγ1

�
1

Xphys
K −Δ2

−
Δ2

ðXphys
K Þ2−

1

Xphys
K

�
:

ð38Þ

The ensembles close to the SUð3Þf symmetric point
(mπ ≈ 350 MeV) are affected by significant FSE correc-
tions and are not included in the fit. We obtain for the
disconnected contribution

awin;discμ ¼ ð−0.81� 0.04stat � 0.08systÞ × 10−10; ð39Þ

and the extrapolation is shown in Fig. 5. The extrapolation
using t0 to set the scale shows less curvature close to the

physical point. We use half the difference between the two
extrapolations as our estimate for the systematic error. It is
worth noting that the value for the intermediate window
represents roughly 6% of the total contribution to ahvp;discμ .
As a cross-check, we note that using Eqs. (36), (37), and

(39) we would obtain awin;I0;=cμ ¼ ð47.57� 0.20stat�
0.26systÞ × 10−10, in good agreement with Eq. (34).

V. THE CHARM-QUARK CONTRIBUTION

In our calculation, charm quarks are introduced in the
valence sector only. A model estimate of the resulting
quenching effect is provided in Appendix D. The method
used to tune the mass of the charm quark has previously
been described in Ref. [17] and has been applied to
additional ensembles in this work. We only sketch the
general strategy here, referring the reader to Ref. [17] for
further details. For each gauge ensemble, the mass of
the ground-state cs̄ pseudoscalar meson is computed at
four values of the charm-quark hopping parameter.
Then the value of κc is obtained by linearly inter-
polating the results in 1=κc to the physical Ds meson
mass mDs

¼ 1968.35ð0.07Þ MeV [69]. We have checked
that using either a quadratic fit or a linear fit in κc
leads to identical results at our level of precision. The
results for all ensembles are listed in the second column of
Table X.
The renormalization factor ẐðcÞ

V of the local vector
current has been computed nonperturbatively on each
individual ensemble by imposing the vector Ward identity
using the same setup as in Ref. [58], but with a charm
spectator quark. To propagate the error from the tuning of

κc, both ẐðcÞ
V and awin;cμ are computed at three values of κ

close to κc. In the computation of correlation functions, the
same stochastic noises are used to preserve the full
statistical correlations. For both quantities, we observe a
very linear behavior and a short interpolation to κc is
performed. The systematic error introduced by the tuning
of κc is propagated by computing the discrete derivatives of
both observables with respect to κc (second error quoted in
Table X). This systematic error is considered as uncorre-
lated between different ensembles.
From ensembles generated with the same bare param-

eters but with different spatial extents (H105/N101 or
H200/N202), it is clear that FSE are negligible in the
charm-quark contribution. As in our previous work [17],
the local-local discretization exhibits a long continuum
extrapolation with discretization effects as large as 70%
between our coarsest lattice spacing and the continuum
limit, compared to only 12% for the local-conserved
discretization. Thus, we discard the local-local discretiza-
tion from our extrapolation to the physical point, which
assumes the functional form

FIG. 5. Extrapolation to the physical point for the quark-
disconnected contribution using Eq. (38). The vertical dashed
line represents the physical point in our isosymmetric QCD setup.
The black point is the result of the extrapolation, and the gray
band represents the extrapolation to the continuum limit with
XK ¼ X⋆

K . Points with dashed error bars are not included
in the fit.
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awin;cμ ðXa; Xπ; XKÞ ¼ awin;cμ ð0; Xexp
π ; Xexp

K Þ þ β2X2
a þ β3X3

a þ δX2
aXπ þ β4X2

a logðXaÞ þ γ0ðXK − Xphys
K Þ þ γ1ðXπ − Xexp

π Þ:
ð40Þ

Lattice artifacts are described by a polynomial in Xa ¼
a=

ffiffiffiffiffiffiffiffi
tsym0

p
and a possible logarithmic term is included; recall

that tsym0 denotes the value of the flow observable at the
SUð3Þf -symmetric point. Only the set of proxies Xπ ¼ ϕ2

and XK ¼ ϕ4 is used. The light-quark dependence shows a
very flat behavior, and a good χ2=d:o:f: ¼ 0.9 is obtained
without any cut in the pion mass. The corresponding
extrapolation is shown on the right panel of Fig. 6.
Before quoting our final result, we provide strong

evidence that our continuum extrapolation is under control
by looking specifically at the SUð3Þf -symmetric point
where six lattice spacings are available. As for the isovector
contribution, we use Eq. (40) to correct for the small pion-
mass mistuning at the SUð3Þf -symmetric point. The data
are interpolated to a single value of X�

π using the same
strategy as in Eq. (30). Those corrected points are finally
extrapolated to the continuum limit using the Ansatz (31).
The result is shown in the left panel of Fig. 6 for the two
sets of improvement coefficients of the vector current.
Again, excellent agreement is observed between the two
datasets. Even for the charm-quark contribution, we
observe very little curvature when using set 1 of improve-
ment coefficients.
Having confirmed that our continuum extrapolation is

under control, we quote our final result for the charm
contribution obtained using the Ansatz (40). Using
Eq. (28), the AIC analysis described above leads to

awin;cμ ¼ ð2.89� 0.03stat � 0.03syst � 0.13scaleÞ × 10−10;

ð41Þ

where variations include cuts in the pion masses and in the
lattice spacing and fits where the parameters β3, β4 and δ
have been either switched on or off.

VI. ISOSPIN-BREAKING EFFECTS

As discussed in the previous Secs. III and IVA, our
computations are performed in an isospin-symmetric setup,
neglecting the effects due to the nondegeneracy of the up-
and down-quark masses and QED. At the percent and
subpercent level of precision it is, however, necessary to
consider the impact of isospin-breaking effects. To estimate
the latter, we have computed awinμ in QCDþ QED on a
subset of our isospin-symmetric ensembles using the
technique of Monte Carlo reweighting [86–90] combined
with a leading-order perturbative expansion of QCDþ
QED around isosymmetric QCD in terms of the electro-
magnetic coupling e2 as well as the shifts in the bare quark
masses Δmu;Δmd;Δms [90–94]. Consequently, we must
evaluate additional diagrams that represent the perturbative
quark mass shifts as well as the interaction between quarks
and photons. We make use of noncompact lattice QED and
regularize the manifest IR divergence with the QEDL
prescription [95], with the boundary conditions of the

FIG. 6. Left panel: study of the continuum extrapolation of the charm-quark contribution to awinμ at the SUð3Þf -symmetric point using
the local-conserved discretization of the correlation function. The black and green points are obtained using two independent sets of
improvement coefficients, as explained in Sec. III B. Right panel: example of a typical extrapolation to the physical point of the charm-
quark contribution. The error from the scale setting, which is highly correlated between ensembles, is not shown. The plain lines are
obtained from the fit function (40) without any cut in the pion mass.
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photon and QCD gauge fields chosen in accordance [93].
We characterize the physical point of QCDþ QED by the
quantities m2

π0
, m2

Kþ þm2
K0 −m2

πþ , m2
Kþ −m2

K0 −m2
πþ þ

m2
π0

and the fine-structure constant α [91]. The first three
quantities are inspired by leading-order chiral perturbation
theory including leading-order mass and electromagnetic
isospin-breaking corrections [67] and correspond to proxies
for the average light-quark mass, the strange-quark mass,
and the light-quark mass splitting. As we consider leading-
order effects only, the electromagnetic coupling does not
renormalize [90]; i.e., we may set e2 ¼ 4πα. The lattice
scale is also affected by isospin breaking, which we
however neglect at this stage. Making use of the isosym-
metric scale [55], we match m2

π0
and m2

Kþ þm2
K0 −m2

πþ in
both theories on each ensemble and set m2

Kþ −m2
K0 −

m2
πþ þm2

π0
to its experimental value.

We have computed the leading-order QCDþ QED
quark-connected contribution to awinμ as well as the pseu-
doscalar meson masses mπ0 , mπþ , mK0 , and mKþ required
for the hadronic renormalization scheme on the ensembles
D450, N200, N451 and H102, neglecting quark-
disconnected diagrams as well as isospin-breaking effects
in sea-quark contributions. The considered quark-con-
nected diagrams are evaluated using stochastic U(1) quark
sources with support on a single time slice whereas the all-
to-all photon propagator in Coulomb gauge is estimated
stochastically by means of Z2 photon sources. Covariant
approximation averaging [96] in combination with the
truncated solver method [97] is applied to reduce the
stochastic noise. We treat the noise problem of the vector-
vector correlation function at large time separations bymeans
of a reconstruction based on a single exponential function.
Amore detailed description of the computation can be found
in Refs. [91,92,98]. The renormalization procedure of the
local vector current in theQCDþ QEDcomputation is based
on a comparison of the local-local and the conserved-local
discretizations of the vector-vector correlation function and
hence differs from the purely isosymmetric QCD calculation
[58] described in Sec. III B. We therefore determine the
relative correction by isospin breaking in the QCDþ QED
setup. For fπ rescaling as introduced in Sec. IVA, isospin-
breaking effects in the determination of fπ are neglected.
We observe that the size of the relative first-order corrections
for awinμ is compatible on each ensemble and can in total be
estimated as a ð0.3� 0.1Þ% effect.

VII. FINAL RESULT AND DISCUSSION

We first quote our final result awin;isoμ in our isosymmetric
setup as defined in Sec. IVA. Using the isospin decom-
position, and combining Eqs. (33), (34), and (41), we find

awin;I1μ ¼ ð186.30� 0.75stat � 1.08systÞ × 10−10; ð42Þ

awin;I0μ ¼ awin;I0;=cμ þ awin;cμ

¼ ð50.30� 0.23stat � 0.32systÞ × 10−10; ð43Þ

awin;isoμ ¼ awin;I1μ þ awin;I0μ

¼ ð236.60� 0.79stat � 1.13syst � 0.05QÞ × 10−10;

ð44Þ

where the first error is statistical, the second is the
systematic error, and the last error of awin;isoμ is an estimate
of the quenching effect of the charm quark derived in
Appendix D. Overall, this uncertainty has a negligible
effect on the systematic error estimate. The small bottom
quark contribution has been neglected. For ahvpμ , this
contribution has been computed in Ref. [99] and found
to be negligible at the current level of precision.
As stressed in Sec. IVA, our definition of the physical

point in our isosymmetric setup is scheme dependent. To
facilitate the comparison with other lattice collaborations,
the derivatives with respect to the quantities used to define
our isosymmetric scheme are provided in Table II. They
can be used to translate from one prescription to another
a posteriori.
One of the main challenges for lattice calculations of

both ahvpμ and the window observable is the continuum
extrapolation of the light-quark contribution, which
dominates the results by far. To address this specific
point, we have used six lattice spacings in the range
[0.039,0.0993] fm in our calculation, along with two
different discretizations of the vector current (see the
discussion in Sec. IV C). Although this work contains
many ensembles away from the physical pion mass, we
observe only a mild dependence on the proxy used for the
light-quark mass. This observation is corroborated by
the fact that, in the model averaging analysis, most of
the spread comes from fits that differ in the description of
lattice artifacts rather than on the functional form fch that
describes the light-quark mass dependence.
In Fig. 7, we compare our results in the isosymmetric

theory with other lattice calculations. Our estimate for
awin;isoμ agrees well with that of the BMW Collaboration
who quote awin;isoμ ¼ 236.3ð1.4Þ × 10−10 using the stag-
gered quark formulation [20]. However, our result is
about 2.3σ above the published value by the RBC/
UKQCD Collaboration, awin;isoμ ¼ 232.0ð1.5Þ × 10−10,
obtained using domain wall fermions [13]. It is also
1.7σ above the recent estimate quoted by ETMC, based
on the twisted-mass formalism [22], which reads awin;isoμ ¼
231.0ð2.8Þ × 10−10. The difference with the latter two
calculations can be traced to the light-quark contribution
awin;udμ , which is shown in the second panel from the right.
In this context, it is interesting to note that, apart from
BMW, two independent calculations using staggered
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quarks (albeit with a different action as compared to the
BMW Collaboration) have quoted results for awin;udμ

[18,21,24] that are in good agreement with our estimate,
as can be seen in Fig. 7. The middle panel of the figure
shows that our estimate for the strange quark contribution
is slightly higher compared to other groups, but due to the
relative smallness of awin;sμ this cannot account for the
difference between our result for awin;isoμ and Refs. [13,22].
Good agreement with the BMW, ETMC and RBC/UKQCD
Collaborations is found for both the charm and quark-
disconnected contributions.
If one accepts that most lattice estimates for the light-

quark connected contribution awin;udμ have stabilized around
≈207 × 10−10, one may search for an explanation why the
results by RBC/UKQCD [13] and ETMC [22] are smaller
by about 2%. This is particularly important since awin;udμ

contributes about 87% to the entire intermediate window
observable. One possibility is that the extrapolations to the
physical point in Refs. [13,22] are both quite long. For
instance, the minimum pion mass among the set of
ensembles used by ETMC is only about 220 MeV, while
the result by RBC/UKQCD has been obtained from two
lattice spacings, i.e., 0.084 and 0.114 fm. Further studies
using additional ensembles at smaller pion mass and lattice
spacings are highly desirable to clarify this important issue.
In order to compare our result with phenomenological

determinations of the intermediate window observable,
we must correct for the effects of isospin breaking. Our
calculation of isospin-breaking corrections, described in
Sec. VI, has been performed on a subset of our ensembles
and is, at this stage, lacking a systematic assessment of
discretization and finite-volume errors. Furthermore, only
quark-connected diagrams have been considered so far. To
account for this source of uncertainty, we double the error
and thereby apply a relative isospin-breaking correction

of ð0.3� 0.2Þ% to awin;isoμ , which amounts to a shift of
þð0.70� 0.47Þ × 10−10. Thus, our final result including
isospin-breaking corrections is

awinμ ¼ ð237.30� 0.79stat � 1.13syst � 0.05Q

� 0.47IBÞ × 10−10: ð45Þ

Adding all errors in quadrature yields 237.30ð1.46Þ× 10−10

which corresponds to a precision of 0.6%. A comparison
with other lattice calculations is shown in Fig. 8. Since
corrections due to isospin breaking are small, the same
features are observed as in the isosymmetric theory: While
our result agrees well with the published estimate from
BMW [20], it is larger than the values quoted by ETMC
[22] and RBC/UKQCD [13]. Our result lies 3.9σ above the
recent evaluation using the data-driven method [48], which
yields awinμ ¼ 229.4ð1.4Þ × 10−10 and is shown in red in
Fig. 8. Our result for awinμ is also consistent with the
observation that the central value of our 2019 result for the

FIG. 8. Comparison of our result for awinμ including isospin-
breaking corrections with the estimates by ETMC [22], BMW
[20], and RBC/UKQCD [13]. The estimate based on the data-
driven method of Ref. [48] is shown in red.

FIG. 7. Comparison of our results (in units of 10−10) with other lattice calculations [13,18,20–24] in isosymmetric QCD. The four
panels on the left show compilations of the individual quark-disconnected, charm, strange and light-quark contributions. The total result
for awinμ in the isosymmetric case is shown in the rightmost panel. Our results are represented by green circles and vertical bands.
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complete hadronic vacuum polarization contribution [17]
lies higher than the phenomenology estimate, albeit with
much larger uncertainties. In Ref. [62] we observed a
similar but statistically much more significant enhancement
in the hadronic running of the electromagnetic coupling,
Δαhadð−Q2Þ relative to the data-driven evaluation, espe-
cially forQ2 ≲ 3 GeV2. As pointed out at the end of Sec. II,
the relative contributions from the three intervals of center-
of-mass energy separated by

ffiffiffi
s

p ¼ 600 MeV and
ffiffiffi
s

p ¼
900 MeV are similar for awinμ and Δαhadð−1 GeV2Þ, even
though the respective weight functions in the time-momen-
tum representation are rather different. The fact that the
lattice determination is larger by more than three percent
for both quantities, in each case with a combined error of
less than one percent, suggests that a genuine difference
exists at the level of the underlying spectral function,
RðsÞ=ð12π2Þ, between lattice QCD and phenomenology.
If one were to subtract the data-driven evaluation of awinμ

from the White paper estimate [3] and replace it by our
result in Eq. (45), the tension between the SM prediction
for aμ and experiment would be reduced to 2.9σ. This
observation illustrates the relevance of the window observ-
able for precision tests of the SM. Our findings also
strengthen the evidence supporting a tension between
data-driven and lattice determinations of ahvpμ .
In our future work we will extend the calculation to other

windows and focus on the determination of the full
hadronic vacuum polarization contribution, ahvpμ .
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APPENDIX A: MISTUNING OF THE CHIRAL
TRAJECTORY

The ensembles used in our work have been generated
with a constant bare average sea quark mass which differs
from a constant renormalized mass by OðaÞ cutoff effects.
When the sum of the renormalized quark masses is kept
constant, the dimensionless parameters ϕ4 and yKπ , which
have been introduced in Sec. IVA to define the chiral
trajectories toward the physical point, are constant to
leading order in chiral perturbation theory (χPT).
Therefore, ϕ4 and yKπ cannot be constant across our set
of ensembles due to cutoff effects and higher-order effects
from χPT.
We have to correct for the sources of mistuning of our

ensembles with respect to the chiral trajectories of strate-
gies 1 and 2. This can be done by parameterizing the
dependence of our observables on XK ∈ fyKπ;ϕ4g in the
combined chiral-continuum extrapolation. However, since
the pion and kaon masses are not varied independently
within our set of ensembles, the dependence on ΔXK ¼
Xphys
K − XK cannot be resolved reliably in our fits. A

different strategy has to be employed to stabilize our
extrapolation to the physical point.
Explicit corrections of the mistuning prior to the chiral

extrapolation have been used in Ref. [55] to approach the
physical point at constant ϕ4 ¼ ϕphys

4 . These corrections are
based on small shifts defined from the first-order Taylor
expansion of the quark mass dependence of lattice observ-
ables. The expectation value of a shifted observable is
given by

hOi → hOi þ
XNf

i¼1

Δmq;i
dhOi
dmq;i

; ðA1Þ

with the Nf ¼ 3 sea quark mass shifts Δmq;i. Within this
appendix, we work with observables and expectation values
that are defined after integration over the fermion fields;
i.e., the expectation values are taken with respect to the
gauge configurations. The total derivative of an observable
with respect to the quark masses is decomposed via

dhOi
dmq;i

¼
�

∂O
∂mq;i

�
−
�
O

∂S
∂mq;i

�
þ hOi

�
∂S

∂mq;i

�
: ðA2Þ
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The partial derivative of an observable with respect to a
quark mass of flavor i captures the effect of shifts of
valence quark masses. The second and third terms that
contain the derivative of the action S with respect to the
quark masses account for sea quark effects. The chain rule
is used to compute the derivatives of derived observables.
The chain rule relating the derivatives with respect to

the quark masses to those with respect to the variables Xj ¼
Xπ; XK can be written

XNf

i¼1

ni
dhOi
dmq;i

¼
X
j¼π;K

Δjðn⃗Þ
dhOi
dXj

; Δjðn⃗Þ≡
XNf

i¼1

ni
dXj

dmq;i

ðA3Þ

∀ n⃗ ¼ ðn1; n1; n3Þ, the condition n1 ¼ n2 being imposed to
remain in the isosymmetric theory. In particular, if the
direction of the vector n⃗ in the space of quark masses is
chosen such that Δπðn⃗Þ vanishes, the following expression
[71] for the derivative of an observable with respect to XK is
obtained:

dhOi
dXK

¼ 1

ΔKðn⃗Þ
XNf

i¼1

ni
dhOi
dmq;i

: ðA4Þ

In Ref. [55] the shifts ni have been chosen to be degenerate
for all three sea quarks. In Ref. [71] the same approach is
taken at the SUð3Þf -symmetric point and n⃗ ¼ ð0; 0; 1Þ is
used when amq;l ≠ amq;s. To stabilize the predictions for
the derivatives, they are modeled as functions of lattice
spacing and quark mass.
To improve the reliability of our chiral extrapolation, we

have determined the derivatives of awin;udμ and awin;sμ with
respect to light and strange-quark masses on a large subset
of the ensembles in Table I. Whereas the computation of the
first term in Eq. (A2) shows a good signal for the vector-
vector correlation function, the second and third term carry
significant uncertainties. In the case of fπ rescaling, a non-
negligible statistical error that has its origin in dfπ=dmq;i

enters the derivative of awinμ .
Our computation does not yet cover all ensembles in this

work and has significant uncertainties on some of the
included ensembles. Moreover, we have not computed the
mass derivative of awin;discμ that enters awin;I0μ . Therefore, we
have decided not to correct our observables prior to the
global extrapolation but to determine the coefficient γ0 in
Eq. (26) instead. We do not aim for a precise determination
here but focus instead on the determination of a sufficiently
narrow prior width, in order to stabilize the chiral-
continuum extrapolation.

FIG. 9. Derivatives of the isovector and the strange-connected contributions to the window observable with respect to Xπ . The gray
areas illustrate the priors that are used in the global extrapolation.
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We compute the derivatives with respect to XK as
specified in Eq. (A4) with the shift vector n⃗ chosen such
that Δπðn⃗Þ vanishes ensemble by ensemble; i.e., the shift is
taken in a direction in the quark mass plane where Xπ

remains constant. The derivatives are therefore sensitive to
shifts in the kaon mass. A residual shift of Xa is present at
the permille level.
We collect our results for the derivatives with respect to

ϕ4 and yKπ in Table III. Throughout this appendix, we use
units of 10−10 for awinμ , as well as for coefficient γ0. The
results are based on the local-local discretization of the
correlation functions and the improvement coefficients and
renormalization constants of set 1. As can be seen, the
derivative of the isovector contribution to the window
observable vanishes within error on most of the ensembles.
This is expected from the order-of-magnitude estimate in
Eq. (B33). No clear trend regarding a dependence on Xπ ,
XK or Xa can be resolved. We show the derivative of awin;I1μ

with respect to Xπ in the upper panels of Fig. 9. For the
corresponding priors for the chiral-continuum extrapolation
we choose

γwin;I1;yKπ0 ¼ 0ð50Þ; γwin;I1;ϕ4

0 ¼ −2.5ð5.0Þ: ðA5Þ

The derivative of the strange-connected contribution of
the window observable with respect to XK is negative and
can be determined to good precision. Our results are shown

in the lower panels of Fig. 9. We choose our priors such
that their width encompasses the spread of the data. For
the strange-connected and the isoscalar contribution, we
choose

γwin;s;yKπ
0 ¼ −100ð20Þ; γwin;s;ϕ4

0 ¼ −12.5ð2.5Þ: ðA6Þ

These values are compatible with the estimate in Eq. (B26).
Discretization effects in the data may be inspected by

comparing the derivatives based on the two sets of improve-
ment coefficients. Such effects are largest for the two
ensembles at β ¼ 3.34 but are still smaller than the
spread in the data and therefore not significant with respect
to our prior widths. In our global extrapolations, we use
a single set of priors irrespective of the improvement
procedure.

APPENDIX B: PHENOMENOLOGICAL MODELS

In the first subsection of this appendix, we collect
estimates of the sensitivity of the window observables to
various intervals in

ffiffiffi
s

p
in the dispersive approach. The

observable awinμ can indeed be obtained from experimental
data for the ratio RðsÞ defined in Eq. (10) via

awinμ ¼
Z

∞

0

dsfwinðsÞRðsÞ; ðB1Þ

where the weight function is given by

fwinðsÞ ¼
α2

ffiffiffi
s

p
24π4

Z
∞

0

dte−t
ffiffi
s

p
K̃ðtÞ½Θðt; t0;ΔÞ−Θðt; t1;ΔÞ�:

ðB2Þ

In practice, since the integrand is very strongly suppressed
beyond 1.5 fm, we have used the short-distance expansion
of K̃ðtÞ given by Eq. (B16) of Ref. [10], which is very
accurate up to 2 fm.
The second and the third subsections contain phenom-

enological estimates of the derivatives of the strangeness
and the isovector contributions to awinμ with respect to the
kaon mass at fixed pion mass, as a cross-check of the lattice
results presented in Appendix A.

1. Sensitivity of the window quantity

In Ref. [49], a semirealistic model for the R ratio was
used for the sake of comparisons with lattice data generated
in the ðu; d; sÞ quark sector with exact isospin symmetry. In
particular, the model does not include the charm contri-
bution, nor final states containing a photon, such as π0γ. It
leads to the following values for the window observables
and their sum, the full ahvpμ :

ðahvpμ ÞSDjmodel ¼ 56.0 × 10−10; ðB3Þ

TABLE III. Derivatives of the isovector and the strange-
connected contributions to the window observable with respect
to XK in units of 10−10. The data are based on the local-local
discretization of the vector-vector correlation function and the
improvement coefficients of set 1.

Id
dawin;I1μ

dΦ4

dawin;I1μ

dyKπ

dawin;sμ

dΦ4

dawin;sμ

dyKπ

A653 5.0(1.1) 83(39) −10.0ð0.7Þ −80ð10Þ
A654 5.0(1.9) 96(47) −11.3ð0.5Þ −93ð10Þ
H101 −4.7ð3.9Þ 145(137) −13.4ð1.1Þ −68ð26Þ
H102 −12.2ð3.5Þ 46(118) −14.5ð1.0Þ −91ð27Þ
N101 −8.9ð12.9Þ −163ð143Þ −17.8ð2.1Þ −204ð51Þ
C101 2.6(8.3) −84ð93Þ −12.1ð1.6Þ −138ð27Þ
B450 −3.4ð2.6Þ 42(39) −12.5ð0.7Þ −93ð9Þ
N451 −5.3ð5.2Þ −68ð71Þ −12.8ð0.5Þ −122ð20Þ
D450 −4.9ð10.0Þ −85ð233Þ −11.1ð0.8Þ −116ð73Þ
H200 −0.3ð5.3Þ 241(198) −10.8ð1.3Þ −40ð40Þ
N202 −3.5ð9.2Þ 79(136) −14.5ð2.2Þ −95ð30Þ
N203 −3.5ð5.1Þ 125(106) −16.5ð1.6Þ −123ð25Þ
N200 3.3(7.2) 136(128) −14.0ð1.3Þ −119ð24Þ
D200 7.1(7.1) 121(93) −11.8ð1.4Þ −98ð26Þ
N300 0.4(4.3) 8(53) −11.4ð1.1Þ −98ð15Þ
J303 6.5(9.1) 197(148) −13.4ð1.2Þ −94ð32Þ
J500 −9.0ð5.3Þ −18ð68Þ −15.1ð1.5Þ −117ð19Þ
J501 −6.1ð9.4Þ 88(189) −12.5ð3.0Þ −92ð48Þ
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awinμ jmodel ¼ ðahvpμ ÞIDjmodel ¼ 231.9 × 10−10; ðB4Þ

ðahvpμ ÞLDjmodel ¼ 384.8 × 10−10; ðB5Þ

ahvpμ jmodel ¼ 672.7 × 10−10: ðB6Þ

Given the omission of the aforementioned channels, these
values are quite realistic.4 Here we only use the model to
provide the partition of the quantities above into three
commonly used intervals of

ffiffiffi
s

p
, in order to illustrate what

the relative sensitivities of these quantities are to different
energy intervals. These percentage contributions are given
in Table IV, along with the corresponding figures for the
subtracted vacuum polarization:

Π̄ðQ2Þ≡ ΠðQ2Þ − Πð0Þ ¼ Q2

12π2

Z
∞

0

ds
RðsÞ

sðsþQ2Þ : ðB7Þ

The model yields for this quantity the value 385.5 × 10−4 at
Q2 ¼ 1 GeV2. We expect the fractions in the table to be
reliable with an uncertainty at the 5%–7% level.
The model value for the intermediate window is best

compared to the sum of Eqs. (33) and (34). The difference
is ð1.8� 1.4Þ × 10−10, which represents agreement at the
1.3σ level. The main reason the R-ratio model agrees better
with the lattice result than a state-of-the-art analysis [48] is
that the model does not account for the strong suppression
of the experimentally measured R ratio in the region 1.0 <ffiffiffi
s

p
=GeV < 1.5 relative to the parton-model prediction.

This observation suggests a possible scenario where the
higher lattice value of awinμ as compared to its data-driven
evaluation is explained by a too pronounced dip of the R
ratio just above the ϕ meson mass. In such a scenario,
the relative deviation between the central values of ahvpμ

obtained on the lattice and using eþe− data would be
smaller than for awinμ by a factor of about 1.5, given the
entries in Table IV. Indeed, it has been shown [50] that the

central values of the BMW Collaboration [20] cannot be
explained by a modification of the experimental RðsÞ ratio
below s ¼ 1 GeV2 alone.

2. Model estimate of ð∂=∂m2
KÞawin;sμ ðm2

π;m2
KÞ

In Ref. [62], we have used two closely related R-ratio
models for the strangeness correlator and the light-quark
contribution to the isoscalar correlator:

Rl
I¼0ðsÞ ¼

Aω

18
m2

ωδðs −m2
ωÞ þ

Nc

18
θðs − s0Þ

�
1þ αs

π

�
;

ðB8Þ

RsðsÞ ¼ Aϕ

9
m2

ϕδðs −m2
ϕÞ þ

Nc

9
θðs − s1Þ

�
1þ αs

π

�
;

ðB9Þ

with

ffiffiffiffiffi
s0

p ¼ 1.02 GeV;
ffiffiffiffiffi
s1

p ¼ 1.24 GeV; ðB10Þ

mω ¼ 0.78265 GeV, mϕ ¼ 1.01946 GeV and [100]

Aω

18
¼ 9π

α2
ΓeeðωÞ
mω

¼ 7.33ð24Þ
18

; ðB11Þ

Aϕ

9
¼ 9π

α2
ΓeeðϕÞ
mϕ

¼ 5.86ð10Þ
9

: ðB12Þ

The threshold values s0 and s1 have been adjusted to
reproduce the corresponding lattice results for ahvpμ . The
model R ratios of Eqs. (B8) and (B9) were used [62] in
the linear combination ð18Rl

I¼0 − 9RsÞ in order to model
the SUð3Þf -breaking contribution Π08, which enters the
running of the electroweak mixing angle. Our model for
this linear combination also obeys an exact sum rule,R∞
0 dsð18Rl

I¼0 − 9RsÞ ¼ 0, within the statistical uncertain-
ties. We now evaluate the window quantity for the models
of Eqs. (B8) and (B9). For the strangeness contribution, we
have

awin;sμ ¼ ð27.6� 0.3statÞ × 10−10; ðB13Þ

TABLE IV. Fractional contributions in percent from different regions in
ffiffiffi
s

p
to ahvpμ and the partial quantities

ðahvpμ ÞSD;ID;LD, as well as the subtracted vacuum polarization at scale Q2 ¼ 1 GeV2, according to the R-ratio model
given in Ref. [49]. Note that this model includes neither the charm nor final states containing a photon, such as π0γ.

ffiffiffi
s

p
interval ahvpμ ðahvpμ ÞSD ðahvpμ ÞID ðahvpμ ÞLD Π̄ð1 GeV2Þ

Below 0.6 GeV 15.5 1.5 5.5 23.5 8.2
0.6 to 0.9 GeV 58.3 23.1 54.9 65.4 52.6
Above 0.9 GeV 26.2 75.4 39.6 11.1 39.2

Total 100.0 100.0 100.0 100.0 100.0

4For orientation, the charm contribution to ahvpμ is 14.66ð45Þ ×
10−10 [17], and the π0γ channel contributes 4.5ð1Þ × 10−10 [3].
Adding these to Eq. (B6), the total is 691.9 × 10−10, con-
sistent within errors with the White paper evaluation of
693.1ð4.0Þ × 10−10.
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and for the full isoscalar contribution, the model predicts

awin;I0μ ¼ ð47.4� 0.5statÞ × 10−10: ðB14Þ

Given the modeling uncertainties, these values are in
excellent agreement with the lattice results presented in
the main part of the text, respectively, Eqs. (37) and (34).
We also record some useful values of the kernel:

fwinðm2
ϕÞ ¼ 29.5 × 10−10 GeV−2;

fwinðs1Þ ¼ 16.1 × 10−10 GeV−2; ðB15Þ

d
ds

ðsfwinðsÞÞs¼m2
ϕ
¼ −11.3 × 10−10 GeV−2: ðB16Þ

In the following, we evaluate the strange-quark mass
dependence of awin;sμ , based on the idea that the parameters
Aϕ, mϕ, and s1 only depend on the mass of the valence
(strange) quark. This general assumption is reflected in
Eqs. (B21), (B22), and (B24) below.
It was noted a long time ago [101] that the electronic

decay width of vector mesons, normalized by the relevant
charge factor, is only very weakly dependent on their mass:

18 · ΓeeðωÞ ¼ 10.8ð4Þ keV; ðB17Þ

9 · ΓeeðϕÞ ¼ 11.4ð4Þ keV; ðB18Þ

9

4
· ΓeeðJ=ψÞ ¼ 12.4ð2Þ keV: ðB19Þ

This suggests that, unlike in QED, ðAV ·mVÞ depends less
strongly on mV than AV itself for QCD vector mesons.
Therefore it is best to estimate the derivative of interest as
follows:

∂awin;ϕμ

∂m2
K

				
m2

π

≃
∂

∂m2
K

�
Aϕmϕ

9

�
mϕfwinðm2

ϕÞ

þ
�
Aϕmϕ

9

�
∂m2

ϕ

∂m2
K

∂

∂m2
ϕ

ðmϕfwinðm2
ϕÞÞ: ðB20Þ

We estimate the following derivatives by taking a finite
difference between the ω and the ϕ meson properties:

∂

∂m2
K

�
Aϕmϕ

9

�
≃
1

9

Aϕmϕ − Aωmω

m2
K −m2

π
¼ 0.12ð10Þ GeV−1

ðB21Þ

and

∂m2
ϕ

∂m2
K
¼ 2mϕ

∂mϕ

∂m2
K
≃ 2mϕ

mϕ −mω

m2
K −m2

π
¼ 2.13: ðB22Þ

Thus

∂awin;ϕμ

∂m2
K

				
m2

π

≃ ðð3.5� 3.1Þ − 36.1Þ × 10−10 GeV−2

¼ ð−32.6� 3.1Þ × 10−10 GeV−2: ðB23Þ

Next, we estimate the dependence originating from the
valence-mass dependence of s1:

∂s1
∂m2

K
≃ 2

ffiffiffiffiffi
s1

p ffiffiffiffiffi
s1

p − ffiffiffiffiffi
s0

p
m2

K −m2
π

¼ 2.4: ðB24Þ

Thus the derivative of the perturbative continuum awin;s;contμ

with respect to the squared kaon mass yields

∂awin;s;contμ

∂m2
K

¼−
Nc

9
ð1þαs=πÞfwinðs1Þ

∂s1
∂m2

K
¼−14.1×10−10:

ðB25Þ

Adding this contribution to Eq. (B23), we get in total

∂awin;sμ

∂m2
K

¼ ð−46.6� 3.1stat � 7.0modelÞ × 10−10 GeV−2:

ðB26Þ

To the statistical error from the electronic widths of the ω
and ϕ mesons, we have added a modeling error of 15%.
Using t0, the value above translates into

∂awin;sμ

∂ϕ4

				
ϕ2

≃ ð−10.9� 0.7stat � 1.6modelÞ × 10−10; ðB27Þ

which can directly be compared to the values from lattice
QCD listed in Table III. The agreement is excellent.
In Eq. (B9), we have written the perturbative contribu-

tion above the threshold s1 in the massless limit. We now
verify that the mass dependence of the perturbative con-
tribution is negligible for fixed s1. The leading mass-
dependent perturbative contribution to the R ratio well
above threshold is [see e.g., [102], Eqs. (11) and (12)]

Rs
pertðm2

s ; sÞ − Rs
pertð0; sÞ

¼ Nc

9

�
−6

�
m2

s

s

�
2

þ 12
αs
π

m2
s

s
þ � � �

�
: ðB28Þ

From here we have estimated ∂

∂m2
K
awin;s;pertμ ≈

0.5 × 10−10 GeV−2. Since this contribution to ∂

∂m2
K
awin;sμ

is about one-sixth the statistical uncertainty from the vector
meson electronic decay widths, we neglect the perturbative
mass dependence of awin;sμ .
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For future reference, we evaluate in the same way as in
Eq. (B26) the derivative of ahvp;sμ and find

∂ahvp;sμ

∂m2
K

				
m2

π

¼ ð−129� 6stat � 19modelÞ × 10−10 GeV−2:

ðB29Þ

Here, the dependence on s1 only contributes 18% of the
total. We have again assigned a 15% modeling uncertainty
to the prediction. Since we expect valence-quark effects to
dominate, the prediction (B29) can also be applied to the
full isoscalar prediction.

3. Model estimate of ð∂=∂m2
KÞawin;I1μ ðm2

π;m2
KÞ

The influence of the strange quark mass on the isovector
channel is a pure sea quark effect and is as such harder to
estimate. Based on the Okubo-Zweig-Iizuka (OZI) rule,
one would also expect a smaller relative sensitivity than
in the strangeness channel addressed in the previous
subsection.
One effect of the presence of strange quarks on the

isovector channel is that kaon loops can contribute. No
isovector vector resonances with a strong coupling to K̄K
are known; therefore, we attempt to use scalar QED
(sQED) to evaluate the effect of the kaon loops. Note that
at the SUð3Þf -symmetric point, the sum of the K̄0K0 and
KþK− contributions to the isovector channel amounts to
half as much as that of the pions. We find, integrating in s
from threshold up to 4 GeV2 with mK ¼ 0.495 GeV,

awin;I¼1
μ ¼ 0.99 × 10−10; kaon loops in sQED; ðB30Þ

∂

∂m2
K
awin;I¼1
μ ¼ −7.0 × 10−10 GeV−2: ðB31Þ

A further, more indirect effect of two-kaon intermediate
states is that they can affect the properties of the ρ meson.
On general grounds, one expects the two-kaon states to
reduce the ρ mass, since energy levels repel each other.
However, for the window quantity it so happens that
sfwinðsÞ has a maximum practically at the ρ mass; there-
fore, the derivative of this function is extremely small:

2

fwinðsÞ
d
ds

ðsfwinðsÞÞ
			
s¼m2

ρ

¼ −0.043: ðB32Þ

The effect of a shift in the ρmeson mass is therefore heavily
suppressed.5 Reasonable estimates of the order of magni-
tude of the derivative ∂mρ=∂m2

Kjm2
π
lead to a contribution to

∂

∂m2
K
awin;I¼1
μ which is smaller than the sQED estimate. These

estimates are based on the observation that the ratio mρ=fπ
is about 5% higher at a pion mass of 311 MeV in the
Nf ¼ 2 QCD calculation [103] than if one interpolates
the corresponding Nf ¼ 2þ 1 QCD results [17,104] to the
same pion mass, though a caveat is that neither result is
continuum extrapolated. The effect of the kaon intermedi-
ate states on the ππ line shape is even harder to estimate, but
we note that even inNf ¼ 2QCD calculations [103], i.e., in
the absence of kaons, the obtained gρππ coupling is
consistent with Nf ¼ 2þ 1 QCD calculations [17,104]
carried out at comparable pion masses.
In summary, we use the sQED evaluation of Eq. (B31) to

provide the order-of-magnitude estimate:

∂

∂ϕ4

				
ϕ2

awin;I¼1
μ ≈ −1.6 × 10−10: ðB33Þ

We note that the statistical precision of our lattice-QCD
results for this derivative in Table III is not sufficient to
resolve the small effect estimated here.

APPENDIX C: FINITE-VOLUME CORRECTION

Corrections for finite-size effects (FSE) have been
estimated using a similar strategy to the one presented in
our previous publication on the hadronic contributions to
the muon g − 2 [17]. The main difference lies in the
treatment of small Euclidean times, where we have replaced
NLO χPT by the Hansen-Patella method as described
below. We have also investigated finite-size corrections
in χPT at NNLO [20,105]. Overall, we found it to be
comparable in size to the values found in Tables V and VI,
the level of agreement improving for increasing volumes
and decreasing pion masses. Given that the NNLO χPT
correction term is in many cases not small compared to the
NLO term, we refrain from using χPT to compute finite-
size effects in our analysis of awinμ (see [24] for a more
detailed discussion of the issue).

1. The Hansen-Patella method

In Refs. [106,107], finite-size effects for the hadronic
contribution to the muon (g − 2) are expressed in terms of
the forward Compton amplitude of the pion as an expan-
sion in exp ð−jn⃗jmπLÞ for jn⃗j2 ¼ 1; 2; 3; 6;…. Here, nk
schematically represents the number of times the pion
propagates around the kth spatial direction of the lattice.

Corrections that start at order exp ð−neffmπLÞ with neff ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ffiffiffi

3
pp

≈ 1.93 are neglected: They appear when at least
two pions propagate around the torus. The results for the
first three leading contributions (jn⃗j2 ≤ 3) can thus be used
consistently to correct the lattice data on each time slice
separately. We decided to use the size of the jn⃗j2 ¼ 3 term,
i.e., the last one that is parametrically larger than the

5But note that this effect must be revisited when addressing the
strange-quark mass dependence of the isovector contribution to
the full ahvpμ .
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TABLE V. Finite-size effects in the isovector channel with fπ rescaling, in units of 10−10, for our ensembles described in Table I. The
correction obtained using the HP method is given in the third and fourth columns. The MLL estimate in the long-distance region is listed
in the fifth column. The contribution of the kaon is given in column six, where dots for ensembles at the SU(3) symmetric point indicate
that this contribution is contained in the HP and MLL estimates. Our final estimate is given in the last column. Only statistical errors are
shown. We assign an uncertainty of 25% of the FSE on each ensemble (see text).

ID t⋆ (fm) HP ðt < t⋆Þ HP ðt > t⋆Þ MLL ðt > t⋆Þ Kaon loop Final estimate

A653 0.79 0.98(0.01) 0.81(0.03) 0.78(0.01) � � � 1.75(0.03)
H101 1.04 0.71(0.01) 0.03(0.00) 0.03(0.00) � � � 0.74(0.01)
H102 0.86 0.70(0.01) 0.40(0.02) 0.36(0.01) 0.19 1.25(0.10)
H105 0.69 0.58(0.03) 1.95(0.11) 1.87(0.08) 0.14 2.59(0.15)
N101 1.47 0.28(0.01) 0.00(0.00) 0.00(0.00) 0.01 0.29(0.01)
C101 1.21 0.75(0.02) 0.03(0.00) 0.03(0.00) 0.01 0.78(0.02)
B450 0.76 0.83(0.01) 0.77(0.02) 0.74(0.56) � � � 1.57(0.37)
S400 0.69 0.61(0.01) 1.55(0.05) 1.54(0.03) 0.34 2.50(0.18)
N451 1.22 0.51(0.01) 0.01(0.00) 0.01(0.00) 0.02 0.53(0.01)
D450 1.60 0.32(0.01) 0.00(0.00) 0.00(0.00) 0.00 0.32(0.01)
D452 1.15 0.89(0.02) 0.10(0.01) 0.10(0.01) 0.00 1.00(0.03)
H200 0.58 0.68(0.02) 3.35(0.07) 3.17(0.09) � � � 3.84(0.16)
N202 1.22 0.38(0.01) 0.00(0.00) 0.00(0.00) � � � 0.38(0.00)
N203 1.03 0.56(0.01) 0.04(0.00) 0.03(0.00) 0.09 0.69(0.05)
N200 0.84 0.73(0.01) 0.64(0.02) 0.61(0.01) 0.07 1.41(0.05)
D200 1.09 0.95(0.01) 0.11(0.00) 0.10(0.00) 0.01 1.06(0.02)
E250 1.54 0.57(0.02) 0.00(0.00) 0.00(0.00) 0.00 0.57(0.02)
N300 0.75 0.89(0.01) 0.79(0.02) 0.75(0.01) � � � 1.64(0.03)
N302 0.65 0.61(0.01) 1.79(0.03) 1.73(0.02) 0.34 2.68(0.20)
J303 0.85 0.90(0.01) 0.71(0.02) 0.67(0.01) 0.05 1.62(0.06)
E300 1.25 0.76(0.01) 0.02(0.00) 0.02(0.00) 0.00 0.78(0.01)
J500 0.82 0.98(0.01) 0.41(0.01) 0.40(0.01) � � � 1.37(0.01)
J501 0.67 0.60(0.01) 1.52(0.04) 1.55(0.02) 0.29 2.44(0.16)

TABLE VI. The same as Table V using t0 to set the scale.

ID t⋆ (fm) HP ðt < t⋆Þ HP ðt > t⋆Þ MLL ðt > t⋆Þ Kaon loop Final estimate

A653 0.79 0.80(0.01) 1.19(0.04) 1.11(0.01) � � � 1.90(0.06)
H101 1.04 0.73(0.02) 0.13(0.00) 0.12(0.00) � � � 0.85(0.01)
H102 0.86 0.62(0.01) 0.57(0.02) 0.52(0.01) 0.19 1.33(0.11)
H105 0.69 0.54(0.01) 2.10(0.06) 2.01(0.02) 0.14 2.68(0.15)
N101 1.47 0.29(0.01) 0.00(0.00) 0.00(0.00) 0.01 0.30(0.01)
C101 1.21 0.73(0.02) 0.03(0.00) 0.03(0.00) 0.01 0.76(0.02)
B450 0.76 0.63(0.01) 1.21(0.03) 1.12(0.79) � � � 1.75(0.53)
S400 0.69 0.50(0.01) 1.87(0.04) 1.82(0.02) 0.34 2.65(0.19)
N451 1.22 0.54(0.01) 0.01(0.00) 0.01(0.00) 0.02 0.57(0.01)
D450 1.60 0.32(0.01) 0.00(0.00) 0.00(0.00) 0.00 0.32(0.01)
D452 1.15 0.88(0.02) 0.07(0.00) 0.08(0.00) 0.00 0.95(0.02)
H200 0.58 0.45(0.01) 4.14(0.09) 3.77(0.12) � � � 4.22(0.28)
N202 1.22 0.44(0.01) 0.01(0.00) 0.01(0.00) � � � 0.45(0.01)
N203 1.03 0.57(0.01) 0.11(0.00) 0.10(0.00) 0.09 0.76(0.05)
N200 0.84 0.66(0.01) 0.81(0.02) 0.76(0.01) 0.07 1.49(0.06)
D200 1.09 0.96(0.01) 0.12(0.00) 0.11(0.00) 0.01 1.07(0.02)
E250 1.54 0.53(0.01) 0.00(0.00) 0.00(0.00) 0.00 0.53(0.01)
N300 0.75 0.63(0.01) 1.37(0.03) 1.24(0.02) � � � 1.87(0.09)
N302 0.65 0.45(0.01) 2.29(0.05) 2.13(0.03) 0.33 2.91(0.25)
J303 0.85 0.81(0.01) 0.93(0.02) 0.87(0.01) 0.05 1.73(0.07)
E300 1.25 0.76(0.01) 0.02(0.00) 0.02(0.00) 0.00 0.78(0.01)
J500 0.82 0.74(0.01) 0.92(0.03) 0.85(0.01) � � � 1.60(0.05)
J501 0.67 0.43(0.01) 2.02(0.05) 1.97(0.01) 0.29 2.69(0.17)
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neglected neff ≈ 1.93 contribution, as an estimate of the
inherent systematic error.
In this work we follow the method presented in

Ref. [107], where the forward Compton amplitude is
approximated by the pion pole term, which is determined
by the electromagnetic form factor of the pion in the
spacelike region. Since the form factor is only used to
evaluate the small finite-volume correction, a simple but
realistic model is sufficient. Here we use a monopole
parametrization obtained from Nf ¼ 2 lattice QCD simu-
lations [108]:

Fðq2Þ ¼ 1

1þ q2=M2
;

M2ðm2
πÞ ¼ 0.517ð23Þ GeV2 þ 0.647ð30Þm2

π: ðC1Þ

The statistical error on the finite-size correction is obtained
by propagating the jackknife error on the pion and
monopole masses. The results obtained using this method
are summarized in the third and fourth columns of Tables V
and VI.

2. The Meyer-Lellouch-Lüscher formalism with
Gounaris-Sakurai parametrization

As an alternative, we also consider the Meyer-Lellouch-
Lüscher (MLL) formalism. The isovector correlator in both
finite and infinite volume is written in terms of spectral
decompositions:

GI¼1ðt;∞Þ ¼ 1

48π2

Z
∞

2mπ

dωω2

�
1 −

4m2
π

ω2

�
3=2

jFπðωÞj2e−ωt;

ðC2Þ

GI¼1ðt; LÞ ¼
X
i

jAij2e−Eit; Ei ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k2i

q
; ðC3Þ

where FπðωÞ is the timelike pion form factor. Following
the Lüscher formalism, the discrete energy levels Ei ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ k2i
p

in finite volume are obtained by solving the
equation

δ1ðkiÞ þ ϕðqÞ ¼ nπ; q ¼ kiL
2π

; ðC4Þ

where ϕðqÞ is a known function [109,110], n is a strictly
positive integer and δ1 is the scattering phase shift in the
isospin I ¼ 1, p-wave channel. Strictly speaking, this
relation holds exactly only below the four-particle thresh-
old that starts at 4mπ. This is only a restriction at light pion
mass where many states are needed to saturate the spectral
decomposition in finite volume. We will see below how to
circumvent this difficulty. In Ref. [111], the overlap factors
Ai that enter the spectral decomposition in finite volume

were shown to be related to the form factor in infinite
volume through the relation

jFπðEiÞj2 ¼
�
qϕ0ðqÞ þ k

∂δ1
∂k

�
3πE2

i

2k5i
jAij2: ðC5Þ

The timelike pion form factor has been computed on a
subset of our lattice simulations [17,104]. Since the form
factor is only needed to estimate the small finite-volume
correction, an approximate model can be used. Here, we
assume a Gounaris-Sakurai (GS) parametrization that
contains two parameters: the gρππ coupling and the vector
meson mass mρ [112]. A given choice of those parameters
allows us to compute both the finite-volume and infinite-
volume correlation function in the isovector channel at
large Euclidean times using Eq. (C3). The difference
GI¼1ðt;∞Þ −GI¼1ðt; LÞ, when inserted into Eq. (5), yields
our estimate of the FSE. In practice, the GS parameters are
obtained from a fit to the isovector correlation function
GI¼1ðt; LÞ at large Euclidean times, using Eqs. (C3)–(C5).
Statistical errors on the GS parameters can easily be
propagated using the jackknife procedure.
Since this method is expected to give a good description

only up to the inelastic threshold, Eq. (C4) being formally
valid below 4mπ, we opt to use the MLL formalism only
above a certain cut in Euclidean time, given by t� ¼
ðmπL=4Þ2=mπ . Below the cut, we always use the HP
method described above. Above the cut, the lightest few
finite-volume states in the spectral decomposition saturate
the integrand. The results using the MLL formalism are
summarized in the fifth column of Tables V and VI.

3. Corrections applied to lattice data

In Tables V and VI we summarize the FSE correction
applied to the raw lattice data. We find that finite-size
corrections computed using either the HP or the MLL
method for (t > t⋆) show good agreement within their
respective uncertainties. Our final estimates, shown in the
rightmost column, are obtained by adding the result from
the HP method at short times (t < t⋆) to that of the MLL
method above t⋆ and the kaon loop contribution. The latter
has been computed in χPT at NLO (see for instance [113])
on ensembles without SU(3) flavor symmetry. At the SU(3)
symmetric point, the kaon loop contribution has been
accounted for by scaling the HP and MLL corrections
by a factor of 3=2. We have included the scale factor in the
respective entries in Tables V and VI.
The uncertainty quoted in the rightmost column is given

by the statistical error computed as described in the two
previous sections. It includes the statistical error on the
GS parameters and on the monopole mass that appears in
the parametrization of the form factor in Eq. (C1). The
systematic error on the HP contribution is estimated as
described in Appendix C 1.
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For our final estimates of finite-volume corrections, we
adopt a more conservative approach regarding the overall
uncertainty. As in our earlier paper [10], we base our
uncertainty estimate on the comparison to the NLO χPT
correction, which leads us to assign an error of 25% of the
estimated correction for each ensemble, which replaces
the uncertainties quoted in the last column of Tables V
and VI. For example, the finite-size correction applied
to awin;I1μ in the case of ensemble J303 with fπ rescaling
is ð1.62� 0.405Þ × 10−10.

APPENDIX D: QUENCHING OF THE CHARM
QUARK

The gauge configurations used in this work contain the
dynamical effects of up, down and strange quarks. As for
the charm quarks, we have only taken into account the
connected valence contributions. In this appendix, we
estimate the systematic error from the missing effect of
charm sea-quark contributions. The question we are after
can be formulated as, “What is the charm-quark effect on
the R ratio in a world in which the charm quark is
electrically neutral?”
As in Ref. [62], we adopt a phenomenological approach.

There, we evaluated the perturbative prediction for the
charm sea-quark effect and found it to be small for the
running of the electromagnetic coupling from Q2 ¼ 1 to
5 GeV2. Alternatively, we considered D-meson pair crea-
tion in the electromagnetic-current correlator of the ðu; d; sÞ
quark sector. The contribution of the DþD− channel to the
R ratio reads

RDþD−ðsÞ ¼ 1

4

�
1 −

4m2
Dþ

s

�
3=2

jFDþðsÞj2; ðD1Þ

and similar expressions hold for the D0D̄0 and Dþ
s D−

s
channels. Since the form factor FDþ is not known precisely
and our goal is only to estimate the order of magnitude of
the effect, we will approximate it by its value at s ¼ 0,
which amounts to treating D mesons in the scalar QED
framework and replacing their form factors by the relevant
electromagnetic charges: fFD0ðsÞ; FDþðsÞ; FDþ

s
g →

f2=3;−1=3;−1=3g. Note that up, down, or strange quarks
play the role of the valence quarks giving the mesons their
respective charges.
The corresponding contributions to ahvpμ are evaluated

using the expression

Δc-seaahvpμ ¼
Z

∞

0

dsfhvpðsÞðRD0D0 þ RDþD− þ RDþ
s D−

s
ÞðsÞ;

ðD2Þ

fhvpðsÞ ≔
�
α2

ffiffiffi
s

p
24π4

�Z
∞

0

dte−t
ffiffi
s

p
K̃ðtÞ ¼

�
αmμ

3π

�
2 K̂ðsÞ

s2
;

ðD3Þ

where mμ is the muon mass and the analytic form of K̂ðsÞ
can be found e.g. in Ref. [114], Sec. IV 1. Similarly, the
counterpart for the intermediate window reads

Δc-seaawinμ ¼
Z

∞

0

ds fwinðsÞðRD0D0 þ RDþD− þ RDþ
s D−

s
ÞðsÞ;

ðD4Þ

where fwinðsÞ is defined in Eq. (B2).
For the D-meson masses, we use the values provided by

the Particle Data Group 2020 [100]. Our results are

Δc-seaahvpμ

ahvpμ

¼ 0.314
720.0

ð∼0.04%Þ; ðD5Þ

Δc-seaawinμ

awinμ
¼ 0.015

236.60
ð∼0.006%Þ; ðD6Þ

where we have inserted the ahvpμ ¼ 720.0 value from
Ref. [17]. The charm sea-quark contributions are thus
negligible at the current level of precision.
We notice that Δc-seaahvpμ =ahvpμ is much smaller than the

effects found in the HVP contributions to the QED running
coupling, namely ∼0.4% [62]. We interpret the difference
as follows: The typical scale in ahvpμ is given by the muon
mass, which is well separated from the D-meson masses.
Therefore the D-meson effects are strongly suppressed. In
comparison, the running coupling was investigated at the
GeV scale and the suppression is less strong.
In the intermediate window, the charm sea quarks are

even more suppressed, as seen in the tiny value of
Δc-seaawinμ =awinμ . This results from the following fact:
Creating D-meson pairs requires a center-of-mass energy
of ∼4 GeV, corresponding to t ∼ 0.05 fm, which is much
smaller than the lower edge of the intermediate window,
t0 ¼ 0.4 fm. Therefore, the D-meson pair creation con-
tributes mostly to the short-distance window ðahvpμ ÞSD. In
fact, the effect in the intermediate window Δc-seaawinμ

amounts to at most 5% of the total Δc-seaahvpμ .
Charm sea quarks lead not only to on-shell D mesons in

the RðsÞ ratio, but also to virtual effects below the threshold
for charm production. This is seen explicitly in the
perturbative calculation [115], where the two effects are
of the same order. At present, we do not have a means to
estimate these virtual effects on the quantity awinμ , in which
they are less kinematically suppressed. Therefore, we will
conservatively amplify the uncertainty that we assign to the
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neglect of sea charm quarks by a factor of 3 relative to the
prediction of Eq. (D6). This estimate also generously
covers the effect on awinμ which follows from adopting
the perturbative charm-loop effect on RðsÞ down to
s ¼ 1…1.5 GeV2. Thus, rounding the uncertainty to one
significant digit, we quote

Δc-seaawinμ ¼ 0.05 × 10−10 ðD7Þ

as the uncertainty on awinμ due to the quenching of the charm
in the final result Eq. (44) for the isosymmetric theory.

APPENDIX E: LIGHT PSEUDOSCALAR
QUANTITIES

In Table VII, we provide our results for the light
pseudoscalar masses and decay constants, in lattice units,
for all our lattice ensembles.
The pseudoscalar decay constant on ensembles with

open boundary conditions is computed using the same
procedure as in Ref. [55]. We construct the ratio

Rðx0; y0Þ ¼
ffiffiffiffiffiffiffi
2

mP

s �
CAðx0; y0ÞCAðx0; T − y0Þ

CPðT − y0; y0Þ
�
1=2

ðE1Þ

as an estimator for the (improved, but unrenormalized)
decay constant, with mP the pseudoscalar mass. The two-
point correlation functions are

CPðx0; y0Þ ¼ −
a6

L3

X
x⃗;y⃗

hPðx0; x⃗ÞPðy0; y⃗Þi; ðE2Þ

CAðx0; y0Þ ¼ −
a6

L3

X
x⃗;y⃗

hA0ðx0; x⃗ÞPðy0; y⃗Þi; ðE3Þ

with P ¼ ψ̄ rγ5ψ r0 and Aμ ¼ ψ̄ rγ0γ5ψ r0 þ acA∂μðψ̄ rγ5ψ r0 Þ
the local OðaÞ-improved interpolating operators for the
pseudoscalar and axial densities, respectively. The coef-
ficient cA has been determined nonperturbatively in
Ref. [116] and the valence flavors are denoted by r and
r0, with r ≠ r0. In practice we average the results between
the two source positions y0 ¼ 2a and y0 ¼ T − 2a, close to
the temporal boundaries. As shown in Ref. [55], a plateau
Ravg is obtained at large x0 where excited state contribu-
tions are small. On ensembles with periodic boundary
conditions, we use the estimator

Ravg ¼
2ZP

m2
P
×mPCAC

rr0 ; ðE4Þ

where mPCAC
rr0 is the average partial conservation of the

axial current (PCAC) quark mass of flavors r and r0, and
ZP the overlap factor of the pseudoscalar meson. The
average PCAC mass is defined from an average in the
interval ½ti; tf � via

mPCAC
rr0 ¼ a

tf − ti þ a

Xtf
x0¼ti

∂̃0CAðx0; y0Þ
2CPðx0; y0Þ

; ðE5Þ

where the source position y0 is fixed as specified above for
open boundary conditions and randomly chosen for peri-
odic boundary conditions. The interval is chosen such that
deviations from a plateau which occur at short source-sink
separations and close to the time boundaries are excluded
from the average.
From the bare matrix element Ravg, the renormalized and

OðaÞ-improved pseudoscalar decay constant is given by

fPðXa; XπÞ ¼ ZAðg̃0Þð1þ 3b̄Aamav
q þ bAamq;rr0ÞRavg:

ðE6Þ

In this equation, ZA is the renormalization factor in the
chiral limit and bA and b̄A are improvement coefficients of
the axial current. These quantities are known from
Refs. [117–119]. The average valence-quark mass mq;rr0 ¼
ðmq;r þmq;r0 Þ=2 and the average sea-quark mass mav

q ¼
ð2mq;l þmq;sÞ=3 are defined in terms of the bare subtracted
quark masses mq;r ≡ ð2κrÞ−1 − ð2κcritÞ−1, with κcrit the
critical value of the hopping parameter at which all three
PCAC masses vanish. In practice, we use the relation [60]

mq;rr0 ¼
mPCAC

rr0

Z
−
ðrm − 1Þ
Zrm

mPCAC
av þ OðamPCAC

rr0 ; amPCAC
av Þ;

ðE7Þ

where mPCAC
av ¼ ðmPCAC

ll0 þ 2mPCAC
ls Þ=3 is the average sea

PCAC quark mass and the coefficients Zðg̃0Þ ¼ ZmZP=ZA
and rmðg̃0Þ have been determined nonperturbatively in
Refs. [120,121].
The lattice data for the light pseudoscalar masses and

decay constants are corrected for finite-size effects using
chiral perturbation theory (χPT) as described in Ref. [77].
Those corrections are small (the negative shift is at most
1.3σ) and we find that they correctly account for FSE on
the ensembles H105/N101, which are generated using the
same action parameters but different lattice volumes.
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APPENDIX F: TABLES

1. Pseudoscalar observables

TABLE VII. Pseudoscalar masses and decay constants in lattice units, including finite-size corrections. Value of the gluonic
observable t0=a2 and the two dimensionless variables ỹ and ϕ2 used in the extrapolation to the physical point.

ID amπ amK afπ afK t0=a2 ỹ ϕ2

A653 0.21193(91) 0.21193(91) 0.07164(23) 0.07164(23) 2.171(08) 0.1108(06) 0.7803(70)
A654 0.16647(121) 0.22712(89) 0.06723(33) 0.07206(23) 2.192(11) 0.0777(08) 0.4860(77)
H101 0.18217(62) 0.18217(62) 0.06377(26) 0.06377(26) 2.846(08) 0.1034(09) 0.7557(56)
H102 0.15395(71) 0.19144(57) 0.06057(30) 0.06365(23) 2.872(13) 0.0818(08) 0.5445(54)
H105 0.12136(124) 0.20230(61) 0.05800(110) 0.06431(29) 2.890(08) 0.0555(26) 0.3405(70)
N101 0.12150(55) 0.20158(31) 0.05772(31) 0.06418(20) 2.881(03) 0.0561(07) 0.3403(32)
C101 0.09569(73) 0.20579(34) 0.05496(31) 0.06330(15) 2.912(05) 0.0384(07) 0.2133(33)
B450 0.16063(45) 0.16063(45) 0.05674(15) 0.05674(15) 3.662(13) 0.1015(06) 0.7559(48)
S400 0.13506(44) 0.17022(39) 0.05394(38) 0.05675(32) 3.691(08) 0.0794(10) 0.5387(37)
N451 0.11072(29) 0.17824(18) 0.05228(13) 0.05789(08) 3.681(07) 0.0568(03) 0.3610(19)
D450 0.08329(43) 0.18384(18) 0.04989(21) 0.05766(12) 3.698(06) 0.0353(03) 0.2052(21)
D452 0.05941(55) 0.18651(15) 0.04827(49) 0.05704(08) 3.725(01) 0.0192(04) 0.1052(19)
H200 0.13535(60) 0.13535(60) 0.04799(27) 0.04799(27) 5.151(33) 0.1008(15) 0.7549(86)
N202 0.13424(31) 0.13424(31) 0.04821(17) 0.04821(17) 5.140(26) 0.0982(08) 0.7410(53)
N203 0.11254(24) 0.14402(20) 0.04645(14) 0.04907(12) 5.146(08) 0.0744(05) 0.5214(24)
N200 0.09234(31) 0.15071(23) 0.04424(16) 0.04901(16) 5.163(07) 0.0552(05) 0.3522(25)
D200 0.06507(28) 0.15630(15) 0.04226(13) 0.04910(11) 5.181(11) 0.0300(04) 0.1755(16)
E250 0.04170(41) 0.15924(09) 0.04026(19) 0.04864(06) 5.204(04) 0.0136(03) 0.0724(14)
N300 0.10569(23) 0.10569(23) 0.03819(14) 0.03819(14) 8.545(33) 0.0970(09) 0.7636(38)
N302 0.08690(34) 0.11358(28) 0.03663(15) 0.03860(15) 8.524(25) 0.0713(09) 0.5150(43)
J303 0.06475(18) 0.11963(16) 0.03444(12) 0.03872(16) 8.612(23) 0.0448(04) 0.2888(18)
E300 0.04393(16) 0.12372(10) 0.03255(09) 0.03832(17) 8.622(06) 0.0231(02) 0.1331(10)
J500 0.08153(19) 0.08153(19) 0.02989(10) 0.02989(10) 13.990(69) 0.0942(08) 0.7439(51)
J501 0.06582(23) 0.08794(22) 0.02882(15) 0.03059(15) 13.992(67) 0.0661(09) 0.4850(41)
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2. Isovector contribution

TABLE VIII. Values of the isovector contributions, with and without fπ rescaling, in units of 10−10, for the local-local (LL) and for the
local-conserved (CL) discretizations of the correlation function, as described in the main text. The finite-size correction has been
applied.

Scale t0-set 1 Scale fπ-set 1 Scale t0-set 2 Scale fπ-set 2

ID ðLLÞ ðCLÞ ðLLÞ ðCLÞ ðLLÞ ðCLÞ ðLLÞ ðCLÞ
A653 173.94(36) 176.25(37) 185.71(28) 189.09(32) 142.15(35) 151.27(37) 150.38(21) 162.53(26)
H101 172.10(39) 173.35(39) 185.49(47) 187.48(49) 150.16(39) 155.36(39) 161.03(40) 168.34(46)
H102 178.54(52) 179.75(52) 186.34(56) 187.95(58) 157.27(53) 162.26(53) 163.73(51) 169.87(56)
H105* 184.82(50) 186.01(49) 188.15(189) 189.51(199) 164.28(53) 169.09(51) 167.07(159) 172.35(187)
N101 186.31(43) 187.56(42) 188.94(60) 190.28(61) 165.61(44) 170.48(43) 167.80(54) 173.07(58)
C101 192.19(41) 193.40(41) 190.56(62) 191.69(64) 172.25(43) 176.94(42) 170.87(57) 175.33(62)
B450 168.12(38) 168.82(38) 182.47(35) 183.62(36) 152.53(38) 155.68(38) 165.14(33) 169.63(34)
N451 183.40(28) 184.05(28) 188.25(29) 189.04(29) 168.49(27) 171.40(27) 172.83(27) 176.17(28)
D450 189.36(26) 190.03(27) 189.80(46) 190.49(47) 174.95(26) 177.79(26) 175.35(43) 178.28(45)
D452 194.96(33) 195.61(33) 192.97(101) 193.58(104) 181.21(34) 183.97(34) 179.42(93) 182.00(101)
H200* 165.17(91) 165.44(91) 179.46(90) 179.92(90) 155.70(89) 157.21(89) 169.07(86) 171.19(87)
N202 168.14(68) 168.45(69) 182.46(52) 182.97(53) 158.36(67) 159.92(68) 171.77(50) 173.98(52)
N203 173.75(43) 174.11(43) 183.80(44) 184.25(44) 164.22(43) 165.77(43) 173.65(43) 175.60(44)
N200 180.17(43) 180.43(42) 185.21(50) 185.53(50) 171.02(44) 172.41(43) 175.77(49) 177.37(50)
D200 188.37(38) 188.69(37) 189.03(38) 189.36(38) 179.52(39) 180.91(38) 180.14(37) 181.56(38)
E250 194.75(26) 194.96(26) 191.77(45) 191.96(46) 186.36(27) 187.61(26) 183.54(44) 184.66(45)
N300 160.99(59) 161.08(59) 177.99(61) 178.15(60) 156.34(59) 156.89(59) 172.86(60) 173.65(60)
J303 179.51(54) 179.57(55) 184.77(56) 184.84(56) 175.24(55) 175.67(55) 180.39(56) 180.88(56)
E300 188.05(49) 188.13(49) 188.14(47) 188.21(47) 183.96(49) 184.38(50) 184.05(47) 184.47(47)
J500 162.00(72) 162.04(72) 178.03(65) 178.07(65) 159.69(72) 159.97(72) 175.52(65) 175.86(65)
J501 170.16(98) 170.15(98) 182.04(83) 182.07(83) 167.92(98) 168.13(98) 179.68(83) 179.98(83)
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3. Isoscalar contribution

TABLE IX. Values of the isoscalar contributions, with and without fπ rescaling, in units of 10−10, for the local-local (LL) and for the
local-conserved (CL) discretizations of the correlation function, as described in the main text. The finite-size correction has been
applied.

Scale t0-Set 1 Scale fπ-Set 1 Scale t0-Set 2 Scale fπ-Set 2

ID ðLLÞ ðCLÞ ðLLÞ ðCLÞ ðLLÞ ðCLÞ ðLLÞ ðCLÞ
A653 57.98(12) 58.75(12) 61.90(9) 63.03(11) 47.38(12) 50.42(12) 50.13(7) 54.18(9)
H101 57.36(13) 57.78(13) 61.83(16) 62.49(16) 50.05(13) 51.78(13) 53.68(13) 56.11(15)
H102 55.30(16) 55.71(16) 58.28(19) 58.82(20) 47.94(16) 49.70(16) 50.38(17) 52.53(18)
H105* 53.16(16) 53.57(15) 54.65(81) 55.12(84) 45.83(15) 47.61(15) 47.05(66) 49.01(76)
N101 53.55(11) 53.97(11) 54.70(25) 55.16(26) 46.18(11) 47.99(11) 47.12(21) 49.06(24)
C101 52.67(11) 53.08(11) 51.89(26) 52.27(27) 45.39(11) 47.18(11) 44.74(22) 46.46(24)
B450 56.04(13) 56.27(13) 60.82(12) 61.21(12) 50.84(13) 51.89(13) 55.05(11) 56.54(11)
N451 52.80(06) 53.01(06) 54.92(10) 55.18(10) 47.51(06) 48.60(06) 49.37(09) 50.61(09)
D450 51.47(06) 51.70(07) 51.70(19) 51.93(19) 46.23(06) 47.33(06) 46.43(17) 47.55(18)
D452 50.90(10) 51.12(10) 49.82(46) 50.06(46) 45.74(10) 46.84(10) 44.79(41) 45.82(43)
H200* 55.06(30) 55.15(30) 59.82(30) 59.97(30) 51.90(30) 52.40(30) 56.36(29) 57.06(29)
N202 56.05(23) 56.15(23) 60.82(17) 60.99(18) 52.79(22) 53.31(23) 57.26(17) 57.99(17)
N203 53.41(13) 53.50(13) 57.33(15) 57.46(15) 50.12(13) 50.65(13) 53.77(14) 54.45(15)
N200 51.61(11) 51.70(10) 53.81(15) 53.92(15) 48.35(11) 48.88(10) 50.39(14) 51.00(15)
D200 50.36(10) 50.46(10) 50.70(13) 50.80(13) 47.11(10) 47.67(09) 47.42(12) 47.99(12)
E250 49.65(09) 49.76(09) 47.90(24) 48.00(24) 46.45(09) 47.01(09) 44.82(22) 45.34(22)
N300 53.66(20) 53.69(20) 59.33(20) 59.38(20) 52.11(20) 52.30(20) 57.62(20) 57.88(20)
J303 49.80(12) 49.82(12) 52.21(16) 52.23(16) 48.25(12) 48.43(12) 50.59(16) 50.80(16)
E300 48.77(08) 48.80(08) 48.82(12) 48.84(12) 47.24(08) 47.44(08) 47.29(11) 47.48(11)
J500 54.00(24) 54.01(24) 59.34(22) 59.36(22) 53.23(24) 53.32(24) 58.51(22) 58.62(22)
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4. Charm-quark contribution
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TABLE X. Charm hopping parameter κc, renormalization factor of the local vector current ZðcÞ
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M. CÈ et al. PHYS. REV. D 106, 114502 (2022)

114502-30

https://doi.org/10.1103/PhysRevLett.121.022002
https://doi.org/10.1103/PhysRevLett.121.022003
https://doi.org/10.1103/PhysRevLett.121.022003
https://doi.org/10.1103/PhysRevD.99.114502
https://doi.org/10.1103/PhysRevD.100.034517
https://doi.org/10.1103/PhysRevD.100.034517
https://doi.org/10.1103/PhysRevD.101.034512
https://doi.org/10.1103/PhysRevD.101.034512
https://doi.org/10.1103/PhysRevD.100.014510
https://doi.org/10.1103/PhysRevD.101.014503
https://doi.org/10.1103/PhysRevD.101.014503
https://doi.org/10.22323/1.363.0104
https://doi.org/10.22323/1.363.0104
https://doi.org/10.1038/s41586-021-03418-1
https://doi.org/10.1038/s41586-021-03418-1
https://doi.org/10.1103/PhysRevD.101.074515
https://doi.org/10.22323/1.396.0189
https://arXiv.org/abs/2204.01280
https://doi.org/10.1103/PhysRevD.106.054503
https://doi.org/10.1103/PhysRevD.106.054503
https://doi.org/10.1103/PhysRevLett.114.012001
https://doi.org/10.1103/PhysRevD.93.014503
https://doi.org/10.1103/PhysRevLett.118.022005
https://doi.org/10.1103/PhysRevD.96.034515
https://doi.org/10.1103/PhysRevLett.124.132002
https://doi.org/10.1103/PhysRevLett.124.132002
https://doi.org/10.1103/PhysRevLett.115.222003
https://doi.org/10.1103/PhysRevLett.115.222003
https://doi.org/10.22323/1.251.0109
https://doi.org/10.22323/1.251.0109
https://doi.org/10.22323/1.256.0164
https://doi.org/10.22323/1.256.0164
https://doi.org/10.1103/PhysRevD.98.074501
https://doi.org/10.1051/epjconf/201817901017
https://doi.org/10.1051/epjconf/201817901017
https://doi.org/10.21468/SciPostPhysProc.1.031
https://doi.org/10.21468/SciPostPhysProc.1.031
https://doi.org/10.22323/1.363.0195
https://doi.org/10.22323/1.363.0195
https://doi.org/10.1140/epjc/s10052-020-08444-3
https://doi.org/10.1140/epjc/s10052-021-09455-4
https://doi.org/10.1140/epjc/s10052-021-09455-4
https://doi.org/10.1140/epjc/s10052-022-10589-2
https://doi.org/10.1140/epjc/s10052-022-10589-2
https://doi.org/10.1016/j.ppnp.2018.09.001
https://doi.org/10.1016/j.ppnp.2018.09.001


[41] V. Gülpers, Recent developments of muon g − 2 from
lattice QCD, PoS LATTICE2019 (2020) 224.

[42] A. Gérardin, The anomalous magnetic moment of the
muon: Status of lattice QCD calculations, Eur. Phys. J. A
57, 116 (2021).

[43] G. Colangelo, M. Hoferichter, and P. Stoffer, Constraints
on the two-pion contribution to hadronic vacuum polari-
zation, Phys. Lett. B 814, 136073 (2021).

[44] M. Passera, W. Marciano, and A. Sirlin, The muon g − 2

and the bounds on the Higgs boson mass, Phys. Rev. D 78,
013009 (2008).

[45] A. Crivellin, M. Hoferichter, C. A. Manzari, and M.
Montull, Hadronic Vacuum Polarization: ðg − 2Þμ versus
Global Electroweak Fits, Phys. Rev. Lett. 125, 091801
(2020).

[46] A. Keshavarzi, W. J. Marciano, M. Passera, and A. Sirlin,
Muon g − 2 and Δα connection, Phys. Rev. D 102, 033002
(2020).

[47] B. Malaescu and M. Schott, Impact of correlations
between aμ and αQED on the EW fit, Eur. Phys. J. C 81,
46 (2021).

[48] G. Colangelo, A. X. El-Khadra, M. Hoferichter, A.
Keshavarzi, C. Lehner, P. Stoffer, and T. Teubner, Data-
driven evaluations of Euclidean windows to scrutinize
hadronic vacuum polarization, Phys. Lett. B 833, 137313
(2022).

[49] D. Bernecker and H. B. Meyer, Vector correlators in lattice
QCD: Methods and applications, Eur. Phys. J. A 47, 148
(2011).

[50] G. Colangelo, Muon g − 2: Theory overview, Proc. Sci.
EPS-HEP2021 (2022) 018.

[51] T. DeGrand, Remarks about weighted energy integrals
over Minkowski spectral functions from Euclidean lattice
data, Phys. Rev. D 106, 014504 (2022).

[52] M. Bruno et al., Simulation of QCD with N f ¼ 2þ 1

flavors of non-perturbatively improved Wilson fermions,
J. High Energy Phys. 02 (2015) 043.

[53] M. Lüscher, S. Sint, R. Sommer, and P. Weisz, Chiral
symmetry and OðaÞ improvement in lattice QCD, Nucl.
Phys. B478, 365 (1996).

[54] M. Lüscher and S. Schaefer, Lattice QCD with open
boundary conditions and twisted-mass reweighting, Com-
put. Phys. Commun. 184, 519 (2013).

[55] M. Bruno, T. Korzec, and S. Schaefer, Setting the scale for
the CLS 2þ 1 flavor ensembles, Phys. Rev. D 95, 074504
(2017).

[56] D. Mohler and S. Schaefer, Remarks on strange-quark
simulations with Wilson fermions, Phys. Rev. D 102,
074506 (2020).

[57] J. Bulava and S. Schaefer, Improvement of Nf ¼ 3 lattice
QCD with Wilson fermions and tree-level improved gauge
action, Nucl. Phys. B874, 188 (2013).

[58] A. Gérardin, T. Harris, and H. B. Meyer, Nonperturbative
renormalization and OðaÞ-improvement of the nonsinglet
vector current with Nf ¼ 2þ 1 Wilson fermions and tree-
level Symanzik improved gauge action, Phys. Rev. D 99,
014519 (2019).

[59] J. Heitger and F. Joswig (ALPHA Collaboration),
The renormalised OðaÞ improved vector current in

three-flavour lattice QCD with Wilson quarks, Eur. Phys.
J. C 81, 254 (2021).

[60] T. Bhattacharya, R. Gupta, W. Lee, S. R. Sharpe, and
J. M. S. Wu, Improved bilinears in lattice QCD with non-
degenerate quarks, Phys. Rev. D 73, 034504 (2006).

[61] P. Fritzsch, Mass-improvement of the vector current in
three-flavor QCD, J. High Energy Phys. 06 (2018) 015.
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