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Corrections to the gyromagnetic factor in very special relativity
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We consider the corrections arising from the SIM(2) invariant realization of Very Special Relativity
(VSR) to the energy spectrum of a C-invariant Dirac Fermion in a static and homogeneous magnetic
field B. First, we analyze the case of B parallel to the spatial VSR preferred direction n, finding that the
expression for the energy spectrum stays the same, except for a mass shift arising from the VSR
contribution. Then, we relax the parallelism condition, finding a new equation for the energy spectrum. We
solve this equation perturbatively. With a Penning trap’s experiment in mind, we derive the first order VSR
corrections to the electron’s g — 2 factor. Finally, using the most accurate electron’s g-factor measurements
in Penning trap’s experiments, we obtain an upper bound to the VSR electron mass parameter, and therefore
also to the VSR electronic neutrino mass, of 1 eV. This result does not contradict the possibility for VSR to

be the origin of neutrino masses.
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I. INTRODUCTION

Very Special Relativity (VSR) [1] is a theory where the
flat spacetime symmetries are reduced to a subgroup of the
Lorentz group plus the group of spacetime translations,
which it is kept unchanged. While its classical conse-
quences are, to our current knowledge, identical to the ones
implied by special relativity, the nonclassical consequences
have already been analyzed in several physics areas. The
original idea that motivated Cohen and Glashow to for-
mulate VSR was a new mechanism for the emergence of
Neutrino’s masses [2]. Further applications of VSR that
have been studied regard Supersymmetric extensions [3,4],
the Gravitational sector [5—7], Quantum Electrodynamics
[8.9], the Standard Model of Particle Physics [10,11], and
much more.

A minimal candidate for VSR is the T'(2) subgroup, that
contains the generators 7y = K| +J, and T, = K, — Jy,
that combine boosts K and rotations J. When T(2) is
enlarged to include J3, the resulting subgroup is isomorphic
to the 3-parameter group of Euclidean translations, E(2).
On the other hand, if 7'(2) is enlarged to incorporate K, the
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resulting 3-parameter subgroup is isomorphic to the homo-
theties group HOM (2). Finally, if T(2) is equipped with
both K5 and J; generators, the resulting four parameter
subgroup is isomorphic to the similitudes group SIM(2).
Each of these four VSR subgroups can be expanded to the
full Lorentz group by the addition of discrete symmetries P,
T, CP, or CT. In the rest of this work, we shall focus on the
SIM(2) subgroup of the Lorentz group, since it is the
biggest proper Lorentz group preserves CPT (charge
conjugation, parity and time reversal) symmetry [1], an
important ingredient in all the known quantum field
theories. Therefore, in the rest of the paper we will refer
to this particular S/M(2)-realization of VSR just as VSR.

The main feature of the VSR theory is the introduction of
a lightlike preferred spacetime direction n* = (n°, n),
which under SIM(2) transformations changes only by a
scaling factor

n - efnt. (1)
SIM(2)

Therefore, ratios of scalar products with n* both in the
numerator and denominator are invariant under SIM(2)
transformations, but not under the full Lorentz group. The
VSR idea, as it is implemented into the Dirac equation (2),
is a nonlocal violation of Lorentz symmetry and thus
different from the more well known approach proposed by
Kostelecky [12,13], where Lorentz violation is generally
parametrized by spurion fields, which in this particular
realization of VSR are not present.
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The focus of this paper will be to consider the effect of a
static and homogeneous magnetic field B on the energy
spectrum of a Dirac Fermion in the framework of VSR.
Furthermore, since transition energies between these energy
levels are measured in experiments with Penning traps to
calculate the gyromagnetic factor of electrons [14—16], we
can estimate the effect of VSR corrections to the g-factor
as well.

The remaining of the paper is structured as follows: in
Sec. II, we analyze the case in which the VSR spatial vector
n is parallel to the direction of the magnetic field B, thus
finding the corresponding exact energy eigenvalues. In
Sec. III, we study the more general case, allowing an
angular spacing, labeled by the angle 6, between the
direction of n and the magnetic field. In Sec. IV, consid-
ering the experimental setup of an electron Penning trap,
we study the possible consequences of VSR on the
measured gyromagnetic moment of the electron, finding
corrections even at zero order in the magnetic field. Finally,
in Sec. V we state our conclusions about the results and the
possible future applications. In the Appendices A, B, C and
D we show, respectively, the explicit calculations involved
in the equation of motion for the upper spinor ¢(x'), the
derivation of the integrals I, (n, k), I(n, k), the calculation
of the perturbation matrix elements VZ,a,, and some details
on Borel regularization.

II. MAGNETIC FIELD PARALLEL
TO VSR DIRECTION

Let us start working in the VSR framework by consid-
ering the C-symmetric Dirac equation for a charged
fermion [10]

(1= m+ 20 o) =0 @)

where N¥ = n*/n - 0. The VSR correction in this equation
is controlled by the parameter M such that for M — O the
full Lorentz symmetry is recovered. Now, we include the
external, constant and uniform magnetic field B = Bé; by
the usual minimal substitution d, — d, + ieA,, A, being
the electromagnetic four-potential

<id—eA—m+iM72N)v/(X) —0. ()

such that the VSR operator becomes

nﬂ

ne=— T
n-(0+ieA)

Due to the n”-rescaling symmetry of Eq. (2), we can always
choose it in the form n* = (1,14), with |i|*> = 1. Here, in
particular, we define the “preferred” VSR null vector as

n =(1,0,0,1) > n-n=0. (5)

In what follows, we choose the metric ¢ = +1, ¢ = —§; j
for i = 1, 2, 3. To represent the uniform magnetic field B,
we choose the gauge

AD = Al = A3 = 0,A%(x!) = Bx!, (6)

such that translational symmetry along €, and €; is
preserved

[A#(x), p3]- = [A*(x), p2] - = 0, (7)

where the components of the momentum operator are
defined as p; = — pl = id;. By taking this into account,
the 2 and 3-components of the momentum can be sub-
stituted by their eigenvalues, i.e., p3 — k3 and p, — k.
Moreover, we have that an eigenstate of (3) is of the form

Xl
e W

For the gauge (6) we also have that n - A = 0 automatically,
and hence the VSR operator (4) for an eigenstate of the
form (8) simplifies to

M2 M2 0_.,3
ol /Nt i

2 2 E-K’ ©)

where y# are the Dirac matrices, for which we choose the
standard representation

1 0 ) 0 o
0 _ , i ' , 10
Y <o _1> v (_0, 0> (10)

where 1 is a two by two identity matrix and ¢ the usual
Pauli’s matrices.

A. Equations of motion for ¢(x')

After inserting Egs. (8) and (9) into Eq. (3), and dividing
the bispinor y in its upper and lower components as

()W

we obtain the following equation:
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2
(B —m = 5z5m)1
MZ
2(E-K)

—eBx'c? — o +olp!

From the system (12), we solve for the lower spinor y in
terms of the upper one ¢, to obtain the expression

1 eBx'c? + Z(EL_ZH)GS —o'p
+m -5

p(x'). (13)

Inserting Eq. (13) back into the first system’s equation of
(12), we obtain an expression for the upper spinor ¢

(e-xmm) -

2

_ Bl2
<exa+2

s o) Joth =0, 14)

By applying the standard properties of the SU(2) algebra,
we can calculate the square of the differential operator in
Eq. (14), to obtain

(=) = e )

— (eBx' — k*)> + eBo’ — p%] p(x') =0. (15)

Clearly, the equation above is diagonal in the two compo-
nents of the spinor ¢(x')

()

Therefore, the eigenvalue problem will have two indepen-
dent solutions, that we define by

The f,(x'") introduced above, with @ = +1 representing
the two eigenvalues of ¢°, are given by the solution to the
two independent differential equations

fate)=(

[~0% + (eBx' —k?)? —aeB—eBa(ks,E)|f(x')=0, (18)

where we defined the coefficient

—(E4+m—-2 )1 '

M> 3
(12)
2(E-K)

a(k*,E) :é {(E_%EL—ZIQQZ —m?

It is convenient to define the dimensionless coordinate

E= \/e_B<x1 —k—2> (20)

eB

such that Eq. (18) becomes (for a = +£1)

d2
[~—+$—4n@:aﬁﬁmx> (21)

dé

The only L?-normalizable solutions of Eq. (21) are the
functions

Fral&) = Ce™82H, (&), (22)

where H,(£) are the Hermite polynomials of order n € N,
provided the following quantization condition is satisfied:

a(®,E)+a=2n+1, neN, a==%l, (23)

while the normalization coefficient C in Eq. (22) is
obtained from the orthonormality condition for the
Hermite polynomials

/ e H (O H(8) = V0l TS . (24)

(e8]

B. Energy spectrum

Following Eq. (23), the energy spectrum E = E, (k*, n, @)
is defined by the roots of the algebraic equation

(rsm) ()
=eB2n+1-a)+m? (25)

This equation can be solved explicitly, to obtain the exact
energy eigenvalues

EV (3 n,a) = j:\/eB(2n+ I—a)+ (B2 +m2,  (26)

where
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my = m* + M>. (27)

One confirms that when the full Lorentz symmetry is restored
in limit M? — 0, the spectrum in Eq. (26) reduces to the well
known “unperturbed” solutions

EQ (3, n,a)|,,_o = +EW (K, n, ). (28)

with

EO (K, n,a) = \/eB@n+1-a) + (B +m2 (29)

Moreover, it is also clear from Eq. (26) that for this
configuration, where the field B is parallel to the direction
of 1, the sole effect of the VSR term in the single-particle
spectrum is to shift the particle’s mass m — my.

Following the analysis in the previous section, we
remark that, apart from the ground state energy with n = 0
and a = +1, each energy eigenvalue is degenerate since we
can obtain it with the two combinations (n,a = —1)
and (n+1,a = +1).

Therefore, introducing the system’s eigenstates | f(©))
such that £ (&) = (| f©), our eigenvector’s basis will
look like

{9,041, [| f@,0,-1), | fO, 1, +1)], ...,
1O n,=1), | fO, n4+1,+1)],...}, (30)

with the square brackets highlighting the 2-dimensional
degenerate eigenspaces. To simplify the notation in the rest
of the calculations and to label each degenerate eigenspace,
we reorder the eigenstates by | £, n,a) - | £, 7, q),
where

n=n ora=+1
{ ! G1)
n=n+1 fora=-I.

The eigenvector’s basis then becomes

{1£9.0,41), [| FO.T,=1), | £O, T, +1)]. ...
(£ 7, =1), | fO, 7, +1)],...}, (32)

where each degenerate eigenspace is spanned by the two
orthogonal eigenvectors

T e-an(5)>
(0) - -
) ﬂwz%m( o /

TR anp— ! (33)
TR S i\ e S H, (2))

while the ground state 7 = n = 0 is defined by

<§lf(0)’(_),+1>:71-11/4<e_’7[(-)]0(§))’ (34)

and its energy is not degenerate.

III. MAGNETIC FIELD NOT PARALLEL
TO VSR DIRECTION

Let us now consider a magnetic field B oriented with an
angle 6 € [0, z] with respect to the VSR unit vector 1, i.e.,
B - i = Bcos 6. Therefore, without loss of generality, we
choose the coordinate system such that B = Bé;, and

n* = (1,A) = (1,sin 0,0, cos 6). (35)

We still choose the same gauge as in the previous case,
A* = (0,0, Bx',0), so that the translational invariance
along the x*> and x* directions allows us to choose the
same separation of variables as in Eq. (8), while preserv-
ing the light-cone condition n-A =0. In this case,
however, the VSR term in the equation of motion reduces
to the form

M? M?y°E — y' sin@ — y> cos 0
i—N - —— 3 T
2 2 E—k’>cosf— p'sind

(36)

A. Equations of motion for ¢(x!)

Substituting Eq. (36) into Eq. (3), we obtain for this
general case the expression

YE+y'p — 7> (K> —eBx') =’k —m

2.0 1o 3 1
My E—;/ smH—yl C.OS(9:| <qo(x)>:0. (37)

2 E-kcos@—p sing |\ y(x"

From this linear system, the lower spinor y(x!) can be
solved in terms of the upper component ¢(x'), as done in
the case B|A, and then replaced again to obtain the
following single equation for the upper spinor ¢(x'):

M?/2 2,
E- 3 I —m
E—k’cosf— p sinf

M?sin6/2
_((pl_E—k3cos€—plsin9>61+(k2_eBXI)62
e M?cos6/2 A (=0, (38)

— o2 X )=0U.
E—k*cosf— p'sind ¢

By expanding the squares, we observe that, due to the
anticommutation relations satisfied by the Pauli matrices,
among the terms with mixed ¢’s only the ones that involve
operators acting on x!¢(x!) can have a chance to generate a
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surviving part after summing up the sigma products with
interchanged indices.

For example, for terms involving p', we can exploit the
fact that, for any function g(x!)

[6'p!, g(x")o?] p(x!) = —c?dig(x")e(x').  (39)
|

Applying ¢’s anticommutation rules, the relation Eq. (39)
and keeping in mind the representation Eq. (53) for the
inverse operator, Eq. (38) is reduced to the expression (see
Appendix A for an explicit calculation)

E* = (K*)? =m? = M? — (p')* + eBo® — (k* — eBx')?

M? sin’6)
——¢B 3 Taing)2
2 (E-kcosf—p'sin0)

Now, let us define:

a(lé E) = é(Ez C (R = m? = M),

E=E-k*cosb, (41)
along with the change of variables
&= VeB(x! —k*/(eB)). (42)

Therefore, dividing Eq. (40) by eB and using the above
definitions, we obtain

~}+& -6 —a(k.E)

M?sin6/2
(E — \/eBp* sin0)?

(sin@o> — cos O | p(x') = 0,

(43)

which, defining the operator P, = E + iveBsin 00;, can
be expressed as an eigenvalue equation

{—ag +& -6+ M;;lzn 0 (sin Oc®
¢
| (28)- 1)

B. VSR perturbative scheme

Thinking of VSR as a correction to special relativity, we
can consider M as a small parameter compared to the other
system’s energy scales, like m or v/eB, so that we identify
an unperturbed operator H, and a perturbation operator V

s M
o’ +—eB

sin @ cos 4
(E—k>cos® — p'sing

)20'1 p(x') =0. (40)

HO = —0?—}—52—63
in @
V= —sz (sin@c> — cos Oa"). (45)
Pg

Thus, in terms of the system’s eigenstates |f), we can write

Eq. (44) as

<Ho + M72V> If) = alf). (46)

We can then approach the problem in a perturbative
scheme. Let us define 4 := M?/2 and expand in a power
series |f) and a so that

a=a"% +1a" +0(2?),
1) =)+ ) o). @)

Therefore, we are considering a perturbation to the solution
already obtained in the previous section

Holf ), 71, a) = a2 [f O, 7, a), (48)
with (£[f©),72,a) defined by Egs. 533), (34), and
aﬁ,(,),), =2n+1—a, or in the 7 — basis a; , = 2n. At first

na

order in the perturbation V, we find

(Ho— a\D)[f D, 71, a) = (@il = V)|f O, 7i,a).  (49)

1. Perturbative correction to the state n =0

For the case i1 = 0, we necessarily have @ = 41 and no
degenerate eigenvectors, corresponding then to ordinary

perturbation theory. Multiplying (49) by (f(®,0, +1], we
see that
(D _ /r0) § 0
ag = (0,0, +1|V[f©,0,+1). (50)
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Inserting two identities through the completeness relation

I = [dé|Z)(€] and using (34) we obtain
al!) = —= / dée—f/ZHo@)Smf(-‘fz/zHo(f))
- ;"lEZ d‘i‘ / dée12Hy(8)
(), (s1)

A+ insin 00;

where we have defined the dimensionless quantity
n=eB/E. (52)
For calculation purposes, we introduce a Schwinger-type
integral representation for the inverse operator in Eq. (51)

(valid for A > 0)

1

— 0 dt —t(A+insin 0()5)_ 53
A + in sin 0o, A ¢ (53)

With the integral form in Eq. (53), we get

")
1 _ sin“0 d [ oo ey
501 = —Wa/o dl/_oo dée 12 Hy ()

w g~ At(1+insin 09) (e_‘:z/zHO(f)) |A:1

sin20 d o
= \/—Ez dA/ _Atdf/ dée €17 H (&)

x e=imsin00: (=EI2F (V)] (54)

where clearly we take the limit A — 1 at the end.
Expanding the exponential operator

(1) _ sin 20 —insin@)k d Ak
541 =~ \/‘ Z k! dA e ‘dr

x / dge—fZ/zHo<s>a'g<e-fz/2Ho<¢>>|A=1

0
_ sin Z (k + 1) (i sin 0)*1, (0, k), (55)
where we defined the integral

1K) = / ® de e F P H () (e PH, ). (56)

As shown in Appendix B, the parity properties of the
integrand imply that it vanishes for odd values of k.
Moreover, as shown in detail in Appendix B, the analytical
expression for the 7 = 0 case is

I'2k+1)
1 2k) = 2K (-1 )k~
10,20 = VR K1) s (57)
while for 7 > 0 we have
T2k + 1)
= — _1\kn1ni—2k
1, (7, 2k) = /z(=1)kn12 Tkt 1)
x F(—k,—n;1;2), (58)

where F(a,b;c;z) is the Hypergeometric function.
Therefore, we can rewrite Eq. (55) as

sin? @
al) | = N Z (2k + 1)(=1)*(y sin 6)2#1, (0, 2k)
~sin? 9 nsin@\ 2 I'(2k + 2)
- Z( ) CESY 59)

which is a completely real expression as one would expect.
The k — sum in Eq. (59) is not convergent in the standard
sense. However, it can be regularized, for example, by the
Borel prescription, to obtain a closed form in terms of the
incomplete Gamma function I'(—1/2,z) as follows (see
Appendix D for details):

102 2 in2
(1) sin- @ e w0 1 1
=— --=,——s——1. 60
0.+1 E (—n*sin?0)*? 27 n*sin’0 (60)

At the lowest orders for n <« 1, both the power series
Eq. (59) and the regularized Borel Eq. (60) reduces to

(1) Sil’l29
~ 7

[1 + %nzsinze + 0(174)} : (61)

We remark that, at this order »?, the result is unique
regardless of the regularization prescription. Then, to go
further in our analysis, we assume to be in a situation where
the magnetic field is small respect to other energy
scales n = @ < 1.

In this weak field approximation, we have that at first
order in 4, going back to the n-notation (that does not make
any difference for the ground state)

2
0 sin“6
“0+l—“(<))+1+/1 E))HN/1 B [

1+ %nzsinze] . (62)

2. Perturbative correction to the states n > 0

For n > 0, instead, we notice that Eq. (49) corresponds
to degenerate perturbation theory within the subspace
spanned by the two degenerate spinors defined by
Eq. (33), i.e., we have

=> IO n.d). (63)
o =+
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Therefore, projecting Eq. (49) over each of the spinors
(f9,7,d/|, and applying the zero-order property
O, 7, al(H —af—f.)()ll) =0, we obtain the linear eigen-
value system

Vil Viia] [ Con (1 Cott
7l 7i 7 - afl,(l i ’ (64)
Vi Vi Chmi o
where we defined the matrix elements of the perturbation
within the subspace of unperturbed degenerate states

{l(l <f‘

Up to second order in #, the matrix is explicitly given by

in\/écose
- <1 +—3(1J2r27‘) 1 sin’ (9)

A, alVIFO, 7, ). (65)

1+ (l+2n)

2 -
E —in\/%cosﬁ

n?sin’ @

The calculation of the VZ,a,, that follows from a similar
procedure as in the previous n =0 case, is shown in
Appendix C.

Therefore the first-order correction a,(-, ; defined up to
order 57, is obtained from the two eigenvalues of the linear
system Eq. (64), i.e.,, from the characteristic equation

det(V — laél)) = 0, which reads

(1) 72 =
a;  F 3(142n) , .
n,a 1 26in20
<Sin29 + 1+ ) n-sin >

(1) 2 -
a; 3(1+2a) , .
n,a 1= 2 29
x (sin29 y e )
- gnzcoszé =0. (67)

Solving for the two eigenvalues aS},Z, up to order 7%, we

obtain

27)

2 n
1” sin? 6) + 57]2 cos? 4

in” 6 3
%:I:Slgz <1—|—;7 sin 9( +3n+4cot29)> (68)

In this perturbative scheme, we can identify the correction
corresponding to each unperturbed eigenvector. Consider,

for example, the positive eigenvalue af_ii , of V7, for which
we have the equation

(1 Jr3(1+2n)

—in\/écosé
i

1 + n*sin%@ —|— 3n+— 2 o6 ). (69)
4 cr

Here, applying the L*-normalization |C",|* + |C" > =1
and choosing the arbitrary phase such that C", is real, we
obtain

n*sin6)

in\/écosé’ <Cr11>

—(1+ —3(1;2ﬁ) n*sin’0) O

) 1 12
T _
i (1 +§n200529> '

C", = —incos

|
implying |C",| < |C",|. Therefore, we can identify the
positive eigenvalue correction of V" as corresponding to the
unperturbed V(O), i, +1), while the negative one will
correspond to the unperturbed [f(o), i, —1).

Thus, going back from the 7-notation to the n-notation,
we can write the eigenvalue’s first-order corrections

=0 (1 4 pPsin?f(3+3n+2c0f6)),  n>0

ai.)ﬂ
’(11)_1: 5"‘29(14-17 sin?0(3+3n+"Hcot?d)), n>0
(71)

thus implying, from Egs. (71) and (62), that at first order in
A we have

pg=2n+1-a+ Aaﬁ,l,,l, (72)

with
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in’@ 1
allh = a% (1 +3 <n +ta+ 5,,,_1>n2sin29

0,
+ %11200529) . (73)

Here a = £1, with §, _; being the Kronecker delta.

C. Perturbative corrections to the energy spectrum

Remembering the definition Eq. (41) and the above
Eq. (72), we can solve for the corrected energy eigenvalues,
to find
|

M? aeBsin%0

Erfa(kB) == [En(,)az (k3> +

E; o (K) = mj+ (K)’ + eB <2n tl-a +—a5,13:>

2

eBMZ (1)

0)2 5 . (74)

= EXP(K) +

where m, was defined in Eq. (27). Substltutlng Eq. (73),
and consistently retaining terms up to order 52, we obtain
the modified energy eigenvalues for the VSR system in the
general configuration B - i = Bcosd

2 (E,(,g, k3 cos 6)?
1 Bsin20 Sy Bcos20 2

« <1+3(n+—+5a,_1> Bt 4 0F famt 5008 )] (75)
2 (Ena — Kk cos9)? 4 (Evh -k cos)?

IV. GYROMAGNETIC FACTOR AND PENNING
TRAPS

In this section we discuss the above results in the context
of Penning traps. For this purpose, notation and results
from [14,17] will be used. Furthermore, while our work
until now has been independent of the fermionic or leptonic
family taken into account, in the following analysis we will
refer to electrons.

Since the first experimental observation of the anoma-
lous magnetic moment of the electron g # 2 [18,19], the
measurements have been continuously improved. The
currently most precise direct measurement of the electron’s
g factor has 13 significant digits [14—16]. These experi-
ments are based on Penning traps. The motion of an
electron in a Penning trap has four eigenfrequencies,
known as the spin-, cyclotron-, axial-, and magnetron-
frequency. These four frequencies can be combined in a
suitable ratio to extract an experimental value for the
gyromagnetic factor of the electron, as explained in
Eq. (10) from [14]. However, for the calculations in this
paper we will consider a simplified setup without electric
fields, magnetron nor cavity shifts effects.

A. The g-factor analysis without VSR

For small values of the magnetic ﬁeld defining the “free-
space” cyclotron frequency v, 2ﬂm [14], the energy-
eigenvalues of the unperturbed Dirac system are given
by [20]

EY, == (Qn+ 14 )hy, += hz/

m|~

1h22

Sn+1E1) (76)

|

Here, the term a = (g — 2)/2 with g being the anomalous
magnetic moment, arises from adding an additional
§0,F" term to the equations of motion, which we can
think of as a perturbation arising from Quantum Field
Theory (QFT) loop corrections. Higher orders in |B| are
experimentally not relevant [17], since the magnetic field
strength, used in [14—16], and which can be calculated from
the measured cyclotron frequency of about v, ~ 149 GHz
[14], is too “weak”

IB| = 2av.m

B
NS3T »e="2~10,  (77)
m

where e is the absolute value of the electron charge.
With our assumptions, the expression of a only depends
upon the anomaly frequency v, and the relativistic cyclo-
tron frequency f. [14], which in our notation correspond
(1)

respectively to the transition energies E; ., — EEML

E<1u11 - E(()t'll (see also Fig. 3 in [14]). In fact, from (76), we
directly have

and

(u) (u)
Eoul_E1+1 —>aEg_2,
E(lull - E((),zl +§m€2 2

(78)

Therefore, the idea is now to see what happens when
considering the new VSR energy spectrum (75), which,
along with the mass shift m — mg, will introduce correc-
tions to the value of the transitions energies in the ratio (78),
giving

Eyo_1—Ey 4
EI,—l —Ey_; + %mfGZ ’

9vsr — 2
Aysr = 3

(79)
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so that, despite all the assumptions made, if VSR is correct,
measuring the ratio in (79) would give aygr # a already in
this ideal and simplified experimental setup.

B. Energy spectrum’s expansion for weak
magnetic field

Let us define the new pertubative parameters u =
M?*/m} <1 and e = eB/m} < 1. Starting from expres-
sion (75) in the particle’s rest frame, where we can neglect
its momentum, we obtain

a uesin’@
214+e2n+1-a)

E,,=my [1 +e2n+1—-a)+
3 1 ue*sin*é
2 S4s
+2a<” ot “*“) (1+en+1-a))
a(n+6,_;)  ue*sin*Gcos’d 1>
8 (1+e2n+1-a))?
=mg(l +e2n+1- a)):

<149 uesin’é
2(1+e2n+1—-a))?

+

3 1 ue’sin*é
* E“(" T 5"-—1> Itenti-a)

a(n+8,_,)  pe’sin*Ocos’d 3
* 8 (1+e2n+1 —a))3]

, (80)

from which we expand in the parameter y to first order

E,o=mp(14+e2n+1- a)):

<149 uesin’é
4(1+e2n+1-a))?

3 1 ue*sin*0
* Z“(” Tt 5"*—1) IteCntl-a))
N a(n+8,_;)  ue*sin’fcos’0 ]
16 (1+en+1-a))?|

(81)

and now in the parameter € to second order

2
—§(2n+1—a)2

E
"’a:1+i(2n+1—a)

3
+%,u€sin29<l —Ee(Zn +1-a)

1
+ 3e <n +5+ 80 ) sin’6) + g (n+ 8,1 )cosze> .

(82)

Adding usual radiative corrections from QFT as a pertur-

bative term § o, F** to the VSR Dirac equation, we obtain

an additional —aaem /2 term in the energy spectrum [21],
implying

E
n:::1+§(2n+1—a)+gﬂasin29—gaa
2

3
—%(Zn +1-a)? —geza,usinze@n—i— l—a)

3 1
+ Zezau <n +5+ 5a,_1> sin*

2

+ f—6 ap(n + 5,._1) sin @ cos® 0. (83)

C. Gyromagnetic factor’s corrections in VSR

As mentioned above, the ratio of energy differences in
Eq. (78) is particularly useful since in the unperturbed
scheme, starting from (76), it gives exactly the theoretical
parameter a.

Our goal is to calculate the expression in (79) for our
VSR approximated energy spectrum (83), to see if it can
produce deviations from the unperturbed theoretical value
a, derived from Lorentz invariant QFT. Keeping terms up to
first order in u and second order in €, we obtain

9
aysg — a = —g {1 -3¢ +§€sin29 —i—%coszé

3 3 1
+a <§ €=3 esin?6 — g ecoszéﬂ sin?g, (84)

from which we see that the discrepancy between the VSR
value gygr and the QFT’s one g would be

11 34
gysR — g = —H {1 y (2 - ﬁsin29 - acos26’> €:| sin%é.

(85)

Being € already pretty small (77), in the following we will
consider the relation at order €°:

Gysg — g~ —psin 6. (86)

D. Estimation of an upper limit for u

Here, using (86), we want to put experimental bounds on
the magnitude of the VSR perturbative parameter y and,
consequently, the electronic VSR mass term M.

Obviously, due to our assumptions, we cannot compare
directly gygr with the experimental value of the gyromag-
netic factor g.,, measured in a nonideal Penning Trap, as
done in [14,15]. Nevertheless, one should not doubt that, if
VSR is correct, the modification found in (86) would be
hidden in the value of g.,,, probably together with other
terms deriving from the analysis in the complete scheme.
Anyway, since our aim is just to give an upper bound for g,
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here we will make the further assumption that the whole
discrepancy between the experimental g.,,, and theoretical
value g would be due to the VSR perturbation (86), i.e.,

Gexp — 9~ —H sin® 6. (87)

Using the most precise so far current experimental value for
Jexp/2 = 1.00115965218073(28) [14,15,22] and as the
theoretical prediction g¢/2 = 1.001159652182032(720)
[23], we see that Eq. (87), first of all, is consistent with
the electron g-factor discrepancy since gy, — g < 0.

Considering again the above-cited values for g and geyp,
and observing that clearly sin’?@ < 1, directly gives the
following restriction for the y parameter:

u<3x10712, (88)

that is comparable or even stronger than other upper bounds
found in literature [10,24]. The only more stringent
estimation would be u < 9.7 x 107! obtained in [11],
which refers to electric dipolelike interaction terms
nxE -6, where E represent an electric field here.
Nevertheless, as already stated in [10], experiments in
which the electric and magnetic fields are parallel, like the
one [25] used in [11] to give the above upper bound, are
insensitive to interaction terms of that type. Therefore,
other experiments with no-parallel magnetic and electric
field, should be used in this case to give a coherent upper
limit from electric dipolelike VSR interactions.

At this point, by using for the electron an approximated
mass of m T 0.51 MeV, we can translate the restriction in
Eq. (88) to the following rough upper bound for the
electron’s VSR parameter:

M < /1075mi ~ 1 eV. (89)

Observe that, the electron’s VSR parameter M and the
electronic neutrino’s VSR parameter M, in a C-symmetric
VSR Dirac equation (2) would come from the same VSR
parameter included in the VSR extension of the Standard
Model for each leptonic family [10,11], meaning M, = M.
Therefore, we would also have an upper limit for the VSR
electronic neutrino’s mass M, <1 eV, which is interest-
ingly similar to the upper bound actually known for the
electronic neutrino [26], and leaves open the possibility for
VSR to be the mechanism or one of the mechanisms giving
mass to neutrinos. Lastly, let’s spend some words on the
nature of the VSR @ angle, which we have not discussed so
far. In general, we can think of two different scenarios:
(i) The VSR spatial preferred direction h represents
some universal background effective property [27].
Thus, we should take into account the orientation
changes of the vector n respect to B due to Earth’s
motions in the Universe. For example, if the experi-
ment’s duration is of order ~days, we should

consider the Earth’s rotation movement by averaging
in 6 € (0,7), for which we would obtain the
replacement sin’ 6 — O(1) < 1.

(i) If the VSR special four-vector n, is a dynamic
ingredient of some more fundamental theory of
nature, therefore an extension of VSR including,
for example, gravitational and noninertial effects
may be needed to tackle the time evolution problem
of the orientation between vector i and the magnetic
field B accurately.

Obviously, depending on the chosen scenarios different
consequences could arise. However, since in both cases the
angular effects will introduce a correction factor of O(1),
our rough upper limit’s estimation (88) for the VSR
parameter would remain valid anyway. We therefore
leave a more exhaustive and precise analysis of the 6-
dependence, like the one done in [28], for a future work.

V. CONCLUSIONS

In this work we have analyzed, in the framework of VSR,
the effect of a homogeneous magnetic field B on the energy
spectrum of a Dirac Fermion. First, we found the exact
solution to the energy eigenvalues problem in the case of B||fi.
After that, relaxing this parallelism condition, we found the
expression for the energy spectrum at first order in the VSR
parameter u. By considering usual radiative QFT’s correc-
tions, we encountered an expression for the experimental
parameter a., in our scheme, which, confronted with the
theoretical one, gave us a theory-experiment discrepancy
proportional to = M?/mj. Therefore, from the current
precision in Penning trap experiments that measure the
electronic g-factor [14—16], we found an upper bound for
the VSR electron’s mass M <1 eV. If VSR is realized in
nature as modeled in [10,11], the VSR parameter M would
affect leptonic doublets as a whole, generating in particular a
mass M, = M for the electronic neutrino. The upper bound
(89) we found, then, is compatible with the present acceptable
mass range for the electronic neutrino [26].

In conclusion, we note that this work could actually also
apply to the case of the muonic gyromagnetic factor, which
recently is getting attention due to the increasing discrep-
ancy between the theoretical and experimental values of its
g-factor [29]. However, since the experiments that mea-
sures the muonic g-factor use a semiclassical approach
[30], a link between our scheme and the experimental one
must still be found, to make a coherent confrontation. We
plan to include this analysis in a future work.
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APPENDIX A: CALCULATION OF THE
EQUATION FOR ¢(x!)

For the sake of notation’s simplicity, we define

D=(n-p)'=(E-kcosf—p'sind)~!, (Al)

to be used in this appendix. Let us expand the second
squared bracket in (38), keeping in mind the relation (39)
and the fact that mixed ¢’s products which do not involve
operators simply get canceled due to their anticommutation
relations

2 N2 5 . 2 2 ) 2
(E—M7D> —m? - <pl -4 ;ng> - <k2—eBx1> - <k3—M ;OSHD> — ieBo'o?

2 2

M M M M
- eBTSin ODx'c'c? — eBTSin 0x'Do’c' — eB7cos ODx'c36” — eBTCOS 0x' Do’ | p(x') = 0.

Therefore, we now have to calculate D(x!). To do that,
we will use theNintegral representation (53), and we define
for simplicity E = E — k3 cos 6, implying

D(x'¢p) = /oo dt exp[—t(E — p'sinf)|x'p
0

- /m dte~'E Z(t sin@p')x' g, (A3)
0 j=0

which can be expanded as

D(x'¢p) = x! /oo dte~'E tsin@pl)igp
(x'o) ; ZO( )

J

—isiné/ootdte"EZ(tsingpl)j_l(p. (A4)
0 j=1

Sending the index of the second sum to i —» i — 1, and
“reversing” the use of the integral representation, we have
the relation

d
D(x'gp) = x'Dg + isin@d—E (D)e, (AS)
and considering the definition (A1)
D(x'¢) = x'Dg — isinD?¢. (A6)

Therefore, since the terms x! Dg(x!) always get canceled
from the other terms with inverted ¢ product, and since

ool = ie; 0, (A7)

Eq. (A2) then becomes

2 2
(A2)

M? 2 M2sing_\’
(E—2D> —m2—<p1— ;ln D) —(kz—eBxl)z

M2cosO \’ M2
—<k3— ;05 D) +¢Bo® — eB—sin*0D*c’

2

M
—|—eB?sin9cos¢9D201 p(x')=0. (A8)

Finally, expanding the squares involving the terms E, p'
and k*, and remembering that N uP" = Dn,p* =1 while
n,n* = 0, we get to Eq. (40), that we have already seen in
the main text of this article. Note that Eq. (A8) has the
correct limits: in fact, sending B — 0, we reobtain, as
expected, the usual VSR dispersion relation

[E? — p? —m? — M?|p = 0, (A9)
while, for & — 0 we find again Eq. (15), the equation of
motion for the case B||i.

APPENDIX B: CALCULATION OF THE
INTEGRALS I, (ii.k) AND I, (ii k)

In the main text, we defined the integrals

10 = [ dse Py ok e P ). (BY)

(o]

where Hj(z) are the Hermite polynomials, defined by
Hy(z) = (=1)"e¥ 9% (e™). (B2)

In particular, we remark that Hy(z) = 1, and hence for the
particular case 7 = 0, Eq. (B1) reduces to
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1,(0,k) = /oo dé g—éz/zalg(e—fz/z)

[se]

22k / " deefH (VD). (B3)

From the standard result (see for instance Gradshteyn-
Rhizik [31], p. 837)

l—a
(B4)

/oo e—(x—y)sz(ax)dx = /(1 - az)k/sz <L2>,

we obtain (setting @ = 1/+/2 and y = 0)

1,(0.k) = Va(=1)27H(0).

Given that H,, ((0)=0,
I'(2n+1)/T(n+ 1), we obtain

while  H,,(0) = (=1)"

I'(2k+1)
1,(0,2k) = /a2 2K (= 1)k ———2,
1,(0,2k+1) =0. (B6)
Let us now focus on the case 7 > 0. For this purpose, we
notice that the functions

(En) = 9a(&) = ———— e CPH(E)  (BT)

NN

constitute a complete orthonormal set (they are just the
eigenfunctions of the 1D-harmonic oscillator)

i @) (@a] =1
=0

(@alow) = / * 4(nlE) Ew) = Sn

(o]

(B8)

With these definitions, along with the momentum operator
pe = —i0s, we have the rather simple expression

I)(7, k) = 2"z (i) sl (pe)*|@a)- (B9)

Since the momentum (Fourier) eigenbasis is also complete,
we have

/_ “dplp)pl=1.  (Ep) = \%5

[+ /3

(B10)

Therefore, we can insert the identity in the basis of
momentum eigenstates into Eq. (B9) to obtain

1(7.k) = 2Rl a(i)t / ® dplosl (p2)H10) Plen)

—0o0

N / ® dp pM(plon) - (B11)

—o0

Finally, notice that the functions (p|p;) are related to the
functions (£|¢) via Fourier representation, since

(plon) = / " de(ple)elon)

1 oo ;
= ~iEp g
eI G
1 1

NN

= ig—pz/zHﬁ@)-

V2"n\\/m

/ " dgeT e (¢)

(B12)

Substituting this last result into Eq. (B11), we have

1, (7, 28) = (~1)* / * dp pte P (Ha(p)2. (BI3)

with I,(n,2k+ 1) =0 trivially by parity. Using the
Hermite-Fourier series representation for the power p2,
we have

(B14)

and inserting this expression into Eq. (B13) we obtain

o (2k)! & 1
I (n,2k) = (—1)* 2%k ;(25)!@—1,”)!

x /_°° dp ™7 (Hy(p))2Hys (p).

o0

(B15)

We can evaluate this last integral by applying the

identity [see Gradshteyn-Rhizik [31], p. 797, for
s=(n+m+k)/2]
&) ) 25/mk!m!i!
dze™*H H H; = .
/—oo ze k(Z) m(z> n(Z) (s—k)!(s—m)!(s—ﬁ)!
(B16)

Applying this result into Eq. (B16), we obtain
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ninan =SV (1) ()

r(2k+1)F(_k _a1:2)

= VAR

)kﬁ!zﬁ—2k
(B17)

where F(a, b;c;z) is the Hypergeometric function.
Furthermore, we want to calculate the integrals of the
form

B k) = [ dee @0k P (@), (B18)

We can undergo all the previous steps done for the integrals
I, to find

L(7. k) = 277 = D) Wan(i) (sl (pe) o)

= [Cappte T B H (), (B19)

which, due to the parity of the integrand is easily seen to be
0 for even values of k: I, (71, 2k) = 0. Remembering that for
odd powers of momentum p

2k+ IS Hor(p)
2k+1_ + B20
b 2% ;25+ -z (B20)
we find
L, 2k +1) = (-1 k+1(2k+ 'zk:
n,
? 2T 20+ 1 k £)!
X/ dpe_p2H2l+lHﬁHﬁ—l' (B21)

Using again the expression (B16) for the integral in /,, we
finally obtain

SR (2k:! 1)!

()0

(7, 2k +1) = (i — 1)121-2k=1

= Va(=1)F+ (7 — 1) 122! 72((2:;2))
" F(—=k—1;-n;1;2) — F(—k;—n; 1;2)
5 .
(B22)

APPENDIX C: CALCULATION OF MATRIX
ELEMENTS V* ,

First of all, we observe that the perturbation V is
Hermitian and therefore also V" is Hermitian, implying
Vi, _, = (V2 ,,)". Furthermore, since the diagonal ele-
ments in V are equal but opposite in sign, we will have
Vi, .1 = —=V", _,. Therefore, is sufficient to calculate only
two matrix elements: V" " and Vi

1. Case V",
We want to calculate the matrix element

Vi = O a+1VIFO. 7. +1). (C1)

Inserting two identities through the completeness relation

1= [d|5)(E] we get

sin29 1 2
Viig= Yz ). df e P H; (& )P—g(e_é/an(f))
sin d )
= dé e /?H;
" 2il/zE dA / eem PH(O)

1

(e E2H. 2

where we have defined the dimensionless quantity
n=+eB/E. By representing the inverse operator in
(C2) with the integral form, we obtain

sin” 2
dr | dge /2 Hy(
2nn|\/_E2dA/ / - 5)
—At(14insin 905 _52/2H (5)) |A 1
Sin29 d 00 Ar ) 2
= =5 - dt d - /ZH_
2'7il\/zE? dA A ‘ /'°° o
X g—itnsiné"’:(e_fz/zHﬁ(f))‘Ail’

il
V+1 41—

X e

(C3)
and expanding the exponential operator

sin? @

__ SO i<‘i’75in0)ki/°° oAtk g
YalzE = K dA

< / ® de e E P H (&) (eE P H(E)) o
sinZ @

2”11'\/_E2

n —
V+1,+1 -

o0

Z (k+ 1)(insinO)FL, (7, k),  (C4)

where we introduced the integral 7, (7, k) defined in (56),
which vanishes for odd values of k. Thus, we can rewrite
equation (C4) as
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. sin & , .
V+l,+l = W;Qk + 1)(—1)k(l1 sm6)2k11 (l’l, 2]{),

(C5)

that is a completely real expression as expected.
Therefore the final expression for the V. .| matrix
element will be

sin? 9 nsin@\2kT'(2k + 2) L
+1 +1 — Z( ) (k+ 1) F(_k7 _n7172>7

(Co)
which for weak magnetic field can be expanded as

_ sin?6
% —
AT R

(1 + (27 + 1)%(;151119)2 + 0(;14)) . (C7)

2. Case V",

We want to calculate the matrix element

VI = (O a1 VO )
sind cos @
= d €2y
ST iy I
1
X o (¥ H L (9)). (Cs)
¢

Following exactly the same procedure as before, we get to
the expression

sin@cos 0 1
Va2 (i —1)\Wi E?
X Y (k+1)(=insin0)*1y(n, k),
k
where we introduced the integrals /7, defined in (B18).

In the end, using Eq. (B22) for I, and remembering that
it is nonzero only for odd values of k, we have

. /1 sin@cos O~ (nsin @\ 21T (2k + 3)
Vi =iy s T
1T e B Z( 2 ) T(k+1)

=0
x [F(=k = 1;-n;1;2) = F(=k; —n; 1;2)].
(C10)

i
V+l,—1 -

(C9)

For our purposes, when using the weak field approximation
n < 1, it will be sufficient to consider only the first term
of the k-series, since the next one would already be order
o n*, obtaining

. [nsin“@cos @
VH_,Nm\/ZT. (C11)

APPENDIX D: BOREL REGULARIZATION

In this section, we show in detail the procedure to obtain
a Borel regularization for the infinite series Eq. (59) defined
in the main text

1 sin? @ &
a)) | = NG5 ZZ (2k + 1)(=1)*(y sin 0)21, (0, 2k)
~ sin? HZ <;7sm9>2kF 2k +2) (1)
Clk+1)°
First, notice that for k a positive integer, the ratio
'2k+2 2k +1)!
Ik+1) k!

and let us consider, with a simplified notation z =
(nsin@/2)?, the equivalent series

= (2k +
-y Y (D3)
k=0 !
where clearly Eq. (D1) corresponds to
(1) SiIl2 0 . 2
a5 :?A((nst/Z) ). (D4)

The definition of the Borel transform of this series leads to
the expression

- k2k
I
1

S 3)

where the second result follows as an identity directly from
the Taylor expansion. As the following step, we recover the
regularized expression for the series A(z) ~ A(z) by per-
forming the integral transform:

Alz) = A " e BA(zt)d1

(¢S] e_[
= — .
A (1 —4z¢t)3/?

In order to evaluate this integral, we perform the change of
variables u =t — ﬁ, that implies —1/(4z) < u < oo, and
du = dt. Therefore, we have

(D6)
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oy €F © 32 -u
A(z) = (a2) /_4L u—'*e "du

_ e (1]
= (_4Z)3/2 2, 4Z ’

where in the final result we applied the definition of the
Incomplete Gamma function

[(s,x) = /oo ule "du. (D8)
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