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For any quantum system invariant under gauging a higher-form global symmetry, we construct a
noninvertible topological defect by gauging in only half of the spacetime. This generalizes the Kramers-
Wannier duality line in 1þ 1 dimensions to higher spacetime dimensions. We focus on the case of a one-
form symmetry in 3þ 1 dimensions, and determine the fusion rule. From a direct analysis of one-form
symmetry protected topological phases, we show that the existence of certain kinds of duality defects is
intrinsically incompatible with a trivially gapped phase. We give an explicit realization of this duality defect
in the free Maxwell theory, both in the continuum and in a modified Villain lattice model. The duality
defect is realized by a Chern-Simons coupling between the gauge fields from the two sides. We further
construct the duality defect in non-Abelian gauge theories and the ZN lattice gauge theory.
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I. INTRODUCTION

Global symmetry is one of the most important tools in
analyzing strongly coupled systems. In recent years, there
has been a revolution in our understanding of symmetries,
anomalies, and their generalizations. A prominent extension
of the familiar notion of ordinary global symmetries is
higher-form symmetries [1] and their generalized fusion
categories described by higher groups [2–4]. Even more
broadly, the idea of symmetry has been expanded to include
noninvertible topological defects [5,6]. These more general
fusion algebras fundamentally link the ideas of symmetry
and topological field theory. In this paper, we discuss an
interesting interplay between these notions of higher sym-
metry and noninvertability in diverse spacetime dimensions.
The modern approach to characterizing global sym-

metries is via their symmetry operators or defects. For an
ordinary global symmetry G, the symmetry operator Ug for
any group element g ∈ G acts on all of space at a given time
and is conserved under time evolution. In relativistic
systems, such an operator becomes a codimension-one

topological defect UgðMðd−1ÞÞ wrapping a closed (d − 1)-
manifold Mðd−1Þ in the d-dimensional spacetime XðdÞ. The
symmetry defects obey the standard grouplike fusion
rule: Ug1Ug2 ¼ Ug1g2 .

1

However, not every codimension-one topological defect is
associated with an ordinary global symmetry. These more
general topological defects DðMðd−1ÞÞ do not obey a group-
like fusion rule: their fusion generally involves more than
one defect or even defects of different dimensions. The
simplest example of such a defect is the Kramers-Wannier
duality defect line in the 1þ 1D critical Ising conformal field
theory (CFT) [6–9], which arises from an anomalous Z2

symmetry in the Majorana CFT under bosonization [10–12].
In 1þ 1D, noninvertible topological lines are ubiquitous.

In rational CFT [13–15], there is a general construction of
topological lines that commute with the extended chiral
algebra [16,17]. In recent years, it has been advocated that
these noninvertible topological defects should be viewed as a
generalization of the ordinary global symmetries [5,6]. The
concept of gauging [9,18,19] these lines in 1þ 1D has been
revisited in [5,20–22], and the obstruction to gauging can be
viewed as a generalized notion of a ’t Hooft anomaly. Similar
to the anomaly constraints from an ordinary symmetry, these
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1Here and in the following, we often leave the manifold
wrapped by a defect implicit, with all fusion rules understood as
implying that the defect loci of fusing operators coincide.
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noninvertible topological defect lines have dramatic conse-
quences on renormalization group flows. In 1þ 1-dimen-
sional quantum field theory (QFT), the topological lines
have been explored extensively in [5,6,12,20,22–35] with
various dynamical applications. In particular, using a modu-
lar invariance argument, it was shown in [6] (see also [20]
for generalizations) that the existence of certain noninvertible
topological lines is incompatible with a trivially gapped
phase.
Much less is known about noninvertible defects in higher

spacetime dimensions. In 2þ 1D topological quantum field
theory (TQFT), there are noninvertible surface operators
[36]. The non-Abelian anyons in the 2þ 1D TQFT can also
be viewed as a noninvertible version of the one-form
symmetry (see [37] for an application of this perspective).
Noninvertible topological defects have been applied to
conjectures in quantum gravity [38–40]. See also [41] for
other discussions in higher dimensions.
In addition to applications in quantum field theory,

noninvertible topological defects have also been realized
on the lattice [42–49]. In recent years, this has been
described in some condensed matter literature under the
name “algebraic higher symmetry” [50,51].

A. Duality defects in diverse dimensions

In this paper, we present a general construction of
noninvertible, codimension-one topological defects in even
spacetime dimensions d via gauging, both in continuum
quantum field theory and on the lattice. Our starting point is
a d-dimensional quantum system T with an anomaly-free,
Abelian q-form global symmetry GðqÞ. We further assume
that T is self-dual under gauging,

T ≅ T =GðqÞ: ð1:1Þ
[The more precise meaning of this isomorphism will be
elaborated in the main text. See (2.8).] Notice that gauging
GðqÞ gives rise to a dual ðd − q − 2Þ-form symmetry [1,52],
and hence self-duality is only possible if q ¼ ðd − 2Þ=2.
For this class of systems, we can construct a noninvertible

topological defect as follows. We divide the spacetime into
two halves L and R, and gauge the GðqÞ symmetry only in R
but not in L. At the codimension-one interface between L
and R, we impose the topological Dirichlet boundary
condition for the discrete GðqÞ gauge fields. This then
defines a topological defect D in T .
This general construction encompasses a large class of

noninvertible defects. When d ¼ 2, q ¼ 0 and Gð0Þ ¼ Zð0Þ
2 ,

this construction gives the Kramers-Wannier duality defect
line with the Ising fusion rule

1þ 1D∶ η ×D ¼ D × η ¼ D; η × η ¼ 1;

D ×D ¼ 1þ η; ð1:2Þ
where η is the Zð0Þ

2 symmetry line. We will therefore refer to
this general class of topological defects D from gauging as

the “duality defects.” In particular, the duality defect line D
is noninvertible, i.e., it does not have an inverse such that the
product with itself is the identity line.
The primary focus of this paper is the case of d ¼ 4 and

q ¼ 1. We derive the fusion rule of the three-dimensional
duality defect D and the one-form symmetry surfaces η of
Gð1Þ,

3þ 1D∶ η ×D ¼ D × η ¼ D;

D × D̄ ¼ 1

jGj
X

S∈H2ðM;GÞ
ηðSÞ: ð1:3Þ

HereM is a connected, orientable 3-manifold on which the
duality defect is supported, and D̄ is the orientation reversal
of D.2 The fusion D × D̄ is a special case of the “con-
densation” in [54].
Recently, the authors of [47], based on earlier work of

[44], constructed an interesting 3þ 1D lattice model of Z2

gauge theory that exhibits a noninvertible defect that
implements the Kramers-Wannier-Wegner duality [55].
Various general properties, such as the quantum dimension
and certain crossing relations, have been demonstrated
from that lattice model. In the current paper, we provide a
complementary construction of this duality defect from
gauging one-form symmetry. In particular, we will discuss
an alternative lattice model for the Z2 gauge theory that
realizes the duality defect.

B. Dynamical consequences

The existence of the duality defectD in a 3þ 1D system
T has important consequences for renormalization group
(RG) flows.
We derive general constraints by analyzing the compat-

ibility between a trivially gapped phase and the duality
defect. The construction of the duality defect employs
discrete gauging of the one-form symmetry Gð1Þ. Since
discrete gauging is a topological manipulation, it commutes
with the RG flow. Therefore, for any flow that preserves
this duality defect and Gð1Þ, we can construct the defect
both in the UV and in the IR from gauging the one-form
symmetry Gð1Þ. It follows that the system in the deep IR
must also be self-dual under gauging the one-form sym-
metry Gð1Þ, i.e.,

T IR ≅ T IR=Gð1Þ: ð1:4Þ

The condition (1.4) places stringent constraints on the IR
phase of the system. Suppose the low-energy phase is
trivially gapped with a unique ground state with no long-
range topological order. When we activate the background

2In 1þ 1D, the duality defect in (1.2) is its own orientation
reversal, i.e., D ¼ D̄ [53]. See Sec. II A for more discussions.
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gauge fields Að2Þ for Gð1Þ, this gapped phase is described by
a symmetry protected topological (SPT) phase for the one-
form global symmetry Gð1Þ. However, for some Gð1Þ, we
show that there is no Gð1Þ-SPT phase that obeys (1.4).

Specifically, when Gð1Þ ¼ Zð1Þ
N , we prove the following:

Theorem.—Let T be any 3þ 1D bosonic QFT which is

invariant under gauging aZð1Þ
N one-form symmetry. Then T

can flow to a trivially gapped phase only if each prime
factor of N is one modulo four.
Similarly, in the case of fermionic theories, we derive
Theorem.—Let T be any 3þ 1D fermionic QFT which

is invariant under gauging a Zð1Þ
N one-form symmetry. Then

T can flow to a trivially gapped phase only if N is even and
each prime factor of N=2 is one modulo four.
These theorems imply that the existence of certain

duality defects is intrinsically incompatible with a trivially
gapped phase. This is analogous to constraints implied by
’t Hooft anomalies and generalizes the results of [6]
in 1þ 1D.

C. Examples of duality defects in 3 + 1 dimensions

The simplest realization of a duality defect in 3þ 1
dimensions is in free Uð1Þ gauge theory, which has an

electric Uð1Þð1Þe one-form global symmetry. Gauging a Zð1Þ
N

subgroup changes the complexified coupling τ to τ=N2.
Using the S-duality τ → −1=τ, we note that the Uð1Þ gauge
theory is self-dual under gauging Zð1Þ

N at

τ ¼ iN: ð1:5Þ

The continuum Lagrangian for the duality defect in free
Uð1Þ gauge theory at τ ¼ iN is

S ¼ N
4π

Z
x<0

dAL ∧ ⋆dAL þ N
4π

Z
x>0

dAR ∧ ⋆dAR

þ iN
2π

Z
x¼0

AL ∧ dAR; ð1:6Þ

where AL and AR are the dynamical one-form gauge fields
in region L∶x < 0 and region R∶x > 0. The duality defect,
supported on the interface M∶x ¼ 0, is realized as an off-
diagonal Chern-Simons coupling between the gauge fields
on the two sides. We also give a lattice realization of the
duality defect, using a modified Villain lattice model of
the 3þ 1D Uð1Þ gauge theory that has been developed
in [56,57].
As another example, we realize the duality defect in the

3þ 1D ZN lattice gauge theory in the Villain formulation.
In the case of Z2, this can be viewed as a complementary
lattice realization of the duality defect to the work of [47].
At the self-dual point, the duality defect is realized as a
Chern-Simons coupling between the ZN gauge fields from
the two sides,

π

N

X
plaquette

ðΔmð1Þ
L − Nnð2ÞL Þ2 þ π

N

X
plaquette

ðΔmð1Þ
R − Nnð2ÞR Þ2

þ 2πi
N

X
defect

mð1Þ
L Δmð1Þ

R ; ð1:7Þ

where mð1Þ; nð2Þ are ZN one- and two-form gauge fields
and L, R denote which side of the duality defect they reside
in. We apply our general theorem from the SPT analysis to
the low-energy limit of the Z2 lattice gauge theory and find
that it is consistent with the expected first-order phase
transition.
We further identify a duality defect from gauging a

Zð1Þ
2 × Zð1Þ

2 one-form symmetry in the 3þ 1D SOð8Þ gauge
theory and, more generally, in some gauge theories theories
with Lie algebra spinð4nÞ.
In addition to the above 3þ 1D examples, we also

realize the duality line in the 1þ 1D compact boson CFTat
special radii, both in the continuum and in its modified
Villain lattice model. (See also [11] for the duality lines in
the compact boson CFT.) The duality line is realized as a
0þ 1D Chern-Simons coupling in the continuum,

S ¼ N
4π

Z
dτ

Z
0

−∞
dxð∂μϕLÞ2 þ

N
4π

Z
dτ

Z
∞

0

dxð∂μϕRÞ2

þ iN
2π

Z
dτϕL∂τϕR

����
x¼0

; ð1:8Þ

where ϕL;ϕR are the boson fields in region L∶x < 0 and
region R∶x > 0, respectively.
Looking to the future, the idea of noninvertible duality

defects from gauging higher-form symmetries may be
viewed as a special case of interfaces constructed by
coupling QFTs to general TQFTs in half of the spacetime.
In this broader context, one may utilize the full machinery
of TQFTs, e.g., the cobordism hypothesis, to exhibit novel
noninvertible defects in QFTs. (See in particular [58] for a
related mathematical discussion on Kramers-Wannier
duality.3) Clearly, this is just the beginning of an explora-
tion of these generalized notions of symmetry and their
dynamical implications.

II. NONINVERTIBLE TOPOLOGICAL DEFECTS
FROM GAUGING

In this section we present a general discussion of
topological interfaces and defects that result from gauging
higher-form global symmetry in half of the spacetime. This
construction encompasses the Kramers-Wannier duality
defect line in 1þ 1D as well as the three-dimensional
duality defect in 3þ 1D.

3We thank D. Freed and C. Teleman for several enlightening
discussions on this topic.
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A. Topological interfaces and defects from gauging

Consider a quantum system T ðqÞ on a closed d-
dimensional spacetime manifold X with an Abelian, discrete
q-form global symmetryGðqÞ. Wewill assumeGðqÞ to be free
of ’t Hooft anomaly, i.e., it can be gauged.4 For concreteness,

we will assume GðqÞ ¼ ZðqÞ
N , but the discussion directly

generalizes to any Abelian finite group.
Next, we divide the spacetime into two regions, L and R,

and let M be the codimension-one interface between them.
See Fig. 1.
Now, we will gauge the ZðqÞ

N global symmetry in half of
the spacetime R. To do this, we couple the system T ðqÞ in R
to a dynamical ZðqÞ

N gauge theory with flat (qþ 1)-form

discrete gauge fields aðqþ1Þ. More specifically, the ZðqÞ
N

gauge theory can be represented by the Lagrangian [59–61]

iN
2π

bðd−q−2Þdaðqþ1Þ; ð2:1Þ

where the superscripts indicate the form degree of the
gauge fields. Here bðd−q−2Þ is a ðd − q − 2Þ-form Uð1Þ
gauge field which serves as a Lagrange multiplier enforcing
aðqþ1Þ to be ZN-valued. At the interface M between L and
R, we impose the Dirichlet boundary condition

aðqþ1ÞjM ¼ 0; ð2:2Þ

where ð·ÞjM means the restriction of the (qþ 1)-form on the
interface M. The full action is then

Z
L
LT ðqÞ þ

Z
R
LT ðqÞ ½aðqþ1Þ� þ iN

2π

Z
R
bðd−q−2Þdaðqþ1Þ; ð2:3Þ

where LT ðqÞ ½aðqþ1Þ� is the Lagrangian of the system T ðqÞ

coupled to the gauge field aðqþ1Þ.

In region L, we have the original system T ðqÞ with a ZðqÞ
N

q-form global symmetry. In region R, we have the gauged
system

ST ðd−q−2Þ ≡ T ðqÞ=ZðqÞ
N : ð2:4Þ

Here we denote the gauging by S and the gauged system by

ST ðd−q−2Þ. The latter has a dual Zðd−q−2Þ
N ðd − q − 2Þ-form

global symmetry [1,52], which is the generalization of the
quantum symmetry for orbifolds in 1þ 1D [62]. The dual
symmetry is generated by the topological operator

η≡ exp
�
i
I

aðqþ1Þ
�
; ð2:5Þ

with ηN ¼ 1.
In the pure ZðqÞ

N gauge theory (2.1), the Dirichlet
boundary condition aðqþ1Þj ¼ 0 is topological. To see this,
if we deform the locus of the boundary slightly, the
difference is computed by daðqþ1Þ, which is zero because
of the flatness condition of aðqþ1Þ. After we couple the
gauge theory to T ðqÞ, the gauge field aðqþ1Þ is still flat from
the equation of motion of bðd−q−2Þ. Hence the Dirichlet
boundary condition (2.2) defines a “topological interface”
D between the two systems, T ðqÞ and ST ðd−q−2Þ. See
Sec. VA 3 for a detailed demonstration of the topological
nature of the interface in the lattice model examples.
Generally, the systems T ðqÞ and ST ðd−q−2Þ are distinct.

We will be particularly interested in the case when they are
isomorphic (dual) to each other,

T ðqÞ ≅ ST ðd−q−2Þ ≡ T ðqÞ=ZðqÞ
N : ð2:6Þ

This can only be the case when

q ¼ d − 2

2
: ð2:7Þ

For example, this includesZð0Þ
N in d ¼ 2,Zð1Þ

N in d ¼ 4, and

Zð2Þ
N in d ¼ 6. In this case, D becomes a codimension-one

topological defect in that system. We will see that it is in
fact a noninvertible defect.
More precisely, we require that the partition functions on

any closed d-manifold X coupled to the background
(qþ 1)-form ZN gauge fields Aðqþ1Þ is left invariant under
gauging,

ZT ðqÞ ½Aðqþ1Þ� ¼ jHq−1ðX;ZNÞjjHq−3ðX;ZNÞj � � �
jHqðX;ZNÞjjHq−2ðX;ZNÞj � � �

×
X

a∈Hqþ1ðX;ZNÞ
ZT ðqÞ ½aðqþ1Þ�

× exp

�
2πi
N

Z
X
aðqþ1Þ ∪ Aðqþ1Þ

�
: ð2:8Þ

FIG. 1. The spacetime manifold is divided into two regions
along the interface which is depicted as a red line. The arrow on
the interface indicates that the interface is generally oriented.

4In general we only require that anomalies which obstruct
gauging GðqÞ vanish. Mixed anomalies involving GðqÞ and other
backgrounds need not vanish.
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The above equality is up to d-dimensional local counter-
terms that are independent of Aðqþ1Þ. The factor in front of
the summation is the standard normalization factor for a

(qþ 1)-form ZðqÞ
N gauge field.

Let us discuss the orbit of gauging S in the case when
(2.7) is obeyed. For a more general discussion, see
[1,63,64]. For simplicity, we will assume the manifold to
be orientable. For even q (such as q ¼ 0, d ¼ 2 and q ¼ 2,
d ¼ 6), starting from a general system T ðqÞ that is not
necessarily self-dual, gauging twice gives

evenq∶ ZS2T ðqÞ ½Aðqþ1Þ� ¼ ZT ðqÞ ½Aðqþ1Þ�; ð2:9Þ

up to a Euler counterterm. In other words, S2 ¼ 1. This
implies that the duality defect D does not carry an
orientation in this case, i.e., D ¼ D̄. On the other hand,
when q is odd (such as q ¼ 1, d ¼ 4),

odd q∶ ZS2T ðqÞ ½Aðqþ1Þ� ¼ ZT ðqÞ ½−Aðqþ1Þ�: ð2:10Þ

In other words, S2 ¼ C, where C flips the sign of the
background gauge field. In particular, in 3þ 1D, the duality
defect D is distinct from it orientation-reversal D̄ unless
N ¼ 2. If the theory T ð1Þ is self-dual in 3þ 1D in the sense
of (2.8), that further implies that ZT ð1Þ ½Að2Þ� ¼ ZT ð1Þ ½−Að2Þ�.
More generally, in (2.8), we can include a nontrivial SPT

term for the gauge fields aðqþ1Þ in the sum. We can also use
a more general pairing between aðqþ1Þ and Aðqþ1Þ. These
variations will lead to more general kinds of noninvertible
defects. For example, in 1þ 1D, the duality line and the
symmetry lines form a fusion category known as the
Tambara-Yamagami category, which depends on the choice
of a symmetric, nondegenerate bicharacter that pairs the
dynamical and the background gauge fields [53]. We leave
these generalizations for future investigation.

B. Kramers-Wannier duality defect in 1 + 1D

Let us start with the case d ¼ 2 and q ¼ 0. In this case,

the system T has an ordinary, anomaly-free Zð0Þ
N global

symmetry. We assume that the orbifold theory T =Zð0Þ
N is

isomorphic to itself,5

T ≅ T =Zð0Þ
N : ð2:11Þ

We will assume that T has a unique topological local
operator, i.e., the identity operator, that is invariant under

the Zð0Þ
N symmetry.

For example, when N ¼ 2, we can choose T to be the
critical Ising CFT, and the topological defect is the
Kramers-Wannier duality line [6–9,11].6 For more general
N, T can be taken to be the coset CFT SUð2ÞN=Uð1Þ.
Let us determine the fusion algebra of the duality defect

D and the Zð0Þ
N symmetry line η. Since D is defined as the

Dirichlet boundary condition of the gauge field að1Þj ¼ 0,

the Zð0Þ
N line η ¼ expði H að1ÞÞ vanishes on the defect. We

therefore conclude D × η ¼ η ×D ¼ D.
Next, we consider the fusion between D and itself. From

D × η ¼ η ×D ¼ D, we know that the only consistent
fusion rule is

D ×D ¼ x
XN−1

i¼0

ηi: ð2:12Þ

Here we already see that the defect D is noninvertible, i.e.,
there does not exist another line such that its fusion with D
is the identity line. It remains to determine x, which is
related to the quantum dimension of the duality line as
hDi2 ¼ Nx. The quantum dimension of a line is defined as
the expectation value of D acting on the state j1i corre-
sponding to the identity operator.
Fusion of two such defects on a cylinder can be under-

stood as follows. We wrap two duality defects aroundM ¼
S1 and separate them along R. This is equivalent to
coupling the system inside the annulus M × I with a

Zð0Þ
N gauge theory, with the Dirichlet boundary condition

imposed on the two boundaries. See Fig. 2. From this
picture, the normalization factor x then comes from the

standard normalization of a Zð0Þ
N gauge theory,

x ¼ 1

jH0ðS1 × I; ∂ðS1 × IÞ;ZNÞj
¼ 1: ð2:13Þ

Here we use the relative cohomology because of the
Dirichlet boundary conditions. It follows that the quantum
dimension of the duality defect is

hDi ¼
ffiffiffiffi
N

p
: ð2:14Þ

To conclude, the fusion algebra of the noninvertible line

D and the Zð0Þ
N line η is

5For a nonspin (bosonic) system, there is no nontrivial
SPT term for the Zð0Þ

N symmetry in 1þ 1D because
H2ðZN ;Uð1ÞÞ ¼ 0. For more general Abelian group G, one
can add a discrete torsion H2ðG;Uð1ÞÞ when gauging (2.8).

6Kramers-Wannier duality states that the Ising model at high
temperature is dual to that at low temperature coupled to a Zð0Þ

2
gauge field. (See, for example, [57,61] for recent discussions.) At
the critical point, this reduces to the statement that the Zð0Þ

2
orbifold of the critical Ising CFT is itself.
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η ×D ¼ D × η ¼ D; ηN ¼ 1;

D ×D ¼
XN−1

i¼0

ηi: ð2:15Þ

This is indeed the fusion rule of the Tambara-Yamagami
fusion category [53]. When N ¼ 2, this reduces to the Ising
fusion rule.
Let us discuss the action of the duality defect on the local

operators of T . As we sweep D past a Zð0Þ
N -charged local

operator, it becomes gauged and is now attached to a Zð0Þ
N

(Wilson) line which intersects with D. For example, in the
critical Ising CFT, as we bring the duality line past the order
operator σ, the latter turns into a disorder operator μ

attached to the Zð0Þ
2 Wilson line [7]. See Fig. 3.

C. Duality defect in 3 + 1D

We now move on to a 3þ 1D system T with an

anomaly-free Zð1Þ
N one-form global symmetry, which is

invariant under gauging Zð1Þ
N in the sense of (2.8),

T ≅ T =Zð1Þ
N : ð2:16Þ

More generally, we can include a nontrivial SPT term for
the gauge field að2Þ on the right-hand side of (2.8). This
will define a different kind of duality defect that we will
leave for future studies. We will assume T has a unique
topological local operator, i.e., the identity, so that the
ground state on S3 is nondegenerate.
The topological defect D in this case is three-dimensional

and the Zð1Þ
N one-form symmetry defects η are two-

dimensional surfaces in spacetime.
Again since the defect D is defined as the Dirichlet

boundary condition að2Þj ¼ 0, we find that theZð1Þ
N surfaces

are annihilated when brought to D.
Similar to the 1þ 1D case, fusion of D and D̄ supported

on an arbitrary closed 3-surface M can be understood as
follows. The four-dimensional spacetime is taken to be
M × R. We wrap D and D̄ around M and separate them
along R. This is equivalent to coupling the system inside

the slab M × I with a Zð1Þ
N gauge theory, with the Dirichlet

boundary condition imposed on the two boundaries.
See Fig. 2.
Gauging the discrete Zð1Þ

N symmetry is done by sum-
ming over different gauge field configurations, which are
given by the degree 2 cohomology classes of the slab with
ZN coefficient. The Dirichlet boundary condition
instructs us to sum over the cohomology classes relative
to the boundary of the slab, that is, the elements
in H2ðM × I; ∂ðM × IÞ;ZNÞ.
For simplicity, we assume thatM is orientable and apply

the Lefschetz duality, which is a generalized version of the
Poincaré duality, relating the relative cohomology classes
to the ordinary homology classes. This asserts that
H2ðM× I;∂ðM× IÞ;ZNÞ ≅H2ðM× I;ZNÞ ≅H2ðM;ZNÞ,
where the second isomorphism is given by shrinking the
interval. The sum over different gauge field configurations
is then equivalently understood as summing over different
2-cycles on M in H2ðM;ZNÞ, and these are precisely the

cycles the Zð1Þ
N symmetry operators η wrap around. Thus,

the fusion rule for D and D̄ wrapping around an orientable
3-manifold M is

D × D̄ ¼ x
X

S∈H2ðM;ZNÞ
ηðSÞ; ð2:17Þ

where x is a normalization coefficient coming from gauging
in the slab.
The normalization x is given by the standard normali-

zation for the Zð1Þ
N gauge theory,

x ¼ jH0ðM × I; ∂ðM × IÞ;ZNÞj
jH1ðM × I; ∂ðM × IÞ;ZNÞj

¼ 1

N
: ð2:18Þ

FIG. 3. In the 1þ 1D critical Ising CFT, when the duality line
crosses the order operator σ, it becomes a disorder operator μ

attached to the Zð0Þ
2 line. Here the red line denotes the duality line

D and the dotted line denotes the Zð0Þ
2 line.

FIG. 2. In the shaded region the system is coupled to a ZðqÞ
N

gauge theory, with Dirichlet boundary conditions imposed on the
boundaries.
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Again, this normalization factor is expressed in terms of the
relative cohomology groups because of the Dirichlet
boundary conditions.7

To summarize, the fusion rule in 3þ 1D is

η ×D ¼ D × η ¼ D;

D × D̄ ¼ 1

N

X
S∈H2ðM;ZNÞ

ηðSÞ; ð2:19Þ

where M is a connected, orientable 3-manifold on which
the duality defects are supported. The right-hand side can
be viewed as a condensation of the one-form symmetry
defects on the world volume of the duality defect M [54].
The quantum dimension of the duality defect D on S3 is

defined as the eigenvalue of D acting on the state j1i on S3

corresponding to the identity operator. From (2.15), this
gives

hDiS3 ¼
1ffiffiffiffi
N

p ; ð2:20Þ

which is consistent with the result in [47] when N ¼ 2. The
ground states on a more general 3-manifold M will depend
on the quantum system T and are generally degenerate.
Hence there is no canonical, model-independent way to
define the quantum dimension of D on a general 3-manifold
other than S3.
Let us discuss the action of the duality defect on the line

operators of T . As we sweep D past a Zð1Þ
N -charged line

operator, it becomes gauged and is now attached to a Zð1Þ
N

surface which intersects with D. In other words, the duality
defect turns a genuine line operator on the one side to a line
operator bounded by a topological surface on the other side.
See Figs. 4 and 5.

III. DYNAMICAL CONSEQUENCES

The existence of the duality defect has significant
implications for renormalization group flows which we
explore in this section. We derive general constraints on
renormalization group flows from a direct analysis of
duality defects in trivially gapped phases.8 We will find

that certain kinds of duality defects are intrinsically
incompatible with trivially gapped phases.
We start with a microscopic quantum system T with a

duality defectD associated with aZð1Þ
N one-form symmetry.

We assume that the theory T is trivially gapped at long
distances and will aim to derive a contradiction for some
values of N.
If the theory T is trivially gapped, then at long distances, it

is described by a SPT phase (local counterterm) for the one-

form global symmetry Zð1Þ
N . The operation of gauging this

symmetry is topological and hence commutes with the
renormalization group flow. Thus, we must be able to
reconstruct the duality defectD by gauging at long distances,
see Fig. 6. If we denote by ZSPTðAð2ÞÞ the partition function
of the SPT phase, then invariance under gauging implies the
equation

=

FIG. 4. As the three-dimensional duality defect D (shown in

red) sweeps past a Zð1Þ
N -charged line operator (shown in black),

the latter is attached to the Zð1Þ
N topological two-surface η (shown

in blue) on the other side.

= =

FIG. 5. By moving the duality defectD around the charged line

operator, the Zð1Þ
N topological surfaces η can be freely generated

and be absorbed by the duality defect, i.e., η ×D ¼ D × η ¼ D.

7For any arbitrary manifold M (orientable or not), and for
any Abelian group G, we have H�ðM × I; ∂ðM × IÞ;GÞ ≅
H̃�ððM × IÞ=∂ðM × IÞ;GÞ ≅ H̃�ðSM∨S1;GÞ ≅ H̃�−1ðM;GÞ ⊕
H̃�ðS1;GÞ ≅ H�−1ðM;GÞ at all degrees. Here SM is the sus-
pension of M, and the tilde denotes the reduced cohomology
groups. An intuitive way to understand this is that any n-cycle
in M becomes a relative (nþ 1)-cycle stretching between the
boundaries in M × I, which may be immediately seen from the
cellular homology. This then gives us x ¼ 1=jGj for any
connected M.

8Mathematically, our results are reminiscent of finding a fiber
functor for a Tambara-Yamagami category in 1þ 1D [65] (see
also [20,33]).

NONINVERTIBLE DUALITY DEFECTS IN 3þ 1 DIMENSIONS PHYS. REV. D 105, 125016 (2022)

125016-7



ZSPTðAð2ÞÞ¼
X

að2Þ∈H2ðX;ZNÞ
ZSPT½að2Þ�exp

�
2πi
N

Z
X
að2Þ∪Að2Þ

�
;

ð3:1Þ

where the summation above denotes the gauging of the
dynamical field að2Þ and on the right-hand side Að2Þ is the
dual Zð1Þ

N background field that arises after gauging.9 Similar
SPT analyses in 1þ 1D were done in [20,33].
We now solve this constraint (3.1) directly. There are two

cases depending on the parity of N.

A. SPT analysis for N odd

The most general bosonic SPT phase for Zð1Þ
N in 3þ 1D

is labeled by an integer p defined modulo N and takes the
form [1,2,66,67]

ZSPT½Að2Þ� ¼ exp

�
2πip
N

Z
X
Að2Þ ∪ Að2Þ

�
: ð3:2Þ

In general, promoting Að2Þ to be dynamical results in a
nontrivial TQFT. However, when

gcdðp;NÞ ¼ 1 ð3:3Þ

the theory remains trivially gapped even after gauging.
Thus from now on we assume this condition.
Next, we evaluate the right-hand side of (3.1) with the

SPT phase given by (3.2). The partition function is

X
að2Þ

exp
�
2πip
N

Z
X
að2Þ ∪ að2Þ þ 2πi

N

Z
X
að2Þ ∪ Að2Þ

�
: ð3:4Þ

Since the action is quadratic the above can be determined
by evaluating on shell. The equations of motion give

að2Þ ¼ −
1

2p
Að2Þ ðmod NÞ; ð3:5Þ

where we have used the fact that gcdð2p;NÞ ¼ 1 to divide
by 2p in ZN . Substituting back into (3.4) we see that the
action returns to the original form (3.2) with the trans-
formation p ↦ −1=4p mod N. Therefore there exists a

SPT phase that is invariant under gaugingZð1Þ
N if and only if

we can find a p such that

4p2 ¼ −1 ðmod NÞ: ð3:6Þ

In turn, this equation is solvable if and only if −1 is a
quadratic residue in ZN . The solution is well known. One
considers the prime factorization of N,

N ¼ yl11 · yl22 � � � ylmm ; ð3:7Þ

where yi are primes and li positive integers. −1 is a
quadratic residue if and only if it is a quadratic residue
separately for each prime yi. This is true exactly when each
prime yi ¼ 1ðmod 4Þ.
In summary, for odd integer N there exists a SPT phase

for Zð1Þ
N which is self-dual under gauging exactly when the

factorization of N consists only of primes that are one
modulo four.10 When this condition on N is satisfied we
may thus construct a duality defect in a trivially gapped
phase. In contrast whenN does not satisfy this factorization
condition, the duality defect cannot be constructed in the
putative trivially gapped phase and hence such a phase is
excluded. This establishes the following result.
Theorem.—Let T be any 3þ 1D (bosonic or fermionic)

QFT which is invariant under gauging a Zð1Þ
N one-form

symmetry, with N odd. Then T can flow to a trivially
gapped phase only if each prime factor of N is one
modulo four.
If we further assume time-reversal invariance, then there

is simply no time-reversal invariant SPT phase (3.2)
satisfying gcdðp;NÞ ¼ 1. Therefore we find that any

FIG. 6. Renormalization group flow commutes with the dis-
crete gauging. Suppose the low-energy phase is trivially gapped.
It becomes a SPT phase protected by the one-form global
symmetry Zð1Þ

N when we activate the background gauge fields

for Zð1Þ
N . This Zð1Þ

N -SPT phase is compatible with the duality

defect if it is invariant under gauging Zð1Þ
N .

9As discussed in Sec. II, we impose this equality modulo local
counterterms that do not depend on the background Að2Þ.

10Note that this implies that N itself is one modulo four, but it
is stronger. For example, 9 ¼ 1ðmod 4Þ, but its prime factor is
not 1 mod 4 so there is no solution to q2 ¼ −1ðmod 9Þ.
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time-reversal invariant T that is invariant under gauging

Zð1Þ
N cannot flow to a trivially gapped phase.

B. SPT analysis for N even

We can proceed analogously for N even. In this case the

possible bosonic SPT phases for Zð1Þ
N are classified by an

integer p defined modulo 2N, and the partition function
takes the form [1,2,66,67]

ZSPT½Að2Þ� ¼ exp

�
2πip
2N

Z
X
PðAð2ÞÞ

�
; ð3:8Þ

where P denotes the Pontryagin square operation: for a ZN
two-cocycle B, PðBÞ ¼ B ∪ B − B ∪1 δB. The condition
that the theory remains invertible after gauging is again
that gcdðp;NÞ ¼ 1.
We can again evaluate the partition function in (3.1) by

solving the equations of motion of the quadratic action and
evaluating the result. Doing so we deduce that p is
transformed as p ↦ −1=p. Therefore, as before, there

exists a SPT phase invariant under gauging Zð1Þ
N if and

only if −1 is a quadratic residue in Z2N ,

p2 ¼ −1 ðmod 2NÞ: ð3:9Þ

Since N is even, we can reduce this equation modulo four
and it is then manifest that no such p exists. Therefore we

cannot construct a duality defect in anyZð1Þ
N -SPT phase and

hence we have proven the following result.
Theorem.—Let T be any 3þ 1D bosonic QFT which is

invariant under gauging a Zð1Þ
N one-form symmetry, with N

even. Then T cannot flow to a trivially gapped phase.
We remark that when we allow the QFT to be fermionic,

then p ∼ pþ N, and the condition for the SPT phase to be

invariant under gauging the Zð1Þ
N one-form symmetry is

instead

p2 ¼ −1 ðmod NÞ: ð3:10Þ

Following a similar discussion in the case of oddN, we find
the following:
Theorem.—Let T be any 3þ 1D fermionic QFT which

is invariant under gauging a Zð1Þ
N one-form symmetry, with

N even. Then T can flow to a trivially gapped phase only if
each prime factor of N=2 is one modulo four.
In particular, it is possible for a fermionic QFT that is

invariant under gauging Zð1Þ
2 to flow to a trivially gapped

phase. This is because there is a fermionic Zð1Þ
2 -SPT phase

[(3.8) with N ¼ 2 and p ¼ 1] that is invariant under

gauging Zð1Þ
2 , but it is not invariant when viewed as a

bosonic Zð1Þ
2 -SPT phase.

IV. CONTINUUM EXAMPLES

In this section we discuss explicit examples of duality
defects in the continuum. Each construction below gives
rise to an instance of the general, model-independent fusion
rules derived in Sec. II.

A. 1 + 1D compact boson

We start with a warm-up example in 1þ 1D. Consider a
free compact boson CFT of ϕ in 1þ 1D. The Euclidean
action is

S ¼ R2

4π

Z
dτdxð∂μϕÞ2; ϕ ∼ ϕþ 2π: ð4:1Þ

T-duality states that the compact boson ϕ at radius R is
equivalent to the dual boson ϕ̃ at radius 1=R, with the two
related by

−iR2
∂μϕ ¼ ϵμν∂νϕ̃: ð4:2Þ

The compact boson CFT has a Uð1Þð0Þm momentum

symmetry that shifts ϕ by an angle and a Uð1Þð0Þw winding
symmetry that shifts ϕ̃ by an angle. These two symmetries
have a mixed anomaly, but individually they are non-

anomalous. Gauging the Zð0Þ
N subgroup of Uð1Þð0Þm changes

the radius of ϕ from R to R=N. Combining with T-duality,
the compact boson CFT at R ¼ ffiffiffiffi

N
p

is invariant under

gauging the momentum Zð0Þ
N symmetry. We therefore

conclude that the compact boson CFT at R ¼ ffiffiffiffi
N

p
has a

Kramers-Wannier duality defect line [11].
This duality line can be described by the following

Lagrangian:

S ¼ N
4π

Z
dτ

Z
0

−∞
dxð∂μϕLÞ2 þ

N
4π

Z
dτ

Z
∞

0

dxð∂μϕRÞ2

þ iN
2π

Z
dτϕL∂τϕR

����
x¼0

: ð4:3Þ

Here ϕL;ϕR are the boson fields in region L∶x < 0 and
region R∶x > 0, respectively. The duality line is realized by
a 0þ 1D Chern-Simons coupling between the fields from
the two sides.
For N ¼ 1, this Chern-Simons coupling reduces to that

for the T-duality defect in [68]. For general N, it is a defect
corresponding to the composition of T-duality and gauging

the Zð0Þ
N momentum symmetry. In Sec. V, we present a

detailed derivation of this Chern-Simons coupling from a
modified Villain lattice realization of the compact boson.
Demanding that the boundary terms from taking the

variation of the action to vanish, we find that at x ¼ 0,

∂μϕLjx¼0 ¼ iϵμν∂νϕRjx¼0: ð4:4Þ

Using T-duality (4.2), we can rewrite the above equality as
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∂μϕL ¼ 1

N
∂μϕ̃R ¼ iϵμν∂νϕR; ð4:5Þ

which can be understood as first gauging Zð0Þ
N to reduce the

radius by 1=N and then performing the T-duality.

B. 3 + 1D Uð1Þ gauge theory

The simplest example of a duality defect in higher
dimensions occurs in free 3þ 1D Uð1Þ gauge theory with
dynamical one-form gauge field A.11 This model is defined
by a complexified gauge coupling

τ ¼ 4πi
g2

þ θ

2π
: ð4:6Þ

We will see that for certain special values of the coupling
we can construct a duality defect.
This theory has an electric one-form symmetry Uð1Þð1Þe

and a magnetic one-form symmetry Uð1Þð1Þm , acting respec-

tively on the Wilson lines ei
H

A and the ’t Hooft lines ei
H

Ã.
Here Ã is the dual one-form gauge field. These symmetries
have a mixed anomaly, but individually they are anomaly-

free and may be gauged. Let us focus on a Zð1Þ
N subgroup of

the electric one-form symmetry Uð1Þð1Þe . Gauging this
symmetry replaces the dynamical gauge field A by A=N
and the dual gauge field Ã by NÃ. Since the action is
quadratic in A this is equivalent to changing the coupling
from τ to τ=N2.
For general τ, the theories before and after gauging are

distinct. Following the discussion in Sec. II, we can define a
topological interface D between the theory at τ in region L
and that at τ=N2 in region R. As we bring a minimal Wilson

line expði HC AÞ charged under Zð1Þ
N in L past the topo-

logical interface, it acquires a topological surface. In terms
of the Uð1Þ gauge theory, once it has crossed the interface
into region R, the line appears fractionally charged and
hence must be attached to a flux surface,

exp

�
i
N

I
C
A

�
≡ exp

�
i
N

Z
D
F

�
; ð4:7Þ

where D is a surface with ∂D ¼ C. Since the charge is now
fractional the definition of the operator depends on the
topological choice of D. Moreover, the surface operator on
the right-hand side of the above is indeed the dual magnetic
one-form symmetry defect η created after gauging as
expected on general grounds. See Fig. 4.
Dually, in region L there are fractionally charged ’t Hooft

lines such as expð iN
H
ÃÞ that are bounded by the electric

one-form symmetry surface

exp

�
i
N

I
C
Ã

�
≡ exp

�
i
N

Z
D
F̃

�
: ð4:8Þ

As we bring it past the interface, it is liberated from the
surface and becomes a genuine line with minimal magnetic
charge expði H ÃÞ in region R.
For certain special values of τ, the gauge theories on two

sides of the interface are equivalent due to electric-magnetic
duality. This occurs when the couplings are related by an
SLð2;ZÞ transformation, i.e., whenever we can find inte-
gers a, b, c, d such that12

aτ þ b
cτ þ d

¼ τ

N2
; ad − bc ¼ 1: ð4:9Þ

For instance, an example of the above occurs when τ ¼ iN
and the duality is the S-transformation τ → −1=τ, which
exchanges A and Ã. Thus in such a theory, we obtain a
duality defect obeying the rule (2.15).13

The duality defect at τ ¼ iN can be realized as follows:

S ¼ N
4π

Z
x<0

dAL ∧ ⋆dAL þ N
4π

Z
x>0

dAR ∧ ⋆dAR

þ iN
2π

Z
x¼0

AL ∧ dAR; ð4:10Þ

where AL and AR are the dynamical one-form gauge fields
in region L∶x < 0 and region R∶x > 0. The duality defect
is realized as an off-diagonal Chern-Simons term between
the gauge fields from the two sides of the interface
M∶x ¼ 0.
For N ¼ 1, this Chern-Simons coupling reduces to that

for the S-duality defect in [68,69]. For general N, it is a
defect corresponding to the composition of S-duality and

gauging the Zð1Þ
N electric symmetry. In Sec. V, we present a

derivation of this Chern-Simons coupling from a lattice
realization of the 3þ 1D Uð1Þ gauge theory.
Let us consider the variation of the continuum action

(4.10). Demanding the variational terms vanish at x ¼ 0,
we find

dALjx¼0 ¼ −i⋆dARjx¼0: ð4:11Þ

The gauge field A and its dual Ã are related by

11This is not to be confused with the two-form background
Zð1Þ

N gauge field Að2Þ in the general discussion above. We hope
this slight abuse of notations will not cause any confusion.

12For simplicity, we view the gauge theory as a fermionic
quantum field theory defined only on spin manifolds, so that it
enjoys the full SLð2;ZÞ duality.

13The charge conjugation symmetry implies that the partition
function of the Maxwell theory obeys Z½Bð2Þ� ¼ Z½−Bð2Þ�, where
Bð2Þ is the two-form background gauge field for the electric one-
form symmetry. This is consistent with the general consequence
of the self-duality (2.8).

CHOI, CÓRDOVA, HSIN, LAM, and SHAO PHYS. REV. D 105, 125016 (2022)

125016-10



1

2π
dÃ ¼ −

2i
g2

⋆dA ¼ −
iN
2π

⋆dA: ð4:12Þ

Therefore, we can rewrite (4.11) as

x ¼ 0∶ dAL ¼ 1

N
dÃR ¼ −i⋆dAR: ð4:13Þ

These equalities can be interpreted as first performing a

Zð1Þ
N gauging to rescale the gauge field by 1=N, and then

performing an S-duality transformation.

C. SOð8Þ gauge theory

The pure Spin(8) gauge theory enjoys a triality that
permutes the vector, fundamental spinor, and cospinor
representations. It has Zð1Þ

2 × Zð1Þ
2 center one-form sym-

metry whose Zð1Þ
2 subgroups, listed in Table I, are permuted

by triality. Thus, gauging different Zð1Þ
2 subgroup one-form

symmetries gives dual theories that are related by the triality
of Spin(8) gauge theory. More specifically, gauging various

Zð1Þ
2 subgroup one-form symmetries gives the SOð8Þ;

Scð8Þ; Ssð8Þ gauge theories that are dual to each other.
We can further include matter fields in the adjoint repre-
sentation which is invariant under the triality.
Pure SOð8Þ gauge theory in d spacetime dimension has a

Zð1Þ
2 electric center one-form symmetry that acts on the

Wilson line in the vector representation and a Zðd−3Þ
2

(d − 3)-form symmetry that acts on the basic ’t Hooft line.
The two symmetries do not have anomaly and can be
gauged [70].14

Let us now concentrate on the d ¼ 4 case, where the
magnetic symmetry of the SOð8Þ gauge theory is also a
one-form symmetry. Starting from the SOð8Þ gauge theory,
we can gauge the magnetic symmetry to arrive at the Spin

(8) gauge theory. We can then gauge aZð1Þ
2 symmetry of the

Spin(8) gauge theory to obtain the Scð8Þ gauge theory.
Combining the two steps together, this implies that we can

gauge aZð1Þ
2 × Zð1Þ

2 symmetry of the SOð8Þ gauge theory to
arrive at the Scð8Þ gauge theory, which is isomorphic to the
former. Following the discussion in Sec. II, we conclude

that the SOð8Þ gauge theory has a duality defect D for the

Zð1Þ
2 × Zð1Þ

2 symmetry.
However, the presence of such duality defect does not

forbid the low-energy physics to be trivially gapped. To see
this, we note that there exists a SPT phase with Zð1Þ

N × Zð1Þ
N

one-form symmetry for any N (here N ¼ 2), such that it is
invariant under gauging the one-form symmetry. For even
N, the SPT phase has the partition function

ZSPT½B;B0� ¼ exp

�
2πi

N − 1

2N
PðBÞ − 2πi

N − 1

2N
PðB0Þ

�
;

ð4:14Þ

where B, B0 are the background two-form gauge fields of

the two Zð1Þ
N one-form symmetries. For odd N, we replace

PðBÞ;PðB0Þ by B ∪ B; B0 ∪ B0 in the partition function.
Note that this SPT phase is time-reversal invariant.
We remark that the pure SOð8Þ Yang-Mills theory with

θ ¼ 0 is believed to flow to pure Z2 gauge theory at low
energies [1]. The deconfined Z2 line comes from the UV ’t
Hooft line operator, while the UV Wilson line confines due

to monopole condensation. Thus, theZð1Þ
2 electric one-form

symmetry acts trivially in the IR, while the Zð1Þ
2 magnetic

one-form symmetry is spontaneously broken. The low-

energy theory is invariant under gauging the Zð1Þ
2 × Zð1Þ

2

one-form symmetry: gauging the magnetic one-form sym-
metry removes the Z2 gauge theory, while gauging the
electric one-form symmetry produces a gauge theory with a
dynamicalZ2 two-form, which is equivalent to ordinaryZ2

gauge theory in 3þ 1D.

1. Scð4nÞ and Ssð4nÞ gauge theory

The discussion can be generalized to Scð4nÞ and Ssð4nÞ
gauge theories that are equivalent due to the isomorphism
Scð4nÞ ≅ Ssð4nÞ, since they are obtained from Spinð4nÞ
gauge theory by gauging different Z2 one-form symmetries
that are exchanged by the Z2 charge conjugation symmetry
in Spinð4nÞ.15
The Scð4nÞ gauge theory has Zð1Þ

2 electric one-form

symmetry and Zð1Þ
2 magnetic one-form symmetry, and they

are nonanomalous. After gauging the Zð1Þ
2 × Zð1Þ

2 one-form
symmetry, the theory becomes the Ssð4nÞ gauge theory,
which is dual to Scð4nÞ and thus the theory is invariant

under gauging Zð1Þ
2 × Zð1Þ

2 one-form symmetries.
Following the discussion in Sec. II, we conclude that
the SOð8Þ gauge theory has a duality defect D for the

Zð1Þ
2 × Zð1Þ

2 symmetry.

TABLE I. Charges of various Zð1Þ
2 subgroups of the center one-

form symmetry that act on the Wilson lines in Spin(8) gauge
theory.

Z2 generator Vector Spinor Cospinor

(1,1) (þ1) (−1) (−1)
(1,0) (−1) (þ1) (−1)
(0,1) (−1) (−1) (þ1)

14If we include the charge conjugation 0-form symmetry, then
the three symmetries have a mixed anomaly.

15When n ¼ 1, Scð4Þ ≅ SUð2Þ × SOð3Þ and Ssð4Þ≅SOð3Þ×
SUð2Þ, while SOð4Þ ¼ ðSUð2Þ × SUð2ÞÞ=Z2.
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We remark that the pure Scð4nÞ; Ssð4nÞ Yang-Mills
theories with θ ¼ 0 are also believed to flow to pure Z2

gauge theory at low energy [1].

V. LATTICE EXAMPLES

In this section, we discuss noninvertible topological
defects in the modified Villain lattice models [56,57].
We consider three examples:

(i) 1þ 1D XY model: It can also be viewed as the
lattice version of the c ¼ 1 compact boson CFT. The

relevant symmetry here is the Zð0Þ
N subgroup of the

Uð1Þð0Þm 0-form momentum symmetry.
(ii) 3þ 1D Uð1Þ lattice gauge theory: The relevant

symmetry is theZð1Þ
N subgroup of theUð1Þð1Þe electric

one-form symmetry.
(iii) 3þ 1D ZN lattice gauge theory: The relevant

symmetry is the Zð1Þ
N electric one-form symmetry.

One prominent feature of the modified Villain lattice
models is that the vortices/monopoles are completely
suppressed by the Lagrange multiplier fields. See [71]
for an earlier, related approach. Therefore these lattice
models exhibit the same global symmetries, anomalies, and
exact dualities as their continuum counterparts. In particu-
lar, the modified Villain model for the 3þ 1D Uð1Þ gauge
theory realizes the S-duality exactly on the lattice, which is
crucial in our construction of the duality defect.

A. 1 + 1D XY model

We start with the warm-up example of the 1þ 1D XY
model in its modified Villain form where the vortices are
suppressed.

1. Modified Villain model

We define the model on a two-dimensional Euclidean
square lattice. The modified Villain action for the XY
model is given by [56,57]

R2

4π

X
link

ðΔϕð0Þ − 2πnð1ÞÞ2 þ i
X

plaquette

ϕ̃ð0ÞΔnð1Þ; ð5:1Þ

where ϕð0Þ, ϕ̃ð0Þ are real-valued fields on the sites and the
dual sites, respectively. nð1Þ is an integer-valued gauge field
on the links. The superscripts indicate the form degrees of
various fields. Δ is the differential operator on the lattice. It
maps a field λðpÞ on the p-cells to a field ΔλðpÞ on the
(pþ 1)-cell, which is given by the oriented sum of λðpÞ on
the boundary of the (pþ 1)-cell.
The theory is subject to the following gauge symmetries:

ϕð0Þ ∼ ϕð0Þ þ 2πkð0Þ;

nð1Þ ∼ nð1Þ þ Δkð0Þ;

ϕ̃ð0Þ ∼ ϕ̃ð0Þ þ 2πk̃ð0Þ: ð5:2Þ

k̃ð0Þ and k̃ð0Þ are integer-valued gauge parameters on the
sites and the dual sites, respectively. The gauge symmetry
effectively makes ϕð0Þ and ϕ̃ð0Þ 2π-periodic. The Lagrange
multiplier field ϕ̃ð0Þ sets the vorticity Δnð1Þ to zero.
The theory realizes an exact T-duality that mapsR ↔ 1=R

and exchanges ϕð0Þ and ϕ̃ð0Þ [56,57]. This can be seen by
applying the Poisson resummation formula

X
n

exp

�
−
R2

4π
ðθ − 2πnÞ2 þ inθ̃

�

¼ 1

R

X
ñ

exp

�
−

1

4πR2
ðθ̃ − 2πñÞ2 − iθ

2π
ð2πñ − θ̃Þ

�
; ð5:3Þ

to the sum over the integer nð1Þ.

2. Gauging a Zð0Þ
N symmetry

The theory has a Uð1Þð0Þm 0-form momentum symmetry

which shifts ϕð0Þ by a constant. One can gauge its Zð0Þ
N

subgroup by coupling the theory to a dynamical Zð0Þ
N gauge

theory in the following way:

R2

4π

X
link

�
Δϕð0Þ−2πnð1Þ−

2π

N
n̂ð1Þ

�
2

þ i
X

plaquette

ϕ̃ð0Þ
�
Δnð1Þ þ 1

N
Δn̂ð1Þ

�
þ2πi

N

X
plaquette

m̂ð0ÞΔn̂ð1Þ:

ð5:4Þ

The third term represents a Zð0Þ
N gauge theory in the

presentation of [57]. n̂ð1Þ is an integer-valued field on the
links, and m̂ð0Þ is an integer-valued field on the dual sites
whose equation of motion constrains n̂ð1Þ to be a flat ZN
gauge field. We have the modified gauge transformations,

ϕð0Þ ∼ ϕð0Þ þ 2πkð0Þ þ 2πqð0Þ

N
;

nð1Þ ∼ nð1Þ þ Δkð0Þ − lð1Þ;

ϕ̃ð0Þ ∼ ϕ̃ð0Þ þ 2πk̃ð0Þ;

n̂ð1Þ ∼ n̂ð1Þ þ Δqð0Þ þ Nlð1Þ;

m̂ð0Þ ∼ m̂ð0Þ − k̃ð0Þ þ Nq̃ð0Þ; ð5:5Þ

where qð0Þ, lð1Þ, and q̃ð0Þ are integer-valued gauge
parameters on the sites, links, and dual sites, respectively.
Using the gauge parameters lð1Þ; qð0Þ, we can set

nð1Þ; m̂ð0Þ to zero. We then redefine φð0Þ ≡ Nϕð0Þ and φ̃ð0Þ ≡
ϕ̃ð0Þ=N and obtain
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R2

4πN2

X
links

ðΔφð0Þ − 2πn̂ð1ÞÞ2 þ i
X

plaquette

φ̃ð0ÞΔn̂ð1Þ: ð5:6Þ

The new fields φð0Þ and φ̃ð0Þ are effectively 2π-periodic due
to the residue gauge symmetry

φð0Þ ∼ φð0Þ þ 2πqð0Þ;

n̂ð1Þ ∼ n̂ð1Þ þ Δqð0Þ;

φ̃ð0Þ ∼ φ̃ð0Þ þ 2πq̃ð0Þ: ð5:7Þ

This is the modified Villain action at radius R=N. In
particular, due to the T-duality, the model is self-dual
under the gauging if R ¼ ffiffiffiffi

N
p

.

3. Topological nature of the gauging interface

We can define an interface on the lattice by gauging the
ZN symmetry only in half of the spacetime. We consider
the picture as in Fig. 7. To the left of the red line, we have
the modified Villain XY model (5.1). To the right of the red

line, we have the same theory coupled to a Zð0Þ
N gauge

theory (5.4). Along the red line, we impose the Dirichlet
boundary condition for theZN one-form gauge field, which
amounts to setting

n̂ð1Þj ¼ qð0Þj ¼ 0: ð5:8Þ

We now show that this interface defined by the Dirichlet
boundary condition is topological, even with the coupling
to the XY fields. That is, the value of the partition function
does not change under small deformations of the interface.
To show this, we consider a slightly deformed interface

which we depicted as a blue line in Fig. 7. We now compare
the values of the two corresponding partition functions,
Zred and Zblue.
Compared to Zblue, Zred includes more fields and more

gauge parameters as labeled in Fig. 7. This leads to an
additional normalization factor of

1

Nnumber of m̂ ×
1

Nnumber of q ¼
1

N
×

1

N2
; ð5:9Þ

where this normalization factor is explained in
Appendix A.
We can reduceZred toZblue by the following steps. Since

the field m̂0 is not coupled to the matter fields, we can
integrate out the extra m̂0 in Fig. 7. This generates a factor
of N and constrains n̂3 ¼ −n̂1 − n̂2. Next, we set n̂1 ¼
n̂2 ¼ 0 using the gauge symmetry

n̂1 ∼ n̂1 þ k̂1;

n̂2 ∼ n̂2 þ k̂2 − k̂1: ð5:10Þ

There is a factor of N2 coming from the volume of the
gauge group that we gauge fixed. Putting everything
together, the red interface is deformed into the blue one
and the partition functions are related by

Zred ¼
1

N
×

1

N2
× N × N2 × Zblue ¼ Zblue: ð5:11Þ

We conclude that this interface in the modified Villain
version of the XY model is topological. This essentially

follows from the fact that the Zð0Þ
N gauge field n̂ð1Þ is flat.

4. Duality defect as a Chern-Simons coupling

When R ¼ ffiffiffiffi
N

p
, the theories on the two sides of the

interface are isomorphic to each other. In this case, the
topological interface defines a noninvertible topological
defect, i.e., the duality defect as discussed in Sec. II, in a
single theory. Consider the duality defect along the red line
in Fig. 7. In order to describe the duality defect more
explicitly, we perform the Poisson resummation (5.3) on
the right-hand side of the interface. We start from the action
(5.4) in the right half-space, gauge away n and m̂ using the
gauge symmetries, and redefine the variables. In the right
half-space, this gives us

1

4πN

X
link

ðΔφð0Þ − 2πn̂ð1ÞÞ2 þ i
X
link

n̂ð1ÞΔφ̃ð0Þ

− iN
X
defect

nð1Þφ̃ð0Þ; ð5:12Þ

with the gauge symmetry (5.7). The third term is a
boundary term localized along the defect.

FIG. 7. The red and blue interfaces are defined by the Dirichlet
boundary conditions of the Zð0Þ

N gauge fields. We can deform the
red interface to the blue interface by integrating out m̂0 and gauge
fixing n̂1 ¼ n̂2 ¼ n̂3 ¼ 0. Keeping track of the appropriate nor-
malization factors, we find that this deformation is topological.
Here we omit the superscripts that indicate the form degrees.
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Now, we perform the Poisson resummation (5.3) for the
sum of n̂ð1Þ and obtain

N
4π

X
ðΔφ̃ð0Þ − 2πñð1ÞÞ2 − i

2π

X
Δφð0Þð2πñð1Þ − Δφ̃ð0ÞÞ

− iN
X
defect

nð1Þφ̃ð0Þ: ð5:13Þ

Summing by parts in the second term then brings us to the
theory at R ¼ ffiffiffiffi

N
p

defined on the dual lattice, plus a
boundary term localized along the defect (as depicted in
Fig. 8), which is given by

−
iN
2π

X
defect

½ϕð0ÞðΔφ̃ð0Þ − 2πñð1ÞÞ þ 2πnð1Þφ̃ð0Þ�; ð5:14Þ

where we have used φð0Þ ¼ Nϕð0Þ on the defect. In the
continuum limit, it reduces to the 0þ 1D Chern-Simons
coupling in the continuum action (4.3).

B. 3 + 1D Uð1Þ gauge theory

We next move on to the modified Villain lattice action of
the 3þ 1D Uð1Þ gauge theory. Using the S-duality that is
realized explicitly on the lattice, we will construct the
duality defect on the lattice.

1. Modified Villain model

The theory is defined on a four-dimensional Euclidean
hypercube lattice. The modified Villain action is given by

1

g2
X
2−cell

ðΔAð1Þ − 2πnð2ÞÞ2 þ i
X
3−cell

Ãð1ÞΔnð2Þ: ð5:15Þ

Að1Þ and Ãð1Þ are real-valued one-form gauge fields on the
links and the dual links, respectively, and nð2Þ is an integer-

valued two-form gauge field on the plaquette. We have the
gauge transformations

Að1Þ ∼ Að1Þ þ Δαð0Þ þ 2πkð1Þ;

nð2Þ ∼ nð2Þ þ Δkð1Þ;

Ãð1Þ ∼ Ãð1Þ þ Δα̃ð0Þ þ 2πk̃ð1Þ;

where αð0Þ and α̃ð0Þ are real-valued gauge parameters on the
sites and the dual sites, and kð1Þ and k̃ð1Þ are integer-valued
gauge parameters on the links and the dual links. The gauge
symmetry effectively makes Að1Þ and Ãð1Þ compact Uð1Þ
gauge fields.
Analogous to the XY-model case, the theory exhibits an

exact self-duality which can be seen by performing the
Poisson resummation (5.3) for nð2Þ [56,57]. Under the
duality, 4π=g2 ↔ g2=4π, and Að1Þ and Ãð1Þ are exchanged.
This is the lattice version of the S-duality of the continuum
Uð1Þ gauge theory.
The theory has a Uð1Þð1Þe electric one-form symmetry

which shifts Að1Þ by a flat one-form gauge field. One can

gauge the Zð1Þ
N subgroup of this symmetry. The resulting

theory is still a modified Villain lattice model of the Uð1Þ
gauge theory, but with a new coupling g02 ¼ g2N2.
Combined with the S-duality, we see that at the special
point 4π=g2 ¼ N, the model is self-dual under this gauging.
Hence it admits the corresponding duality defect.

2. Duality defect as a Chern-Simons coupling

We now focus on the theory at 4π=g2 ¼ N. The duality

defect can be constructed by gauging the Zð1Þ
N one-form

symmetry in only half of the spacetime. Along the defect,
we impose the topological boundary condition for the
dynamical two-form field n̂ð2Þj ¼ 0.
The Euclidean action for the whole system is

N
4π

X
2−cell

ðΔAð1Þ
L − 2πnð2ÞL Þ2 þ i

X
3−cell

Ãð1Þ
L Δnð2ÞL

þ N
4π

X
2−cell

�
ΔB̃ð1Þ

R − 2πñð2ÞR −
2π

N
n̂ð2ÞR

�
2

þ i
X
3−cell

Bð1Þ
R Δ

�
ñð2ÞR þ 1

N
n̂ð2ÞR

�

þ 2πi
N

X
3−cell

m̂ð1Þ
R Δn̂ð2ÞR : ð5:16Þ

Fields with subscript L and R live on the left- and right-

hand side of the duality defect, respectively. Að1Þ
L ; B̃ð1Þ

R and

Ãð1Þ
L ; Bð1Þ

R are real-valued one-form gauge fields on links

and dual links, respectively. nð2ÞL ; ñð2ÞR ; n̂ð2ÞR are integer-

valued two-form gauge field on the plaquettes, and m̂ð1Þ
R

FIG. 8. Duality defect is inserted along a cut between a lattice
and its dual lattice. Fields along the cut are coupled by the blue
dots as in (5.14).
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is an integer-valued one-form gauge field on the dual links whose equation of motion constrains n̂ð2ÞR to be a flat ZN two-

form gauge field. Along the duality defect, we have Að1Þ
L j ¼ B̃ð1Þ

R j, nð2ÞL j ¼ ñð2ÞR j, and n̂ð2Þj ¼ 0.
The theory has the gauge symmetry

Að1Þ
L ∼ Að1Þ

L þ Δαð0ÞL þ 2πkð1ÞL ; B̃ð1Þ
R ∼ B̃ð1Þ

R þ Δα̃ð0ÞR þ 2πq̃ð1ÞR þ 2π

N
k̃ð1ÞR ;

nð2ÞL ∼ nð2ÞL þ Δkð1ÞL ; ñð2ÞR ∼ ñð2ÞR þ Δq̃ð1ÞR − lð2Þ
R ;

Ãð1Þ
L ∼ Ãð1Þ

L þ Δα̃ð0ÞL þ 2πk̃ð1ÞL ; Bð1Þ
R ∼ Bð1Þ

R þ Δαð0ÞR þ 2πqð1ÞR ;

n̂ð2ÞR ∼ n̂ð2ÞR þ Δk̃ð1ÞR þ Nlð2Þ
R ; m̂ð1Þ

R ∼ m̂ð1Þ
R − qð1ÞR þ Nkð1ÞR ; ð5:17Þ

where αð0ÞL ; α̃ð0ÞR and α̃ð0ÞL ; αð0ÞR are real-valued gauge param-
eters on the sites and the dual sites, respectively,

kð1ÞL ; k̃ð1ÞR ; q̃ð1ÞR and k̃ð1ÞL ; kð1ÞR ; qð1ÞR are integer-valued gauge

parameters on the links and dual links, and lð1Þ
R is an

integer-valued gauge parameter on the plaquettes.
Using the gauge parameter qð1ÞR and lð2Þ

R , we can gauge

fix m̂ð1Þ
R ¼ 0 and ñð2ÞR ¼ 0 except along the defects. Next we

redefine the compact Uð1Þ gauge fields Að1Þ
R ¼ Bð1Þ

R =N,

Ãð1Þ
R ¼ NB̃ð1Þ

R and apply the Poisson resummation formula

to the sum of n̂ð2ÞR . This gives us

N
4π

X
2−cell

ðΔAð1Þ
L − 2πnð2ÞL Þ2 þ i

X
3−cell

Ãð1Þ
L Δnð2ÞL

þ N
4π

X
2−cell

ðΔAð1Þ
R − 2πnð2ÞR Þ2 þ i

X
3−cell

Ãð1Þ
R Δnð2ÞR

þ iN
2π

X
defect

½Að1Þ
L ðΔAð1Þ

R − 2πnð2ÞR Þ − 2πAð1Þ
R nð2ÞL �: ð5:18Þ

To the left and to the right of the duality defect, we have the
modified Villain action of the Uð1Þ gauge theory on the
lattice and the dual lattice, respectively. The fields on the two
sides are coupled through the third term along the defect. In
the continuum limit, this coupling (5.18) becomes the
Chern-Simons coupling in (4.10).

C. 3 + 1D ZN lattice gauge theory

In this subsection, we discuss the 3þ 1D ZN lattice
gauge theory in the Villain formulation [57,72,73]. We
review the Kramers-Wannier–like duality of the lattice
model: the lattice model at weak coupling is dual to the
one at strong coupling, but with an additional coupling to a

topological Zð1Þ
N two-form gauge theory. Therefore, at the

self-dual coupling, the ZN lattice model is invariant under

gauging the Zð1Þ
N one-form symmetry, which implies that

there is a duality defect.
In the case of the Z2 lattice gauge theory, we check that

the expected phase at the self-dual point is consistent with
our general theorems in Sec. III.

Our Villain lattice model can be viewed as a comple-
mentary lattice realization of the duality defect to [47].
More specifically, the duality defect in our construction is
realized as a Chern-Simons coupling between theZN gauge
fields from the two sides.

1. Villain model

We will follow closely the exposition in Appendix C.2 of
[57]. The theory is defined on a four-dimensional Euclidean
hypercube lattice. On each link, there is an integer one-form
gauge field mð1Þ and on each plaquette, there is an integer
two-form gauge field nð2Þ. The Villain action is

β

2

X
plaquette

ðΔmð1Þ − Nnð2ÞÞ2: ð5:19Þ

It has the gauge symmetry

mð1Þ ∼mð1Þ þ Δlð0Þ þ Nkð1Þ;

nð2Þ ∼ nð2Þ þ Δkð1Þ; ð5:20Þ

where lð0Þ and kð1Þ are integer gauge parameters on the sites
and the links, respectively. The theory has an electric ZN

one-form global symmetry, which shiftsmð1Þ by a flat integer
one-form field.
In the limit β → ∞, the theory becomes a topological

Zð1Þ
N lattice two-form gauge theory [57,61,74], described by

the action

2πi
N

X
link

mð1ÞΔñð2Þ; ð5:21Þ

where ñð2Þ is an integer-valued field with the integer gauge
symmetry

ñð2Þ ∼ ñð2Þ þ Δk̃ð1Þ þ Nq̃ð2Þ: ð5:22Þ

Alternatively, it can also be viewed as an ordinary topological

Zð0Þ
N one-form gauge theory.
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We can dualize the theory (5.19) by performing Poisson
resummation (5.3) to nð2Þ. It leads to the action

4π2

2βN2

X
plaquette

ðñð2ÞÞ2 þ 2πi
N

X
link

mð1ÞΔñð2Þ; ð5:23Þ

where ñð2Þ is an integer field on the dual plaquette. We can
introduce new gauge symmetries together with
Stueckelberg fields and write the action as

4π2

2βN2

X
plaquette

ðΔm̃ð1Þ − Nn̂ð2Þ − ñð2ÞÞ2

þ 2πi
N

X
link

mð1ÞΔñð2Þ; ð5:24Þ

with the integer gauge symmetry

m̃ð1Þ ∼ m̃ð1Þ þ Δl̃ð0Þ þ k̃ð1Þ;

n̂ð2Þ ∼ n̂ð2Þ − q̃ð2Þ;

ñð2Þ ∼ ñð2Þ þ Δk̃ð1Þ þ Nq̃ð2Þ;

mð1Þ ∼mð1Þ þ Δlð0Þ þ Nkð1Þ: ð5:25Þ

Thus, we see that the duality maps the 3þ 1D ZN lattice
gauge theory with coupling β to another one with 4π2=βN2

that couples to a topological Zð1Þ
N two-form gauge theory

(5.21) [55,72,73,75–77] (see also [57,61] for recent dis-
cussions). The latter coupling is equivalent to gauging the

Zð1Þ
N one-form symmetry of the ZN lattice gauge theory.
In particular, at the self-dual point β ¼ 2π=N, the lattice

model is invariant under gauging the ZN one-form global
symmetry. From our discussion in Sec. II, it follows that the
ZN lattice gauge theory has a duality defect at β ¼ 2π=N.
In Appendix B, we discuss the gauging of the one-form

symmetry in the Z2 lattice gauge theory from a
Hamiltonian formalism to arrive at a similar conclusion.

2. Duality defect as a Chern-Simons coupling

We now focus on the theory at the self-dual point
β ¼ 2π=N. Following a similar analysis as in Secs. VA
4 and V B 2, the duality defect, which divides the spacetime
lattice into two halves, can be described as follows:

π

N

X
plaquette

ðΔmð1Þ
L − Nnð2ÞL Þ2 þ π

N

X
plaquette

ðΔmð1Þ
R − Nnð2ÞR Þ2

þ 2πi
N

X
defect

mð1Þ
L Δmð1Þ

R : ð5:26Þ

Here the subscripts L, R indicate that the corresponding
fields are on the left- or right-hand side of the duality defect.
The lattice ZN gauge theory is defined on the original lattice
on the left-hand side of the duality defect and on the dual

lattice on the other side. Along the defect, the fields from the
two sides are coupled by a Chern-Simons term.
To proceed, we first recall the theorem in Sec. III:

Consider a general system that is invariant under gauging
a Zð1Þ

2 one-form symmetry. We proved that its low-energy
phase (which we assumed is described by a relativistic QFT)
cannot be trivially gapped. We now apply this theorem to the
Z2 lattice gauge theory (which is a bosonic system).
TheZ2 lattice gauge theory has a phase transition between

the confined and the deconfined phase. Numerics [78]
suggests that the transition is first order, where the trivial,
confined vacuum has the same energy as the vacuum
supporting the continuum Z2 gauge theory.

16 This is indeed
consistent with our theorem as the IR phase is not trivially
gapped.17
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APPENDIX A: TOPOLOGICAL LATTICE ZðqÞ
N

GAUGE THEORY

Consider the (qþ 1)-form ZN topological lattice gauge
theory in the presentation of [57],

S ¼ 2πi
N

X
ðqþ2Þ-cell

bðd−q−2ÞΔaðqþ1Þ: ðA1Þ

Here aðqþ1Þ are ZN-valued gauge fields on the (qþ 1)-
cells, and bðd−q−2Þ are ZN-valued gauge fields on the dual
ðd − q − 2Þ-cells.

16We thank Meng Cheng for discussions on this point.
17Recently, it was numerically shown that the Zð1Þ

2 one-
form symmetry at the 2þ 1D Ising model is spontaneously
broken at the transition point [79]. This is consistent with the
expectation from the CFT at the second-order transition.
Indeed, we expect the disorder line to be described by a
conformal line that exhibits perimeter law [80,81].
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Define

#i≡ number of i-cells: ðA2Þ

The normalization for the partition function is

Z ¼ 1

N#ðqþ2Þ ×
Nð#ðq−1Þþ#ðq−3Þþ���Þ

Nð#qþ#ðq−2Þþ���Þ

×
X
fa;bg

exp

�
2πi
N

X
ðqþ2Þ-cell

bðd−q−2ÞΔaðqþ1Þ
�
: ðA3Þ

Changing the role of a and b in the normalization amounts
to choosing a different Euler counterterm. On an arbitrary
triangulated closed manifold XðdÞ, with this normalization
we reproduce the expected partition function

Z½XðdÞ�¼ jHqþ1ðXðdÞ;ZNÞj× jHq−1ðXðdÞ;ZNÞj× � ��
jHqðXðdÞ;ZNÞj× jHq−2ðXðdÞ;ZNÞj× � � � : ðA4Þ

First, we integrate out bðd−q−2Þ. It generates a factor of
N#ðqþ2Þ and constrains aðqþ1Þ to be flat. Here we use the fact
that the number of dual ðd − q − 2Þ-cells is the same as the
number of (qþ 2)-cells. Next, the sum over flat aðqþ1Þ
gives

jHqþ1ðXðdÞ;ZNÞj
× ð# of ðqþ 1Þ-form pure gauge connectionsÞ: ðA5Þ

The number of (qþ 1)-form pure gauge connections is
equal to #q divided by the number of flat q-form con-
nections that correspond to trivial gauge transformations.
The flat q-form connections is then given by

jHqðXðdÞ;ZNÞj × ð# of ðqÞ-form pure gauge connectionsÞ:
ðA6Þ

Iterating this argument we get the partition function.

APPENDIX B: Z2 LATTICE GAUGE THEORY
IN HAMILTONIAN FORMALISM

In this appendix we discuss the 3þ 1D Z2 lattice gauge
theory in the Hamiltonian formalism and gauge its Z2 one-
form symmetry. It is complementary to the Lagrangian
discussion in Sec. V C.
Consider the following Hamiltonian on a cubic

lattice with a qubit on each link, acted by Pauli matrices
Xe, Ye, Ze,

H ¼ −U
X
f

Y
e∈f

Ze − K
X
e

Xe −
X
v

Y
e∋v

Xe; ðB1Þ

where the product in the first term is over all edges on the
boundary of face f, and the product in the last term is over
all edges connected to the vertex v. The first and the
second term can be respectively viewed as the squares of
the magnetic and the electric fields, while the last term
imposes the Gauss law energetically.
The theory has conserved charges supported on any

closed surface Σ̃ on the dual lattice

QðΣ̃Þ ¼
Y

Xe; ðB2Þ

where the product is over all edges cutting the surface. It
generates a one-form symmetry on the lattice.18

In the limit K ¼ 0 the model is the ordinary toric code in
3þ 1D describing deconfined Z2 gauge theory. In the limit
K=U → ∞ the model becomes a trivial Ising paramagnet.
For finite coupling K=U the model describes quantum phase
transition(s) between confinement and deconfinement.
Let us gauge this one-form symmetry by introducing a

new qubit on each face, acted by Pauli matrices Xf, Yf, Zf.
The Gauss law is

Xe

Y
f∋e

Xf ¼ 1; ðB3Þ

where the product is over all faces with boundary con-
taining the edge e. The first term in the original
Hamiltonian is modified to Zf

Q
Ze to commute with

the Gauss law constraint. We can gauge fix using the
Gauss law constraint to obtain the Hamiltonian

H0 ¼ −U
X
f

Zf − K
X
e

Y
f∋e

Xf; ðB4Þ

where the product in the last term is over all faces whose
boundaries contain the edge e, and we have dropped the last
term in the original Hamiltonian which is trivial using the
Gauss law constraint. Moreover, we need to add flux term
−
P

c

Q
Zf for the new gauge field to impose the flat

condition. Thus the new Hamiltonian after gauging is

H̃ ¼ −U
X
f

Zf − K
X
e

Y
f∋e

Xf −
X
c

Y
f∋c

Zf; ðB5Þ

which is the same as the original Hamiltonian on the dual
lattice with U ↔ K and X ↔ Z.
The model is self-dual at K ¼ U under gauging the Zð1Þ

2

one-form symmetry, analogous to the Ising model in
transverse field in 1þ 1D. We conclude that the model
at the self-dual point has a duality defect.

18To be more precise, the charge is not topological and depends
on the shape of the surface Σ̃. Only when the Gauss law is
imposed strictly will the charge become a one-form symmetry
operator [83].
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