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Considering a doubly holographic model, we study the evolution of holographic subregion complexity
corresponding to deformations of the bath state by a relevant scalar operator, which corresponds to a
renormalization group flow from the anti–de Sitter-Schwarzschild to the Kasner universe in the bulk.
The subregion complexity shows a discontinuous jump at Page time at a fixed perturbation, where the
discontinuity depends solely on the system’s parameters. We show that the amount of discontinuity
decreases with the perturbation as well as with the scaling dimension of the relevant scalar operator.
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I. INTRODUCTION

The black hole information loss paradox has been a
longstanding unsolved problem in theoretical physics for
the last few decades. Thanks to the recent progress made in
[1–7] a couple of years ago, we now understand a few
things better than earlier (see [8,9] for recent reviews). In
these works, as well as many other ones (see [10–65] and
references therein), the central idea that has been used is the
computation of the entanglement entropy of Hawking
radiation using the quantum extremal surface (QES)
prescription. The QES prescription is a result of continuous
modifications on the primarily known Ryu-Takayanagi
(RT) [66] prescription of computing entanglement entropy
in the gravity side via holography. In the case of the QES,
one computes the extremal surface by using the max-min
prescription given in [67]. In this case, the minimization is
done on a generalized entropy functional and the QES
prescription suggests [1–3,8,67]

SEEðRÞ ¼ min

�
ext
Is

�
SQFTðR ∪ IsÞ þAð∂ðIsÞÞ

4GN

��
: ð1:1Þ

Here R denotes the radiation region and “Is” is the island
region. Islands are some isolated regions in the bulk, which

we will discuss later in detail. The entanglement entropy on
the lhs is the fine-grained entropy of radiation, whereas the
entropy on the rhs is computed semiclassically.
The crucial change that QES computations in evaporat-

ing and eternal black hole models bring in is to yield a
unitarity compatible Page curve for the entanglement
entropy of the radiation system. While applying the QES
to the radiation subsystem, it is useful to consider doubly
holographic models [3]. In this scenario, the nongravita-
tional radiation subsystem is supposed to contain a holo-
graphic gravity dual. It is also worth noting that, in most
doubly holographic models that reproduce unitarity com-
patible Page curves, the radiation bath region is non-
gravitating, and the models carry massive gravitons.
However, the situation in the case of a gravitating bath
is not yet fully understood. The tension in this line of debate
lies in the idea of Hilbert space factorization in gravity [68].
The islands are the essential features of all these models.

These are the bulk regions, completely disconnected from
the bulk dual of the radiation, which provides a way of
encoding nontrivial black hole degrees of freedom by the
radiation subsystem starting from a timescale typically
known as the Page time (this is the point in the time axis
where the growth of the entanglement entropy curve stops
and goes through a phase transition). In the evolution of
entanglement entropy, the Page transition is understood by
a change of direction of the entanglement entropy curve.
However, the entropy changes continuously in the fine-
grained curve.
In a set of recent papers, another interesting quantum

information-theoretic quantity, known as the subregion
complexity [69], has been studied in similar doubly holo-
graphic models. However, complexity has been found to
capture the Page transition through a discontinuous jump.

*aranyab@iisc.ac.in
†abhattacharyya@iitgn.ac.in
‡pratiknandy@iisc.ac.in
§ayan.patra@saha.ac.in

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 105, 066019 (2022)

2470-0010=2022=105(6)=066019(14) 066019-1 Published by the American Physical Society

https://orcid.org/0000-0002-1882-4177
https://orcid.org/0000-0002-7933-6441
https://orcid.org/0000-0001-5383-2458
https://orcid.org/0000-0001-5684-2379
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.066019&domain=pdf&date_stamp=2022-03-29
https://doi.org/10.1103/PhysRevD.105.066019
https://doi.org/10.1103/PhysRevD.105.066019
https://doi.org/10.1103/PhysRevD.105.066019
https://doi.org/10.1103/PhysRevD.105.066019
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


The subregion complexity signifies the hardness in an
optimal construction of the evolving mixed states of the
black hole and radiation subsystems. In holographic
models, the maximal codimension one volume below
the Hubeny-Rangamani-Takayanagi (HRT) surface [70]
is conjectured to represent the measure of the subregion
complexity of the corresponding state. Therefore, the
evolution of complexity is different from the entanglement
entropy ones and thus can provide a complementary way to
understand the Page transition. Hence, it appears to be an
interesting observation since it represents the crossover
through which new degrees of freedom are shared between
the two (sub)systems.
Although the discontinuous nature was found in several

papers [28–31],1 it was only investigated as a case-by-case
basis through numerical studies. Hence, there was no
particular way to attribute the amount of discontinuity to
the physical parameters of the of system (for example,
radiation subsystem size, Page time, etc.). In this paper, we
study the braneworld scenario with one “tensionless” brane
in the bulk and consider a nongravitating bath. However,
the bulk region is taken differently from that of simple anti–
de Sitter (AdS) black holes. We take the model studied in
[40], where the bath in the conformal boundary is deformed
by a scalar perturbation, resulting in a bulk scalar field. In
the absence of a brane, such deformation results in a change
of the near-singular geometry to that of the so-called
Kasner universe.2 These are understood as Kasner flows
in the holographic renormalization group approach. Such a
flow from a UV fixed point on the conformal boundary is
induced by a scalar deformation leading to an IR flow at
the horizon, which finally accounts for a trans-IR flow
toward the near-singularity Kasner universe. Changing
the scalar amounts to different coarse graining of the
UV state, resulting in different late time linear growth of
the Hartman-Maldacena (HM) surface [81] in the interior.
This induces a scale rRG, probed by the HM surface. UV
physics dominates up to this scale starting from the
boundary, whereas trans-IR physics takes over afterward
until the singularity region.
Finally, upon the introduction of the brane as in the

braneworld model under consideration (see Fig. 1), each of
these flows becomes a separate boundary conformal field
theory (BCFT) [82,83]3 thermal state parametrized by the
deformation parameters. However, since we are interested
in the Page curve and therefore need to study the island
surfaces as well, another scale rT appears in the picture,
which denotes the depth at which the island surface
intersects the brane. This scale is determined both by the
Kasner exponents and the size of the radiation region

considered on the conformal boundary. Crucially, as
mentioned in [40], it is also expected to capture how many
degrees of freedom are traced out when one considers an
island surface. This interests us, as in the subregion
complexity studies, it is argued that the jump in complexity
at the Page transition point is due to purification of degrees
of freedom between the radiation degrees of freedom before
Page time and new degrees of freedom encoded due to the
inclusion of islands. With this motivation and the original
one of studying the subregion complexity along a set of
renormalization group (RG) flows, we study the volumes
under the minimal surfaces. Our motivation is to see if we
can find some systematic behavior of the jump at Page
time for different scalar perturbations and parametrize the
discontinuity in terms of Page time. In this paper, we solely
focus on the doubly holographic models which have the
following three equivalent renditions [16,40]:

(i) a BCFTd, i.e., d-dimensional BCFT;
(ii) a CFTd coupled to an asymptotically AdSd gravity,

which is further connected to a CFTd (this CFTd lies
on the half line and joined with a transparent
boundary conditions to the AdSd þ CFTd);

(iii) Einstein gravity that lives in an asymptotically
AdSdþ1 and contains an end-of-the-world brane.

The rest of the paper is structured as follows. In Sec. II,
we review the notion of the Kasner universe and RG flow in
more detail alongside the minimal area computations. In
Sec. III, we provide the computations of the HM and island
area, and especially the dependence of Page time on the
relevant perturbation. Section IV contains the detailed
calculation of holographic subregion complexity at differ-
ent times and the corresponding plots showing how the
complexity depends on the scalar field deformation.
Finally, in Sec. V, we give a summary of our results and
discuss some open questions.

FIG. 1. The braneworld model. The left red line is the brane that
meets the conformal boundary (blackþ purple line) at the defect
shown in the black dot. The purple line on r ¼ 0 is the radiation
region starting from xR. The green line is the ever-growing HM
surface that dominates before the Page time. The brown surface
(hits the brane at point rT) is the constant island surface, which
becomes the minimal surface starting from the Page time.

1On general grounds, the discontinuous jump in the subregion
complexity in various geometries was observed in [71].

2Kasner geometry has a long history. See [72–80] and the
references therein.

3See [44,57,84–86] for the recent explorations of BCFT.
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II. FROM AdS-SCHWARZCHILD
TO KASNER UNIVERSE

In this section, we introduce and review the salient
features of the braneworld model, especially the RG
flow and the role of Kasner exponents. We closely
follow Refs. [40,87,88]. We set c ¼ ℏ ¼ 1 throughout
our discussion.

A. Setup

We take the (dþ 1)-dimensional Einstein-Hilbert action
with a negative cosmological constant. We further couple a
scalar field with a potential VðφÞ ¼ m2φ2 to it.4 The action
is [40,87]

I ¼
Z

ddþ1x
ffiffiffiffiffi
jgj

p �
Rþ dðd − 1Þ − 1

2
∇iφ∇iφ −

1

2
m2φ2

�
;

ð2:1Þ

where we have chosen the normalization 16πGdþ1 ¼ 1.
We have also taken the cosmological constant as Λ ¼
−dðd − 1Þ=2 and set lAdS ¼ 1. Varying the above action
one obtains the equations of motion as [40]

Gij −
dðd − 1Þ

2
gij ¼

1

4
½2∇iφ∇jφ − gijð∇iφ∇iφþm2φ2Þ�;

ð2:2Þ

ð∇i∇i −m2Þφ ¼ 0: ð2:3Þ

Here the first equation is obtained by varying the metric
which is just the Einstein equation with a scalar coupled to
the theory as given by the rhs of Eq. (2.2). The second
equation in Eq. (2.3) is the Klein-Gordon equation of the
field φ. We consider the form of the metric [40]

ds2 ¼ 1

r2

�
−fðrÞe−χðrÞdt2 þ dr2

fðrÞ þ dx⃗2d−1

�
; ð2:4Þ

where x⃗d−1 ∈ Rd−1 and fðrÞ is such that the horizon
corresponds to fðrhÞ ¼ 0. Our ansatz is that the scalar
field φ is only dependent on the radial coordinate, i.e.,
φ ¼ φðrÞ. The mass of this operator is related to the scaling
dimension of the dual boundary operator via [90]

Δ ¼ d
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 4m2

p
; ⇒ m2 ¼ ΔðΔ − dÞ: ð2:5Þ

For the particular case of Schwarzschild solution, we have
χðrÞ ¼ φðrÞ ¼ 0, which implies fðrÞ ¼ 1 − ðr=rhÞd.
On the other hand, φðrÞ ¼ 0 implies that is there is no
backreaction from the scalar field. This is justified because

the Schwarzschild solution is the solution of the vacuum
Einstein equation. Further, in our case, it should be noted
that the AdS boundary is at r ¼ 0, while the IR singularity
corresponds to r → ∞. In some cases, we analytically
translate the solution to the trans-IR region to understand
the corresponding “Kasner flows.”
With the metric (2.4), the set of differential equations

obtained from the equations of motion (2.3) are given
by [40]

φ00 þ
�
f0

f
−
d − 1

r
−
χ0

2

�
φ0 −

m2

r2f
φ ¼ 0; ð2:6Þ

χ0 −
2f0

f
þ m2φ2

ðd − 1Þrf −
2d
rf

þ 2d
r

¼ 0; ð2:7Þ

χ0 −
r

d − 1
ðφ0Þ2 ¼ 0: ð2:8Þ

B. Near-boundary and near-singularity limits:
Kasner exponents

We can study the near-UV boundary (r → 0) and near-IR
singularity (r → ∞Þ behavior from the above expressions.
In particular, the near-singularity behavior leads to the form
of the fields

φðrÞ ∼ ðd − 1Þc ln r; χðrÞ ∼ ðd − 1Þc2 ln rþ χ1;

fðrÞ ∼ −f1rρ; ð2:9Þ

where c, χ1, and f1 are constants, and ρ ¼ dþ
c2ðd − 1Þ=2. The constant c ¼ 0 leads to the
Schwarzschild solution. In this limit, the metric (2.4) can
be recast to the Kasner universe metric of the form

ds2 ¼ −dτ2 þ τ2ptdt2 þ τ2pxdx⃗2d−1; φðrÞ ∼ −
ffiffiffi
2

p
pφ ln τ;

ð2:10Þ

where we have rescaled with the coordinate r ¼ τ−2=ρ and
pt, px, and pφ are known as “Kasner exponents.” They are
restricted to satisfy the following set of constraints [40]:

pt þ ðd − 1Þpx ¼ 1; p2
φ þ p2

t þ ðd − 1Þp2
x ¼ 1: ð2:11Þ

The three exponents are constrained by two equations.
Hence, only one Kasner exponent is free, which is often
taken as pt. For our case, we can easily verify that the
Kasner exponents

pt ¼ 1 −
2ðd − 1Þ

ρ
; px ¼

2

ρ
; pφ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1Þðρ − dÞp
ρ

;

ð2:12Þ4Adding a self-interacting φ4 term has been studied in [89].
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satisfy the following Kasner constraints. However, in the
Schwarzschild case, c ¼ 0 implies ρ ¼ d, which simplifies
the exponents as

pt ¼ −1þ 2

ρ
; px ¼

2

d
; pφ ¼ 0: ð2:13Þ

The variation of Kasner exponent pt with the perturbation
is obtained in [40,87]. In the limit of infinite perturbation,
the Kasner exponents are expected to correspond to their
respective Schwarzschild values. This also suggests that the
Kasner exponents dominate the near-singularity behavior.
The near-boundary behavior of fields is more subtle.

First, we note that the mass term should satisfy the
Breitenlohner-Freedman bound [40]

−
d2

4
≤ m2 < 0: ð2:14Þ

This bound gives two alternatives of Δ by Eq. (2.5).
However, we will restrict Δ such that it respects the unitary
bound

Δ ≥
d − 2

2
: ð2:15Þ

With this, one can now obtain the near-boundary behavior
of fðrÞ;φðrÞ, and χðrÞ. However, the behavior of φðrÞ and
χðrÞ will be different for Δ ¼ d=2 and Δ ≠ d=2. We list
them below [40]

fðrÞ ¼ eχðrÞð1 − hTttirdÞ; ð2:16Þ

φðrÞ ¼
(
φ0rd−Δ þ hOi

2Δ−d r
d if Δ ≠ d=2

φ0rd=2 ln r if Δ ¼ d=2;
ð2:17Þ

χðrÞ ¼
(

d−Δ
2ðd−1Þφ

2
0r

2ðd−ΔÞ þ 2Δðd−ΔÞhOi
dðd−1Þð2Δ−dÞφ0rd þ ΔhOi2

2ðd−1Þð2Δ−dÞ2 r
2Δ if Δ ≠ d=2

1
4dðd−1Þφ

2
0r

d½2þ 2d ln rþ ðd ln rÞ2� if Δ ¼ d=2;
ð2:18Þ

where φ0 is the boundary source, hOi is the one-point
function of the boundary operator O, and the energy
density of the thermal state is denoted by hTtti. For more
details, the readers are referred to [40].
Our tuning parameter is the dimensionless ratio

φ0=Td−Δ, where the temperature is defined through the
expression [40]

T ¼ jf0hje−χh=2
4π

: ð2:19Þ

Here, rh is the horizon such that fðrhÞ ¼ 0 and f0h ¼ fðrhÞ.
We have also denoted the abbreviation χh ¼ χðrhÞ. Given

that the radial functions are regular at horizon, the near-
boundary data of hTtti and hOi are equivalent to the ratio
φ0=Td−Δ, and this labels the holographic RG flow in
the bulk.
With the above boundary data, one solves Eqs. (2.6)–

(2.8). However, the analytical solution is not possible and
we need to resort to the numerical methods. We employ the
numerical shooting method as discussed in [40]. First, we
expand the above functions’ near-horizon limit (i.e., r → rh
limit) as

φðrÞ ¼ φþ þ φ0þðr − rhÞ þO½ðr − rhÞ2�; ð2:20Þ

FIG. 2. (a) RG flow from AdS boundary (r → 0Þ to the Kasner universe toward the singularity (r → ∞Þ. Here X denotes φðrÞ, χðrÞ,
ln g0ttðrÞ, and fðrÞ. The horizon is located at r ≈ 3.5. (b) Variation of Page time with perturbation in d ¼ 3 for various scaling
dimensions.
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fðrÞ ¼ f0hðr − rhÞ þO½ðr − rhÞ2�; ð2:21Þ

χðrÞ ¼ χh þ χ0hðr − rhÞ þO½ðr − rhÞ2�; ð2:22Þ

where we have used fðrhÞ ¼ 0. Plugging Eqs. (2.20)–
(2.22) in to Eqs. (2.6)–(2.8) (multiplying by rf to avoid
singularity), we get the following expressions:

rhf0hφ
0
h þ

Δðd − ΔÞ
rh

φh ¼ 0; ð2:23Þ

−
Δðd − ΔÞ
d − 1

φ2
h þ 2ðdþ rhf0hÞ ¼ 0; ð2:24Þ

χ0h −
rh

d − 1
ðφ0

hÞ2 ¼ 0: ð2:25Þ

The solutions are

φh ¼∓ i
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ rhf0h

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðd − ΔÞp ; ð2:26Þ

φ0
h ¼ � i2

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffi
d − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dþ rhf0h

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δðd − ΔÞp

r2hf
0
h

; ð2:27Þ

χ0h ¼ −
2½Δðd − ΔÞ�ðdþ rhf0hÞ

r3hf
02
h

: ð2:28Þ

We also set χh ¼ 0. We now specialize for d ¼ 3. We
solve Eqs. (2.6)–(2.8) and Eqs. (2.20)–(2.22) with the
conditions at horizon given by Eqs. (2.26)–(2.28). For
details, see [40]. One numerically obtains the solution of
fðrÞ. Note that fð0Þ ¼ 1 and fðr ≈ 3.5Þ ¼ 0, which is the
location of the horizon. We show the flow of φðrÞ, χðrÞ,
ln g0ttðrÞ, and fðrÞ from AdS boundary to the Kasner
universe toward the singularity in Fig. 2(a). Note that,
toward Kasner singularity, the variation of the fields
becomes constant, which gets fixed by the Kasner
exponents.

III. BATH DEFORMATIONS AND PAGE TIME

This section briefly reviews the main results found in
[40]. We take AdSd black hole geometry and couple it to a
thermal bath. The fields at the interface obey transparent
boundary conditions such that the black hole remains in
thermal equilibrium with the bath all the time. We use
prescription (iii) to compute the entanglement entropy of
the boundary subregionR. In this prescription, one embeds
the black hole on the brane system in one higher-dimen-
sional AdS space and computes the entanglement entropy
using the classical RT formula. In the next subsections, we
elucidate the HM and island surface area computations,
thereby obtaining the Page time as a function of the
perturbation parameter.

A. Area of the Hartman-Maldacena surface

Before Page time, the HM surface is the dominant
minimal surface. Because of the ever-growing nature of
the HM surface, its area, i.e., the entanglement entropy,
also grows with time. To compute the entropy, we take any
x1 ¼ xR (constant) slice with the induced metric given by

ds2jx1¼xR ¼ 1

r2

�
−fðrÞe−χðrÞdt2 þ dr2

fðrÞ þ dx⃗2d−2

�
: ð3:1Þ

The area density functional for r ¼ rðtÞ is computed as

A ¼
Z

dt
rðtÞd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrðtÞÞe−χðrðtÞÞ þ _rðtÞ2

fðrðtÞÞ

s
¼

Z
dtL;

ð3:2Þ

where _r ¼ dr=dt. Explicit time dependence is not present
in (3.2) so we can easily find the constant of the motion
from the Lagrangian

E ¼ _r
∂L
∂ _r − L ¼ fðrÞe−χðrÞ

rd−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrÞe−χðrÞ þ _r2

fðrÞ
q : ð3:3Þ

This is nothing but the energy of the corresponding
minimal surface. The above equation can be rewritten in
terms of the trajectory as

_r ¼ �fðrÞe−χðrÞ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fðrÞe−χðrÞ

r2ðd−1ÞE2

s
: ð3:4Þ

Using this one computes the area of the HM surface given
by

AHMðtbÞ ¼ 2

Z
r̄

0

dr

rd−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ þ eχðrÞr2ðd−1ÞE2

q ; ð3:5Þ

where tb is the boundary time and r is such that _rjr¼r ¼ 0.
This means at this point [from Eq. (3.4)], we have
fðrÞe−χðrÞ ¼ −r2ðd−1ÞE2. Further, the boundary time is
defined as

tb ¼ −P
Z

r

0

dr
sgnðEÞeχðrÞ=2

rd−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞe−χðrÞ=ðr2ðd−1ÞE2Þ

q : ð3:6Þ

Using this and Eq. (3.5) one can numerically compute the
area of the HM surface.

B. Area of the island surface

We find the anchoring surface (which is the island
surface after Page time) in similar spirit to the calculation
done in [29]. We consider the t ¼ 0 slice given by
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ds2jt¼0 ¼
1

r2

�
dr2

fðrÞ þ dx⃗2d−1

�
: ð3:7Þ

The area functional we want to minimize is

A ¼
Z

dr
1

rd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

fðrÞ þ x01ðrÞ2
s

¼
Z

drL; ð3:8Þ

where x01 ¼ dx1=dr and L is the Lagrangian (density). It
should be noted that we are considering area density as we
have suppressed other (d − 2) transverse directions, which
amounts to divide the area functional by (d − 2)-dimen-
sional volume. With the Lagrangian in Eq. (3.8), we can
find the equation of motion, which has to be solved using
the following boundary condition:

x1ð0Þ ¼ xR;
1

x01ðrÞ
				
x1¼0

¼ 0: ð3:9Þ

Using this, we should be able to find the anchoring surface.
However, as argued in [16] and later in [38], for the fixed
nongravitating radiation region, one can use the Dirichlet
conditions and both conditions are equivalent. Hence, we
extremize the action (3.8) with the following Dirichlet
boundary condition:

x1ðrTÞ ¼ 0; x1ð0Þ ¼ xR; ð3:10Þ

where xR is the point located on the boundary and given by

xR ¼
Z

rT

0

rd−1drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞðr2ðd−1ÞT − r2ðd−1ÞÞ

q : ð3:11Þ

This allows us to solve the anchoring surface xIsðrÞ as

xIsðrÞ ¼ xR −
Z

r

ϵ

rd−1drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞðr2ðd−1ÞT − r2ðd−1ÞÞ

q : ð3:12Þ

In this way, one encounters two possible extremal
surfaces in AdSdþ1 from which we choose the minimal
one to get the unitary Page curve. Without the scalar field,
the geometry is dual to the zero deformation field theory
living on the boundary of the bulk geometry. By deforming
the bath state with a relevant scalar operator one introduces
a bulk scalar perturbation that deforms the near-singularity
regime to a more general Kasner universe. For any
φ0=T3−Δ ¼ constant, we study the Page curves and find
a unique Page time. Then by changing the deformation, we
observe that the Page time becomes a monotonic function
of φ0=T3−Δ as shown in Fig. 2(b). The upshot is that the
higher Page time results from an increased coarse graining
of the bath degrees of freedom. This makes the authors in
[40] realize Page curves to probe the holographic RG flows.

IV. BATH DEFORMATIONS AND
SUBREGION COMPLEXITY

As discussed before, the HM surface is the preferred RT
surface before the Page time. Hence, the corresponding
subregion complexity amounts to evaluate the volume
between the HM surface and the brane [refer to Fig. 3(a),
where the shaded green region shows the volume].
However, at Page time, a transition happens. The constant
island surface becomes the preferred RT surface. Hence,
one computes the corresponding volume between the island
surface and the brane as shown in Fig. 3(b) marked by the
purple region. This section evaluates the corresponding
volumes and subregion complexities before and after Page
time for various deformations. As the transition of minimal
surfaces happens at Page time, we expect a discontinuous
behavior in complexity right at the Page time. We aim to
observe this discontinuous jump for different perturbations

FIG. 3. (a) Volume under HM surface and the brane, marked by the green region. (b) The island surface is denoted by xIsðrÞ. The purple
region gives the volume under the island surface.
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to understand its nature better. However, before jumping to
the main calculation, we briefly review the notion of
holographic subregion complexity that we will be using
in our following computations.

A. Holographic subregion complexity

The very idea of holographic subregion complexity is
inspired by the proposal made in [69].5 One starts by
considering a static time slice and a subregion in the
boundary and the corresponding minimal surface anchored
in that boundary subregion. The area of the minimal
surface is, of course, the entanglement entropy that we
considered before. However, as soon as the minimal surface
gets fixed, one can equivalently compute the volume
enclosed by the minimal surface. This gives an alternate
information-theoretic measure from the bulk point of view,
which has been conjectured to be dual to the complexity of
the boundary mixed states. The subregion complexity is
defined in the purview of the “complexity ¼ volume”
proposal [107–109] as

CA ¼ VðA; γAÞ
8πlAdSGN

; ð4:1Þ

where VðA; γAÞ is the volume enclosed by the boundary
subregion A, and the corresponding minimal surface is
denoted by γA. Note that we are considering a static time
slice and computing the volume enclosed by the minimal
surface on this slice. For time-dependent cases, we need to
resort to the covariantHRTproposal.However, herewe focus
only on the static case. Equippedwith the above ideas, we are
now able to calculate corresponding volumes and complex-
ities where the minimal surfaces are the HM surface (before
Page time) and island surface (after Page time).

B. Volume under the Hartman-Maldacena surface

We first compute the volume between the HM surface
and the brane. The HM surface and the island surface meet
at the boundary interface point xR. We can foliate the
region between the brane and the HM surface by an infinite
number of HM surfaces. We justify this by considering all
possible x1 ¼ constant slices

ds2jx1¼constant ¼
1

r2

�
−fðrÞe−χðrÞdt2þ dr2

fðrÞþ dx⃗2d−2

�
: ð4:2Þ

The minimal surface for each such x1 ¼ constant slice is a
HM surface. Therefore, we can choose it to foliate the
region between the brane and the HM surface located
at x1 ¼ xR. The ever-growing area of the HM surface is
given by

A ¼
Z

dt
rðtÞd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrðtÞÞe−χðrðtÞÞ þ _rðtÞ2

fðrðtÞÞ

s
; ð4:3Þ

which has been computed in Eq. (3.2). However, here we
are interested in calculating the subregion volume density.
This is given by

VHM−BrðtbÞ ¼ 2

Z
dtdx1
rðtÞd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrðtÞÞe−χðrðtÞ þ _rðtÞ2

fðrðtÞÞ

s

¼ 2xR

Z
dt

rðtÞd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðrðtÞÞe−χðrðtÞÞ þ _rðtÞ2

fðrðtÞÞ

s
:

ð4:4Þ

We substitute the HM solution in (4.4) and find the volume
density,

VHM−BrðtbÞ ¼ 2xR

Z
r̄

ϵ

1

rd
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrÞ þ eχðrÞðrd−1EÞ2
q : ð4:5Þ

We numerically evaluate the volume and the corresponding
subregion complexity using Eq. (4.1) and shown in Fig. 4.
The HM surface is ever-increasing; hence the volume
enclosed by the HM surface and the brane will also be
increasing with time. This increasing nature persists up to
the Page time and can be seen from Fig. 4. Here we have
computed the evolution for two different perturbations,
namely, φ0=T ¼ 0 (zero perturbation) and φ0=T ¼ 35 for
d ¼ 3 and Δ ¼ 2. We see that, with the increasing growth
of perturbation, the growth of volume decreases. Finally,
the HM surface ceases to become the minimal surface at

FIG. 4. Evolution of complexity with time for d ¼ 3 and
Δ ¼ 2. The increasing nature of the complexity comes from
the increasing growth of the HM surface until Page time; after
that complexity ceases to grow. This is due to the transition
between two minimal surfaces at Page time. Therefore, complex-
ity shows a discontinuous jump at Page time and captures the
transition. The plot has been shown for two different perturba-
tions, φ0=T ¼ 0 (zero perturbation) and φ0=T ¼ 35.

5See [71,91–106] for various computations of holographic and
subregion complexity.
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Page time, and the island surface takes over. However, the
HM surface still grows with time.

C. Volume under the island surface

In the previous section, we have computed the volume
between the HM surface and the brane. This subsection
evaluates the volume between the island surface and the
brane. As discussed before, the constant island surfaces are
the preferred RT surfaces after the Page time.
The subregion complexity from the black hole perspec-

tive is given by the volume enclosed by the island surface
and the physical brane. At t ¼ 0, (2.4) becomes

ds2jt¼0 ¼
1

r2

�
dr2

fðrÞ þ dx⃗2d−1

�
: ð4:6Þ

The volume density under the RT surface which is depicted
in Fig. 3(b) is

VIs−Br ¼ 2

Z
1

rd
drdx1ffiffiffiffiffiffiffiffiffi
fðrÞp ¼ 2

Z
rT

ϵ

xIsðrÞ
rd

ffiffiffiffiffiffiffiffiffi
fðrÞp dr; ð4:7Þ

where the embedding function xIsðrÞ is

xIsðrÞ ¼ xR −
Z

r

ϵ

rd−1drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞðr2ðd−1ÞT − r2ðd−1ÞÞ

q : ð4:8Þ

We again numerically calculate this volume, and the result
is shown in Fig. 4. However, there is a difference from the
previous results obtained for the HM surface. The volume
enclosed by the island surface and the brane is constant in
time and dominates after the Page time, see Fig. 4. Here, we
have similarly computed the complexities for two different
perturbations, φ0=T ¼ 0 (zero perturbation) and φ0=T ¼
35 for d ¼ 3 and Δ ¼ 2.

The overall evolution of complexity shows the following
pattern. When the ever-growing HM surface is minimal,
complexity grows over time. At Page time, island surfaces
become the preferred minimal surface and continue to be.
Hence, the transition between the two minimal surfaces is
well computed by the discontinuous jump of the corre-
sponding subregion complexities.
To understand this discontinuous jump quantitatively, we

define the difference between (4.5) and (4.7), which is a UV
finite quantity, δV at Page time as

δV ¼ VHM−Br − VIs−Br: ð4:9Þ

We again stress that we are interested in computing (4.9)
at t ¼ tP (Page time) because there is a discontinuity
in the holographic subregion complexity at the Page time
due to the autopurification. To understand its nature, an
obvious way is to deform the bath state by relevant
perturbations and realize the jump for various perturba-
tions. Specifically, we study the jump in complexity at
d ¼ 3, for different scaling dimensions. The result is shown
in Fig. 5(a). We see that, for a fixed scaling dimension, the
discontinuity decreases with the perturbation, consistent
with Fig. 4. Further, as we increase the scaling dimensions,
the corresponding jump in complexity decreases for a fixed
perturbation.
We also consider the discontinuous nature of com-

plexity with respect to Page time, shown in Fig. 5(b).
We see that the discontinuity also decreases with Page time.
However, we get the same plot of all Δ, implying that the
decreasing behavior is independent of scaling dimensions.
This is plausible, as the Page time also depends on the
perturbation [40].
It is interesting to see how the discontinuous behaviors of

volumes (and hence, subregion complexities) arise in a
simple setup. To see this, consider two strips of length l,
separated by a distance x as shown in Fig. 6 in d

FIG. 5. (a) The discontinuous behavior of complexity with the perturbation for different scaling dimensions. (b) The jump in
complexity with Page time. For all scaling dimensions, the pattern decreases and superimposes on each other. More explanation is given
in the text.
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dimensions. When the strips are close (right), the entan-
glement wedge is connected, and the volume is also
connected. However, when they are far apart (left), the
corresponding complexities are given by the volumes of
two disconnected pieces. Hence, as we increase the
separation, we transit from connected to the disconnected
phases, and there is a discontinuous jump in the corre-
sponding volume. However, here we do not consider any
transition; rather, we think the connected and disconnected
geometries exist on their own. This is reasonable, as, for
any value of x, we can always consider a connected
geometry, even if it is not a minimal surface. We are only
interested in computing the volumes of connected and
disconnected geometry for any separation x and try to see
how the difference of their respective volumes behaves as
we increase the separation. We follow [71] to compute
these volumes. The connected geometry has the volume

Vc ¼ −
c0

ðxþ 2lÞd−1 þ
c0
xd−1

; ð4:10Þ

where c0 is a constant [71]. However, the disconnected
geometry consists of two identical pieces, which together
has the volume

Vdc ¼ −
2c0
ld−1

: ð4:11Þ

Hence, the volume difference and the difference in com-
plexity in connected and disconnected geometry can be
computed as [71]

δC ¼ Cc − Cdc ¼ c0

�
−

1

ðxþ 2lÞd−2 þ
1

xd−2
þ 2

ld−2

�
:

ð4:12Þ

This volume (complexity) is always positive, as the
enclosed volume of the connected region is always greater
than that of the two separate regions. We again stress that
we do not consider any transition from connected to
disconnected geometry, so we do not talk about any
entanglement wedge. We can see how this difference δC
behaves as we increase the separation x for a fixed l. In
Fig. 7, we have plotted δC with respect to x=l for AdS4.

The close similarity between Figs. 5(a) and 7 is striking.
Note that the asymptotic value in Eq. (7) depends on the
value of l, which is constant. The discontinuity of volume
behaves similarly, if one considers x=l as analogous to the
perturbation φ0=T.

6 One way to think about this particular
behavioral similarity is by considering the size of the
radiation subsystem. This can be understood if we consider
another set of RG flow by changing the size of the radiation
subsystem, which is supposed to be another valid parameter
that can change the Page time and hence the jump of
complexity at Page time as well. In that case, from this
simple example of disjoint subsystem volumes, we can
intuitively infer a similar relation between the Page time
and the subsystem size (x=l in this case is a little different
as, in this particular example, the distance between two
disjoint subsystems plays the role of the parameter which
changes; in the case of subsystem size, l will be the
parameter one is supposed to vary). Another interesting
choice could be taking disjoint subsystems in the radiation
side and increase/decrease both of them along some RG
flow. Overall, the expectation would be that in such a
RG flow as well, the transition between two competing
minimal surfaces will take place at Page time. Page time
will have similar growth and saturation behavior as shown
in Fig. 2(b), but with some parameter similar to x=l. This
also intuitively indicates that, for different sets of variables
that can induce a RG flow, the behavior of the jump of
volumes show some kind of universal behavior. However, it
should be noted that, in the braneworld model, there is no
disconnected regions in the bath. Hence, one should not
think of a one-to-one map between two different descrip-
tions. They are described purely as an analogy, especially

FIG. 6. Two strips of length l are separated by distance x, in
general, d dimensions. In this picture, the strips are drawn by
lines. As we change the separation between them, we observe a
transition between the minimal surfaces, and as a result, the
enclosed volume jumps discontinuously.

FIG. 7. The difference δCwith respect to x=l for AdS4 (d ¼ 3).
Here we have chosen l ¼ 2. The plot has a close similarity
with Fig. 5(a).

6One can think that x might play the role of time here, but as
we have argued before, we are not considering any transition. We
are simply sitting at the Page time. Hence, x does not play the role
of time.
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how to think of the discontinuous behavior of complexity in
the braneworld model in a simple geometric way.

V. DISCUSSIONS AND OUTLOOK

In this paper, we have studied the holographic subregion
complexity in a braneworld model with various deforma-
tion in the bath degrees of freedom. More specifically, we
deform the bath state by a relevant scalar operator. This, in
turn, induces a renormalization group flow in the bulk state
from AdS-Schwarzschild to Kasner universe. We study the
corresponding model in a doubly holographic setup. For
each relevant perturbation, the model consists of two
competing minimal surfaces: the HM surface and the island
surface. We investigate the behavior for a class of such
RG flows induced by the parameters of the relevant
deformations and check how the deformation parameters
change the volumes under the HM and island surfaces.
It was previously found that, as the parameter under study
(in our case, this is φ0=Td−Δ) is increased, the Page time
(where the quantum extremal surface goes through a
transition) increases initially before achieving a saturation.
We have studied the dependence on the dimension of the
operator inserted in the boundary (Δ) with dimension
d ¼ 3. The growth of the Page time is increased as we
increase the operator dimension. It also saturates to a higher
value in such a case. These behaviors regarding Page time
were found primarily in [40]. Our main focus was to study
the jump (positive from radiation side and negative from
black hole side) in subregion volume at Page time along
with these deformations. Our main results are summa-
rized below.
(1) The Hartman-Maldacena volume associated with the

black hole side decreases with increasing φ0=T,
whereas the island volume increases for the same
case (as shown in Fig. 4 with d − Δ ¼ 1). This
clearly indicates the fact that the dip at Page time
decreases with increasing deformation.

(2) When we study the behavior of the jump δC
extensively with varying deformations, we find that
it decreases initially with increasing deformation and
saturates at a later point, similar to the saturation of
Page time. The rate of decrease increases with the
increasing value of the operator dimension. Again
this is similar in spirit to the behavior of Page time,
in which case the rate of increase increases with
increasing operator dimension.

(3) Motivated by these similarities, when we plot δC vs
tP=rh, we find that increasing Page time indeed
seems to decrease the jump at Page time. However,
the Page time and the jump both are present even in
the absence of such a deformation picture. This
motivates us to conjecture that the jump should
depend on the Page time in a similar model even in
the absence of such deformation parameters. This
understanding is crucial because, in all the previous

studies concerning this jump [28–30], the Page time
and the jump were studied numerically, and there
was no clear way to understand this relation between
them. We believe this result is a model-indepen-
dent fact.

(4) Another interesting and important observation is that
the δC vs tP=rh plots for different Δ overlap with
each other. This also supports our conjecture about
the universality of the relation between the jump and
the Page time. It reflects the fact that, even if we
change the operator dimension through which the
deformation is introduced, the slope of the δC vs
tP=rh curve does not change. This universality also
relates these different sets of RG flows in a way. It
means that this particular ratio is invariant of the
operator dimension. It will be interesting to under-
stand the implication of this fact in more detail.

In Sec. IV C, we have also tried to show an analogous
behavior of complexity jump in a simple setup where the
distance between two joint subsystems in the boundary is
varied. The nature of the plot is closely similar to what we
find in the case of the complexity jump vs deformation
parameter plot. We use this example behavior to argue that
this indicates that other parameters like the size of the
radiation subsystem could also change this jump at Page
time. In this paper, we observed the change of the jump
along with a set of RG flows that change the Page time, and
hence we can comment on how the jump might depend
upon the Page time. It would be interesting to model a
different set of RG flows by changing the size of the
radiation subsystem and check if a similar behavior persists
between the jump of complexity at Page time and the
subsystem size. One could also consider disjoint subsys-
tems and vary both the size of the subsystems and the
distance between them. In general, it remains an open
problem to fully understand how the Page time and hence
the jump of complexity at that time depend on different
parameters of the theory.
In [28], authors studied complexity of the radiation

subsystem and in that case the jump at Page time is
positive. This jump is exactly the same in magnitude to
the negative jump in the case of the black hole subsystem as
was found in [29]. The authors of [28] attributed this jump
in complexity of radiation to the purification of modes
between island region and radiation region. The idea is that,
although field theoretically the mixed state complexity we
are studying is supposed to be given by complexity of
purification, there is an extra autopurification of certain
modes going on at Page time due to inclusion of the islands.
For purification of the other modes, one still has to add an
auxiliary system in a field theory setup, whereas the island
modes act as purifying partners of certain modes for which
one does not need to add any auxiliary system by hand.
This autopurification results in the extra complication
(simplicity) at Page time for the radiation (black hole)
subsystem. Let us assume that this extra set of gates that

ARANYA BHATTACHARYA et al. PHYS. REV. D 105, 066019 (2022)

066019-10



one needs to introduce to mimic the autopurification is
the equivalent of the magnitude of this jump from a field
theoretic point of view. Our results from this paper suggests
that the number of these autopurifying gates decreases as
the relevant deformation is increased. We believe that this
means the number of modes getting purified due to the
inclusion of islands also decreases with increased defor-
mation. This can be roughly thought of as the island region
containing less and less number of radiation partner modes
in them as the deformation is increased. However, this
argument is a little bit stretched. One would need a far
better understanding of what is happening physically in
these island models from a field theoretic point of view
to check this argument from explicit field theoretic
computations.
An interesting direction to extend our study would be to

examine the covariant proposal directly instead of taking a
fixed time slice. This case has subtle issues that were
previously addressed in [29]. An outstanding question will
be to understand the corresponding jump in subregion
complexity and its dependence on the perturbation para-
meters if one adds a second brane in the model [16]
and considering a gravitating bath. Further, recently a
formulation of the subregion volume has been given in

terms of bit threads [110,111]. The exciting open question
is to understand whether bit thread formulation can provide
a more vivid picture of the discontinuity of the subregion
complexity in the doubly holographic braneworld model,
perhaps along the line of [112,113].
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