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The discrepancies between the measurements of rare (semi)leptonic B decays and the corresponding
Standard Model predictions point convincingly toward the existence of new physics for which a heavy
neutral gauge boson (Z0) is a prime candidate. However, the effect of the mixing of the Z0 with the SM Z,
even though it cannot be avoided by any symmetry, is usually assumed to be small and thus neglected in
phenomenological analyses. In this paper we point out that a mixing of the naturally expected size leads
to lepton flavor universal contributions, providing a very good fit to B data. Furthermore, the global
electroweak fit is affected by Z − Z0 mixing where the tension in the W mass, recently confirmed and
strengthened by the CDF measurement, prefers a nonzero value of it. We find that a Z0 boson with a mass
between ≈1–5 TeV can provide a unified explanations of the B anomalies and the W mass. This strongly
suggest that the breaking of the new gauge symmetry giving raise to the Z0 boson is linked to electroweak
symmetry breaking with intriguing consequences for model building.
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I. INTRODUCTION

Even though the LHC has not discovered any particles
beyond the ones of the Standard Model (SM) yet, in the last
years intriguing hints for the violation of lepton flavor
universality (LFU) have been accumulated (see, e.g.,
Refs. [1–3] for recent reviews). Among them, the updated
measurement of the ratios of semileptonic rare B meson
decay RKþ ¼ BðBþ → Kþμþμ−Þ=BðBþ → Kþeþe−Þ [4]
by LHCb [5] is particularly prominent since it provides
first evidence for LFU violation (LFUV) in a single
observable. Furthermore, when combining all tests of
LFUV (like RKþ) [6–9] with B decays involving muon
pairs (most prominently P0

5 [10,11] and Bs → ϕμþμ−

[12,13]), one finds a preference for new physics (NP)
hypotheses of more than 7σ [14] compared to the SM.1

Note that such a high significance is only possible since all
measurements are compatible with each other, i.e., they
form a coherent picture.
Simple patterns where NP couples solely to muons can

in fact explain the discrepancies between the SM and
experiment in rare semileptonic B decays very well.
However, it turns out that structures with additional LFU
contributions can describe data even better [22,23]. This
means that allowing simultaneously for presence of LFUV
and LFU NP effects, one can further improve the goodness
of the global fits. Indeed, some of these hypotheses exhibit
the highest significance among all studied scenarios
[14,16,24,25].2
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1Very close results and pulls were found in Ref. [15] using also
a complete set of observables but a different treatment of hadronic
uncertainties. See also Ref. [16] for an analysis using a smaller
subset of the available data as well as Refs. [17–20] and Ref. [21]
for a detailed comparison.

2In fact, several models giving raise to combined LFU and
LFUV contributions, including 2HDMs [26], leptoquarks
[27,28], SUð2ÞL triplets vector bosons [29] and models with
vectorlike quarks [30,31], have been proposed in the literature.
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In this paper,we point out that, extending the SMby a new
heavy neutral gauge boson (Z0), one has, in addition to
the usually considered direct LFUV effect in b → slþl−

[31–84], also a LFU effect, which is generated via Z − Z0
mixing. In fact, because both bosons have the same quantum
numbers, this mixing cannot be avoided by any symmetry.
Furthermore, in the case that electroweak (EW) symmetry
breaking and the breaking of the symmetry giving rise to the
Z0 mass are connected, one even expects a mixing of the
order of m2

Z=m
2
Z0 . Importantly, Z − Z0 mixing has also an

impact on the global EW fit, in particular onZlþl− andZνν
couplings and if the Z0 is an SUð2ÞL singlet (i.e., not the
neutral component of an SUð2ÞL multiplet), in addition the
prediction of the W mass is altered compared to the SM.
The latter is very important since the global EW fit displayed
a tension of 1.8σ [85] in this observable. This discrepancy
was recently confirmed and strengthened by the CDF
measurement [86] whose central value is 7σ above the SM
prediction [87]. Combining this new measurement with the
existing ones from the LHC [88–91], one finds mW ¼
ð80.4133�0.0080ÞGeV and mW¼ð80.413�0.015ÞGeV,
where in the second formula the error has been inflated to
reflect the tensions between the differentmeasurements. The
SMprediction is given bymSM

W ¼ ð80.3499� 0.0056Þ GeV,
and mSM

W ¼ ð80.3505� 0.0077Þ GeV for a conservative
error estimate [92]. This corresponds to a 6.5σ and 3.7σ
tension for the standard and the conservative scenario,
respectively.3

Therefore, in Z0 models an interesting interplay between
b → slþl− processes and the global EW fit arises if the
Z − Z0 mixing angle is nonzero [81]. While this mixing has
usually been assumed to be negligibly small,4 the goal of
this letter is to assess the size and impact of Z − Z0 mixing
via a combined analysis of flavor and EW data, providing a
unified explanation of both anomalies.

II. SETUP

We extend the SM by adding a heavy neutral SUð2ÞL
singlet gauge boson. Following the notation of
Refs. [93,94] the kinetic term and the mass term of this
new boson, before EW symmetry breaking, are

LZ0
0
¼ −

1

4
Z0
0;μνZ

0μν
0 þ μ02Z

2
Z0
0μZ

0μ
0

þ gZ0Z0
0μZ

0μ
0ϕ

†ϕ − igϕZ0Z0μ
0ϕ

†D
↔

μϕ; ð1Þ

where Z0
0;μν ≡ ∂μZ0

0ν − ∂νZ0
0μ is the field strength tensor,

D
↔

μ ¼ D
⟶

μ − ðD⃖μÞ†, ϕ is the SM Higgs SUð2ÞL doublet and
we use Dμ ¼ ∂μ þ ig2Wa

μTa þ ig1YBμ as the definition of

the SM part of the covariant derivative and gϕZ0 is real by
hermicity. The physical Z and Z0 masses are obtained from
diagonalizing the mass matrix

M2 ¼
 

m2
Z0

− y
cW

− y
cW

m2
Z0
0

!
; y≡ v2

2
g2g

ϕ
Z0 ; ð2Þ

in the Z0; Z0
0 basis, where Z0 coincides with the SM Z for

gϕZ0 ¼ 0 with m2
Z0

¼ v2
4
ðg21 þ g22Þ, vffiffi

2
p ≈ 174 GeV, and cW is

the cosine of theWeinberg angle. At leading order in v=mZ0
0

we have

m2
Z ≃m2

Z0
−

y2

c2Wm
2
Z0
0

≡m2
Z0
ð1þ δm2

ZÞ: ð3Þ

Note that the corrections to the mass of the Zwith respect to
the SM value mZ0

can only be negative. The mass
eigenstates Zð0Þ can then be expressed as

�
Z

Z0

�
¼
�
Z0
0 sin ξþ Z0 cos ξ

Z0
0 cos ξ − Z0 sin ξ

�
; ð4Þ

where sin ξ ≃ y
cWm2

Z0
0

describes the Z − Z0 mixing.

The interactions with the SM fields are given by

Lfermions
Z0
0

¼ ūjγμðguLji PL þ guRji PRÞuiZ0μ
0

þ d̄jγμðgdLji PL þ gdRji PRÞdiZ0μ
0

þ glLji ðν̄jγμPLνiÞZ0μ
0

þ l̄jγμðglLji PL þ glRji PRÞliZ
0μ
0 ; ð5Þ

where, in the down basis, guLji ¼ VjkgdLkk0V
�
ik0 . Note that the

couplings to left-handed charged leptons and neutrinos
(up and down quarks) are the same (up to a CKM rotation),
due to SUð2ÞL invariance and that only the relative phase
between sin ξ and gL;Rij is physical, such that one can assume
sin ξ to be positive without loss of generality. In the
following, we will assume flavor diagonal coupling to
leptons and in the quark sector disregard all couplings
except left-handed b − s couplings.

III. OBSERVABLES

A. b → sl+l−
In Z0 models without Z − Z0 mixing, the simple one

dimensional scenario with the best fit to data is obtained
from a left-handed b − s coupling and a vectorial muon

3Note that this article was submitted before the W mass
measurement of CDF was released such that this result can be
considered as a confirmation of the prediction of the original
version of the manuscript.

4Note that the effect of Z − Z0 mixing in the W mass in the
context of b → slþl− was already pointed out in Ref. [81].
However, the impact on, and the correlations with, the
b → slþl− fit were not shown.
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coupling, i.e., the CV9μ scenario [14]. Allowing in addition
for Z − Z0 mixing we have

CV9μ ¼ −
π2

e2
4
ffiffiffi
2

p
gdL23 g

lV
22

GFm2
Z0VtbV�

ts
;

CU10 ¼ −kCU9 ¼
ffiffiffi
2

p
π2

e2
g2gdL23 sin ξ

cWGFm2
ZVtbV�

ts
; ð6Þ

using the effective Hamiltonian of Refs. [95,96] where
glV22 ¼ ðglL22 þ glR22 Þ=2. This corresponds to the scenario

fCV9μ; CU10 ¼ −kCU9 g; ð7Þ

with k ¼ 1=ð1 − 4s2wÞ (see the Appendix for the definitions
of the operators). The superscript V (U) in the Wilson
coefficient stands for a LFUV (LFU) contribution.
We perform the most recent fit [14] to the scenario in

Eq. (7), including 254 observables and the latest measure-
ments by LHCb of LFUVobservables, namely, RK0

S
[9] and

RK�þ [9] as well as the new branching ratio and angular
distribution of Bs → ϕμþμ− [12,13]. We obtain the best fit
point and confidence level regions in Table I. The results of
the global fit in our scenario are shown in Fig. 1.

B. Bs − B̄s mixing

The most important constraint on Z0 − b − s couplings,
i.e., gdL23 , comes from Bs − B̄s mixing where the contribu-
tion to the Hamiltonian Heff ¼ C1O1, with

O1 ¼ ðb̄γμPLsÞ × ðb̄γμPLsÞ;

is given by

C1 ¼
1

2

�
gdL23
mZ0

�
2
�
1þ αs

4π

11

3

�
; ð8Þ

including the NLO matching corrections of Ref. [97]. Note
that the effect of the mixing induced Z − b − s couplings
can be neglected as it corresponds to a dimension 8
contribution. Employing the 2-loop renormalization group
evolution [98,99], this leads to an effect, normalized to the
SM one, of

�
gdL23
0.52

�
2
�
10 TeV
mZ0

�
2

¼ 0.110� 0.090

using the bag factor of Ref. [100] and the global fit to NP in
ΔF ¼ 2 observables of Ref. [101].

C. LFUV in tau decays

Assuming lepton flavor conservation, Z0 −W boxes
contribute to τ → μντν̄μ as [35]:

Aðτ → μντν̄μÞ
Aðτ → μντν̄μÞSM

¼ 1 −
3

8π2
glL22 g

lL
33

lnðm2
W

m2

Z0
Þ

1 −
m2

Z0
m2

W

; ð9Þ

and analogously for τ → eντν̄e and μ → eνμν̄e. Note that at
vanishing momentum transfer the Z0 induced correction to
the W-l-ν vertex vanishes as SUð2ÞL gauge invariance is
not broken. This we compared to the experimental results
[102] (see Ref. [103] for an overview on LFUV):

A½τ → μνν̄�
A½μ → eνν̄�

����
EXP

¼ 1.0029� 0.0014;

A½τ → μνν̄�
A½τ → eνν̄�

����
EXP

¼ 1.0018� 0.0014;

A½τ → eνν̄�
A½μ → eνν̄�

����
EXP

¼ 1.0010� 0.0014; ð10Þ

with the correlation matrix given in Ref. [102].5
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FIG. 1. Preferred 1σ, 2σ and 3σ regions in the ðCV9μ; CU10 ¼
−kCU9 Þ plane for the scenario discussed in the paper, including all
available b → slþl− data and using the most updated version of
ACDMN code [14]. Note that the SM case corresponds to the
(0,0) point.

TABLE I. 1σ and 2σ confidence intervals for the NP scenario in
Eq. (7) with a PullSM of 6.9σ and p-value ¼ 28.3%.

Best-fit point 1σ CI 2σ CI

CV9μ −0.96 ½−1.11;−0.80� ½−1.25;−0.64�
CU10 ¼ −kCU9 þ0.30 ½þ0.15;þ0.45� ½þ0.00;þ0.61�

5Here we neglected semileptonic tau decays as well as other
probes of LFUV in the charged current which are not affected in
the absence of quark coupling (see Ref. [103] for a recent review).
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D. Electroweak fit

The EW sector of the SM has been tested with a
very high precision at LEP [104,105] but also at the
Tevatron [106] and the LHC [88–90]. Since it can be
parametrized by only three Lagrangian parameters, we
choose as usual the set with the smallest experimental error
consisting of the Fermi constant (GF ¼ 1.1663787ð6Þ×
10−5 GeV−2 [107]), the mass of the Z boson
(mZ ¼ 91.1875ð21Þ GeV [105]) and the fine structure
constant αem ¼ 7.2973525664ð17Þ × 10−3 [107–110].
In our model, the relation between the Lagrangian

values and the measurements of GF and mZ is shifted
with respect to the SM. While the effect in μ → eνν̄ is
analogous to the one in τ → μνν̄ discussed above we have

m2
Z

m2
Z0

≈ 1 − sin ξ2
m2

Z0
0

m2
Z0

. However, since the Z mass is used as

an input, this translates into a shift in theW mass prediction
of approximately

m2
W

m2
W0

≈ 1þ sin ξ2
m2

Z0
0

m2
Z0

: ð11Þ

Note that this shift is positive definite such that the
corresponding tension can be explained.
This modification of theW mass as well as Zll and Zνν

[105] are implemented in HEPfit [111] (including
the Z0 vertex corrections [35,112]). In addition, the Higgs
mass (mH ¼ 125.16� 0.13 GeV [113,114]), the top mass
(mt ¼ 172.80� 0.40 GeV [115–117]), the strong coupling
constant (αsðmZÞ ¼ 0.1181� 0.0011 [107]) and the had-
ronic contribution to the running of αem (Δαhad ¼
276.1ð11Þ × 10−4 [107]) have been used as input param-
eters, since they enter EW observables indirectly via loop
effects. The complete set of observables used is listed in the
Appendix.

E. Neutrino trident production

The production of a μþμ− pair from the scattering of a
muon-neutrino off the Coulomb field of a nucleus, known
as neutrino trident production, constitutes a sensitive probe
of new neutral current interactions in the lepton sector
[35,118]. Generalizing the formula of Ref. [118] we find

σSMþNP

σSM
¼1þ8

glL22
g22

m2
W

m2
Z0

ð1þ4s2WÞðglL22 þglR22 ÞþðglL22 −glR22 Þ
ð1þ4s2WÞ2þ1

:

ð12Þ

This ratio is bounded by the weighted average σexp=σSM ¼
0.83� 0.18 obtained from averaging the CHARM-II [119],
CCFR [120], and NuTeV results [121].

F. Direct searches

LEP-II sets stringent bounds on 4-lepton operators from
eþe− → lþl− (with l ¼ e, μ, τ) [104] for specific chir-
alities. A general approach to derive the constraints for any
Z0 model is discussed in Refs. [122,123] which provides
the formula used in our analysis. In the limit in which the
only quark couplings of the Z0 are to b − s, LHC searches
are not very constraining and assuming a lower limit of
2 TeV is not in conflict with ATLAS and CMS searches.

IV. PHENOMENOLOGY

Let us now study the combined phenomenological
consequences of Z − Z0 mixing in rare semileptonic B
decays and the global EW fit with the aim of obtaining a
combined explanation. For this purpose we will focus on an
illustrative simplified scenario with an SUð2ÞL singlet Z0,
such that Z − Z0 mixing can account for the discrepancy in
the W mass. Furthermore, b → slþl− data motivates
vectorial couplings to leptons, i.e., glLii ¼ glRii ¼ glVii which
also allow for simple configurations without gauge anoma-
lies such as Lμ − Lτ [35,44] or B3 − L2 [77]. In addition
glV11 ¼ 0 and glV22 ¼ −glV33 ¼ g0, i.e., a Lμ ¼ −Lτ symmetry
[124–126], is motivated by the EW fit since the effect of
Z − Z0 mixing in Z → νν will cancel to leading order.
Therefore, larger lepton couplings are possible (see Fig. 2)
and τ → μνν receives the desired constructive contribution

FIG. 2. Global fit to EW data, neutrino trident production, LEP
bounds on 4-lepton contact interactions and τ → μνν data with
vectorial flavor diagonal couplings gLii ¼ gRii ¼ gVi . Here we
marginalized over the Z − Z0 mixing angle ξ. The 68% and
95% confidence level regions are shown for a Z0 mass of 2 TeV.
Note that a preference for the Lμ − Lτ scenario emerges.
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viaW − Z0 box diagrams.6 In addition to these couplings to
leptons, we assume only the presence of left-handed
Z0 − b − s couplings.7

Importantly, as discussed in the introduction, the current
experimental average for the mass of theW boson, shows at
least a 3.7σ discrepancy with the value predicted from the
EW fit within the SM [92]. This prediction is changed in
our model according to Eq. (11) such that one accounts for
data with a nonzero mixing angle of j sin ξj ≃ 3.5×
10−3 × 1 TeV=mZ0 . Moving to the complete EW fit
(including also LFUV in tau decays, LEP bounds on
4-lepton operators and neutrino trident production) we
have mZ0 ; g0, and sin ξ as free parameters. However, since
all expressions depend on g02=m2

Z0 despite logarithmic
terms we set mZ0 ¼ 2 TeV. The resulting preferred regions
from the EW fit and LFUV in tau decays are shown in
Fig. 3 formZ0 ¼ 2 and 3 TeV. Including b → slþl− as well
as Bs − B̄s mixing, in addition gdL23 enters as a free
parameter. Marginalizing over gdL23 we find the 1σ and
2σ regions shown in blue in Fig. 3. Note that all 2σ regions
nicely overlap, showing that both the EW fit and
b → slþl− data prefer a nonzero Z − Z0 mixing angle
such that the W mass can be explained.

V. CONCLUSIONS AND OUTLOOK

In this article we systematically studied the impact of
Z − Z0 mixing on the global fit to b → slþl− data and EW
precision observables. Concerning the former, we observe
that a LFU effect is generated while in the latter the mixing
leads to modified Z couplings and to an enhancement in the
predicted W mass with respect to the SM, which accom-
modates the new experimental average (including the
recent one from CDF). Therefore, while in previous
analyses in the literature the effect of Z − Z0 mixing was
usually assumed to be small and was therefore mostly
neglected, we stress that both b → slþl− data and the EW
fit even prefers a small but nonzero value of the order of
10−3 for mZ0 ≈ 1 TeV − 5 TeV. Note that this is in agree-
ment with the expectation sin ξ ≈ g2g0m2

Z=m
2
Z0 for a TeV

scale Z0 with order one couplings in case Uð1Þ0 and EW
symmetry breaking are related.
If b → slþl− data is in fact explained by a Z0 with

nonvanishing Z − Z0 mixing, one predicts a pattern for the
main observables driving the anomaly as shown in
Table II. We observe that all tensions with experiment
reduce significantly below the 1.5σ level in the scenario
analyzed. Because b → slþl− ratios testing LFUV
depend naturally (and almost entirely) on CV9μ and thus
do not carry information on sin ξ, angular observables are
necessary for a distinctive study of Z0 models. It will
therefore be important to verify with more precise LHCb
data together with future Belle II analysis if this scenario
gets reinforced.
Furthermore, forthcoming LHC measurements of the W

mass may reinforce the current tension and any improve-
ment in the global EW fit (e.g., in the top mass or in Z
decays) would lead to a more precise W mass predictions

− 2 − 1 0 1 2
0.0000
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− 2 − 1 0 1 2
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FIG. 3. Global fit EW precision observables, neutrino trident
production, LEP bounds on 4-lepton contact interactions and τ →
μνν data (orange) and b → slþl− data (blue) in the g0—sin ξ
plane for mZ0¼ 2 TeV and mZ0¼ 3 TeV. One can see that both
regions overlap nicely and that a nonzero value of the mixing
angle is preferred.

6Note that our analysis would to a good approximation also
apply to other scenarios, such as B3 − L2.

7Note that such a scenario could be generated in models with
vectorlike quarks [30,35] where absence of Z0 couplings to light
quarks avoids problems with direct LHC searches as well as
larger effects in the total Z width from mixing.
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which could be very precisely measured with future lepton
colliders such as FCC-ee [127], ILC [128], CEPC [129], or
CLIC [130]. Importantly, if a nonzero Z − Z0 mixing is
established in the future, like, e.g., predicted in the model
of Ref. [37], this would imply that SUð2ÞL and Uð1Þ0 are
broken by a field charged under both symmetries with
important consequences for model building.
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APPENDIX: ELECTROWEAK OBSERVABLES,
Z-FERMIONS INTERACTIONS AND b → sll

OPERATOR BASIS

We write the interactions of the SM Z with fermions as:

LZff ¼ l̄jγμðΔlL
ji PL þ ΔlR

ji PRÞliZμ þ ν̄jγμΔνL
ji PLνiZμ

þ ūjγμðΔuL
ji PL þ ΔuR

ji PRÞuiZμ

þ d̄jγμðΔdL
ji PL þ ΔdR

ji PRÞdiZμ; ðA1Þ

with i, j ¼ 1, 2, 3 and

ΔlLðRÞ
ji ≃ sin ξglLðRÞji þ glLðRÞSM δji;

ΔνL
ji ≃ sin ξglLji þ gνLSMδji;

ΔuL
ji ≃ sin ξVjkg

q
kk0V

�
ik0 þ guLSMδji;

ΔuR
ji ≃ sin ξguji þ guRSMδji;

ΔdLðRÞ
ji ≃ sin ξgqðdÞji þ gdLðRÞSM δji; ðA2Þ

where giLðRÞSM are the SM couplings given by

gνLSM ¼ −
e

2sWcW
;

glLSM ¼ e
2sWcW

ð1 − 2s2WÞ; glRSM ¼ −
esW
cW

;

guLSM ¼ −
e

sWcW

�
1

2
−
2

3
s2W

�
; guRSM ¼ 2

3

esW
cW

;

gdLSM ¼ e
sWcW

�
1

2
−
1

3
s2W

�
; gdRSM ¼ −

1

3

esW
cW

; ðA3Þ

TABLE III. Electroweak observables [105,107] used in our fit
performed using HEPfit [111] with mZ0

, α and GF as input.

Observable Experimental value

mW [GeV] 80.379(12)
ΓW [GeV] 2.085(42)
BðW → hadÞ 0.6741(27)
BðW → lepÞ 0.1086(9)
sin2 θCDFeff;e 0.23248(52)

sin2 θD0eff;e 0.23146(47)

sin2 θCDFeff;μ 0.2315(10)

sin2 θCMS
eff;μ 0.2287(32)

sin2 θLHCbeff;μ 0.2314(11)

Ppol
τ 0.1465(33)

Ae 0.1516(21)
Aμ 0.142(15)
Aτ 0.136(15)
ΓZ [GeV] 2.4952(23)
σ0h [nb] 41.541(37)

R0
e 20.804(50)

R0
μ 20.785(33)

R0
τ 20.764(45)

A0;e
FB

0.0145(25)

A0;μ
FB

0.0169(13)

A0;τ
FB

0.0188(17)

R0
b 0.21629(66)

R0
c 0.1721(30)

A0;b
FB

0.0992(16)

A0;c
FB

0.0707(35)

Ab 0.923(20)
Ac 0.670(27)

TABLE II. Predictions for some of the most relevant observ-
ables in the b → slþl− fit within the scenario of Eq. (7). The
pulls are given in units of standard deviations.

Observable Scenario 1 Experiment Pull

R½1.1;6�
Kþ þ0.79� 0.01 þ0.85� 0.04 −1.3

R½1.1;6�
K0

S

þ0.79� 0.01 þ0.66� 0.20 þ0.7

R½1.1;6�
K�0

þ0.87� 0.08 þ0.69� 0.12 þ1.3

R½0.045;6�
K�þ þ0.84� 0.04 þ0.70� 0.18 þ0.8

Q½1.1;6�
5

þ0.28� 0.02 þ0.66� 0.50 −0.8

hP0
5i½4;6� −0.57� 0.11 −0.44� 0.12 −0.8

hP0
5i½6;8� −0.79� 0.11 −0.58� 0.09 −1.4

107 × B½4;6�
Bs→ϕμþμ−

þ0.78� 0.15 þ0.62� 0.06 þ1.0

109 × BBs→μþμ− þ3.08� 0.14 þ2.85� 0.34 þ0.6
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with e ¼ g1g2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p
¼ g1cW ¼ g2sW being the

electric charge. Moreover, taking into account the
Z − Z0 mixing in Eq. (A2) and the vertex corrections
[35,112], we have the following modified Z couplings to
leptons

ΔlL
ij ¼ glLSM

�
δij þ sin ξ

glLij
glLSM

þ
X
k

glLik g
lL
kj

ð4πÞ2 KF

�
m2

Z

m2
Z0

��
;

ΔνL
ij ¼ gνLSM

�
δij þ sin ξ

glLij
gνLSM

þ
X
k

glLik g
lL
kj

ð4πÞ2 KF

�
m2

Z

m2
Z0

��
;

ΔlR
ij ¼ glRSM

�
δij þ sin ξ

glRij
glRSM

þ
X
k

glRik g
lR
kj

ð4πÞ2 KF

�
m2

Z

m2
Z0

��
;

ðA4Þ

at the Z pole with

KFðxÞ ¼ −
2ðxþ 1Þ2ðLi2ð−xÞ þ lnðxÞ lnðxþ 1ÞÞ

x2

−
7xþ 4

2x
þ ð3xþ 2Þ lnðxÞ

x
: ðA5Þ

The effective Hamiltonian [95,96] in which heavy
degrees of freedom have been integrated out is given by:

Heff ¼ −
4GFffiffiffi

2
p VtbV�

ts

X
i

CiOi: ðA6Þ

The relevant operators for this paper are

O9l ¼ e2

16π2
ðs̄γμPLbÞðl̄γμlÞ;

O9l0 ¼
e2

16π2
ðs̄γμPRbÞðl̄γμlÞ;

O10l ¼ e2

16π2
ðs̄γμPLbÞðl̄γμγ5lÞ;

O10l0 ¼
e2

16π2
ðs̄γμPRbÞðl̄γμγ5lÞ; ðA7Þ

where PL;R ¼ ð1 ∓ γ5Þ=2.
The set of observables used in the EW fit are given in

Table III.
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