
Solar reflection of light dark matter with heavy mediators

Timon Emken *

Chalmers University of Technology, Department of Physics, SE-412 96 Göteborg, Sweden
and The Oskar Klein Centre, Department of Physics, Stockholm University,

AlbaNova, SE-10691 Stockholm, Sweden

(Received 5 March 2021; accepted 27 February 2022; published 25 March 2022)

The direct detection of sub-GeV dark matter particles is hampered by their low energy deposits. If the
maximum deposit allowed by kinematics falls below the energy threshold of a direct detection experiment, it
is unable to detect these light particles. Mechanisms that boost particles from the Galactic halo can therefore
extend the sensitivity of terrestrial direct dark matter searches to lower masses. Sub-GeVand sub-MeV dark
matter particles can be efficiently accelerated by colliding with thermal nuclei and electrons of the solar
plasma, respectively. This process is called “solar reflection.” In this paper, we present a comprehensive study
of solar reflection via electron and/or nuclear scatterings using Monte Carlo simulations of dark matter
trajectories through the Sun. We study the properties of the boosted dark matter particles, obtain exclusion
limits based on various experiments probing both electron and nuclear recoils, and derive projections for
future detectors. In addition, we find and quantify a novel, distinct annual modulation signature of a potential
solar reflection signal which critically depends on the anisotropies of the boosted dark matter flux ejected
from the Sun. Along with this paper, we also publish the corresponding research software.
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I. INTRODUCTION

Around the globe, a great variety of direct detection
experiments are searching for the dark matter (DM) of our
Galaxy. These experiments attempt to verify the hypoth-
esis that the majority of matter in the Universe consists of
new particles which occasionally interact and scatter with
ordinary matter through a nongravitational portal inter-
action [1–3]. They are motivated by a collection of
astronomical observations of gravitational anomalies on
astrophysical and cosmological scales, which point to the
presence of vast amounts of invisible matter which
governs the dynamics of galaxies, galaxy clusters, and
the cosmos as a whole [4,5].
Originally, direct detection experiments were guided by

the so-called “WIMP miracle,” looking for nuclear recoils
caused by weakly interacting massive particles (WIMPs)
with electroweak scale masses and interactions. Large-scale
experiments such as XENON1T have been very successful
in probing and excluding large portions of the parameter
space, setting tight constraints on the WIMP paradigm [6].
Over the last decade, the search strategy has broadened more

and more to include detection for new particles with masses
below a GeV. With the exception of a few low-threshold
direct detection experiments such as CRESST [7–9], nuclear
recoils caused by sub-GeV DM particles are typically too
soft to be observed. One way to probe nuclear interactions of
low-mass DM is to exploit the Migdal effect or bremsstrah-
lung, i.e., the emission of an observable electron or photon,
respectively, after an otherwise unobservable nuclear recoil
[10,11]. This strategy has been applied for different experi-
ments to extend the experimental reach such as CDEX-1B
[12], EDELWEISS [13], LUX [14], liquid argon detectors
[15], or XENON1T [16].
However, the main shift of strategy that enabled direct

searches for sub-GeV DM was to look for DM-electron
interactions instead of nuclear recoils [17,18]. At this point,
the null results of a number of electron scattering experi-
ments constrain the sub-GeV DM paradigm. Some of these
experiments probe ionization in liquid noble targets, namely
XENON10 [19–21], XENON100 [21,22], XENON1T
[23],1 DarkSide-50 [26], and PandaX [27]. Other experi-
ments look for electron excitations in (semiconductor)
crystal targets setting constraints on DM masses as low as
500 keV [28–30], most notably SENSEI [31–34], DAMIC
[35], EDELWEISS [36], and SuperCDMS [37,38]. For even
lower masses, these experiments are not able to observe
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1Most recently, XENON1T has reported an excess of electron
recoil events, whose unknown origin is currently being studied
[24]. Solar reflection has been among the many proposed
explanations [25].
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DM-electron interactions, since the kinetic energy of halo
DM particles would not suffice to excite or ionize electrons.
One approach to achieve sensitivity of terrestrial searches to
sub-MeV DM mass is the development of new detection
strategies and detector technologies and the application of
more exotic condensed matter systems with low, sub-eV
energy gaps as target materials; see e.g., [39–41].
An alternative approach, which requires neither new

detection technologies nor additional theoretical assump-
tions, is the universal idea to identify processes in the
Milky Way which accelerateDM particles and predict their
phenomenology in direct detection experiments. Such
particles could have gained enough energy to trigger a
detector, which can thereby probe masses far below what
was originally expected based on standard halo DM alone.
In addition, the high-energy DM population often features a
distinct phenomenology and new signatures in direct
detection experiments, which could help in distinguishing
them from both ordinary halo DM and backgrounds. One
way for a strongly interacting DM particle to gain kinetic
energy is to “upscatter” by a cosmic ray particle [42–47].
Existing experiments can search for the resulting (semi)
relativistic particle population. Similarly, the Sun can act as
a DM accelerator boosting halo particle into the Solar
System [48–51].
The idea of solar reflection, i.e., the acceleration of DM

particles of the Galactic halo by scatterings with thermal
solar nuclei or electrons was first proposed in [49,50]. At
any given time, a large number of DM particles are falling
into the gravitational well of the Sun and passing through the
solar plasma. Along their underground trajectories there is a
certain probability of scattering on an electron or nucleus.
This way, a light DM particle can gain kinetic energy
through one or multiple scatterings before getting ejected
from the Sun. As a consequence, we expect a flux of solar
reflected DM (SRDM) particles streaming radially from the
Sun. Terrestrial DM detectors can look for these particles
the sameway as for halo DMwith the difference that SRDM
particles can have more kinetic energy than even the fastest
of the halo particles. Solar reflection does not require
additional assumptions, as the interaction probed in the
detector is typically the same as the one in the Sun boosting
the DM particle. Therefore, an additional, often highly
energetic population of solar reflected DM particles in the
Solar System is an intrinsic feature of any DM particle
scenario with sizable DM-matter interaction rates.
In a previous work [50], we established and studied the

SRDM flux caused by a single nuclear scattering inside the
Sun with analytic methods. We explored the prospects of
detecting SRDM by extending the theory of gravitational
capture of WIMPs developed by Press, Spergel, and Gould
[52–55]. These analytic results were understood to be
conservative, as contributions to the SRDM flux caused
by multiple scatterings are not accounted for by the analytic
formalism. Their contributions are best described using

Monte Carlo (MC) simulations of DM trajectories through
the Sun. Figure 1 depicts an example trajectory of a DM
particle traversing the solar plasma, where we assumed a
DM mass of 100 MeV and spin-independent nuclear
interactions. It can be seen that the particle scatters many
times losing and gaining energy in the process. While it
gets gravitationally bound temporarily, in the end the DM
particle escapes the Sun with increased speed.
The first simulations of DM traversing the Sun were

performed in the context of energy transport and WIMP
evaporation [56]. Here, the MC approach was used to
evaluate the distribution of DM inside the Sun in com-
parison to the analytic work by Press and Spergel [52,57].
Similar DM simulations were also used to study the impact
of underground scatterings inside Earth and to quantify
daily signal modulations [58–62] and the loss of under-
ground detectors’ sensitivity to strongly interacting DM
[63–67]. In the context of solar reflection, MC simulations
were used for the scenario where DM interacts with
electrons only [49].
In this paper, we extend this work and present the most

comprehensive MC study to date of solar reflection of sub-
GeV and sub-MeV DM particles and their detection in
terrestrial laboratories. In addition to leptophilic DM, solar
reflection via nuclear scatterings is studied using MC
simulations for the first time. We also consider a DM model
where nuclear and electron interactions are present simulta-
neously, which has not been considered before. With respect
to the MC simulations, this paper includes an exhaustive
documentation of the involved physical processes with a
high level of detail. Furthermore, our simulations improve
upon previous studies and represent the most general and
thorough description of solar reflection so far by using

FIG. 1. An illustrative example of a 100 MeV mass DM
particle’s trajectory through the Sun obtained with MC simu-
lations. After having scattered around 60 times on solar nuclei,
getting decelerated, accelerated, and temporarily captured gravi-
tationally, it finally gets reflected with around 10 times its initial
kinetic energy.
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advanced numerical methods and following high software
engineering standards.
Using these simulations, we generate precise MC esti-

mates of the DM flux emitted from the Sun and passing
through Earth, and we investigate various aspects and
properties of the SRDM particles. The inclusion of these
particles in direct detection analyses can extend the sensi-
tivity of the respective detectors to lower masses. Both for
nuclear and electron recoil searches, we derive SRDM
exclusion limits of existing experiments and compare those
to the standard halo limits. Furthermore we obtain projec-
tions for next-generation experiments and study the pros-
pects of future searches for SRDM. Beyond constraints, we
also focus on the phenomenology of a potential DM signal
from the Sun. In particular, we predict a novel, annual signal
modulation resulting from a nontrivial combination of the
anisotropy of the solar reflection flux and the eccentricity of
Earth’s orbit.
Lastly, a central result of this work is the simulation

code itself. The MC simulation tool Dark Matter
Simulation Code for Underground Scattering—Sun
Edition (DaMaSCUS-SUN) which was used to obtain our
results is the first publicly available and ready to use code
describing solar reflection [68].
Concerning the paper’s structure, we start with a general

discussion and description of the idea and phenomenology
of solar reflection in Sec. II. Section III describes the MC
simulations implemented in the DaMaSCUS-SUN code. This is
followed by a review of the DM models and interactions
considered in this work in Sec. IV. The last two chapters,
Secs. V and VI, discuss and summarize our findings. Lastly,
two appendixes contain more details on the trajectory
simulation. Appendix A reviews the equations of motion
and their analytic and numeric solutions. This appendix also
covers the generation of initial conditions and sampling of
target velocities in greater detail than the main body of the
paper. The solar model used for this work is described and
reviewed in Appendix B. Throughout this paper, we use
natural units with c ¼ ℏ ¼ kB ¼ 1.

II. SOLAR REFLECTION OF LIGHT DM

In this section, we present the idea of solar reflection as a
process of accelerating DM particles and how these boosted
particles could be detected. We start by reviewing the
standard halo model (SHM) and how the hard speed cutoff
of the SHM translates into a lower bound on observable
DM masses, a limit that can be circumvented by taking
solar reflection into account.

A. Dark matter in the Galactic halo

A central source of uncertainty in making predictions
for direct detection experiments is the halo model, i.e.,
the assumptions about the local properties of the DM
particles of the Galactic halo [69]. The conventional

choice is the SHM, which models the local DM as a
population of particles with constant mass density ρχ ≈
0.4 GeVcm−3 [70,71] following a Maxwell-Boltzmann
velocity distribution truncated at the galactic escape
velocity vgal ≈ 544 km s−1 [72],2

fhaloðvÞ ¼
1

Nescπ
3=2v30

exp

�
−
v2

v20

�
Θðvgal − jvjÞ; ð1aÞ

where the normalization constant reads

Nesc ≡ erf

�
vgal
v0

�
−

2ffiffiffi
π

p vgal
v0

exp

�
−
v2gal
v20

�
: ð1bÞ

Here, the velocity dispersion v0 ≈ 220 km s−1 is set to the
Sun’s circular velocity [73], and ΘðxÞ is the unit step
function.
To describe the DM distribution in the rest frame of a

direct detection experiment moving with velocity vobs, this
distribution needs to be transformed via a Galilean boost:

fobsðvÞ ¼ fhaloðv þ vobsÞ: ð2Þ

As such, the maximum speed a DM particles can pass
through the detector with is vmax ¼ vgal þ jvobsj, which
directly corresponds to the maximum nuclear recoil energy
they can possibly induce in a collision with a nucleus of

massmN , given by Emax
R ¼ 2μ2χN

mN
v2max. Assuming a DM mass

ofmχ , μχN denotes the reduced mass of the DM particle and
the nucleus. If Emax

R falls below the experimental nuclear
recoil threshold Ethr, the DM particles do not have enough
kinetic energy to trigger the detector. Hence, DM can only
be detected by a nuclear recoil experiment if

mχ ≳ mNffiffiffiffiffiffiffi
2mN
Ethr

q
vmax − 1

: ð3Þ

Experimental measures to probe lower DM masses are
therefore the construction of detectors with lower thresh-
olds and lighter nuclear target masses, a strategy followed
e.g., by the CRESST experiments [7–9]. A similar argu-
ment applies to DM-electron scattering experiments, where
a DM particle can essentially transfer all its kinetic energy
to the electron provided that it exceeds the energy gap Egap

for excitations or ionizations:

mχ ≳ 2Egap

v2max
: ð4Þ

2The results of this paper do not depend critically on these
choices, as we will demonstrate in Sec. VA.
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In this paper, instead of considering the possibility to
detect standard halo DM, we explore the detection of a
different population of particles with higher kinetic
energies, generated and accelerated by solar reflection.
Considering a DM population with a higher maximum
speed vmax than present in the SHM extends the discovery
reach of direct detection experiments to lower masses
following Eqs. (3) and (4). Assuming that DM interacts
with ordinary matter through nongravitational interactions
(i.e., the general assumption of direct detection experi-
ments), the SRDM component is an intrinsic part of the
DM population in the Solar System and does not rely on
further assumptions.
It is crucial for its description to understand the orbits of

DM particles as they pass through the Sun.

B. Dark matter in the Sun

1. Falling into the Sun

Incoming DM particles approach the Sun following a
hyperbolic Kepler orbit (see Appendix A 2), getting
focused and accelerated by the gravitational pull. For a
given DM speed u asymptotically far away from the Sun,
energy conservation determines the particle speed wðu; rÞ
at a finite distance r:

wðu; rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ vescðrÞ2

q
; ð5Þ

where vescðrÞ is the local escape velocity from the Sun’s
gravitational well (not to be confused with the galactic
escape velocity vgal). Outside the Sun, it is given by

vescðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2GNM⊙

r

q
, where GN is Newton’s constant and

M⊙ is the total solar mass. Inside the Sun, the local escape
velocity is given by Eq. (B3) of Appendix B, which
summarizes the chosen solar model [74].
While the determination of the particle’s full velocity

vector w close to the Sun requires a few additional steps
(see Appendix A 2), the infalling particles’ local speed
distribution in the Solar neighborhood can be found using
Liouville’s theorem [55]:

f⊙ðw; rÞ ¼ f⊙ðuðw; rÞÞ; ð6Þ

where uðw; rÞ is the inversion of Eq. (5) and f⊙ðvÞ is the
speed distribution in the Sun’s rest frame given by Eq. (2)
with vobs ¼ v⊙. Here, v⊙ is the Sun’s velocity in the
galactic rest frame given in Eq. (B4). The resulting
distributions are shown in Fig. 2 for selected distances
from the solar center.
If the periapsis of a DM particle’s orbit is smaller than the

Sun’s radius R⊙, it will pass the solar surface and propagate
through the hot plasma of the Sun. We can compute the
total rate Γ of DM particle passing into the Sun to be
[50,53]

ΓðmχÞ ¼ nχπR2
⊙

Z
duf⊙ðuÞ

�
uþ vescðR⊙Þ2

u

�
ð7aÞ

¼ ρχ
mχ

πR2
⊙ðhui þ vescðR⊙Þ2hu−1iÞ ð7bÞ

≈1.1 × 1033
�

mχ

MeV

�
−1

s−1; ð7cÞ

where vescðR⊙Þ ≈ 618 km s−1 [74].

2. Scattering rate

While the particle moves along its no-longer Keplerian
orbit through the Sun’s bulk mass, there is a probability of
scattering on constituents of the solar plasma, either
thermal nuclei or electrons, depending on the DM-matter
interaction cross sections and the particle’s location and
speed. The total scattering rate as a function of the particle
radial distance r to the solar center and its velocity vχ is
given by [52–54]

Ωðr; vχÞ ¼
X
i

niðrÞhσijvχ − vT;iji: ð8Þ

In this expression, the index i runs over all solar targets, i.e.,
electrons and the various nuclear isotopes that make up the
star. We obtain their number densities niðrÞ as part of the
solar model, in our case the standard solar model (AGSS09)
[74], which is reviewed in Appendix B. Furthermore, σi
denotes the total DM scattering cross section with the ith
target and depends on the assumed DM particle model (see
Sec. IV), and vT is the target’s velocity. The brackets h·i

FIG. 2. Speed distributions fobsðw; rÞ of accelerating halo DM
falling into the Sun’s gravitational well as described by Eq. (6).
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denote a thermal average. In cases where the total cross
section is independent of the relative speed jvχ − vT j, as is
the case e.g., for spin-independent contact interactions,
we can exploit that hσjvχ − vT ji ¼ σhjvχ − vT ji applies.
Assuming the solar targets’ speed follows a Maxwell-
Boltzmann distribution, we can evaluate the thermal
average of the relative speed analytically:

hjvχ − vT;iji ¼
Z

d3vT jvχ − vT jfiðvT; TÞ

¼ 1þ 2κ2i v
2
χ

2κ2i vχ
erfðκivχÞ þ

1ffiffiffi
π

p
κi
e−κ

2
i v

2
χ ; ð9Þ

where vχ ≡ jvχ j. We used the probability density function
(PDF) of the Maxwell-Boltzmann distribution for a target
particle of mass mi and temperature T:

fiðvT; TÞ ¼
κ3

π3=2
e−κ

2
i v

2
T ; ð10Þ

with κi ≡
ffiffiffiffimi
2T

p
.

3. Kinematics

By scattering on a thermal target, a DM particle may lose
or gain kinetic energy, depending on the relation of its
kinetic energy to the thermal energy of the plasma.
Assuming its mass and velocity to be mχ and vχ , respec-
tively, the DM particle’s new velocity after scattering on a
target of mass mT and velocity vT is given by

v0χ ¼
mT jvχ − vT j
mT þmχ

nþmχvχ þmTvT
mT þmχ

: ð11Þ

Here, we introduced the unit vector n, which points toward
the new DM velocity in the center-of-mass frame of the
scattering process. The angle α between n and vχ is called

the scattering angle. Hence, the new velocity, and also the
question if the DM particle got accelerated or decelerated,
is determined by the scattering angle α and the target’s
velocity vT. In the case of spin-independent contact
interactions, the scattering is approximately isotropic,
i.e., cos α follows the uniform distribution U ½−1;1�, whereas
we sample vT from a thermal Maxwell-Boltzmann distri-
bution given by Eq. (10) weighted by the velocity’s
contribution to the overall scattering probability (for more
details see Appendix A 5).
The distribution of the final DM speed v0χ after

scattering on thermal protons (electrons) with temperature
T ¼ 2 × 106 K is shown in the left (right) panel of Fig. 3
depending on the DM mass.3 In the case of sub-GeV DM
masses and nuclear interactions with protons, we find that
deceleration becomes more likely for heavier masses.
Above the proton mass, most DM particles lose kinetic
energy by scattering on a thermal proton. In contrast, a
lighter DM particle e.g., withmχ ¼ 10 MeV has an ∼50%
chance of getting accelerated.
A more efficient process to speed up low-mass DM

particles is a collision with a thermal electron. Due to the
lower target mass, thermal electrons are faster than the
protons of the plasma. Consequently, a scattering
between a sub-MeV mass DM particle and a thermal
electron almost always results in an acceleration as seen
in the right panel of Fig. 3. Just as for proton targets,
lighter particles are much more likely to get accelerated to
higher speeds.

FIG. 3. Distribution of the DM speed v0χ after scattering isotropically on a thermal proton (left) and electron (right). The vertical dashed
line shows the assumed initial speed vχ ¼ 500 km=s. The colors denote various DMmasses. The intervals shaded in (dark) gray indicate
the 1σ (2σ) variation of the target speeds around their mean and thereby illustrate the typical speeds of the thermal targets.

3These distributions are obtained by MC sampling the iso-
tropic scattering angle α and target velocity vT, generating a large
sample of final speeds v0χ . We obtain a smooth estimate of the
PDFs fðv0χÞ via kernel density estimation. However, it should be
noted that the distribution can also be expressed analytically for
isotropic scatterings [50].
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4. Reflection flux estimate

In order to get a first idea about the resulting particle flux
we can expect in our terrestrial laboratories, we can, for the
moment, absorb our ignorance about the details of the
reflection process into an average probability prefl of a DM
particle entering the Sun to get reflected, i.e., to scatter once
or multiple times on solar nuclei and electrons and escaping
the Sun afterward. Using the total rate ΓðmχÞ of halo DM
particles falling into the Sun given by Eq. (7), we can
estimate the total reflection rateR⊙ and SRDM fluxΦ⊙ on
Earth:

R⊙ðmχÞ ¼ preflΓðmχÞ; ð12Þ

Φ⊙ðmχÞ ¼
R⊙

4πl2

≈ 3.8 × 105prefl

�
mχ

MeV

�
−1

s−1 cm−2; ð13Þ

where we substituted l ¼ 1 AU. It goes without saying
that this is a highly suppressed particle flux, compared to
the standard halo flux:

ΦhaloðmχÞ ≈ 1.3 × 1010
�

mχ

MeV

�
−1

s−1 cm−2: ð14Þ

However, the reflected particles might have higher kinetic
energy than any particle of the Galactic halo. Our MC
simulations will reveal not just the value of prefl and thereby
the total flux Φ⊙, but also its speed distribution encoded in
the differential SRDM flux dΦ⊙

dvχ
.

C. Anisotropy of solar reflection flux

One central question with important implications is if the
SRDM flux gets ejected by the Sun isotropically. While the

velocity distribution of the DM particles of the Galactic
halo is indeed assumed to be isotropic (in the standard halo
model), the boost into the Sun’s rest frame moving with
velocity v⊙ introduces a dipole commonly called the “DM
wind.” This boost breaks the isotropy and reduces the
spherical symmetry of the distribution to an axisymmetric
distribution with symmetry axis along v⊙, as illustrated in
the left panel of Fig. 4. In earlier works, it was assumed that
the SRDM particle flux was ejected isotropically by the
Sun [49,50]. However, this was not verified, and wewant to
study if traces of the initial anisotropy survive the reflection
process. Such anisotropies would have important implica-
tions for the time dependence of potential SRDM signals in
terrestrial detectors, as we will discuss in Sec. II E.
Figure 4 also introduces the isoreflection angle θ as the

angle between the Sun’s velocity v⊙ and Earth’s location
x⊕ in heliocentric coordinates:

θ ¼ ∢ðx⊕; v⊙Þ; ð15Þ

which will be a useful quantity in studying anisotropies.
The isoreflection angle θ is the polar angle of our
symmetry axis, and as such quantities like the SRDM
flux or detection signal rates are constant along constant
values of θ justifying the name.4

As Earth orbits the Sun, its local isoreflection angle
oscillates between ∼60° (around September 4) and ∼120°
(around March 2) as shown in the right panel of Fig. 4.5 If
the SRDM flux shows anisotropies, Earth might at certain
periods of the year pass through regions of the Solar System
with increased or decreased DM flux from the Sun. This
would lead to a new type of annual modulation caused by

FIG. 4. The left panel depicts the symmetry axis along the Sun’s velocity and the isoreflection angle θ of Earth, i.e., the polar angle of
the symmetry axis defined in Eq. (15). Its time evolution θðtÞ over the course of one year is shown in the right panel. Along its Kepler
orbit, Earth approximately covers the interval θ ∈ ½60°; 120°�, reaching the maximum and minimum on March 2 and September 4,
respectively.

4The angle θ is similar to the isodetection angle defined and
used in the context of daily signal modulations [58–62,75].

5The time-dependent position vector of planet Earth in helio-
centric coordinates is given e.g., in [76].

TIMON EMKEN PHYS. REV. D 105, 063020 (2022)

063020-6



the anisotropy of the SRDM particle flux. We discuss signal
modulations further in Sec. II E and present corresponding
results in Sec. V B.

D. Direct detection of solar reflected DM

Once we know the total flux and spectrum of SRDM
particles passing through Earth, we can start making
predictions for the signal events they can trigger in terrestrial
direct detection experiments and their phenomenological
signatures. As a first step, we express the well-known
nuclear and electron recoil spectra in terms of an unspecified
differential flux of DM particles dΦχ

dvχ
, where vχ is the

DM speed.

1. Signal event spectra

Given a generic differential DM particle flux dΦχ

dvχ
through

a detector target consisting of NT nuclei, the resulting
nuclear recoil spectrum is given by [77]

dR
dER

¼ NT

Z
vχ>vmin

dvχ
dΦχ

dvχ

dσχN
dER

: ð16Þ

Here, we introduced the differential cross section dσχN
dER

for
elastic DM-nucleus scatterings with recoil energy ER. This
cross section is determined by the underlying model
assumptions, and we will go into further details on the
DM models studied in this paper in Sec. IV. Furthermore,
the minimum speed vmin of a DM particle required by the
scattering kinematics to make a nucleus of mass mN recoil
with energy ER is given by

vmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mNER

2μ2χN

s
; ð17Þ

where μij again denotes the reduced mass.
When searching for nuclear recoils caused by halo DM

alone, we would have to substitute the corresponding
differential halo particle flux:

dΦχ

dvχ
→

dΦhalo

dvχ
¼ ρχ

mχ
vχfobsðvχÞ; ð18Þ

where fobsðvχÞ is the local DM speed distribution corre-
sponding to Eq. (2).6 By substituting Eq. (18) into (16), we
reobtain the nuclear recoil spectrum in its usual form.
Because we are interested in the recoil spectrum caused

by DM particles reflected and accelerated by the Sun, the

differential DM flux dΦχ

dvχ
in Eq. (16) is the sum of the halo

and the solar reflection flux. Hence, we obtain the nuclear
recoil spectrum caused by both DM populations of the
Solar System as

dR
dER

¼ NT

Z
dvχ

�
dΦhalo

dvχ
þ dΦ⊙

dvχ

�
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡dΦχ
dvχ

dσχN
dER

: ð19Þ

However, considering both fluxes simultaneously is rarely
necessary. We discussed earlier how the flux of halo DM
completely dominates the DM flux reflected from the Sun.
Hence, if the halo particles are detectable, the contributions
of the first term of Eq. (19) will always dominate the total
spectrum, and the contribution of SRDM can safely be
neglected. In contrast, if the DM mass is too low, even the
most energetic halo particle is unable to leave a trace in the
detector, and the first term vanishes. In that case, the only
observable DM particles are the ones boosted by the Sun,
and only the second term of Eq. (19) contributes.
Besides nuclear recoils, we can also compute the energy

spectra of DM-electron scatterings in atoms and semi-
conductors. Starting with atoms, the differential event rate
in a target of NT atoms of ionizing the atomic shells with
quantum numbers ðn;lÞ is given by [17,18,29]

dRnl
ion

dEe
¼NT

Z
dq2

4Ee

Z
v>vmin

dvχ
dΦχ

dvχ

dσχe
dq2

jfnlionðEe;qÞj2; ð20Þ

where Ee is the final energy of the released electron, q is the
momentum transfer, and fnlionðEe; qÞ is the ionization form
factor of the atomic ðn;lÞ orbital. Regarding the ionization
form factor, we use the tabulated values obtained in [78],
which also describes the details of the initial and final
electron states. For low momentum transfers, we use the
dipole approximation

jfnlionðEe; qÞj2 ¼
�
q
q0

�
2

jfnlionðEe; q0Þj2; ð21Þ

which is valid for q; q0 ≲ 1 keV [79].
As opposed to nuclear recoils, DM-electron scatterings

are inelastic. The kinematic threshold on the DM speed to
transfer an energy ΔE to a bound electron, similar to
Eq. (17) for nuclear recoils, is given by

vmin ¼
ΔE
q

þ q
2mχ

: ð22Þ

In the case of ionization, the energy deposit ΔE consists of
both the binding energy and the final electron’s kinetic
energy, i.e., ΔE ¼ jEnl

B j þ Ee. We will specify the differ-

ential cross section dσχe
dq2 of elastic DM-electron scatterings

in Sec. IV.

6In this work, we are not interested in directional detection and
always integrate over the directions of the DM velocity vχ when
computing event rates. The DM speed distribution fobsðvχÞ of the
Galactic halo is obtained as the marginal distribution of the full
velocity distribution of Eq. (2), i.e., fobsðvχÞ ¼

R
dΩvχv

2
χfobsðvχÞ.
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For direct detection experiments with crystal semicon-
ductor targets, we can express the event spectrum in terms
of the DM particle flux in a similar way. The differential
rate of DM-induced electron transitions in a crystal of Ncell
unit cells with a total energy deposit of ΔE ¼ Ee can be
derived to be [29]

dRcrys

dEe
¼4αm2

eNcell

Z
dq
q2

Z
v>vmin

dvχ
dΦχ

dvχ

dσχe
dq2

jfcrysðEe;qÞj2:

ð23Þ

Here, α is the fine-structure constant, and fcrysðEe; qÞ
is the crystal form factor. For its evaluation use the
tabulated values obtained with the QEdark module of
QuantumESPRESSO [29,80].

E. Signatures of a solar reflection signal

In the event of a successful DM detection with solar
reflection as origin, it is an important question how this
signal can be distinguished from both background or
(heavier) halo DM. The most obvious way would require
a directional detection experiment, which could identify the
Sun as the origin of the observed DM flux.
However, most experiments are insensitive to directional

information of the incoming DM particle. In this case, a key
signature of a SRDM signal in a terrestrial detector is its
time modulation. This is not different from conventional
direct DM searches, where we generally expect an annual
modulation due to Earth’s motion relative to the Sun [3,81]
and also daily modulations for stronger interactions
[58,60,61,75]. But for reflected DM particles the modu-
lations’ origin and phenomenology differs substantially
[50], and we can identify three sources of modulations.

(i) Orbital modulation.—The Earth-Sun distance l
varies slightly over the year due to the eccentricity
of Earth’s elliptical orbit. Since the solar reflection flux
is proportional to l−2, the resulting signal rate will
feature an annual modulation with the maximum
(minimum) at the perihelion (aphelion) on ∼ January
3 (∼July 4). The orbital modulation is fundamentally
different from the standard annual modulation, which
peaks in June and is not a feature of an SRDM signal.

(ii) Anisotropy modulation.—As we will show, the Sun
does not emit the reflected particles isotropically
into the Solar System. Even in the case of isotropic
scatterings in the Sun, the initial anisotropy of the
incoming DM wind manifests itself as anisotropies
in the resulting solar reflection flux. As Earth moves
around the Sun, it passes regions of increased and
decreased particle fluxes, which is the source of a
second annual modulation.

(iii) Daily modulation.—For interaction cross sections
relevant for solar reflection, we typically also expect
frequent underground scatterings inside Earth, which

causes a daily modulation due to Earth’s rotation
around its axis; see, e.g., [61]. While this modulation
fundamentally works the same way for halo and
reflected DM, the fact that the reflected particles
arrive exclusively from the Sun means that we can
expect a higher rate during the day and lower counts
in our detectors during the night, where the detector is
(partially) shielded off the Sun by Earth’s bulk mass.

In this paper, we focus on the superposition of the two
annual modulations, which we will study in Sec. V B.
Nonetheless, the day-night modulation is a second power-
ful signature of a SRDM signal.

III. DESCRIBING SOLAR REFLECTION WITH
MONTE CARLO SIMULATIONS

By simulating DM particle trajectories passing through
and scattering inside the Sun, we can obtain solid estimates of
the SRDM flux reflected by the Sun through a single or
multiple collisions with solar targets. Similar simulations
have been applied already in the 1980s in the context of
WIMP evaporation and energy transport [56] testing the
analytic groundwork of Press and Spergel [57], as well as
more recently for the study of solar reflection via electron
scatterings [49]. In this section, we lay out the principles of
the MC simulations we performed using the public
DaMaSCUS-SUN tool and how we use them to estimate the
SRDM flux with good precision. These partially build on
foundations laid out in [82]. For the interested reader,
Appendix A contains reviews and summaries of even more
simulation details.

A. Simulation of a trajectory

1. Initial conditions

The first step of simulating a particle trajectory is to
generate the initial conditions, i.e., the initial position and
velocity of the orbit. In Appendix A 4, we present the explicit
procedure to sample initial conditions, which we only
summarize at this point. The initial velocities of DM particles
which are about to enter the Sun follow the distribution
proportional to the differential rate of particles entering the
Sun. Based on Eq. (7), the distribution is given by

fICðvÞ ¼ N IC

�
vþ vescðR⊙Þ2

v

�
f⊙ðvÞ; ð24Þ

whereN IC ¼ ½ðhvi þ vescðR⊙Þ2hv−1iÞ�−1 is a normalization
constant and f⊙ðvÞ is the velocity distribution of the SHM in
the solar rest frame given in Eq. (2). The first term in Eq. (24)
accounts for faster particles entering the Sun with higher rate,
whereas the second term reflects that slower particles get
gravitationally focused toward the Sun from a larger volume.
However, due to the gravitational acceleration of the

infalling particles, the SHM only applies asymptotically far
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away from the Sun; hence, the initial position of the DM
particle needs to be chosen at a large distance. The initial
positions of the sampled DM particles are distributed
uniformly, but we sample them at a distance of at least
1000 AU, where the SHM surely applies. However, at this
distance, a DM particle with a given velocity v is very
unlikely to be on a trajectory that intersects the solar
surface. Therefore, instead of sampling the initial position
from all of space and rejecting the vast majority of initial
conditions, we identify the subvolume where particles with
the velocity v are bound to pass through the Sun. By taking
the initial positions to be uniformly distributed in that
subvolume, the initial conditions are guaranteed to result in
particles entering the Sun. In Appendix A 4, we derive a
bound on the impact parameter b for the initial conditions,
given by Eq. (A27), which defines this subvolume and also
accounts for gravitational focusing. This procedure is only
applicable due to the assumed constant density of DM in
the neighborhood of the Solar System. As a result, we
obtain the initial location and velocity of a particle from the
Galactic halo on collision course with the Sun.

2. Free propagation

Neglecting scatterings for a moment, the orbits of DM
particles through the Sun and Solar System are described
by Newton’s second law. The specific equations of motion
are listed in Eqs. (A2) of Appendix A 1. Furthermore, on
their way toward the Sun, the gravitationally unbound DM
particles follow hyperbolic Keplerian orbits, whose ana-
lytic description is useful and therefore reviewed in some
detail in Appendix A 2. From their initial positions at large
distances, we can propagate the particles into the Sun’s
direct vicinity by one analytic step saving time and
resources.
Once the DM particles arrived in the Sun’s direct

neighborhood and are about to enter stellar bulk, we
continue the trajectory simulation by solving the equations
of motion numerically. We choose the Runge-Kutta-
Fehlberg (RKF) method to solve Eqs. (A6). The RKF
method is an explicit, iterative algorithm for the numerical
integration of first-order ordinary differential equations
with adaptive time step size [83]. The method is reviewed
in Appendix A 3. We further simplify the numerical
integration by using the fact that the orbits lie in a two-
dimensional plane due to conservation of angular momen-
tum J. Keeping track of the plane’s orientation using the
relations of Appendix A 1 allows one to switch back and
forth between 2D and 3D, which is e.g., necessary when the
simulated particle scatters on a solar target changing the
direction of J.

3. Scatterings

Now that we can describe the motion of free DM
particles inside and outside the Sun, we turn our attention
to the possibility of scatterings on nuclei or electrons of the

solar plasma. The probability for a DM particle to scatter
during the time interval Δt while following its orbit inside
the Sun is given by

PðΔtÞ ¼ 1 − exp

�
−
Z

Δt

0

dt
τðrðtÞ; vðtÞÞ

�
; ð25Þ

where we defined the mean free time

τðr; vÞ ¼ Ωðr; vÞ−1 ð26Þ

in terms of the scattering rate given in Eq. (8). We find the
location of the next scatterings by inverse transform
sampling. This involves sampling a random number
ξ ∈ ½0; 1� from a uniform distribution U ½0;1� and solving
PðΔtÞ ¼ ξ for Δt. Our knowledge of the shape and
dynamics of the DM particle’s orbit [i.e., rðtÞ and vðtÞ]
in combination with the time of scattering provides the
location of scattering.
In practice, we solve the equations of motions iteratively

in small finite time steps Δt, where Δt is adjusted
adaptively by the RKF method via Eqs. (A16) and
(A17). For every integration step i at radius ri and DM
speed vi, we add up Δti=τðri; viÞ, until the sum surpasses
the critical value:X

i

Δti
τðri; viÞ

> − lnð1 − ξÞ: ð27Þ

This is the condition for a scattering to occur.
At this point, we should make a remark regarding the

definition of a mean free path λ. Since the DM particle
moves through a thermal plasma, where the targets’motion
is crucial and may not be neglected, the total scattering rate
Ωðr; vχÞ, or equivalently the mean free time τðr; vχÞ, is a
more meaningful physical quantity determining scattering
probabilities than λ. Even a hypothetical particle at rest
would eventually scatter on an incoming thermal electron
or nucleus. Nonetheless, if we insist on defining a mean
free path, we can always do that by

λðr; vχÞ≡ τðr; vχÞvχ ¼
vχ

Ωðr; vχÞ
ð28aÞ

¼
�X

i
niðrÞσi

hjvχ − vT;iji
vχ

�−1
; ð28bÞ

which was applied in e.g., [49].7 The fact that the mean
free path decreases for lower DM speeds reflects that the

7A number of previous works on DM scatterings in the Sun
have defined the mean free path as ðPi niσiÞ−1 or ð

P
i nihσiiÞ−1,

which will lead to an underestimation of the scattering rate [84–
87]. While this might be a more acceptable approximation for
nuclei where vχ is comparable to hjvχ − viji (deviations are less
than 30% for solar protons), the error becomes severe in the case
of DM-electron scatterings, where the ratio of the two speeds can
be as high as ∼40 in the Sun.
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mean free time τ is the underlying relevant physical
quantity.8

After this digression about mean free paths, we return to
the MC algorithm for the DM scattering. After the
determination of the location of the next scattering, we
need to identify the target’s particle species; i.e., we have
to determine if the thermal target is an electron or one of
the present nuclear isotopes. If we label the different target
by an index i and define the partial scattering rate of
each target as Ωiðr; vχÞ≡ niðrÞhσijvχ − vT;iji, such that
Ω ¼ P

i Ωi, then the probability for the DM particle to
scatter on target i is

Pðscattering on target iÞ ¼ Ωiðr; vχÞ
Ωðr; vχÞ

: ð29Þ

Knowing the target’s identity i and mass mi, we can
formulate the density function of the target velocity vT,
which is given by the thermal, isotropic Maxwell-
Boltzmann distribution in Eq. (10) weighted by the
target’s contribution to the scattering probability for a
DM particle of velocity vχ [88]. In particular, faster
particles moving in an opposite direction to vχ are more
likely to scatter. In Appendix A 5, we derive that the PDF
of vT is

fðvTÞ ¼
jvχ − vT j
hjvχ − vT ji

fiðvT; TÞ; ð30Þ

where we used the assumption that the total cross section
does not depend on the target speed. Appendix A 5 also
contains a detailed description of the target velocity
sampling algorithm. This procedure enables us to draw
velocity vectors vT from the distribution corresponding
to Eq. (30).
In the final step of the scattering process, we compute the

DM particle’s new velocity v0χ, which is given by Eq. (11).
The determination of the new velocity involves sampling
the scattering angle α. In this paper, we limit ourselves to
isotropic contact interactions, and the vector n in Eq. (11) is
an isotropically distributed unit vector. We note in passing
that modifying the fundamental DM-target interaction can
have crucial consequences for the distribution of α. For
example, if the interactions were mediated by a light dark
photon mediator, the resulting suppression of large momen-
tum transfers would strongly favor small values of α, i.e.,
forward scatterings, and it will be interesting to see the
implications for solar reflection [89].

Given a new velocity of the DM particle, its free
propagation along its orbit continues until the particle
either rescatters or escapes the star. The combination of
MC simulating the initial conditions, the free propagation
of DM particles in the Sun, and their scattering events with
solar electrons and nuclei result in DM trajectories of vast
variety of orbital shapes; one example was shown in Fig. 1
of the introduction. Finally, we need to define certain
termination conditions under which the trajectory simu-
lation of a DM trajectory concludes.

4. Termination conditions

The simulation of a DM particle’s orbit continues until
one of two termination events occurs:
(1) The particle escapes the Sun; i.e., it leaves the solar

bulk with v > vescðR⊙Þ.
(2) The particle gets gravitationally captured.

In the case of the first event, we consider the particle as
reflected contributing to the SRDM flux if it has scattered at
least once. Otherwise, it is categorized as unscattered or
free and is not relevant for our purposes as its energy has
not changed. Regarding the second termination event, the
definition of gravitational capture in our MC simulations is
not straightforward, as it is at least in principle always
possible to gain energy via a scattering and escape the Sun.
We define a DM particle as captured if it either has
scattered more than 1000 times or if it propagated through
the Sun for a very long time along a bound orbit freely, i.e.,
without scatterings. The first one is supposed to apply to
cases where especially heavier DM particles get captured
and thermalize with the solar plasma without a significant
chance to escape. For the second capture condition, rather
than defining a maximum time of free propagation, we
terminate the simulation after 107 time steps δt of the RKF
procedure.
Both criteria are an arbitrary choice, and it is of course

not impossible for a DM particle to get reflected with
more than 1000 scatterings or after having propagated
freely over a very long duration. The captured particles
(as defined above) will build up a gravitationally bound
population eventually reaching an equilibrium where
their reflection or evaporation rate equals the capture
rate. As we will see later in Fig. 10, for low DM masses
the amount of captured particles falls significantly below
the number of reflected particles. This is why the
contributions of such particles to the total SRDM particle
flux are subdominant in the parameter space relevant for
solar reflection, while their MC description is resource
expensive. Their omission saves a great amount of
computational time and renders the resulting MC esti-
mates as slightly conservative only.

B. The MC estimate of the SRDM flux

Once a DM particle gets reflected and leaves the Sun
with v > vescðR⊙Þ, we propagate it away from the Sun to

8In addition, using the mean free time also has computational
advantages: τðr; vχÞ is a better-behaved function of vχ than
λðr; vχÞ and its evaluation via two-dimensional interpolation is
more efficient due to the need for fewer grid points in the ðr; vχÞ
plane.
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Earth’s distance of 1 AU. Just like in the case of the initial
conditions, we use the analytic description of hyperbolic
Kepler orbits to save time; see Appendix A 2. The speed vχ
of the DM particle as it passes a distance of 1 AU is saved
and constitutes one data point.
By counting the number of reflected particles passing

through a sphere of 1 AU radius and recording their speed,
we can obtain solid estimates of the total and differential rate
of solar reflection. Assuming the simulation of Nsim trajec-
tories resulting in Nrefl reflected particles or data points, we
estimate the reflection probability prefl introduced in Eq. (12)
by the ratio of the two numbers, Nrefl=Nsim. Hence, the total
SRDM rate R⊙ is given by

RMC
⊙ ¼ Nrefl

Nsim
ΓðmχÞ; ð31Þ

where we used the fact that the initial conditions guarantee
that all simulated particles will enter the Sun’s interior (see
Appendix A 4). The total rate of infalling particles was given
previously by Eq. (7). Consequently, the total SRDM flux
through Earth is

ΦMC
⊙ ¼ RMC

⊙

4πl2
; ð32Þ

with l ¼ 1 AU.
In order to get statistically stable results for the direct

detection rates, we only count data points to Nrefl and only
record the speed of a DM particle if its kinetic energy is
sufficient to trigger the detector, i.e., if vχ exceeds an
experiment-specific speed threshold. As a consistency
check, we confirmed that the MC estimate of the SRDM
spectrum at high speeds does not depend on the choice of
the threshold. We continue the data collection until the
relevant speed interval is populated with a sufficient
amount of data points, such that the statistical fluctuations
of the derived direct detection rates from Eq. (19), (20), or
(23) are negligible.
The recorded speed data points vi allow us to estimate

the speed distribution of the SRDM particles. Here, we
prefer a smooth distribution function over histograms.
One powerful, nonparametric method is kernel density
estimation (KDE) [90,91]. In combination with the
pseudodata method by Cowling and Hall for boundary
bias reduction [92,93], KDE provides a robust estimator
of the SRDM distribution fKDE⊙ ðvχÞ.9 The full MC
estimates of the differential SRDM rate and flux are then
given by

dR⊙

dvχ
¼ RMC

⊙ fKDE⊙ ðvχÞ; ð33Þ

dΦMC
⊙

dvχ
¼ 1

4πl2

dR⊙

dvχ
: ð34Þ

In Eqs. (32) and (34), we did not consider the possibility
of an anisotropic flux and implicitly assumed that the
SRDM flux through Earth equals the flux averaged over all
isoreflection angles. In Sec. II C, we introduced the isore-
flection angle θ as a natural parameter for possible
anisotropies of the solar reflection flux. Taking into account
the possibility of anisotropies, or in other words a strong
dependence of Φ⊙ on θ, a more precise estimate of the
average flux through Earth is given by

hΦMC
⊙ i ¼ 1

Δt

Z
Δt

0

dtΦMC
⊙ ðθðtÞÞ; ð35Þ

�
dΦMC

⊙

dvχ

�
¼ 1

Δt

Z
Δt

0

dt
dΦMC

⊙

dvχ
ðθðtÞÞ; ð36Þ

where Δt ¼ 1 yr and θðtÞ gives the time evolution of
Earth’s isoreflection angle. However, due to Earth’s
particular isoreflection coverage, the average over all
isoreflection angles is a good estimate of Eq. (35), i.e.,
hΦMC

⊙ i ≈ΦMC
⊙ , which can be seen in Fig. 12. This justifies

the use of Eqs. (32) and (34) to estimate the SRDM flux
through Earth in practice.

C. Anisotropies and isoreflection rings

Equation (15) of Sec. II C introduced the isoreflection
angle θ as a crucial quantity in the study of anisotropies of
the SRDM flux. For the MC simulations, we define a
number of isoreflection rings of finite angular size, for each
of which we collect data and perform the analysis inde-
pendently. This way we obtain the MC estimates of the
SRDM flux, event spectra, and signal rates as a function of
θ allowing us to measure the anisotropy as well as the
resulting annual signal modulation discussed in Sec. II E.
Instead of a fixed angular size Δθ, we define rings of equal
surface area; i.e., for Nrings isoreflection rings, their
boundary angles are given by

θi ¼ arccos
�
cos θi−1 −

2

Nrings

�
; ð37Þ

where θ0 ¼ 0. We illustrate the example of Nrings ¼ 20

in Fig. 5.
Due to the isoreflection rings being of equal area, we

lose angular resolution close to θ ¼ 0° and θ ¼ 180° and
obtain rings of smaller angular size, i.e., better angular
resolution around θ ¼ 90°. This has great advantages over
equal-angle rings as Earth only covers the interval

9For a brief review of KDE, we refer to Appendix A of [65].
The only free parameter of KDE is the kernel’s bandwidth. It is
chosen following Silverman’s rule of thumb [94].
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θ ∈ ½60°; 120°� over a full year, and we do not require good
resolution close to the poles. Furthermore, the time
required to collect speed data through MC simulations
is more uniform among equal-area rings.

D. Software and computational details

The simulation tool DaMaSCUS-SUN underlying all results
of this paper is publicly available [68]. During the develop-
ment of DaMaSCUS-SUN, it was our goal to follow best
software development practices to facilitate reproducibility
and usability and to ensure reliable results. The code is
written in C++ and built with CMake. It is maintained and
developed on Github and is set up with a continuous
integration pipeline including build testing, code coverage,
and unit testing. Furthermore, version 0.1.0 of the code has
been archived [95]. DaMaSCUS-SUN is parallelized with the
message passing interface (MPI) such that the MC simu-
lations can run in parallel on HPC clusters. For the more
general functionality related to DM physics and direct
detection, DaMaSCUS-SUN relies on the C++ library obscura
[96]. Most results were obtained with the HPC clusters
Tetralith at the National Supercomputer Centre (NSC) in
Linköping, Sweden, and Vera at the Chalmers Centre for
Computational Science and Engineering (C3SE) in
Göteborg, Sweden, both of which are funded by the
Swedish National Infrastructure for Computing (SNIC).

IV. MODELS OF DM-MATTER INTERACTIONS

So far, we have not specified our assumptions on how to
model the interactions between DM particles and ordinary
matter, either in the solar plasma or terrestrial detector. In this
paper, we will study solar reflection of light DM upscattered
by either nuclei or electrons or a combination of both. The
chosen models are the “standard choices” of the direct
detection literature. For nuclear interactions, we consider
spin-independent (SI) and spin-dependent (SD) interactions.
We also consider the possibility of “leptophilic” DM, which

interacts only with electrons. Lastly, we would like to study
the scenario where DM can be reflected by both electrons
and nuclei, which is the case for the “dark photon” model.
Throughout this work, we assume the interactions’ media-
tors to be heavy, such that the scattering processes are
isotropic contact interactions. Another interesting scenario is
the presence of light mediators, which we will consider in a
separate work [89]. In this section, we summarize the
commonly used DM interaction models and review the
expressions for the cross sections needed for the description
of solar reflection and detection.

A. DM-nucleus interactions

Starting with elastic DM-nucleus scatterings through SI
interactions, the differential cross section is given by [97]

dσSIN
dER

¼ mNσ
SI
p

2μ2χpv2χ

�
Z þ fn

fp
ðA − ZÞ

	
2

jFNðqÞj2; ð38Þ

where q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNER

p
is the momentum transfer and Z, A,

and FNðqÞ are the nuclear charge, mass number, and form
factor, respectively. For low-mass DM particles, the momen-
tum transfers are sufficiently small such that FNðqÞ ≈ 1.
While the ratio fn=fp of the effective DM-neutron and
DM-proton couplings is a free parameter, we assume
isospin-conserving interactions whenever considering
nuclear scatterings only (fn ¼ fp). In the context of the
dark photon model, the DM couples to electric charge and
fn ¼ 0 applies, as we will discuss below in more detail.
Alternatively, we also consider SD interactions [98–100],

for which the differential cross section is given by

dσSDN
dER

¼ 2mNσ
SD
p

3μ2χpv2χ

J þ 1

J

�
hSpi þ

fn
fp

hSni
	
2

jFSD
N ðqÞj2: ð39Þ

Here, the DM particle couples to the nuclear spin J, and hSpi
and hSni are the average spin contribution of the protons and
neutrons, respectively. As in the case of SI interactions, we
may set the nuclear form factor FSD

N ðqÞ to unity. We use the
isotope-specific values for the average spin contributions
given in [99,101].
Based on the differential DM-nucleus scattering cross

sections given by Eqs. (38) and (39), we can compute the
total cross section by integrating over all kinematically
allowed recoil energies:

σN ¼
Z

Emax
R

0

dER
dσN
dER

¼

8><
>:

σSIp


μχN
μχp

�
2
h
Zþ fn

fp
ðA−ZÞ

i
2
; for SI;

4
3
σSDp



μχN
μχp

�
2 Jþ1

J

h
hSpi þ fn

fp
hSni

i
2
; for SD;

ð40Þ

FIG. 5. Isoreflection rings of equal area (Nrings ¼ 20).
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where we used Emax
R ¼ 2μ2χNv

2
χ

mN
. Substituting the total cross

section into Eq. (8), we obtain the total rate of DM-nucleus
scatterings in the Sun as a function of the distance to the
solar center and the DM speed.

B. DM-electron interactions

Another scenario is solar reflection by electron scatter-
ing, which was previously studied in [49]. A straightfor-
ward realization is to assume that the incoming DM
exclusively interacts with the solar electrons and not
the various nuclei. While DM-nucleus interactions get
generated at the loop level even in leptophilic models, this
can be avoided by assuming pseudoscalar or axial vector
mediators [17].
The differential cross section of elastic DM-electron

scatterings can be parametrized in terms of a reference
cross section σ̄e:

dσe
dq2

¼ σ̄e
4μ2χev2χ

FDMðqÞ2: ð41Þ

In the case of contact interactions, where FDMðqÞ ¼ 1, the
reference cross section yields the total scattering cross
section, and σe ¼ σ̄e. It should however be noted that this is
no longer accurate e.g., for light mediators, where the DM
form factor scales as FDMðqÞ ∼ q−2 and σe ≠ σ̄e. We will
consider solar reflection through light mediators in a
separate work [89].

C. Dark photon model

Finally, we also want to consider the possibility of solar
reflection of electrons and nuclei simultaneously. Arguably
the most considered simplified beyond the Standard Model
(BSM) model in the context of sub-GeV DM searches is the
dark photon model, which leads to a simple relation
between DM-nucleus and DM-electron interactions.
In this model, the SM is extended by a fermion χ, acting

as DM, and an additional Uð1Þ gauge group, which is
spontaneously broken. The corresponding gauge boson, the
dark photon A0 of massmA0 , can mix with the photon via the
kinetic mixing term [102,103]. This simple dark sector is
described by the effective Lagrangian

LD ¼ χ̄ðiγμDμ −mχÞχ þ
1

4
F0
μνF0μν

þm2
A0A0

μA0μ þ ε

2
FμνF0μν: ð42Þ

Through the mixing term, the dark photon couples to all
charged fermions of the SM, generating the effective DM-
proton and DM-electron interaction terms [104]

Lint ¼ eεA0
μðp̄γμp − ēγμeÞ: ð43Þ

The resulting differential scattering cross section for DM-
electron scatterings is identical to Eq. (41) where the
reference cross section is related to the model parameter via

σ̄e ≡ 16πααDϵ
2μ2χe

ðq2ref þm2
A0 Þ2 : ð44Þ

The corresponding cross section for nuclear interactions is
given by the SI cross section of Eq. (38) with fn ¼ 0 and the
reference DM-proton cross section

σ̄p ≡ 16πααDϵ
2μ2χp

ðq2ref þm2
A0 Þ2 : ð45Þ

Comparing Eqs. (44) and (45), we find the following
relations between the two reference cross sections:

σ̄p
σ̄e

¼
�
μχp
μχe

�
2

: ð46Þ

In the case of contact interactions of low-mass DM particles,
the two reference cross sections correspond to the total
scattering cross sections. We find that the two cross sections
are of comparable size for DM masses below the electron
mass, while for larger masses, the DM-proton scattering cross
section satisfies σ̄p ≫ σ̄e. In the next section, we will take a
look at the implications of relation (46) for the relative
contributions to the scattering rate inside the Sun.

D. Scattering rates

Now that we specified the DM model and interactions we
would like to study, we can evaluate the scattering rate inside
the Sun given by Eq. (8). In Fig. 6, we show the total
scattering rate as a function of the radial distance of the solar
center r for SI/SD nuclear interactions as well as electron
interactions only. We assume a DM particle of asymptotic
speed u ¼ 300 km=s; i.e., the gravitational acceleration is
taken into account. The different colors depict the contri-
butions of the most important targets. The dashed lines
correspond to an asymptotic speed of u ¼ 3000 km=s
(u ¼ 30000 km=s), a possible asymptotic speed of a DM
particle reflected by scatterings on nuclei (electrons). While
multiple nuclear targets contribute significantly to the total
scattering rate in the case of SI interactions, for SD
interactions the interactions with protons dominates the total
rate completely.
In the dark photon model, both DM-nucleus and

DM-electron interactions are present, and DM particles
may scatter on solar nuclei and electrons. It is therefore
interesting to consider the relative contribution and therefore
the relevance for the reflection process of the two processes.
Let us consider the ratio of the scattering rate contributions
of DM-electron and DM-proton scatterings:
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Ωe

Ωp
∝

σ̄e
σ̄p

hjvχ − veji
hjvχ − vpji

; ð47Þ

where the thermal average of the relative speed can be found
in Eq. (9). Depending on the temperature TðrÞ, the ratio of
the average relative speeds is a number of Oð10Þ, and the
ratio of the cross sections is given by the squared ratio of the
reduced masses following Eq. (46):

Ωe

Ωp
∝
�
μχp
μχe

�
2

×Oð10Þ: ð48Þ

Based on this rough estimate, we can expect electron
scatterings to be subdominant for DM masses above a
few MeV. We also expect a regime around mχ ≈ 1 MeV,
where DM-nucleus and DM-electron scatterings contribute
to the total scattering rate with comparable amounts. For
masses well below the electron mass, the ratio of the reduced
masses approaches one, and DM-electron interactions will
dominate the collision rate.
These three cases are illustrated in Fig. 7, which shows

the total scattering rate similarly to Fig. 6, but for the dark
photon model and three exemplary DM masses. The
embedded pie charts depict the relative contributions of

nuclear and electron interactions, respectively. We con-
clude that in the heavy-mediator regime of the dark-photon
model, either nuclear or electron interactions dominate
depending on the DM mass, with the exception of a small
intermediate mass interval around 1 MeV. In particular, the
results of [49,61] which only considered DM-electron and
DM-nucleus interactions, respectively, will also apply to
the dark photon model to good approximation, since the
masses considered therein are of order Oð100 keVÞ and
Oð100 MeVÞ, such that either electron or nucleus scatter-
ings dominate.

V. RESULTS

This section contains the main results of this study. It is
divided into two parts: We start by investigating the general
results of the MC simulations and particularly more general
properties of the SRDM flux in Sec. VA. In the second part,
Sec. V B, we investigate the prospects of observing the
SRDM flux in terrestrial direct detection experiments. We set
exclusion limits based on existing experiments and present
projections for next-generation detectors. Furthermore, we
study the rich modulation signature of SRDM as a potential
key to identify the solar reflection as the source of a
hypothetical DM discovery.

FIG. 6. The scattering rates for SI and SD nuclear interactions (left, middle) and electron interactions (right) between an incoming DM
particle with asymptotic speed u ¼ 300 km=s and different solar targets as a function of the radial distance r defined in Eq. (8). In the
case of nuclear interactions, the six most important targets are highlighted in color, whereas the total scattering rate is given as a black
solid line. In addition, the dashed black line depicts the scattering rate of a boosted DM particle, in particular u ¼ 3000 km=s for SI and
SD interactions and u ¼ 30000 km=s for electron interactions.

FIG. 7. Similarly to Fig. 6, these plots compare the contributions of DM-electron and DM-proton interactions to the total scattering
rate in the Sun for the dark photon model. The DM mass is increasingly set to 100 keV (left), 1 MeV (middle), and 10 MeV (right) to
illustrate the different regimes. The pie charts show the relative contributions of the two processes.
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A. Reflection spectrum and flux

1. The first scattering

In a previous work, we found analytic expressions to
describe solar reflection by a single scattering inside the
Sun [50]. Among other things, the analytic equations
describe the location and final DM speed of the first
scattering of an infalling halo DM particle along its
trajectory inside the Sun. Comparing these results to the
fundamentally different approach of our MC simulations
provides an invaluable consistency check.
In Eq. (11) of [50], we derived an expression for the

differential scattering rate, dS
dvdr, which extended Gould’s

analytic theory of solar DM capture and evaporation to
include the Sun’s opacity [54]. It captures the distribution
of the first scattering’s radial distance r to the solar center
and the DM particle’s speed v after the scattering. By
running a number of MC simulations where we record r
and v of the trajectories’ first scatterings, we obtain a two-
dimensional histogram in the ðr; vÞ plane, which are shown
in Fig. 8.

In the first and second rows, we focus on SI nuclear
interactions and electron interactions, respectively, whereas
the columns correspond to increasing scattering cross
sections. For larger cross sections the first scattering is
more likely to occur closer to the solar surface (as addi-
tionally illustrated by the inlays) and to result in a slower
final DM speed. This is not surprising since the Sun’s outer
layers are cooler than the core. The histograms are shown in
combination with the contour lines of the differential
scattering rate dS

dvdr, which demonstrate a convincing agree-
ment between the analytic expressions and the MC
simulations.
Furthermore, Fig. 8 also shows the local escape velocity of

Eq. (B3) as a black dashed line (barely visible in the second
row). In the case of electron scatterings, the first scattering
accelerates a DM particle of 100 keV mass so efficiently that
only very few lose enough energy to get gravitationally
captured. We therefore expect many of those particles to get
reflected by a single scattering. In contrast, about half of the
DM particle of 100 MeV mass get decelerated below the
local escape velocity by the first scattering. Here, a “single
scattering regime” as in the case of electron scatterings does

FIG. 8. Two-dimensional histograms of the radial distance r and final DM speed v of the first scattering (N ¼ 2 × 105). The white
lines show the analytic differential scattering rate dS

drdv derived in [50] for comparison. The white dot indicates the maximum, and the
contour lines show the differential rate’s decline to 50%/10%/1% of the peak’s value. The black dashed line gives the local escape
velocity; see Eq. (B3) (barely visible in the lower panels). The small inlay figures are an alternative illustration of the distribution of the
first scattering’s radius, where the white arrow indicates the direction of the Sun’s velocity.
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not exist since the captured particles are bound to eventually
scatter at least a second time. We can thereby suspect that the
contribution of multiple scatterings to the SRDM flux is
more significant in the case of nuclear collisions. At this
point, it makes sense to consider the contribution of multiple
scatterings under the different DM scenarios.

2. Multiple scatterings

In order to quantify the relative contribution of multi-
ple scatterings to the solar reflection particle flux, we
compute the MC estimate of the reflection spectrum dR⊙

dvχ
using Eq. (33). For each data point, i.e., reflected DM
particle contributing to our estimates, we keep track of
how often that particle had scattered.
The resulting stacked histograms in Fig. 9 verify our

previous conjecture. In the case of SI nuclear interactions,
the contributions of multiple scatterings exceed those of
single collision reflection. The relative contribution of
single and multiple scatterings are depicted in the pie
chart. For interactions with electrons only, the reflection
spectrum is dominated by DM particles scattered only
once inside the Sun.10 Collisions with solar nuclei are
much more likely to reduce the DM particle’s energy than
electron scatterings. Therefore, there is a higher proba-
bility to get gravitationally captured by a nuclear collision
such that multiple scatterings are inevitable.
At this point, we can perform another consistency check

and apply again our analytic theory of single scattering
reflection [50]. We compare the analytic reflection

spectrum given by Eq. (16) of [50] (black dashed line)
to the one-scattering histogram in Fig. 9 for both nuclear
and electron scatterings. We find excellent agreement
between the theory and simulation, further solidifying our
confidence in the simulations’ accuracy.

3. Gravitational capture of DM

While our simulation code was developed to study solar
reflection, it naturally describes the gravitational DM
capture as well. In Sec. III, we defined a DM particle as
captured if it propagates through the Sun’s interior along a
bound orbit for a long time without scatterings or if it
scatters many times without getting reflected. We set the
arbitrary limit at 1000 scatterings. As discussed previously,
these choices might render our SRDM flux estimates as
marginally conservative and in turn slightly overestimate
the capture rate.
In Fig. 10, we show the relative proportions of free,

captured, and reflected particles depending on the DM
mass and cross section for SI and SD nuclear interactions
(top row), electron interactions (bottom left panel), and the
dark photon model (bottom right panel). Since we are
focusing on low-mass DM, gravitational capture of DM
particles plays a subdominant role and most particles either
pass the Sun without scatterings or get reflected. Only for
large cross sections and masses do we find particles getting
captured. In particular for large DM masses in the dark
photon model, the majority particles get captured. In this
model, even small values of the electron scattering refer-
ence cross section σ̄e are accompanied by large nuclear
cross sections as explained by Eq. (46). Most DM particles
lose their energy through nuclear scatterings and enter
bound orbits and eventually thermalizing with the plasma.
In conclusion, even though it is not the purpose of this
study, the simulations can indeed be used to describe DM

FIG. 9. Histogram estimate of the solar reflection spectrum dR⊙
du for SI nucleus interactions (left) and interactions with electrons only

(right). Going up, the alternating colors depict the contributions of 1; 2;… scatterings. The black solid line is the kernel density estimate
of the spectrum given by Eq. (33) and based on the same dataset as the histogram. The black dashed line depicts the analytic result for the
single scattering rate [50]. The pie charts show the relative contributions of single (“1”) and multiple (“2þ”) collisions to the total SRDM
population.

10With this in mind, it is ironic that solar reflection of light DM
was established using analytic methods for single nucleus [50]
and MC techniques for multiple electron interactions [49],
respectively, whereas the respective other approach might have
been more appropriate.
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capture and captured particles’ properties as well as the
process of thermalization inside the Sun.

4. Solar reflection spectra

In Eq. (34), we introduced the MC estimate for the
differential SRDM flux dΦ⊙

dvχ
, where vχ is the DM speed at a

distance of 1 AU from the Sun. We compare the SRDM
spectrum to the particle flux of halo DM in Fig. 11. Here,
we assume either SI nuclear interactions for a DM mass of
100 MeV (solid lines) or electron interactions for a mass of
100 keV (dashed lines) for cross sections between 10−36

and 10−30 cm2.
Comparing the total fluxes, the contribution of solar

reflection is suppressed by many orders of magnitude
when comparing to the standard galactic DM population.
However, in contrast to the sharp cutoff of the SHM flux,
the differential SRDM spectrum extends far beyond
ðvgal þ v⊙Þ. Especially for electron interactions, the

FIG. 10. Pie charts depicting the relative proportions of the DM particles entering the Sun which do not scatter at all (yellow), get
gravitationally captured (orange), or get reflected (red), as a function of DM mass mχ and interaction cross section.

FIG. 11. The differential SRDM flux defined by Eq. (38)
for nuclear (solid colored lines) and electron interactions
(dashed colored lines). The black lines show the SHM flux
for comparison.
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reflected DM particles ejected from the Sun can be
boosted significantly.
In both cases, we observe that the SRDM flux increases

for stronger interactions as we might have expected.
Simultaneously, the high-energy tail gets suppressed due
to the hot solar core being shielded off by the outer, cooler
layers.

5. Anisotropy of solar reflection

The Sun’s motion in the galactic rest frame causes the
apparent “DM wind” which entails that the incoming
particles approach and enter the Sun in an anisotropic
way. The original direction of an DM particle will be
deflected by the Sun’s gravitational pull and by collisions
on nuclei and electrons. We expect in particular the
scatterings to “wash out” the anisotropy, and we may
ask if any trace of the DM wind survives the process of
solar reflection.
The isoreflection angle introduced in Sec. II C is the

natural angle to parametrize the anisotropies. We compute
the SRDM flux defined in Sec. III C for SI nuclear (electron
only) interactions using 35 (50) isoreflection rings, which
reveal its directional dependence. For nuclear (electron)
interactions, we assume a DM particle of 100 MeV (keV)
mass and an interaction cross section of σSIp ¼ 10−35 cm2

(σ̄e ¼ 10−35 cm2). In Fig. 12, we show the total flux Φ⊙
(yellow) and the average speed hvχi (red) as a function of
the isoreflection angle θ. The area shaded in gray highlights
the θ interval covered by Earth over the course of a year, as
illustrated previously in Fig. 4.
Furthermore, the dashed lines are the corresponding

results of a consistency check where we “removed” the
DM wind by sampling initial conditions with isotropically
distributed initial velocities. In this case, there is no preferred
direction in the simulated system, and we do not expect the
average speed and total flux of SRDM to show any
dependence on θ. Indeed, this is what we find.

We demonstrate in Fig. 12 that the SRDM flux is
generally anisotropic. Both the total flux and the average
speed of the SRDM spectrum are decreasing functions of θ,
which can be understood at least in part by the fact that DM
particles reflected by single scatterings are most accelerated
by hard, and thereby backward, scatterings. For SI nuclear
interactions, both quantities deviate from the mean values
by up to 2% across the Solar System. We find larger
anisotropies for electron interactions, where the flux Φ⊙
ejected into the Solar System by the Sun varies around its
mean value by around 5%. The variation of the mean speed
hvχi in this case is around 3%. One explanation for these
larger anisotropies could be that the majority of particles
gets reflected by a single scattering as we saw in Fig. 9. For
nuclear interactions, we found that most reflected particles
scattered more than once which could wash out the initial
anisotropies more efficiently.
The directional dependence of the total and differential

reflection flux, i.e., their nontrivial dependence on the
isoreflection angle, has important implications for the
detection of SRDM particles. It sources the annual
anisotropy modulation introduced in Sec. II E, which
has to be considered alongside the orbital modulation
due to the eccentricity of Earth’s orbit. In Sec. V B, we
will investigate the total modulation signature in more
detail.

6. Halo model dependence

In the previous work on solar reflection, we conjectured
that the spectrum of SRDM particles is insensitive to the
details of the halo model. After falling into the gravitational
well of the Sun, the DM particles’ speed is determined
mostly by the gravitational acceleration by the Sun’s
gravity and less so by its original, asymptotic halo speed.
In addition, an isotropic scattering of such an accelerated
particle is expected to wash out all remaining information
from the halo model. In this section, we want to put this

FIG. 12. Anisotropies of the SRDM flux. The figure depicts the total SRDM fluxΦMC
⊙ through Earth (yellow) and the mean speed hvχi

(red) of reflected particles as a function of the isoreflection angle θ for SI interactions with nuclei (left) and interactions with electrons
only (right). The gray area shows the θ interval covered by Earth’s elliptical orbit through the Solar System. The dashed lines are the
result of MC simulations using isotropic initial conditions, i.e., without the preferred direction of the DM wind, and serve as a
consistency check.
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claim to the test and quantify the SRDM flux’s dependence
on the halo model.
We run a number of MC simulations (N ¼ 100), where

we use the SHM model, given in Eq. (2), to sample the
initial velocities from the distribution in Eq. (24). Here, we
allow Gaussian variations of the parameters v0 and vgal of
the model:

v0 ¼ ð220� 20Þ km=s; ð49aÞ
vgal ¼ ð544� 50Þ km=s; ð49bÞ

and study the impact of these variations on the reflection
spectra. Note that v0 also enters the Sun’s velocity in the
galactic rest frame; see Eq. (B4).
The left panel of Fig. 13 shows the resulting variation of

the SHM speed distribution, whereas the middle (left) panel
show the corresponding speed distributions of the SRDM
particles and their variations. The distribution of solar
reflected particles is remarkably stable under the variations
of the initial conditions.
But while the energy distribution is shown to be largely

independent of the halo model, varying the parameters of
the SHM following Eq. (49) may still impact the total solar
reflection rate. The rate of DM particles entering the Sun,
given by Eq. (7), changes under these variations:

Γ⊙ ¼ ð1.1� 0.1Þ × 1033
�

mχ

MeV

�
−1

s−1: ð50Þ

As a consequence, the total solar reflection rate also varies by
the same degree under variations of the SHM parameters.

B. Direct detection results

Our studies of the SRDM flux in the previous chapter
were mainly motivated by the hope that direct detection
experiments might observe signals from fast low-mass DM
particles boosted inside the Sun. In this section, we derive
solar reflection exclusion limits for existing experiments as
well as as projections for next-generation detectors.

Secondly, we quantify the annual modulation of a potential
SRDM signal as a superposition of two independent
sources of modulation.

1. Exclusion limits and projections

Setting new exclusion limits for low-mass DM is one of
the main motivation to study solar reflection. For this
purpose, we perform a parameter scan in the ðmχ ; σÞ plane
and compute thep value of each parameter point. For a given
confidence level (CL), the excluded regions’ boundaries are
defined by p ¼ 1 − CL11 All of the obtained limits, both
from existing and future detectors, can be found in Fig. 14.
The top row of Fig. 14 shows the SRDM limits (95% CL)

for SI (SD) nuclear interactions on the left (right) panel. We
derive the exclusion limits for the direct detection experi-
ments CRESST-III [9,106] and CRESST-surface [8]. These
figures also depict the usual constraints from halo DM by the
same experiments in gray. While we do find a regions in
parameter space with large SI and SD cross sections that the
CRESST experiments can exclude based on solar reflection,
their exposures are insufficient to extend their sensitivity
toward lower masses. Unlike for halo DM, an increased
exposure not only allows one to probe weaker interactions
but potentially also lower masses when considering SRDM.
Unfortunately, the excluded masses fall above the mass
threshold of halo DM, and therefore the SRDM constraints
cannot compete with the standard limits and “drown” in the
halo limit.
In the absence of newly excluded parameter space for

nuclear interactions, we want to specify what kind of nuclear
recoil detector would be able to exploit solar reflection to
probe lower DM masses. Inspired by gram-scale cryogenic

FIG. 13. Halo model dependence of the reflection spectrum: The left panel shows variations of the SHM with v0 ¼ ð220� 20Þ km=s
and vgal ¼ ð544� 50Þ km=s, whereas the middle (right) panel shows the corresponding impact on the speed distribution of the resulting
reflected particles with SI-nuclear (electron only) interactions. In each panel, the dashed (dotted) line indicates the vertical 1σð2σÞ
variations around the mean. The shaded speed range indicate the 1σ ð2σÞ variations of the mean speed hvχi (based on 100 simulations
with a sample size of 15 000 reflected particles each).

11We can in principle find these contours by scanning the
parameter space with equal-sized steps in log-space. A more
resourceful alternative is to use a contour tracing algorithm to find
the excluded parameter regions. In DaMaSCUS-SUN, we implemented
the square tracing algorithm (STA) for this purpose [105]. Using the
STA, only the subset of parameter points along the p ¼ 1 − CL
boundary need to be evaluated with MC simulations.
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calorimeters [8,110], we assume a sapphire target (Al2O3)
and fix the energy threshold and resolution to Ethr ¼ 20 eV
and σE ¼ 4 eV, respectively. The gray lines in the top panels
of Fig. 14 depict the projection results for exposure between

0.1 and 100 kg days. Furthermore, we assume an idealized
zero-background run for the sapphire target experiments. In
the case of SI interactions, we indeed find that higher
exposures probe lower masses. In this scenario, the exposure

FIG. 14. Solar reflection exclusion limits (95% CL) from direct detection experiments for SI (top left) and SD (top right) nuclear
interactions, as well as electron interactions (bottom left) and the dark photon model (bottom right). The constraints are based on
CRESST-III [9,106] and CRESST-surface [8] for nuclear and CDMS-HVeV [37], XENON10 [19–21], and XENON1T [23] for electron
scattering experiments. The areas shaded in gray are already excluded by the same experiments based on halo DM. The gray lines show
projected exclusion limits for upcoming experiments. For the nuclear case, we assume a direct detection experiment with a sapphire
target and an energy threshold of Ethr ¼ 20 eV (similarly to CRESST-surface or ν-cleus) and vary the exposure between 0.1 and
100 kg days. The vertical black dashed line marks the minimal DMmass that can be probed with halo DM alone. For the leptophilic and
dark photon model, the projections with Si-semiconductor targets are inspired by SENSEI@SNOLAB [34] and DAMIC-M [107],
whereas the xenon target experiments are set up in anticipation of XENONnT [108] and LBECA [109]. All projected limits represent an
idealized scenario as we assume zero background. For more realistic background assumptions, the projected S2-only search limits are
expected to weaken by about 1–2 orders of magnitude.
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necessary to exclude DM masses below the minimum
mmin

χ ≈ 100 MeV detectable with halo DM (shown as a
vertical line) is of order Oð100 g dayÞ. For any larger
exposure, the inclusion of solar reflection extends the
exclusion limits. In particular, with an exposure of 0.1, 1,
10, and 100 kg days the respective limits reach down to
about 170, 60, 30, and 15 MeV, respectively. Therefore, we
can expect future experiments such as the ν-cleus experiment
to be able to extend their sensitivity to lower masses by
taking solar reflection into account [111]. This experiment
might also realize an even lower energy threshold which
would improve these prospects further.
For SD interactions, the situation is generally less prom-

ising. Even for the high-exposure projections, the SRDM
limits never reach below the minimum mass probed in halo
DM searches. Comparing SI and SD interactions, the process
of solar reflection itself works very similar and the SRDM
fluxes are comparable. Assuming isospin-conserving inter-
actions, a DM mass of 100 MeVand a DM-proton scattering
cross section of σp ¼ 10−35 cm2, we find a total reflection
flux on Earth of ΦSI

⊙ ≈ 2000 s−1 cm−2 for SI and ΦSD
⊙ ≈

1500 s−1 cm−2 for SD interactions. Also their spectra are
similar; for the mean speed of the reflected particles we find
hvχiSI ≈ 760 km s−1 and hvχiSD ≈ 900 km s−1, respectively.
But while the SRDM flux might be comparable, the detection
of SD interactions suffer from the low number of target nuclei
with nonvanishing spins and the lack of coherent scatterings.
These factors did not affect the DM particles’ reflection in the
Sun, since the most important solar target are hot protons. For
the above examples of DM parameters and the same
sapphire-target experiment, we expect a SRDM event rate
of RSI ≈ 1.1 kg−1 day−1 for SI, which needs to be compared
to a signal rate of RSD ≈ 1.9 × 10−4 kg−1 day−1 for SD cross
sections.
The suppressed signal rates of SD interactions has the

consequence that only very high cross sections can be
excluded even by our projected bounds. For high cross
section however, the reflection occurs in the cool outer
layers of the Sun such that the reflected particles do not get
boosted but are instead losing kinetic energy. Therefore, the
projections are limited by the same minimum DM mass as
halo DM constraints. There exist significant amounts of
parameter space for nuclear SD interactions, where solar
reflection is very efficient in accelerating infalling DM
particles. For lower cross sections, i.e., values for σSDp
between ∼10−35 and ∼10−33 cm2, the DM particles can
get boosted by fast protons from the solar core and escape
the Sun with higher kinetic energies. Unfortunately, these
low cross sections are not accessible to terrestrial searches at
this point.
The situation is different when considering solar

reflection via electron interactions, as seen in the bottom
row of Fig. 14. We show exclusion limits based on the
experiments XENON10 [19–21] and XENON1T [23]
using liquid noble targets, as well as SENSEI@MINOS

[34] and CDMS-HVeV [37] using silicon crystal targets.12

The inclusion of SRDM into the direct detection analysis
extends the sensitivity of these experiments to the whole
range of sub-MeV DM particles. The most stringent
bounds are set by the XENON1T experiment and exclude
DM electron cross sections of σ̄e ≳ 3 × 10−38 cm2 for a
DM mass of mχ ≈ 100 keV.
Comparing the results for the dark photon model with the

“electrons only” scenario, we find virtually no difference for
DM masses below 1 MeV, i.e., in the most relevant mass
range. For larger masses, where the SRDM limits are weaker
than halo constraints, we do find a significant difference. We
can understand the similarities and differences by remem-
bering our discussion about the scattering rates in the dark
photon model. There we concluded that for keV (MeV)
masses, the scattering rate in the Sun is dominated by
electron (nucleus) scatterings. This leaves the dark photon
model as indistinguishable from the leptophilic model for
keV masses, while for MeV masses the scatterings on nuclei
can both reduce or enlarge the excluded regions. On the one
hand, nuclear scatterings in the outer, cooler layers of the
Sun might shield off the hot core and thereby weaken the
SRDM limits. On the other hand, the addition of more target
particles can also increase the SRDM flux improving limits.
Both cases can be observed by comparing the left and right
lower panels of Fig. 14.
In the absence of a DM signal, future electron scattering

experiments will improve upon these exclusion limits. The
gray lines in the lower panels of Fig. 14 show projected
limits for four experimental setups. In anticipation of
SENSEI@SNOLAB [34] and DAMIC-M [107], we assume
two DM detectors with a silicon semiconductor target, an
exposure of 100 g yr and 1 kg yr, respectively, and an
observational threshold of two electron-hole pair for both
setups. Furthermore, we consider two direct detection
experiments with liquid xenon as target. The first is modeled
after the proposed LBECA experiment, which is charac-
terized by a low electron threshold (2e−) [109]. For the
exposure, we assume 100 kg yr. The XENONnTexperiment
is planned to have a larger exposure [108]. We assume a
projected exposure of 2 t yr for the S2-only search.
Compared to LBECA, the XENONnT experiment is not
mainly aiming at low-mass DM and we fix the threshold to a
higher value of five electrons. Just as in the case of nuclear
recoil experiments, these projections need to be understood
as a lower boundary for future exclusion limits of a realistic
xenon-target experiment run as we again assume an idealized
scenario with zero background. Including a nonzero back-
ground is expected to weaken the projected limits by about
1–2 orders of magnitude depending on the solar neutrino
background; see for example [112].

12For a summary of the experimental setup, parameters, and
the procedure to compute the exclusion limits, we refer to
Appendix C.
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By including nuclear scatterings in the dark photon
model, we find improved projection limits for DM masses
between 10 and 100 MeV for the xenon target experiments
compared to the leptophilic scenario. This is an interesting
case, since the reflection and detection processes are not
identical. The DM particles are reflected by nuclei, whereas
the reflected particle flux is probed through its interaction
with target electrons.

2. Signal modulations of SRDM

In Sec. II E, we anticipated that a potential SRDM signal
would feature an annual modulation. This modulation
would result as a combination of two effects. For one,
the variation of Earth’s distance causes a modulation of the
particle flux through the detector. Anisotropies of the

SRDM flux are a second source of annual modulations,
as Earth’s orbit covers regions that are exposed to a varying
DM flux. We already discussed and established the
anisotropy of solar reflection in Sec. VA and in particular
in Fig. 12. The next step is to quantify the corresponding
total signal modulation.
Again, we focus on SI interactions with nuclei as well as

electron interactions. For nuclear interactions, we assume
DM particles with a mass of mχ ¼ 100 MeV and a cross
section of σSIp ¼ 10−35 cm2. After getting reflected, they
pass through a CRESST-type detector with a CaWO4

target, an energy threshold of 20 eV, and an energy
resolution of 4 eV. For the leptophilic case, we determine
the SRDM flux of a 100 keV DM particle with an
interaction cross section of σ̄e ¼ 10−35 cm2 and its detec-
tion in a xenon-target experiment with an observational

FIG. 15. First row: the predicted SRDM signal rate R at direct detection experiments for nuclear (left) and electron (right) interactions
as a function of θ obtained by means of MC simulations with 35 (50) isoreflection rings. Second row: Mollweide projection (in the Sun’s
rest frame) of the event rate R with the black line showing Earth’s Kepler orbit. Third row: the annual modulation of the signal rate as a
function of fractional days since the beginning of 2021 is shown as a black line. It is obtained as a combination of the orbital and
anisotropy modulation, depicted individually as yellow and red dashed lines, respectively.
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threshold of three electrons. To study the anisotropy
modulation of solar reflection via SI nuclear (electron)
interactions, we perform MC simulations with 35 (50)
isoreflection rings.
The top row of Fig. 15 shows the obtained signal event

rate as a function of the isoreflection angle θ for SI and
electron interactions on the left and right side, respectively.
Again, we highlight Earth orbit’s θ coverage in gray. The
second row shows an alternative representation of the same
information as a Mollweide projection in the Sun’s rest
frame which better visualizes the directional dependence of
the signal rate in the two experiments. Here, a black line
shows Earth’s orbit with certain special points highlighted,
namely, the perihelion and aphelion where the orbital
modulation assumes its maximum and minimum, respec-
tively, as well as the days of minimum (September 4) and
maximum (March 2) isoreflection angle. Note that the
orbital modulation is not taken into account at this point
yet. We quantify a signal modulation in terms of the
fractional modulation defined as

fmod ¼
Rmax − Rmin

Rmax þ Rmin
≈
Rmax − Rmin

2hRi ; ð51Þ

where Rmax and Rmin are the maximum and minimum event
rates, respectively, over the year. For example, the orbital
modulation due to elliptical Kepler orbit can easily be

estimated to be forbitalmod ¼ l2
a−l2p

l2
aþl2p

≈ 3%, where la ðlpÞ is

Earth’s distance to the Sun at aphelion (perihelion). This
can be understood from the l−2 scaling of the SRDM flux
through Earth alone.
For the nuclear recoil experiment, we find a small

anisotropy modulation with fmod ≈ 3%. As such the
anisotropy modulation is comparable to the orbital modu-
lation. This is illustrated in the left panel of the third row of
Fig. 15, which depicts as a black line the signal rate as a
function of time over the year 2021. It also shows the
individual modulations, anisotropy and orbital, as red and
yellow dashed lines, respectively.
For solar reflection via electron scatterings only, we find

a stronger dependence of the expected event rate on the
isoreflection angle θ. For a fixed distance from the Sun, the
expected event rate varies by up to 10% around its mean
value depending on the direction. For the region covered by
Earth’s orbit, we obtained a fractional modulation of
fmod ≈ 5%. The total modulation is therefore more deter-
mined by the effects of the SRDM anisotropies, as seen in
the right panel of the third row of Fig. 15.
As we have seen, the effect of the anisotropies can be as

least as important as the orbital modulation due to its
comparable amplitude which also results in a shift of the
modulation’s phase. We conclude that an accurate predic-
tion of the total annual modulation of SRDM signals
requires the knowledge of the anisotropies of the solar

reflection particle flux, which can be computed using our
MC simulations.

VI. SUMMARY AND CONCLUSIONS

Solar reflection is the process of DM particles from the
Galactic halo passing through the Sun and getting boosted
by scatterings on hot solar targets. Their increased kinetic
energy facilitates their detection and can extend the
sensitivity of terrestrial DM searches toward lower masses.
In this paper, we studied the properties of the SRDM flux
ejected from the Sun and its detectability and phenom-
enology in laboratories on Earth. All results presented in
this paper are based on MC simulations of individual DM
particles passing through the Sun. The MC tool DaMaSCUS-

SUN developed for this purpose and used to generate all
results presented in this work is publicly available [68].
We studied DM models with dominant nuclear inter-

actions (SI and SD) and electron interactions, as well as the
dark photon model, which allows DM particles to scatter on
both nuclei and electrons. For solar reflection via nuclear
interactions, we were able to set exclusion limits based on
the low-threshold experiments CRESST-III and CRESST-
surface. However, the experiments’ low exposures do not
yet suffice to extend their sensitivity to lower masses than
accessible with halo DM. Unlike for standard direct
detection limits, a higher exposure might probe not just
weaker interactions but also lower masses in the context of
solar reflection through nuclear scatterings. Indeed, our
projections with higher exposures show that gram-scale
cryogenic calorimeters such as the ν-cleus experiment
[111] could extend their sensitivity to lower DM masses
by taking solar reflection into account provided that the
exposure is above a few hundred g days. Here, we assumed
an energy threshold of 20 eV. A reduction of this value
would significantly improve the situation even further.
However, this conclusion is only valid for SI nuclear
interactions. We studied DM with SD nuclear interactions
separately and found that even exposures as high as
100 kg days are not sufficient to extend the probed DM
range. As we discussed, this is due to the fact that the SD
cross sections probed by such an experiment are so high
that the DM particles get reflected by the cool outer layers.
For lower SD cross sections, the SRDM flux can be
comparable to the SI case and very energetic, but the
corresponding detection rates are suppressed.
For the scenario where DM couples exclusively to

electrons, we updated previous results [49] and derived
new exclusion limits for sub-MeVDM based on the leading
experiments, most importantly XENON1T [23]. We also
presented projected constraints of anticipated next-
generation experiments with xenon and silicon targets.With
the dark photon model, we considered a case where solar
reflection can be caused by scatterings on both electrons and
nuclei. However, for DM masses below (above) an MeV,
scatterings on electrons (nuclei) dominate the scattering rate.
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In the case of our projected limits, we also found examples
where the reflection and detection process were not the
same, where DM particles get reflected by solar nuclei and
detected electron recoils.
We also investigated the annual modulation of a potential

SRDM signal, where we found two competing effects. One
source of modulation originated in Earth’s elliptical orbit
around the Sun, while the other is caused by the anisotropy
of the reflected DM flux in the Solar System. Our
simulation allowed us to quantify and compare both
modulations and obtain the total modulation signature as
a superposition of both effects. The precise understanding
of this modulation is important to distinguish a SRDM
signal from both background or a signal caused by heavier
halo DM.
In this work, we focused on contact interactions; i.e., we

assumed that the interaction mediator is much heavier than
the momentum transfers of the scatterings. It will be
interesting to investigate a more general class of DM
interactions, in particular the scenario of ultralight medi-
ators [89]. On the detection side, considering Migdal
scatterings could be a way to probe nuclear interactions
without the need for larger exposures.
Attempts to directly detect DM particles of sub-GeV

mass make up a growing field of active research with
various strategies and proposals, both theoretical and
experimental, to extend our experiments’ discovery reach
and cover more and more of the possible parameter space.
In this study, we showed that even without introducing
additional assumptions or new detection technologies, solar
reflection and its unique phenomenology can be a powerful
aid in the search for light dark matter.
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APPENDIX A: SIMULATION DETAILS

1. Equations of motion

In between two scatterings inside the Sun, a DM particle
of massmχ moves around the Sun’s gravitational potential in
a two-dimensional plane as the angular momentum J is a
constant of motion. Using polar coordinates ðr;ϕÞ, the
particle’s motion in that plane is described by the Lagrangian

L ¼ 1

2
mχð_r2 þ r2 _ϕ2Þ þ

Z
∞

r
dr0

GNmχM⊙ðr0Þ
r02

: ðA1Þ

In Appendix B, we obtain the mass-radius relationM⊙ðrÞ as
part of the standard solar model.
The corresponding Euler-Lagrange equations

0 ¼ ̈r − r _ϕ2 þGNM⊙ðrÞ
r2

; ðA2aÞ

J ≡ r2 _ϕ ¼ const ðA2bÞ

are the equations of motion describing orbits of freely
falling particles.
In the MC simulations of this paper, these equations are

solved numerically, and the solutions are transformed back
into three dimensions if necessary, for example when the
particle scatters on a proton. In order to do so, we need to
keep track of the orientation of the coordinate axes in the
Sun’s rest frame.
Given a DM particle’s full configuration ðt; r; vÞ in three

dimensions, its angular momentum is J ¼ r × v, and the
initial polar coordinates in the orbital plane and angular
momentum are set to

r ¼ jrj; ϕ ¼ 0; and J ¼ jJj; ðA3Þ

such that the corresponding coordinate axes are

x̂ ¼ r
jrj ; ẑ ¼ J=jJj; ŷ ¼ ẑ × x̂: ðA4Þ

The hat ·̂ denotes unit vectors.
The equations of motion in Eqs. (A2) are solved in two

dimensions. As a result, we obtain the new location of the
DM particle at a later time t0 > t, for example the instance it
scatters, as ðr0;ϕ0Þ, which we want to translate back into
three-dimensional vectors. Since we kept track of the axes
given in Eq. (A4), the new position and velocity vectors can
be obtained, respectively, as

r0 ¼ r0ðcosϕ0x̂þ sinϕ0ŷÞ; ðA5aÞ
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v0 ¼
�
_r0 cosϕ0 −

J
r0
sinϕ0

�
x̂

þ
�
_r0 sinϕ0 þ J

r0
cosϕ0

�
ŷ; ðA5bÞ

Outside the Sun, the DM particle follows a Kepler orbit,
which we will review in the next section. In the solar
interior, this is not the case, and the equations of motion
need to be solved numerically. We use the Runge-Kutta-
Fehlberg method, which we summarize in Sec. A 3. This
method requires the equations of motion to be expressed in
terms of first-order ordinary differential equations:

_r ¼ v; _v ¼ r _ϕ2 −
GNM⊙ðrÞ

r2
; _ϕ ¼ J

r2
: ðA6Þ

Before we discuss the numerical solution, it will be useful
to first consider the analytic solution of Eqs. (A2) for
unbound particles outside the Sun—hyperbolic Kepler
orbits.

2. Hyperbolic Kepler orbits

Assuming a particle of mass m passing by a location r at
a time t with velocity v inside the gravitational well of a
central mass M⊙, its total energy is given by

Etot ¼
m
2
v2 −

GNM⊙m
r

: ðA7Þ

If Etot > 0, the particle is unbound and moves along a
hyperbolic Kepler orbit, illustrated in Fig. 16. As such, the
orbit outside the Sun can be described analytically and does
not require numerical methods.
We review hyperbolic Kepler orbits at this point due to

the usefulness of the analytic solution to Eq. (A2). It allows
one to shift a particle from its initial conditions asymp-
totically far away from the Sun close to its surface, where
numerical methods have to take over. In addition, a
reflected particle can be propagated to Earth’s distance
from the Sun. In both cases, we save computational
resources otherwise wasted to numerically reproduce a
well-known solution.
We therefore want to compute the particle’s new location

r0 and velocity v0 at a later time t0 > t, such that its distance
to the central mass is r0 > R⊙. In addition, the particle
should not have passed by the orbit’s periapsis q, because it
might lie in the Sun’s interior (q < R⊙), where the analytic
solution does not apply.
The particle’s orbit and position are characterized by a

number of parameters:
(i) the particle’s distance to the Sun r,
(ii) the particle’s angular momentum with respect to the

central mass,

J ¼ r × v; ðA8aÞ

(iii) the particle’s asymptotic speed

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 − v2escðrÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 −

2GNM⊙

r

r
; ðA8bÞ

(iv) its semimajor axis defined such that a > 0,

a ¼ GNM⊙

u2
; ðA8cÞ

(v) its semilatus rectum

p ¼ J2

GNM⊙
; ðA8dÞ

(vi) its eccentricity

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ p

a

r
> 1; ðA8eÞ

(vii) its periapsis

q ¼ ðe − 1Þa; ðA8fÞ

FIG. 16. Hyperbolic Kepler orbit and its parameters.
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(viii) the impact parameter

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 − 1

p
a; ðA8gÞ

(ix) the angle from the periapsis,

cos θ ¼ 1

e

�
p
r
− 1

�
; ðA8hÞ

(x) its changing speed

v2 ¼ GNM⊙

p
ð1þ e2 þ 2e cos θÞ; ðA8iÞ

(xi) the flight path angle between the velocity and the
perpendicular of the radial direction,

tanϕ ¼ e sin θ
1þ e cos θ

; ðA8jÞ

(xii) the eccentricity anomaly

coshF ¼ eþ cos θ
1þ e cos θ

; ðA8kÞ

(xiii) the mean anomaly

M ¼ e sinhF − F; ðA8lÞ

(xiv) and finally, the time from the periapsis,

t − tp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3

GNM⊙

s
M: ðA8mÞ

Finally, to obtain the final position and velocity vectors,
r0 and v0, we need to know the orientation of the Cartesian
coordinate axes such that θ ¼ 0 actually corresponds to the
periapsis:

ẑ ¼ J=jJj; ðA9aÞ

x̂ ¼ cos θ r̂þ sin θ r̂ × ẑ; ðA9bÞ

ŷ ¼ ẑ × x̂; ðA9cÞ

where r̂≡ r=r and the angle from the periapsis θ is given
by Eq. (A8h). Using Eqs. (A8), the particle’s location r0 and
velocity v0 at time t0 are given by

t0 ¼ tþ sgnðr0 − rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a3

GNM⊙

s
ðM0 −MÞ; ðA10aÞ

r0 ¼ r0ðcos θ0 x̂þ sin θ0 ŷÞ; ðA10bÞ

v0 ¼ v0
e sin θ0 r̂0 þ ð1þ e cos θ0Þẑ × r̂0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ e2 þ 2e cos θ0
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNM⊙

p

s
ðe sin θ0 r̂0 þ ð1þ e cos θ0Þẑ × r̂0Þ; ðA10cÞ

where again r̂0 ¼ r0=r0 and the new angle from the
periapsis is

θ0 ¼ sgnðr0 − rÞ arccos
�
1

e

�
p
r0
− 1

�	
: ðA10dÞ

These equations allow us to propagate a particle from
large distances to the Sun’s surface and vice versa without
the need for numerical methods.

3. Runge-Kutta-Fehlberg method

This chapter contains a brief review of the Runge-
Kutta-Fehlberg method (RKF or RK45), an adaptive,
iterative algorithm for the numerical solution of ordinary
differential equations (ODEs) [83]. In this work, we use
this method to solve the equations of motion of the DM
particles as they move through the bulk mass of the Sun.
Given a first-order ODE for an unknown function yðtÞ,

dyðtÞ
dt

¼ fðt; yðtÞÞ; ðA11Þ

with some initial conditions yðt0Þ ¼ y0, we can find a
numerical solution iteratively by computing the function’s
new value after a finite time step Δt:

ykþ1 ¼ yk þ
25

216
k1 þ

1408

2565
k3 þ

2197

4101
k4 −

1

5
k5; ðA12Þ

tkþ1 ¼ tk þ Δt; ðA13Þ

where the coefficients ki are given by

k1 ¼ Δtfðtk; ykÞ; ðA14aÞ

k2 ¼ Δtf
�
tk þ

1

4
Δt; yk þ

1

4
k1

�
; ðA14bÞ

k3 ¼ Δtf
�
tk þ

3

8
Δt; yk þ

3

32
k1 þ

9

32
k2

�
; ðA14cÞ
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k4 ¼ Δtf
�
tk þ

12

13
Δt; yk þ

1932

2197
k1 −

7200

2197
k2 þ

7296

2197
k3

�
; ðA14dÞ

k5 ¼ Δtf
�
tk þ Δt; yk þ

439

216
k1 − 8k2 þ

3680

513
k3 −

845

4104
k4

�
; ðA14eÞ

k6 ¼ Δtf
�
tk þ

Δt
2
; yk −

8

27
k1 þ 2k2 −

3544

2565
k3 þ

1859

4104
k4 −

11

40
k5

�
: ðA14fÞ

The iteration step in Eq. (A12) corresponds to a numerical
solution by an ordinary fourth-order Runge-Kutta method
(RK4). What makes the RK45method so powerful is the fact
that the same coefficients ki of Eq. (A14) can simultaneously
be combined to yield a fifth-order approximation of the
solution:

ỹkþ1 ¼ yk þ
16

135
k1 þ

6656

12825
k3 þ

28561

56430
k4

−
9

50
k5 þ

2

55
k6: ðA15Þ

Therefore, the RK45 method is a combination of two
ordinary Runge-Kutta methods, namely RK4 and RK5,
yet only requiring the same number of function evaluations
of fðt; yðtÞÞ as a RK6 method. The fifth-order solution of
Eq. (A15) gives a direct estimate of the error of the RK4
solution in Eq. (A12). This estimate is given by jykþ1 −
ỹkþ1j and allows one to adapt the time step Δt based on a
specified error tolerance (tol) of y:

Δtkþ1 ¼ 0.84

�
tol

jykþ1 − ỹkþ1j
�

1=4
Δtk: ðA16Þ

The new time step is used for the next iterative step, unless
the error exceeded the tolerance, i.e., jykþ1 − ỹkþ1j > tol.
In the latter case, the previous step is repeated using the
new, smaller step size Δtkþ1. This way, the RK45 method
guarantees that the solution’s error is bounded by the
tolerance while the step size may change adaptively,
increasing the efficiency of our trajectory simulations.
We impose an additional upper bound on Δt ensuring

that the time step is short compared to the timescale of
scatterings:

Δt < 0.1 × τðr; wÞ; ðA17Þ

where the mean free time τðr; wÞ is given by Eq. (26).
In our simulations, the RKF method is used to solve the

three equations of motion given in (A6). The used values
for the error tolerances are

tolr ¼ 1 km; ðA18Þ

tolv ¼ 10−3 km s−1; ðA19Þ

tolϕ ¼ 10−7: ðA20Þ

These values were found through experimental simulations
of trajectories outside the Sun, where the analytic solutions
can be used to verify that the RKF results are accurate. In
addition, it was confirmed that a further decrease of tolerance
does not alter the solar reflection results. Finally, we abort
the simulation of a gravitationally bound particle after 107

time steps without scattering and consider the particle as
“captured” as discussed at the end of Sec. III A.

4. Initial conditions

The initial conditions for our simulations should accu-
rately describe DM particle of the Galactic halo whose
trajectory is about to cross the Sun’s surface. Up to this
crossing point, the particles follow unbound, hyperbolic
Keplerian orbits. The initial distribution of DM particles is
encapsulated in the halo model, which includes the local
DM energy density and velocity distribution far away from
the Sun. However, as the particles approach the Sun, they
get focused and accelerated by the Sun’s gravitational pull
and their distribution gets distorted. Therefore, we need to
generate the initial particle location and velocity at a far
distance from the Sun where the halo model applies and
propagate the particle along its Kepler orbit toward the Sun.
The procedure of generating initial conditions is split

into two parts. At first, we need to generate a particle’s
location and velocity asymptotically far from the Sun13

such that
(a) the initial positions are effectively distributed homo-

geneously in space, and
(b) the resulting trajectory is guaranteed to cross the solar

surface.
In a second step, we have to describe the particle’s fall
toward the Sun accounting for acceleration and focusing.
Using the results of Sec. A 2, this process can be described
analytically up to surface crossing, where the orbit ceases to
be a Kepler orbit and where the numerical RKF procedure
takes over.

13In practice, we use an initial distance of 1000 AU.
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Initial velocity u.—The initial velocities of DM particles
far away from the Sun that are about to enter the star do not
simply follow the velocity distribution of the SHM given in
Eq. (2). Compared to the SHM, the velocity distribution of
infalling DM particles is distorted due to two indepen-
dent facts:
(1) Faster particles enter the Sun with increased rate.
(2) Slower particles enter the Sun with greater num-

bers, since gravitational focusing can pull in
slower particles from a greater volume than faster
particles.

The resulting velocity distribution is proportional to the
differential entering rate [see Eq. (7)] and given in Eq. (24).
To sample a velocity u from fICðuÞ, we start by sampling
the asymptotic speed u from the speed distribution:

fICðuÞ ¼
Z

dΩu2fICðuÞ

¼ N IC

�
uþ vescðR⊙Þ2

u

�
f⊙ðuÞ; ðA21Þ

where f⊙ðuÞ is the speed distribution of the SHM in the
solar rest frame. We sample u using rejection sampling.
Given a value of the speed, we need to sample the direction
of u next. For this purpose, we express u in spherical
coordinates, i.e., uðu; θ;ϕÞ with the Sun’s velocity v⊙
along the z axis. With this choice of coordinate system, the
velocity distribution f⊙ðuÞ, and thereby fICðuÞ, only
depend on the speed u and the polar angle θ (or rather
cos θ) and not on the azimuthal angle ϕ which therefore
follows the uniform distribution U ½0;2π�. We sample the
value of cos θ via rejection sampling from the conditional
distribution function for a fixed value of u:

fICðcos θÞ ¼
R
2π
0 dϕfICðuÞR
dΩfICðuÞ

����
u fixed

¼
R
2π
0 dϕf⊙ðuÞ
f⊙ðuÞ=u2

����
u fixed

¼ 2π

f⊙ðuÞ=u2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
≡N 0

IC

f⊙ðuÞ
������
u fixed

: ðA22Þ

The prefactor N 0
IC is another normalization constant. The

domain of cos θ depends on the fixed value of u and is
given by

cos θ ∈ ½−1; cos θmax�: ðA23aÞ

with

cos θmax ¼ min

�
1;
v2gal − v2⊙ − u2

2uv⊙

�
: ðA23bÞ

This is due to our choice of our coordinate system and the
fact that the fastest particle only approaches the Sun from a
particular direction.
Finally, by sampling the azimuthal angle ϕ ∈ ð0; 2πÞ

from a uniform distribution, we can construct the full
velocity vector u.
Initial position r.—After knowing the initial velocity,

choosing the initial position is crucial, since we want to
ensure that the particle does not fail to hit the solar surface
but is instead on a collision course with the Sun. In other
words, we want to ensure that the orbit’s perihelion q, given
by Eq. (A8f), is smaller than the solar radius R⊙. This will
put a constraint on the viable impact parameter b of
Eq. (A8f), which can be used to sample the initial location.
For a given initial location r at a far distance, the angular

momentum of the DM particle is given by

J ¼ jr × uj ¼ ru sin α: ðA24Þ

At the perihelion q, the angle α is equal to 90°, and the
conserved angular momentum can be written as

J ¼ qwðu; qÞ; ðA25Þ

where wðu; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 2GNM⊙

q

q
. If the particle’s angular

momentum is too high, its orbit’s perihelion lies outside the
Sun which we want to avoid. Therefore, we require the
initial angular momentum to be bounded by

J < R⊙wðu; R⊙Þ; ðA26Þ

which is equivalent to q < R⊙. Looking at Eq. (A8g), this
imposes an upper bound for the impact parameter b ¼ J=u:

b < bmax ≡ R⊙wðu; R⊙Þ
u

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ vescðR⊙Þ2

u2

s
R⊙: ðA27Þ

The fact that b > R⊙ reflects the effect of gravitational
focusing. In practice, since we sample initial positions at a
large yet finite distance r ≫ R⊙, we modify the maximum
impact parameter slightly to

bmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ vescðR⊙Þ2
u2 þ vescðrÞ2

s
R⊙: ðA28Þ

By setting vescðrÞ ¼ 0, we recover Eq. (A27).
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We can now sample the initial position from a homo-
geneous distribution with the constraint that the particle’s
impact parameter satisfies Eq. (A27), as illustrated in
Fig. 17. It is given by

r ¼ dẑþ
ffiffiffi
ξ

p
bmaxðcosφx̂þ sinφŷÞ; ðA29Þ

where we used ẑ≡ − u
u, such that x̂ and ŷ span the plane

perpendicular to u. Furthermore, ξ and φ are sampled
values of the uniform distributions U ½0;1� and U ½0;2π�,
respectively. The resulting locations are distributed uni-
formly on the two-dimensional plane with b < bmax.
At this point, the sampled initial conditions ðt; r;uÞ

describe a DM particle far outside the Solar System, which
is going to cross the solar surface. After it is propagated to a
radius r0 ≳ R⊙ analytically (see Sec. A 2), the equations of
motion will be solved numerically as described in Sec. A 3.

5. Target velocity sampling

In this appendix, we review the algorithm to sample the
velocity vT of a solar target following Ref. [88].
We assume a DM particle moving with velocity vχ

through a plasma of temperature T when it scatters on a
target i of mass mi. While the velocity vi of the solar nuclei
and electrons follows a Maxwell-Boltzmann distribution
fiðvT; TÞ given by Eq. (10), we have to weigh each target
velocity by its contribution to the scattering probability
which depends on the relative speed

vrel ≡ jvχ − vij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2χ þ v2i − 2vχviμ

q
; ðA30Þ

as we can see from Eq. (8). Here, we defined the cosine of
the angle between the two velocities as μ≡ cos θ ¼ vχ ·vi

vχvi
.

This means that the PDF of the scattering target velocity vT
is given by

fðvTÞ ¼
vrelσiðvrelÞfiðvT; TÞR

d3v0Tv
0
relσiðv0relÞfiðv0T; TÞ

: ðA31Þ

In the DM models assumed in this work, the total cross
section never depends on the target velocity, and we thus
find

fðvTÞ ¼
vrel
hvreli

fiðvT; TÞ: ðA32Þ

Furthermore, we use the isotropy of the Maxwell-
Boltzmann distribution and separate the target speed
vT from the direction determined by μ and the azimuthal
angle φ:

fðvT; μ;φÞ ¼
vrel
hvreli

fiðvT; TÞfðμÞfðφÞ: ðA33Þ

At this point we also introduced the speed distribution
corresponding to Eq. (10):

fiðvT; TÞ ¼ 4πv2TfiðvT; TÞ ¼
4κ3ffiffiffi
π

p v2Te
−κ2v2T ; ðA34Þ

as well as the angles’ PDFs:

fðμÞ ¼ 1

2
; for μ ∈ ½−1; 1�; ðA35Þ

fðφÞ ¼ 1

2π
; for φ ∈ ½0; 2πÞ: ðA36Þ

The azimuthal angle φ can be sampled independently
from the uniform distribution U ½0;2π�, but μ and vT cannot
as the relative speed vrel depends on both. This leaves us
with

fðvT; μÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2T þ v2χ − 2vTvχμ

q
hvreli

fiðvT; TÞfðμÞ: ðA37Þ

In order to sample the random variables μ and vT from
this bivariate distribution, we use the following theorem
[116]. Random variables x ¼ ðx1; x2;…Þ with a PDF of
form

fðxÞ ¼ CgðxÞψðxÞ; ðA38Þ

where C > 0, gðxÞ is itself a PDF and 0 < ψðxÞ < 1, can
be sampled by first drawing x0 of the distribution gðxÞ and
accepting it with a probability of ψðx0Þ. If x0 gets rejected,
the procedure simply repeats until an accepted value for
x0 is found.

FIG. 17. Initial conditions and constraint on impact
parameter b.
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We can reshape Eq. (A37) into the form of Eq. (A38) via

fðvT; μÞ ¼ C
κvrel
xþ y|ffl{zffl}
≡ψðxÞ

fðμÞ
�� ffiffiffi

π
p

yffiffiffi
π

p
yþ 2

�
4ffiffiffi
π

p x2e−x
2 þ

�
2ffiffiffi

π
p

yþ 2

�
2x3e−x

2

	
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡gðxÞ

; ðA39Þ

where we define the dimensionless parameters x≡ κvT and
y≡ κvχ .
In practice, we can sample vT and μ using this theorem

through the following algorithm. First, we draw μ from a
uniform distribution U ½−1;1�. Next, we sample x. With a
probability of 2ffiffi

π
p

yþ2
we sample from the distribution

2x3e−x
2

via

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ln ξ1ξ2

p
; ðA40Þ

where ξi are independently drawn from U ½0;1�. Otherwise
x follows the distribution 4ffiffi

π
p x2e−x

2

, which we can

sample by

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ln ξ1 − cos2

�
π

2
ξ2

�
ln ξ3

s
: ðA41Þ

We accept the values ðμ ¼ cos θ; vT ¼ x=κÞ with a prob-
ability of κvrel

xþy. In the case of a rejection, we repeat the
procedure until a pair of ðμ; vTÞ is accepted.
Finally, given the target speed vT and the angles φ and

θ ¼ arccos μ, the target velocity can be constructed via

vT ¼ vT

0
B@ u cos θ þ sin θ

s ðuw cosφ − v sinφÞ
v cos θ þ sin θ

s ðvw cosφþ u sinφÞ
w cos θ − s sin θ cosφ

1
CA; ðA42Þ

where ðu; v; wÞ are the components of the unit vector
pointing into the direction of the DM velocity, i.e., vχ=vχ ,

and s≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − w2

p
.

APPENDIX B: STANDARD SOLAR MODEL

For the simulation of DM trajectories through the Sun,
we rely on a solar model for the properties of the star’s
interior. While there are many solar models in the
literature, the solar reflection results depend only very
weakly on this choice [49]. Just like in the previous work
[50], we choose the standard solar model (SSM) AGSS09
[74,117]. It provides the mass-radius relation MðrÞ, the
temperature profile TðrÞ, the density profile ρðrÞ, and the
mass fractions fiðrÞ for the 29 most common solar
isotopes. The mass, temperature, and density profile are
shown in the left panel of Fig. 18.
For the calculation of the DM scattering rate in Eq. (8),

we can find the number density of the isotope i of mass
mi via

niðrÞ ¼ fiðrÞ
ρðrÞ
mi

: ðB1Þ

In order to obtain the number density of electrons in the
solar plasma, we impose charge neutrality:

neðrÞ ¼
X29
i¼1

niðrÞZi; ðB2Þ

where Zi is the atomic number of the respective isotope.
The number densities are depicted in the right panel of
Fig. 18, where we highlighted the most relevant targets.
Another quantity we can derive from the solar model’s

parameters is the local escape velocity vescðrÞ, which is also
shown in the left panel of Fig. 18:

FIG. 18. The standard solar model: The left panel shows the Sun’s local escape velocity, mass density, temperature and mass profiles.
The right panel depicts the number density of the electrons and nuclei of the solar plasma. The number density of electrons is determined
by demanding charge neutrality; see Eq. (B2).
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v2escðrÞ ¼
2GNM⊙

R⊙

�
1þ R⊙

M⊙

Z
R⊙

r
dr0

Mðr0Þ
r02

	
; ðB3Þ

where we use the Sun’s radius R⊙ ¼ 6.957 × 108 m and
mass M⊙ ¼ 1.98848 × 1030 kg. Outside the Sun, the
escape velocity reduces to v2escðrÞ ¼ 2GNM⊙

r .
One more important property of the Sun, which is not

part of the SSM, is its velocity v⊙ in the galactic rest frame.
It consists of two components:

v⊙ ¼ vr þ vs: ðB4aÞ

The two components are the local galactic rotation
velocity [73]

vr ¼

0
B@ 0

v0
0

1
CA ¼

0
B@ 0

220

0

1
CA km=s; ðB4bÞ

and the Sun’s peculiar motion relative to the local
standard of rest [118],

vs ¼

0
B@ 11.1

12.2

7.3

1
CA km=s: ðB4cÞ

As described in Sec. A 4, knowledge of v⊙ is required for
the generation of initial conditions in our simulations and
for the definition of the isoreflection angle in Eq. (15).

APPENDIX C: DETAILS ON DIRECT
DETECTION EXPERIMENTS AND

EXCLUSION LIMITS

In this section, we summarize the experimental details of
the different direct detection experiments, for which we
derive exclusion limits in Sec. V B.

1. Nuclear recoil experiments

For SI and SD nuclear interactions, we derive exclusion
limits based on the experiments CRESST-III [9,106] and
CRESST-surface [8]. The procedure to compute the exclu-
sion limits for these experiments has been summarized in
Appendix B of [65], which also contain all experimental
parameters for CRESST-surface explicitly, such as expo-
sure, threshold, and energy resolution. In the case of
CRESST-III, the experiment consists of a CaO4W target
and had an exposure of 5.6 kg days, an energy threshold of
30.1 eV, an energy resolution of 4.6 eV, and an overall flat
efficiency 50%, as summarized in Table 1 of [106]. In
addition, the energy data and target-specific efficiencies
were released alongside [106].
In short, we derive the CRESST limits in this paper using

Yellin’s maximum gap method [119] in combination with
the energy data released by the CRESST Collaboration,
which reproduces the official limits to good accuracy.

2. Electron recoil experiments

For DM-electron scatterings, the exclusion limits pre-
sented in Sec. V B are based on the experiments XENON10
[19–21], XENON1T [23], SENSEI@MINOS [34], and
SuperCDMS [38].
The exact procedure for the derivation of the XENON10-

and XENON1T-based constraints has previously been sum-
marized in Appendix E of [78], while a summary of the
corresponding information for SENSEI@MINOS can be
found in Sec. IVD of [120]. For the latter, we use
Poisson statistics to derive an exclusion limit based on each
electron-hole pair (QÞ bin and identify the strongest of these
bounds. For SuperCDMS, we follow the same steps as for
SENSEI@MINOS. The reported exposurewas reported to be
1.2 g day. We assume a threshold of a single electron-hole
pair and include the first six Q bins in our analysis. The
number of events in each bin are (178 800, 1320, 248, 64, 19,
6) as extracted from Table I of [34].
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