PHYSICAL REVIEW D 104, 056013 (2021)
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The renormalized contribution of fermions to the curvature masses of vector and axial-vector mesons is
derived with two different methods at leading order in the loop expansion applied to the (2 + 1)-flavor
constituent quark-meson model. The corresponding contribution to the curvature masses of the scalar and
pseudoscalar mesons, already known in the literature, is rederived in a transparent way. The temperature
dependence of the curvature mass of various (axial-)vector modes obtained by decomposing the curvature
mass tensor is investigated along with the (axial-)vector—(pseudo)scalar mixing. All fermionic corrections
are expressed as simple integrals that involve at finite temperature only the Fermi-Dirac distribution
function modified by the Polyakov-loop degrees of freedom. The renormalization of the (axial-)vector
curvature mass allows us to lift a redundancy in the original Lagrangian of the globally symmetric extended
linear sigma model, in which terms already generated by the covariant derivative were reincluded with

different coupling constants.
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I. INTRODUCTION

The extension of the linear sigma model with vector and
axial-vector degrees of freedom has a long history (see e.g.,
[1-3]). In recent years, much effort was invested in the
study of the phenomenological applicability of various
formulations of the model. It turned out, for example,
that the gauged version of the model cannot reproduce
the correct decay width of the p and a; mesons [4], and
therefore the interest shifted toward versions of the model
which are based on the global chiral symmetry: originally
constructed for two flavors in [5] the extended linear sigma
model (ELoM) was formulated for three flavors in [6].

The parametrization of the three-flavor ELoM in relation
with hadron vacuum spectroscopy was thoroughly inves-
tigated in [6]. Constituent quarks were incorporated in
the ELoM in [7] and their effect on the parametrization,
through the correction induced in the curvature masses of
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the scalar and pseudoscalar mesons, was investigated along
with the chiral phase transition at finite temperature and
density. It is interesting to know how the model parameters
and the results obtained in [7] are influenced by coupling
the constituent quarks to the (axial-)vector mesons. The
effect of the (axial-)vector mesons on the chiral transition
was studied in [8] in the gauged version of the purely
mesonic linear sigma model with chiral U(2), x U(2)g
symmetry, by using a rather crude approximation for the
Lorentz tensor structure of the (axial-)vector curvature
mass matrix, which was assumed to have the vacuum
form even at finite temperature. Further investigations in
the above-mentioned directions require the calculation of
the mesonic and/or fermionic contribution to the (axial-)
vector curvature mass matrix and its proper mode decom-
position, as was done in many models dealing with the
description of hot and/or dense nuclear matter [9—11]. Such
a calculation within the linear sigma model would allow for
a comparison with in-medium properties of the (axial-)
vector mesons obtained with functional renormalization
group (FRG) techniques in [12—15].

The curvature masses of the scalar and pseudoscalar
mesons were derived in the U(3), x U(3); symmetric
constituent quark model in [16]. The method used there
involved taking the second derivative with respect to the
fluctuating bosonic field of the ideal gas formula for the
partition function in which the quark masses depend on
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these bosonic fields. The result was subsequently used in a
plethora of publications, even when it does not apply, as
was the case of Eq. [17], which seemingly uses incorrectly
the result of [16] to study the effect of the temperature and
chemical potential on the vector and axial-vector masses.
The result derived in [16] for (pseudo)scalar mesons
cannot be directly applied for (axial-)vector mesons, simply
because it is not enough to consider only the boson
fluctuation-dependent fermion masses: due to their
Lorentz index the momentum and (axial-)vector fields
couple to form a Lorentz scalar in the fermion determinant
resulting from the fermionic functional integral. Due to
such terms, derivatives of the fermionic functional deter-
minant with respect to the (axial-)vector fields give addi-
tional contributions compared to the bosonic case.

Although the calculation of the leading order fermionic
contribution to the (axial-)vector curvature mass matrix can
be done by taking the second field derivative of the func-
tional determinant, it is much easier to take an equivalent
approach and compute the self-energy at vanishing momen-
tum with standard Feynman rules. The technical issues that
need to be addressed are the mode decomposition and
renormalization of the self-energy and the mixing between
the (axial-)vector and (pseudo)scalar mesons.

We also mention that while our focus here is on the
curvature mass, the pole mass and screening mass can also
be obtained from the analytic expression of the self-energy
calculated at nonzero momentum using the usual defini-
tions given in Eq. (6) of [18], where the relation between
the pole and curvature masses of the mesons was
investigated with FRG techniques within the two-flavor
quark-meson model. This difference depends on the
approximation used to solve the O(N) and quark-meson
models and it is typically larger for the sigma than the
pion [18-21].

The organization of the paper is as follows. In Sec. II an
approximation scheme is presented for a consistent com-
putation of the effective potential (pressure) in the ELcM
which is based on curvature masses that include the
fermionic correction at one-loop level. In Sec. III we
compute in the one-flavor case, N = 1, the curvature
mass matrix of the mesons, with both methods mentioned
above. This allows for the introduction of the relevant
integrals used also in Sec. IV, where the self-energy of
all the mesons is calculated at vanishing momentum for
Ny =2+ 1 flavors. In this case a direct calculation of the
curvature masses from the functional determinant, although
completely straightforward, is made cumbersome by the
large number of fields and the dimension of the matrix
involved. This calculation is relegated to Appendix D.
Based on the mode decomposition of the (axial-)vector
self-energy, presented in detail in Appendix E, the curva-
ture masses of the physical modes are given in terms of
simple integrals. We also show in Sec. IV how to connect
the expressions of the (pseudo)scalar curvature masses

derived here with existing ones obtained with the alter-
native method of Ref. [16]. In Sec. V we discuss the
renormalization of the (axial-)vector curvature masses in
the isospin symmetric case. Dimensional regularization
was used in order to comply with the property of the
vacuum vector self-energy observed for some flavor
indices, which is related to current conservation, as dis-
cussed in Appendix B. The renormalization process
revealed that the Lagrangian of the EL6M can be written
more judiciously compared to the form used in the
literature, such that each term allowed by the chiral
symmetry is included only once, in accordance with the
generally accepted procedure. By looking from a new
perspective at the wave-function renormalization factor
related to the (axial-)vector—(pseudo)scalar mixing, we
discuss in Sec. VI how the self-energy corrections modify
its tree-level expression. Section VII contains numerical
results concerning the temperature evolution of the meson
masses obtained in a new vacuum parametrization of the
model which takes into account the one-loop fermionic
correction in the curvature mass of all the mesons.
Section VIII is devoted to conclusions and an outlook.
The appendixes not mentioned here contain some further
technical aspects used in the calculations.

II. LOCALIZED GAUSSIAN APPROXIMATION
IN THE YUKAWA MODEL

In order to motivate our interest in the curvature mass,
we present an improved calculational scheme for the
effective potential of the ELeM compared to that used
in [7]. This scheme, which we call the localized Gaussian
approximation, uses the curvature mass of the various
mesons. To keep the notation simple, we consider the
simplest chirally symmetric Yukawa model, defined by the
Lagrangian

1 .
Ly =3 00" — Ug(@) +w(id — gs@)y, (1)

where w and ¢ are fermionic and bosonic fields and
Uq(@) = mip?/2 + Ag*/24 is the classical potential. We
use Minkowski metric ¢ = diag(1,—-1,—1,—1) and the
conventions of Ref. [22].

Integrating over the fermions in the partition function'

Z= /quDy"/Dl//eifoY = /Dq)e"““(‘/’> (2)

leads to the action ([, =d*x)

'In the LoM this step is motivated by the fact that y represents
the constituent quark, that is, an effective degree of freedom not
necessarily corrected by the interaction with mesons.
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Atg) = [ [30000% - Uate)] - Triostis i),
)

where Tr = trp, f d*x denotes the functional trace, with the
subscript “D” referring to the Dirac space, and

iS7!(x, y) = [idx

is the inverse fermion propagator.

Shifting the field with an x-independent background ¢,
@(x) > ¢+ @(x), the effective potential can be con-
structed along the lines of Ref. [23]. Several approxima-
tions of the effective potential are considered in the
literature. These are reviewed below.

- gse(x)]8W (x — y) (4)

A. Mean-field approximation

The bosonic fluctuating field is neglected altogether,
leading to

Uni) = Ual@) + ity [ 10g(iS7'(K)). (9
where iS7'(K) = K — my is the tree-level fermion inverse
propagator with mass m; = gg¢. Here we introduced the

notation [, = [ (‘57154

4-momentum K* = (kg, k). The field equation used in [7]
was derived in this approximation.

for the momentum integral with

B. Ideal gas approximation

The bosonic fluctuating field is neglected in the fermion
determinant (Tr log) appearing in Eq. (3) and kept only
to quadratic order in the terms coming from the expansion
of Uy(¢p+ @). The Gaussian functional integral over ¢
leads to

US#) = Une(#) =5 [ 1ogiD7 (Ks). (6

where iD7!(K;¢) = K> — imn?(¢) is the tree-level boson
propagator with 7% () = d*U,(¢)/d¢* being the classical
curvature mass. This approximation was used in a non-
systematic way in [7] to include mesonic corrections in
the pressure.

C. Ring resummation or Gaussian approximation

The fermion determinant is expanded in powers of ¢
and keeping in Eq. (3) the term quadratic in the fluctuating
mesonic field, the Gaussian functional integral over ¢
results in

USP(#) = V() =5 [ 10giD7) (Ki) ~TIK:). (7

where the boson self-energy

M(K: §) = ighur / S{P)S,(K-P). (8

represents the one-loop contribution of the fermions.
Expanding in Eq. (7) the logarithm one recognizes the
integrals of the ring resummation.

The ring resummation is widely used in the Nambu—
Jona-Lasinio model, where it goes by the name of random-
phase approximation [24]. In that context the integral in
Eq. (7) requires no renormalization and was evaluated
using cutoff regularization in [25,26]. To spare the trouble
of renormalizing this integral in a linear sigma model, one
can approximate the self-energy with its zero momentum
limit. In this localized approximation the dressed bosonic
inverse propagator appearing in Eq. (7) is of tree-level type,
just that the tree-level mass is replaced by the one-loop
curvature mass M>(p) = m?(p) +TI(K = 0;¢). Since
with a homogeneous scalar background the curvature mass
does not depend on the momentum, the renormalization
of the integral becomes an easy task, as discussed in [27]
[see also Eq. (58) in Sec. V].

Note that one can define a curvature mass in each of the
above approximations by taking the second derivative of
the potential in Eq. (5), (6), or (7) with respect to the field ¢.
The curvature mass we investigate in this paper contains the
fermionic contribution from the second field derivative of
the Tr log in Eq. (3). This represents the purely fermionic
one-loop contribution to the curvature mass which can be
derived in principle in the localized Gaussian approxima-
tion using the background field method.

In order to compute the pressure, we need to evaluate
the effective potential at the minimum. In the localized
approximation the extremum is determined as the solution
of the field equation

mib 1[w+2g§tr]> / %(P)]

X/K2 i

We mention that the second term in the square brackets is
nothing but the fermionic correction to the three-point
vertex function evaluated at vanishing momentum. This
vertex function is obtained by expanding the fermionic
determinant in powers of the bosonic field

gStrD/ Sp(K)=0.  (9)

Tr log(iS7' — go)

8

= Tr log( le

n=1

X trp [H/dxqi Sf(x,,x,ﬂ)] . (10)

X1 =X1
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The expansion gives a series of one-loop diagrams in
which the nth term has n external fields (see e.g., [28] or
Chap. 9.5 of [22]). Using the background field method, the
expansion of such a fermionic functional determinant was
considered recently in [29,30] in order to derive effective
couplings between constituent quarks, (axial-)vector mes-
ons, and the photon.

The second field derivative of the functional determi-
nant, taken at vanishing mesonic field, is nothing but the
one-loop self-energy associated with the bosonic field with
respect to which the derivative is taken, as the contribution
of diagrams not having exactly two external fields of this
type vanishes. Based on this observation one can obtain the
lowest order fermionic correction to the bosonic curvature
mass by computing the one-loop self-energy with standard
Feynman rules.

III. CURVATURE MASS IN THE N;=1 CASE

We generalize now Eq. (1) and consider the chirally
symmetric Lagrangian2 in which a fermionic field y
interacts through a Yukawa term to scalar (S), pseudoscalar
(P), vector (V,), and axial-vector (A,) fields

Ly =yliy*0,—gs(S—iysP) —gvr*(V,+rsA)lw.  (11)

The mesonic part of the Lagrangian is of the form

_ (0X)*>  mg ol A, poye
ﬁm_xzs;i S X (8PP

+Y=ZV,A|:

with F), = 9,Y, — 8,Y,. We shall return to the unspecified
interacting part in the Ny =2 + 1 case in relation to the
renormalization of the one-loop curvature masses.

By integrating over the fermions in the partition function,
done after the usual shifts S(x) — ¢ + S(x) (¢ is indepen-
dent of x) introduced in order to deal with the spontaneous
symmetry breaking (SSB), one obtains a correction to
the classical mesonic action in the form of a functional
determinant. The expansion of the functional determinant
in powers of mesonic field derivatives, the so-called
derivative expansion [31,32], leads to an effective bosonic
action of the form

|
2wy +

2
mg y .
> YﬂYﬂ} +La(X,Y,), (12)

/ B Lo (h.8) = / B Lo (.8~ U (h.8) + O((98)).
(13)

>The one-loop curvature mass formulas derived here can be
easily modified when, in the absence of chiral symmetry, P and A
can have different Yukawa couplings than S and V, respectively.

with the leading order term of the expansion being the
one-loop fermionic effective potential

Us(, E(x)) = iTrlog(iS}l(@; £)

:iAlogdetD(iS_;l(K;S(X))), (14)

which depends on all the fluctuating mesonic fields
collectively denoted by &(x). We introduced

iS71(K:8) =K —mp—gs(S—iysP)—gv(V +4Ars),  (15)

for the inverse fermion propagator, in which m; = gg¢ is
the tree-level (classical) fermion mass. Hereafter the x
dependence of the mesonic fields will not be indicated.

The second derivative of Uy(¢,&) with respect to the
mesonic fields gives an additive correction to the classical
mesonic curvature mass obtained from L,,. Since later
we will investigate the Ny =2 + 1 case, where the fields
have flavor indices a = 0, ...8, we give the more general
formulas of these corrections

U (o,
AR = =I5 @9 X=S.P,
dX,dX, |-y
d*Us(9.€)
A = 2 75 Y=V,A 16
mab’/u/ dY dYI_/ 5:07 ) ( )

In this section the flavor indices should be disregarded.
The sign difference between the above definitions is

due to the different signs of the corresponding classical

mass terms in Eq. (12). Accordingly, for the (pseudo)scalar

field one has an additive correction to the classical mass

2.(X)

squared n%a'lf =- |e—o, while for the (axial-)vector

dX dX
field the second derlvatlve is a Lorentz tensor, and therefore
V) 2
the correction to mib( ) = % d‘f,”flf;ﬂ | £=0 depends on the

2.(Y)

ab.yv
or nonzero temperature. For example, at 7 =0, where

. 2,(Y) L2.(Y) .
A/ v X G the fermionic correction to 7, ' is

obtained by taking the trace in Eq. (16):

tensor structure of A/’ and whether one works at zero

~2,(
4A o (17)

This is needed in a parametrization of the model that is
based on the one-loop curvature masses. For the curvature
mass at 7 # 0 one needs the mode decomposition of the

tensor Arhﬁ;(y). This will be discussed in Sec. IV and
Appendix E in relation to the Ny =2 + 1 case.
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A. Brute force calculation
The determinant D = detD(iS]?1 (K;&)) appearing in
Eq. (14) evaluates to

D = [g5((S+¢)* + P?) - K*]?
+ (K* —mj + gy V? = 2g9yK - V)?
+ [(gvA%)? + 297 [(m} + K*)A? = 2(K - A)?]]
+2g35((S + ¢)* + P2 = ¢*][gy (A* = V?) + 29y K - V]
— (K? = m3). (18)

Writing the determinant in this form facilitates the
derivation of the curvature masses, as the contribution to
the scalar and the pseudoscalar comes only from the first
term, while only the second and the third terms contribute
in the case of the vector and the axial vector, respectively.
Also, note that D(£ = 0) = (K* — m7)*.

The second derivative of the determinant with respect to
a particular field denoted by ¢ is calculated using

dzlogD‘ B [i d’D 1 dDdD
dody |-

- 2220 (19
Ddpdp D*dy dﬁ””s:o 19)

For ¢ € {S,P,V,} this is applied writing D = D*> + R,
where D? is either the first or the second term on the
right-hand side (rhs) of Eq. (18), while the remnant R
does not contribute in Eq. (19). Introducing the notation
G¢(K) = 1/(K* = m7) one obtains

d*log D 5 .
asds | % Gy +2m3Gyl. (20a)
d*log D
= —49%Gy, 20b
dPadP ‘ o ST (200)
for the scalar and the pseudoscalar fields, and
d*log D
v, 46319.,G; - 2K,K, G, (21a)

for the vector field.
For the axial vector one applies Eq. (19) with D =D +R,
where D is the third term on the ths of Eq. (18), to obtain

d*log D

=0

(21b)

For scalar and vector fields there are contributions from
both the first and the second derivative of D, while in the
case of the pseudoscalar and axial-vector fields only the
second derivative of D contributes.

Using Egs. (14), (16), (18), and (20) the fermion
corrections to the curvature masses of the scalar and
pseudoscalar fields are obtained as

d
AR>S = —4g? [1 +2m? dz] T(mys), (22a)
ny

AP = —43T (my), (22b)

where the (vacuum) tadpole integral is

T(mf):[(ﬁ:[(icf(m. (23)

I

In the case of the vector and the axial-vector fields, one
evaluates the trace in Eq. (17), using Egs. (16) and (21)
together with gy = 4 and K,K,¢* = K* = m7 + G;', to
obtain

8 = 2 1= | T(my),

2
dmf

. d
N [1 ame d_m;] T(m)). (24b)

1. Integrals at finite temperature

The expressions in Eqs. (22) and (24a), which were
formally derived at vanishing temperature (7" = 0), can be
easily generalized to 7 # 0, where the tadpole integral
consists of vacuum and matter parts:

T(ms) = TO(mp) + T (my). (25)

The superscripts indicate the absence or the presence of
statistical factors in the respective integrands. In a covariant
calculation the vacuum part 7 (my) is the integral in
Eq. (23), while in a noncovariant calculation it is

&’k 1

(26)

as obtained with the usual conventions of the imaginary
time formalism [33], namely (¢ is the chemical potential)

Ak
ko - iIJn +,bl and /K - IT;/W, (27)

after doing the summation over the fermionic Matsubara
frequencies v, = (2n + 1)xT. The matter part is

o 2
T(U(mf):_# A dk%[f}(kﬂ— F0). (28)
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where f+ (k) =1/(exp((Es(k) Fu)/T)+1) are the Fermi-
Dirac distribution functions for particles and antiparticles
and E}(k) = k> + m7 with k = [k|.

For the mass derivative of the matter part of the tadpole
integral (Euclidean bubble integral at vanishing momen-
tum) one uses d(f7/Ey)/dm} = d(f;/E;)/dk* and an
integration by parts to obtain
~BW(my) = dT(my) _ 1 /m il 0+ 50

0

dm2 8z E;(k)

(29)

The fact that even at finite temperature the trace of the
second derivative appearing in Eq. (21a) is the only relevant
quantity determining the curvature mass of the vector
boson is due to current conservation. For the axial vector
this is not the case and one needs the mode decomposition
of the tensor in Eq. (21b). This is discussed in Appendix E.

B. Curvature mass from the self-energy

As mentioned at the end of Sec. II, the one-loop
curvature mass can also be obtained by computing the
corresponding zero momentum self-energy. For example,
for the self-energy of the vector field, the Feynman rules
applied with the conventions of [22] give

i) (0 = 0) = ~(igy o [ 1S/KInS/(K). (30
Using S; = i(K + my)Gy, the Dirac trace

trD[ylt(K + mf)yu(K + mf)] = 8K/4Ku - 4.9;4qu:1 (K)
(31)

results in

) (0 =0) = —4¢% [gﬂj(mf) —2i A KMK,,G%(K)} .
(32)

Comparing Eq. (32) with the expression obtained by

using Eq. (21a) in Eq. (16) shows explicitly that Arhf,}fv) =

H,%)(Q = 0). At zero temperature H,(,‘;)(O) = 0 due to the
current conservation related to the U(1),, global symmetry,
and therefore the one-loop curvature mass of the vector
boson is the classical one, A",

In order to obtain the curvature mass of the physical
modes at finite temperature, we need the standard decom-
position of the momentum-dependent self-energy tensor
reviewed in Appendix E. The self-energy is decomposed
into vacuum and matter parts. The former is evaluated

using a covariant calculation performed at 7 =0 in a

regularization scheme compatible with the consequence
of current conservation, namely that the self-energy is

4-transverse, Q"H;(,‘D/)(Q) =0, and H,()U/,)VHC(Q =0)=0.
Therefore, only the matter part contributes to the self-
energy components determining the curvature masses of
the 3-longitudinal and 3-transverse vector modes

~r2,(V)

i) = v )

- (33)

The components are obtained as (see Chap. 1.8 of [34])

2
V) 1 Q_ (v),00 _ q(").00
IT; Vi Timy e NYP(Q) =Ty (0,0),

1
va) = Elim lim (H,(lv)’”(Q) -11(0))
q—0 go—0

3
= -2 0,0).

. (34

For the axial vector, which does not couple to a conserved
current, the tensor structure of the self-energy is more
complicated and it is discussed in Appendix E.

The interested reader can find in Appendix A a dis-
cussion on the matter part of the self-energy components.
For the vacuum part see the discussion in Sec. V and the
calculation presented in Appendix C.

IV. CURVATURE MASS FOR Ny=2+1

The fermionic part of the chiral-invariant Lagrangian of
the extended linear sigma model, whose mesonic part can
be found in [7], has the form given in Eq. (11), only that
the fermionic field is the triplet of constituent quarks,
w = (u,d,s)T, while the mesonic fields are nonets. For
the scalars S = S,T, = S,4,/2,a =0, ..., 8 and similarly
for the other mesons (4, are the Gell-Mann matrices
J.

The integration over the fermionic field in the partition
function results in a functional determinant involving a
N x N matrix, where N =3 x4 x N, with N, being the
number of colors. This matrix structure makes tedious a
brute force calculation of the curvature mass similar to the
one shown in Sec. IIT A, even in the case of a trivial color
dependence [see Eq. (D1)]. Therefore, we proceed as in
Sec. III B by calculating the self-energy at vanishing
momentum and relegate to Appendix D the sketch of a
direct calculation.

and 1y =

A. Curvature mass from the self-energy

For simplicity, we consider the case when only the scalar
fields, namely S,, S3, and Sg, have expectation values,
denoted by ¢, ¢3, and ¢g. It proves convenient to work in
the N-S (nonstrange-strange) basis, which for a generic
quantity Q is related to the (0,8) basis by
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(o) ~#(o.)
R:R‘I:\%<? _k) (35)

Applying the above relation to the matrices A, and Ag,
one obtains Ay = diag(1,1,0) and Ag = v/2diag(0,0, 1),
which give the antisymmetric structure constants fysn =
fern = 1/2 and fuss = fe7s = —1/+/2. With the shift
S;—=>¢;+S;,,i=N,3,S, one obtains, using also
A3 = diag(1,—1,0), the tree-level inverse fermion propa-
gator matrix in flavor space as iSy!' = diag(iS;', iS7',
iS7'), with components iSj?l(K) = K —my, where the
tree-level fermion masses are

m, g = gs(dn £ ¢3)/2, m, = gsps/V2.  (36)

The one-loop self-energy of a generic field X,, with a
being a flavor index, can be written as

% (Q)=iN sy} / tr[l“x 208 (KT l”so( L. (37

where N, is the number of colors, L = K — Q, sy = 1 for
X=V,A, and sy =—1 for X =S,P. The propagator
matrix S, = diag(S,.S,. S,) has as elements the tree-level
propagators of the constituent quarks. Furthermore, I'y
contains Dirac matrices that carries a Lorentz index when
X € {V, A}, in which case the prime on I'y indicates that its
Lorentz index is different from that of I'y. The matrices are
explicitly given in Table I, along with the constant cy
proportional to the Yukawa coupling. The trace is to be
taken in Dirac and flavor spaces. We assumed a trivial color
dependence and we postpone to Sec. IV B the discussion of
a more complicated one.

The flavor space trace in Eq. (37) can be easily
performed. Since in the N-S basis the 4, matrices have,
with the exceptions of @ = S, two nonzero matrix elements,
one generally obtains two terms which can cancel each
other for some flavor combinations. The nonzero contri-
butions are listed in Table II. In the case of the first three
entries, the factor of 2 is the consequence of the identity

trp [Ty S (K)T} S (R)]
“RITS;(-K). (38)

which is applied inside the integral in Eq. (37) with ¥ = X,
followed by the shift K — —K. This identity can be proven

= ryrytrp[[xSp(

TABLE 1. Dirac matrices and couplings to be used in the
self-energy formula (37).

X, CX*FX S, _igSa 1 P, —9s> Vs v, _igV» Yu A, _igV» Yuls

using the cyclicity of the trace and that, given the charge
conjugation operator C = iy?y°, the matrices I'y of Table I
satisfy CTyC~! = ry['}, where ry =1 for X € {S, P, A}
and ry = -1 for X = V.

We see from Table II that after the trace in flavor space is
performed, depending on the indices ab, the self-energy
(37) can be expressed either in terms of integrals involving
two different propagators

IX(Q,mf,m)u) =

7 Lol (KOS, (K-0)). (39

or using integrals of the types already encountered in the
one-flavor case [see Eq. (30)], obtained from Eq. (39) as

f/—nnf

Being interested in the curvature mass, we evaluate
X)
Hab (Q - 0)’

the zero momentum self-energy, Hg) =
expressing it in terms of the integrals

IX(ml,mz) = IX(Q = 0§m1,m2),
X(m) =1%(Q = 0;m). (41)

These are calculated in Appendix C, where, using partial
fractioning and simple algebraic manipulations, they are
reduced to a combination of simple integrals.

In the case of (pseudo)scalars the result is summarized
in Table III, where we indicate the quark masses, labeled
by f and f’, to be used in the formula of the one-loop
self-energy for a given choice of the flavor indices a and b.
The correction to the tree-level curvature mass mjb“/ ?)
the form

is of

FIROIP) — G2ASIP) | AG2SIP) | 5 251P),
Ay Eﬂii/,i?c, ding, " =TGN (42)

where the vacuum part needs renormalization and the
matter part is finite and determined by 7° ;1 )

derivative, for some flavor indices). In some flavor cases
Eq. (42) does not represent the physical curvature
mass of the (pseudo)scalars, due to their mixing with

(and its mass

TABLE II.  Nonvanishing contributions to the self-energy (37)
from the flavor space trace, tr[4,Sy4,So], for ¢h; # 0 and their
reduction in the isospin symmetric case, where / denotes the light

quarks with equal masses m; = m, = my.

ab $3#0 ¢ =0
11,22 28,84 28,
44,55 28,8, 28,5,
66,77 28,8, 28,8,
SS 28,8, 28,8,
33,NN S.Su+ 8,84 28,5,
3N, N3 S.Su— 8484 0
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TABLE III.

Fermionic contribution to the zero momentum one-loop self-energy of the scalar (), pseudoscalar

(P), vector (V), and axial-vector (A) fields in the ¢p; # 0 case. We indicate by f and f” the quark type whose mass has
to be taken into account in the formula of the self-energy having flavor indices ab. The matter part of the tadpole

integral 7 (m) is given in Eq. (28) and the finite piece of the vacuum part in Eq. (56). The vacuum integral 1. Vac is

given in Appendix C, together with the 00 and 11 components of the matter integral 7

CS/V = ZNCgé/V’ tg = ], tp = 0, and Su/d = =+I.

VIAR The constants are

ab f fl _HEJSI;/P)/CS Hfl‘;//‘\)-ﬂ”/cv
11, 22 du T(m) T(m)
44, 55 s u mpt \my) F my L (my vpv/A ) 4 IV A ,
66, 77 d s T g Fvac (mg,myp) + L™ (. myr)
SS s — <1 + 2ts/pm% diﬁ) T(m/) g”"IXa/CA(m ) + Ir‘:lz/;t“hﬂv(mf)
1 d
33, NN ud 32 (1 + 215pm} - ) T (my) = Z (9"”13@ Xﬁ?‘””(m,-))
i=f.f mi t 1.f
1 d w
3N, N3 ud 5 S; <1 + 2t5/pm,2 F) T(ml) Z (gﬂ”]\‘//d/CA i) + Il\l/‘é?” (ml))
i=7.f i Ly’

(axial) vectors. This issue is addressed in Sec. VI, where we
will see that the mixing affects all the pseudoscalars, but
only the scalars with flavor indices 4-7.

In the case of the (axial) vectors, the evaluation of the self-
energy requires some care. The self-energy is split into
vacuum and matter parts, as indicated in Table III. For some
flavor indices, namely a = 3, N, S for ¢; # 0 and addi-
tionally a = 1, 2 for ¢p; = 0, the vacuum part of the vector
self-energy requires, as in the Ny =1 case, a covariant
calculation in a regularization scheme that complies with the

requirement miy)# “(Q =0) =0, which is familiar from
QED. This requirement is investigated in Appendix B, where
we relate it to a symmetry of the classical Lagrangian, which
is manifest for a specific field background.

For simplicity, we use dimensional regularization to
calculate the (axial-)vector self-energy, irrespective of the
flavor index. The vacuum integral determining the self-energy
can be reduced to tadpole integrals [see Eq. (C12)]. Its finite
and divergent pieces are given in Eqs. (C9) and (C10). For the
matter part we only need to consider purely temporal (00) and
spatial (ij) components, as mixed (07) components vanish due
to symmetric integration. The matter part of the relevant
integrals, given in Egs. (C16) and (C17), contains also an
integral whose mass derivative is proportional to the tadpole,

(M
[Zr{zf =-32 [see Eq. (AS5)]. In the equal mass limit this
relation cons1derably simplifies the result.

A further complication with the (axial) vectors is related
to the fact that one needs to consider the mode decom-
position of the dressed propagator. This is done in
Appendix E, using the usual set of tensors that includes
three- and four-dimensional projectors. As shown there,
each mode has its own one-loop curvature mass, deter-
mined by the Lorentz components of the self-energy tensor
in the Q — 0 limit.

Using the form of the self-energy given in Table III in the
expression (E11) that gives the contribution to a given
mode p € {t,1,L}, one sees that the curvature mass has the
structure

B2/ _

~2,(V/A ~2,(V/A ~2,(V/A
2 VD L AG2VIN | 5 52018

. (43)

where i refers either to flavor indices (e.g., ab = 44) or to
the particle (e.g K 1). Am? is the contribution of the

vacuum part & 1Y/ vac , which in view of Eq. (E11) is the same
for all modes. §,/m7 is the mode-dependent contribution of

the matter part, and it is determined by « Ir‘fl{f’oo for the “1”

V/AIL .
mode and « / m{n for the “t” and “L” modes, as discussed

around Eqgs. (E17) and (E19).

The t and 1 modes are, respectively, 3-transverse and
3-longitudinal, while the L mode is 4-longitudinal. We will
see in Sec. VI that the L mode (43) influences the physical
curvature mass of the (pseudo)scalars.

For the flavor indices appearing in the last three rows of
Table III (and also for ab =11, 22 for ¢; =0, when
m, = my) one has only a matter fermionic contribution to
the vector curvature mass and only in the case of the I
mode. This is because the single mass integral is such that

IVoo(my) = Iy (my) = 0, as shown in Appendix C. In
the isospin symmetric case the matter contributions to the
curvature mass of the modes are [note that due to the
absence of mixing wy = (782) and wg = ¢(1020)]

A o AD .
o,m; = opm; =0, i =p, oy, 0,

517’}’1/}/(” = CVIT‘I/lﬁo(ml)’ 51,;'\13’5 = CVIX1230<mS>7
A V)11
5t,Lm%(* = _HA(M)mat CVImal (ml’ ms)’
51mK' = H4(14)mal CVIr‘;egO(mlv mx) (44)
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for the vectors and

A), 11
—ni = eyttt m)),

02 —
5t,Lmal/le = 11,mat

00
i =TI = Cylast (m)),
A),11 .
5t.Lm%(| = _HA(M,)ma[ = _Cvlﬁyaltl (mlﬂ ms)a
A),00
Gk, =TI\ e = Cy I (my.m,) (45)

for the axial vectors, where Cy = 2N_.g} and for the fig
meson the contributions are as for fy with m; replaced
by my. The integrals are explicitly given in Appendix C.

The vacuum contributions need renormalization and
their finite part is given for ¢p; = 0 in Eqgs. (67) and (68).

B. Connection to previous calculations

The fermionic correction to the (pseudo)scalar curvature
masses was calculated first in Ref. [16] in the isospin
symmetric case (¢3; = 0). The Polyakov-loop degrees of
freedom were incorporated in Ref. [35]. Bringing the
expression in Eq. (B12) of [16] and in Eq. (25) of [35]
in a form containing the tadpole and the bubble integral at
vanishing momentum is not mandatory, but it reveals the
structure behind the obtained result for the curvature mass.
Also, integration by parts shows that the result can be given
in terms of a single function: the Fermi-Dirac distribution
or the modified Fermi-Dirac distribution (48), when
Polyakov-loop degrees of freedom ® and ® are included.
This simple observation makes superfluous the introduc-
tion of Bf and ij, used also in [7] following [35], and
allows for a slight simplification of the formulas used so far
in the literature.

Using the method of Ref. [16] we show below how to
obtain the expressions of the (pseudo)scalar curvature
masses given in Table III. The method assumes that we
can use in the ideal gas contribution of the three quarks
the grand potential quark masses that depend on the
fluctuating mesonic fields, as in Eq. (14) of the Ny =1
case. The method works because for gy = 0 and K = 0 the
eigenvalues of the mass matrix in Eq. (D1) correspond to
the u, d, and s quark sectors. In case of the (axial) vectors,
it is not enough to concentrate on the mass matrix, as
explained in Sec. I. Taking (axial-)vector field derivatives
of the eigenvalues of the mass matrix, as in Ref. [17],
results in a curvature mass tensor which breaks Lorentz
covariance, as it is not proportional to g,, at T = 0.

Concentrating on the matter part of the grand potential,
we start from its expression given in the ideal gas
approximation in Eq. (27) of [7]:

0)T
ot~ Y [ S0

f=ud.s

3 [Ingf (p) +1In gz (p)],

(46)

where

GF(p) = 1+ 3(@F + @F () PE ) g o=E )
(47)

with @t =0, d~ =], Ei(p) =E;(p) Fus, and E2( ) =
p*+ M2 Here M are the eigenvalues of the matrix in
Eq. (Dl) which depend not only on the scalar background,
but also on the fluctuating (pseudo)scalar fields, generically
denoted by ¢,, with a being the flavor index. After taking
the second derivative with respect to ¢,, the fluctuating
field is set to zero, in which case M,(¢, = 0) = m,.
The modified Fermi-Dirac distribution functions

(I)i ﬂE (p )_I_zq)q:e_zﬁE%(P) +e_3ﬂE%(P)

Fi(p) = (48)

95 (p)

are introduced by an integration by parts

dp 1 0 Ffi(P)
T/ (27)3 lngjj"t(p) _2_71_2/)' dpp* E(p)’ (49)

Then one uses that the dependence on ¢, is through Mj%,
which only appears in the combination p? + M2,

o Fr(p)
a(pa Ef(p) B

19 <F.§F(P)>3_A/1,,2r (50)

2p0p \Es(p)) 0w,

The above relation and integration by parts results in

or 2142
PQy (Tpg)| _62{ o*M3 70)
09,00y | ,—0 (‘3%340;,
OM; OM; B(l)} (51)
5% Oy, 4;:0’
where the integral 7 J(cl) =7 (my) and its mass derivative,

defined in Egs. (28) and (29), now contain the modified
Fermi-Dirac distribution functions (48).

Using Table III of [16] for the derivatives of the masses
[Table II of [7] to also get the wave-function renormaliza-
tion factors due to the shift of the (axial-)vector fields] one
recovers the result obtained in [7] in the isospin symmetric
case, where one has m, ;, = m; = gg¢n/2. For example,
in the ab = 11 scalar sector, which is not affected by the
mixing, one has (M, does not contribute)

82M2

2 2
OM2 OM?
£, 08, 08,

_ 2
=gy
=0

2.2
= 2g5my,
»=0

(52)
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so that the matter contribution of the fermions to the
curvature mass obtained from Eq. (51) has the form

omz, = —63 | T} = 208" (53)
in accordance with Table III in view of (29).

The above simple calculation shows that in the presence
of Polyakov degrees of freedom the fermionic contribution
to the curvature mass can be given in terms of the modified
Fermi-Dirac distribution functions (48). Based on this, one
can safely replace in our previous matter integrals ij( p)

with F(p).

V. RENORMALIZATION OF THE
CURVATURE MASS

For simplicity, we discuss the renormalization of the
fermionic correction to the curvature masses only in the
isospin symmetric case (¢3 = 0) where m; = m, = my.
Then, according to Table II, the contribution in the last row
of Table III vanishes, while for 1 — 3, N flavor indices one
has to use the equal mass formula of the a = S case with the
replacement m; — m;.

Since the renormalization of the (pseudo)scalar curvature
masses poses no problem and was already done in the
literature, using dimensional regularization [36-38] or
cutoff regularization [7], we will only sketch an alternative
method, which can be used in a localized approximation,
that is, when the self-energy is evaluated at vanishing
momentum.

The divergence(s) of a vacuum integral can be separated
by expanding a localized propagator around the auxiliary
function Go(K) = 1/(K* — M3), where M, plays the role
of a renormalization scale. For the tadpole integral, iterating
once the identity G, = Gy + (m} — M§)G,G/, one obtains
upon integration

TO(m;) = Dy + miDy + T (my). (54)
where the first and second terms are the overall divergence
and the subdivergence given in terms of

a7 (M,
Dy = TO(My) — M3Dy.  Dy="T_Mo) -~ (s5)
dM;
and the last term in Eq. (54) is finite,
0 .
T ny) = i} = M3)? [ Gh(KIG ()
1 2 2 2 mj%

With the above renormalization procedure the finite
part of the tadpole is independent of whether covariant

or noncovariant calculation, cutoff, or dimensional regu-
larization is used [provided the cutoff is sent to infinity
in Eq. (56)]. In a noncovariant calculation, Eq. (56)
is obtained from Eq. (26) by writing E(k)=
(K + M + Am3)'/2, with Amj = m} — M, and sub-
tracting from the vacuum piece of the tadpole the first
two terms obtained by expanding 1/E(k) in powers of
Am?. Subtracting also the O((Am7)?) term when renorm-
alizing the integral,

&’k

L) = [ GHE®.6)

which determines the one-loop fermionic contribution to
the effective potential, Eq. (5) [and, with the replacement

m]% — M?, also the contribution of the ring integrals with

localized self-energy, Eq. (7)], results in the following finite
vacuum part:

2

m
f
Am3(2m7 4 Am7) — 2m} lnﬁg ,

(58)

LY (my) =

647>

which satisfies dL{ (m;)/dm} = T{ (my), that is,
the relation also holding between the unrenormalized
integrals (57) and (26).

Now we turn our attention to the renormalization of the
(axial-)vector curvature masses (43). The relevant terms of
the ELoM Lagrangian introduced in Eq. (2) of Ref. [6] are
those proportional to the coupling #;, i = 1, 2, 3 and the
term containing the covariant derivative. In dimensional
regularization, used here with d =4 —2¢, no overall
divergence is encountered, and thus the mass term of the
(axial) vectors o m% is not needed. The tree-level mass
squared of the vector and axial-vector fields depend on the
strange and nonstrange scalar condensates ¢y and ¢y, as a
result of the coupling of these fields to the scalars, which
acquire an expectation value. We have to ensure that the
subdivergence of the vacuum contribution to the curvature
mass in Eq. (43) is removed by the environment-dependent
terms (that is, proportional with ¢y and ¢g) present in the
tree-level mass formulas.

Using Egs. (C9) and (C10) in the expressions of Table III
with m,, ; = m;, we see that the vacuum piece of the vector
curvature mass is divergent only for flavor indices 4-7,
corresponding to the K* meson,

(ms - ml)2
167%¢

Aﬁi%(*!div = gyN. (59)

while for the axial vectors divergence is present in all the
flavor sectors
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2

. a2 4m;
Amil,div = Ay gy = Q%Nc 1622¢°

2

L2(A) o, 4m

Afigg giy = gy N, 167r2s€’
(my + my)?

AmK] div — g%/Nc i67[2€ (60)

where the a; (K;) meson corresponds to the 1-3 (4-7)
flavor indices.

The above subdivergence structure means that in the
tree-level mass formulas given in [6] in Egs. (27)—(34), we
have to look for terms which are only present for K* and
the axial vectors. There is indeed such a term, the one
proportional with g2, and by using the mass formulas (36)

of the quarks and also (m; 4= m,)?> = gS(¢N + [’J’T/@ + ¢§)

we see that the environment-dependent part in the tree-level
mass formulas matches the form of the subdivergence,
which therefore can be removed. The only problem is
that, since g; is squared, absorbing the subdivergence in
the counterterm of ¢g; would result in an awkward
renormalization, as the term quadratic in the counterterm
should be dropped.

A close inspection of the structure of the terms in
Eqgs. (27)-(34) of [6] shows that one can achieve renorm-
alization by assigning counterterms to the couplings #;,
i = 1,2, 3 instead of g;. Namely, splitting the bare coupling
into a renormalized one and counterterms, h; = h;z + oh;,
one sees that the subdivergences can be eliminated with the
counterterms:

N .g39%
167%¢

5]’11 =0 and 5]’12 = —51’13 = —

The fact that renormalization can be achieved without
referring to the counterterm of g; raises the question of why
g7 is present at all in the tree-level mass formulas. A closer
look into the origin of the terms proportional to h,, h3, and
g7 in the mass formulas reveals that some terms included in
the Lagrangian through the terms proportional to /1, and /5
are also generated by the covariant derivative term which
contains g7. Namely, using the covariant derivative of [6],
D'M = O'M — ig,(L*M — MR*) — ieAL[T3, M], (61)
where M = S+ iP as in [7], the coefficient of the O(g7)
term in Tr[(D,M)"(D,M)] is

Tr(L - LMM' + R - RM'M) — Tr[2L,MR*M"].  (62)
The above two traces were added to the Lagrangian
with coefficients i, and A3, respectively. Therefore, using
L) =L, and the shorthand |L,M|> = (L,M)*(L*M), the
piece of Lagrangian used in [6] is in fact

8L;,, = hoTr(|L,M|* + |R,M|*) + 2hs Tr[L,MR*M"],

(63)

where the relations between the parameters are
hy=hy—g¢ and hs=h;+ g, (64)
from  which  hy, 4+ hy = hy + hy.  Applying these

relations, g7 can be eliminated from the tree-level mass
formulas of the (axial) vectors in which h,; is replaced
by h2’3.

To avoid duplication of terms in the Lagrangian, it is a
better practice to use a covariant derivative containing only
the electromagnetic field,

D'M = O"M — ieA%L[T5, M), (65)
and write the Lagrangian that contains the mass terms of the

(axial) vectors and their interaction with the (pseudo)scalars
in the form

8L =Tr[(D,M)"(D,M)]
1
+3 [m} 4 e (MTM)]te(L - L + R - R) + 6L,
+ g Tr[i(M'L, — R,M")(D*M) + H.c.], (66)

although this form is less compact than the one in [6].

After all these considerations, we give for completeness
the vacuum curvature masses containing the renormalized
one-loop level contribution of the fermions. The vector
curvature masses are

2 _ 2 o2 A2
Mp,vac - MmN.vac - mp myN>
2 _ ~2

Ma)S,vac = Mys,

M%(',vac = mK" +2N g%/ vacF(ml’ ?)’ (67)

while the axial-vector ones are

le/fm vac mfll/f]N +2N g‘z/lf"acp (1)
MfISVdC_mf +2NCngvacF( )
MKl,vac + 2Ncgvlvac F(mhms)? (68)

where the classical curvature masses

th 2

ﬁ’lz _m%+_¢N+ B S

pla

N hs
’"%(*/Kl mi + —4512\1 + =R nps + ¢s,

5

A IR 7
mz)s/fls = m% + 7(1712\] + Hj:¢§ (69)
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are written, omitting the symmetry breaking terms
considered in [6], using the constants H, = hg +
hZR + l’lR3, H] = 2h1R + hZR’ HQ = th + hZR’ and
Hy = *thyg + hog + hig/2.

VL. $-V AND P-A MIXING

These types of mixings come from the last line of
Eq. (66) after performing the trace and shifting the scalar
fields with their background values. Doing also a symmet-
rization using integration by parts in the classical action,
one obtains, in Fourier space and at quadratic order in the
fluctuating fields, the last four mixing (crossed) terms in
Eq. (9) of [6] (up to an unnecessary factor of i in the V — S
mixing terms and the wrong sign of the last two terms):

ua g1 . AU D DA
SLy™ = _EllKu[dijk(Al;Pj — PiAj)
+fijk(~l;‘§j+§i_j'l)]¢ka i,j,k=0,..,8,
(70)

where X = X(K) and X = X(—K).

Due to the values of f;;, the § — V mixing occurs only
in the 4-5 and 6-7 flavor sectors and is of the form
Sa/p = Vpja with ab =45 and ab = 67, respectively.
The P — A mixing occurs in all flavor sectors and has
the form P, — A, fora # 3, N, S. The P — A mixing in the
3 — N — S flavor sectors simplifies in the isospin symmetric
case (¢p; = 0), but, nevertheless, it involves an additional
N — S mixing in the pseudoscalar sector.

At the classical level, the usual way to eliminate the
mixing term is by shifting (in direct space) the (axial-)
vector field by the derivative of the (pseudo)scalar field
with an appropriately chosen wave-function renormaliza-
tion constant as prefactor [1,2,6].

Here we adopt a different strategy and show that the
wave-function renormalization constant is recovered when
one identifies the contribution of the physical modes to the
partition function evaluated in the ideal gas approximation,
discussed in Sec. II. In this approximation the bosonic
fluctuations are neglected in the fermionic determinant
obtained by integrating out the fermions in the partition
function and, keeping only quadratic terms in the mesonic
Lagrangian, the Gaussian functional integral is done over
the (axial-)vector and (pseudo)scalar fields. Then, we apply
the same method at finite 7" in the Gaussian approximation,
that is, when the quadratic part of the mesonic Lagrangians
is corrected by the field expansion of the fermionic
determinant. Considering self-energies at vanishing
momentum, we find that the form of the wave-function
renormalization constant, resulting from the mixing of the
(pseudo)scalar with the nonpropagating 4-longitudinal
(axial-)vector mode, is unchanged at 7 # 0, only that it
involves one-loop curvature masses instead of the tree-level
ones that appear in the ideal gas approximation.

A. Classical level mixing

1. S -V mixing

We start with the mixing in the 4-5 flavor sectors. Using
Eq. (70) and Eq. (9) of Ref. [6] one obtains

i e\ e o (55
5[:%/:5[(54,‘//54)’\’1]32( v >+(S5’VZ)M22 ( % )],
v 4

(71)
where the 5 x 5 matrix is
iD7Y(K)  —icysK,
M — < .4 (K) . _145 ) (72)
lC45Kﬂ lD;w,S(K)

with css = g1 fasidr = 91(¢h3 + b — V2bs) /2. The tree-

. N L2,V
level inverse propagators are (mi(.i = m44( >)

iD;'(K) = iD5" (K) = K* = ",

iD,),(K) =D} {(K) = m7.. Py, + (..

u,5 - KZ)PT

Hv

(73)

where we used the usual 4-longitudinal and 4-transverse
projectors P};,{T [see Eq. (E2)] and that rhi;fs/ ) = rhg’s(s/ "),

Doing in the partition function the Gaussian integral over
the fields appearing in Eq. (71) one obtains

2)

1 1
lnzifs,45 = —EAIH det M, —5[(111 detM*.  (74)

The calculation is simplified by the identity
A B
det cp)= det(A) det(D — CA™'B),  (75)

which gives in the present case

detM> = detM>* = iD;'(K)

x det(iD,) 4 (K) + icisDy(K)K?Py,).  (76)
Using Eq. (73) we have the projector decomposition of the
remaining 4 x 4 matrix, hence computing its determinant is
an easy task. Given that P, = 3P{, = 3, one obtains

det M5 = Cis(K? — i ) (K* = )’ (77)
where C3; = 7y, — cjs. The physical mass squared
A2 2 ~2.(5) : 2 m%{*i
M = Ly with Zi.. =—5 (78)
0 0 0 C45
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of the scalar mode arises as a result of its mixing with the
nonpropagating 4-longitudinal vector mode. Z.: is the
wave-function renormalization constant.

The momentum-independent prefactor Cis in Eq. (77)
reflects the existence of the nonpropagating 4-longitudinal
vector mode. When dimensional regularization is used to
perform the momentum integral in Eq. (74), the logarithm
of the partition function receives contributions only from
the propagating modes, represented by the two brackets in
Eq. (77), i.e., there is no contribution from In Cﬁs, which
depends on the scalar backgrounds.

A similar calculation in the 6-7 flavor sector gives

detM§] = CZ,(K? — n2.,) (K> —m2.,)3,  (79)

K3
2 2 2 : 52 5 2:(V)
where  Cg; = My — cgz, with 1., = gy and

ce1 = gifendr = g1(—ds + dx — V2¢bs) /2. The physical
scalar mass squared is

K"O Z?(*o e, <S), Zé*o = ﬁ'len/C%T (80)

We mention that in the isospin symmetric case,
¢3 =0, one has C% = C3 and M2, =m>.., hence

K* K'i’
ZKGt = ZK6° = ZKG’ as given in [6] in the last line
of Eq. (14).

2. P-A mixing
We start with the P, — A,, a = 1, 2 mixing, given by

[ . = P, I P,
SLTg, = 3 {(PhA’f)N}J(AIi) + (Pz,Ag)Nﬁf(AIé)],

where the 5 x 5 matrices are

1 2 ZDTI(K) iCllK
N =N2=( 1 . (81
—lC”Kﬂ lD/w]( )

with ¢y = g1(V2¢o + ¢3)/V3 = g1y and  inverse

propagators of the form given in Eq. (73), with masses

w2 = m2®) and AZ =m>W = m2W  respectivel
My =My 11~ = My ', respectively.

The functional 1ntegral over A,, P,, a =1, 2 and steps
paralleling those leading to Eq. (77) give (C3, = a —c?):

detNlL = G}y (K2 = A2 ) (K2 =2 )%, (82)

with the physical mass of the pseudoscalar mode and the
associated wave-function renormalization constant:

w2 =2Z2.mp " and Z2. =i L/Ch. (83)

A similar calculation involving fields with flavor indices
a=4,5and a = 6, 7 gives a determinant as in Eq. (82),
with some obvious replacements:

ﬁ12

2 2 2 22 50 ~2(P) ) kY
C44—mKi—c44, mKi—ZKim44 , in_ 5
1 C
44
~2
ma
Py 2 2 A2<) 2 __ K
C66_ K — Cgp» KO_Z s ZKO_C2 s
1
(84)

where cyy/66= 01 (£¢3+dn+v2¢s)/2. Again, for ¢3 =0,
one has a single wave-function renormalization constant,
Zx, given in Eq. (13) of [6].

Now we turn our attention to the mixing inthe 3 — N — S
sectors, given by ([P, A"],, = P,A} — ALP,)

I
SLAGs = EKﬂ[Cll[P’A”]fﬁ?a + 9193 ([P, A¥3x + [P, A¥]\3)

+ enn[P, A]an + css [P, A¥ss], (85)

where cxy = ¢ = g1¢n and cgg = g, \/§¢s-

For ¢p5 # 0 the complete quadratic Lagrangian involves a
15 x 15 matrix. In this case, the appearance of the wave-
function renormalization constant is nontrivial and will be
presented elsewhere [39]. Here we consider the isospin
symmetric case (¢3 = 0), in which the (P;,A%) fields
decouple. Their treatment is completely analogous to that
of the (Py, AY) sector, giving

detN;D = C33(K? — i, )(K* = i2,)?,  (86)
1
where 7 0 = mﬁ';f‘) and
4
A 20
Ch=ndy—ch. =22 iy, 7%= C“l . (87)
with m%(P/A) = ﬁz%’l(P/A) when ¢p; = 0,and thus Z o = Z =

The remaining P — A mixing in the N — S sectors is

described by the 10 x 10 matrix
NN 2,(P
S — (Nf‘” M ) _ (’"Né) 0) (88)
uv M NEE ) 0 0 )

where NJ¥ and N33 are 5 x 5 matrices of the form given in
Eq. (81) but w1th appropriate masses in the diagonal
elements and constants cxyyss in the off-diagonal ones.

The functional integral over the strange and nonstrange
fields present in (85) results in

056013-13



GYOHZO KOVACS, PETER KOVACS, and ZSOLT SZEP

PHYS. REV. D 104, 056013 (2021)

detNIS = CR\Cis (K* -
x [(K2)? =

g, )’ (K2 ﬁ1§~ls)3
(”A%N +mqs)K + m%N”h%,S - (rhrZ,NS)Z]’
(89)

where i} , = = w2 and €2, = M} 4 = Caa» @ =N, S. The
classical pseudoscalar curvature masses used in Eq. (89)
contain the wave-function renormalization constants:

2 ~2.(P) 2~ 2
nN = ZNIMNN ZN = my, v/ Cane

~2 2 ~2.(P) 2 _ o~
= Zgiig Zg = my, S/CSS’

nS — S >
. L 2,(P
m,%NS = ZNZSmNé ) (90)
In the second line of Eq. (89), one recognizes the elements

of the mass squared matrix of the mixing Py — Pg sector. In
terms of the physical eigenvalues of this matrix, namely

. Lr, . N
Ay = B [m??N + s + \/(mnN rits)* — 4 (i nNS)ZJ’

one obtains the final result,

detNYS = [ Cla(K? =
a=N,S

(92)

This contains the contribution of the propagating 4-transverse
vector and physical pseudoscalar modes.

B. Mixing in the Gaussian approximation

We consider only the isospin symmetric case, ¢; = 0,
in the localized approximation, in which the self-energies
have vanishing momentum. In this case there is no correction
to the off-diagonal elements of the 5 x 5 matrices (also
having Lorentz indices) considered in the previous subsec-
tion, while the diagonal elements are replaced by
iD™Y(K) - iGiL(K) = K> = M?, with M* = in® + T1(0)
and iDy) (K) = Gy (K) = D) (K) + 11, (0).

For the flavor indices involved in the mixing, vector and
axial-vector self-energies have the same decomposition,
given in Eq. (E10). Basically what happens at T # 0 is that
in the inverse propagator the 4-transverse part encountered
previously splits into 3-transverse and 3-longitudinal parts,

with projectors P}, and P}w, so that
Gyt 10c(K) = MEPL(K) + ) (M7 = K*)PL(K).  (93)
p=Lt

where AA/[lz/[ L= M? + 11,1 (0). The components I; .1, (0)
are given in terms of the Lorentz components of the

self-energy I1,,(0) in Appendix E, where details on the
tensor decomposition can also be found.

Comparing Eq. (93) to Eq. (73) and using that det(LP; +
[P, + tP,) = —LIt*> one immediately sees how to modify
our previous results, obtained in the ideal gas approxima-
tion: instead of three 4-transverse (axial-)vector modes one
has the contribution of two 3-transverse modes and one
3-longitudinal mode with one-loop curvature masses Mﬁt,
while the mixing between the 4-longitudinal (axial-)vector
mode and the scalar mode involves the respective one-loop
curvature masses ]\A/I% and M?, all with appropriate flavor
indices.

Taking as an example the V4 5 — S5/4 mixing, one starts
from Eq. (77), writes the classical curvature masses with
flavor indices, instead of physical meson indices, and
corrects them with the appropriate self-energy. In terms
of physical modes, one has

detMfs = C2y(K> — ) [T (K2 = #3))%, - (94)
p=Lt
where d, = 2d; = 2, C35 = M2} - 2, and

~r2.(V)

N2.(S ~r2.(S 55.L
My = Z§,44M44< " with Z34 = =2 (95)

45

with #28 = S +0(0) and A2 = w4

"> 0), p=L.t.1.

All our previous formulas can be modified similarly:
rhi’a(S/P) _)MZ(S/P) 2,(V/A) —’Ma 2(V/A) i1 the C2
a(V/A) N VS 2.(V/A)

aal/t
contribution of the propagating (axial-)vector modes.

At T = 0 one has Man/ﬂ’j{ = M.

while 771, abjaa

and Z? constants, and i in the former

VII. NUMERICAL RESULTS

In this section we put to work the formulas derived so far
and present in the isospin symmetric case (¢3 = 0) the
temperature dependence of the one-loop curvature masses
obtained for nonvanishing (axial-)vector Yukawa coupling.
In order to achieve this, we minimally extend the para-
metrization used in Ref. [7] and solve the model using the
field equations derived there in the mean-field approxima-
tion [see Eq. (40) there]. In that article the model param-
eters were determined based on one-loop curvature masses
for (pseudo)scalar mesons and tree-level ones for (axial-)
vector mesons. A parametrization and solution of the model
in the proposed localized Gaussian approximation will be
presented elsewhere.

Including the Yukawa coupling g, among the fitting
parameters, we determined the ELoM parameters using the
? minimization described in Ref. [7]. We used the same

056013-14



ONE-LOOP CONSTITUENT QUARK CONTRIBUTIONS TO THE ...

PHYS. REV. D 104, 056013 (2021)

TABLE 1IV. Parameter values in the ELeM for our best fit
characterized by y?/Ng o = 12.96/15~0.87, where Ny ,; = 15
is the number of degrees of freedom. The corresponding
pseudocritical temperature determined from the inflection point
of gy is T, ~ 175 MeV. hy, h,, and h; are the parameters of the
Lagrangian given in Eq. (2) of Ref. [6]. K is the renormalization
scale in the MS scheme which appears in Egs. (C9) and (C10),
while M|, is the scale used in Ref. [7].

Parameter Value Parameter Value
¢n [GeV] 0.1427 g1 5.9252
¢s [GeV] 0.1405 9 2.0483
m% [GeV?] —1.0874;_, hy 35.5174
m% [GeV?] 1.5428; 4 hy —12.0902
A4 —2.0423 hs 4.2493
A 24.22 Js 4.5726
¢ [GeV] 1.1607 gy 5.2818
5s [GeV?] 0.2399 k=M, [GeV] 0.3511

physical quantities as in that article, but replaced the
tree-level (axial-)vector curvature mass formulas with the
vacuum one-loop level ones. The renormalization scale was
fixed to the value used in Ref. [7], while for the Polyakov-
loop potential we used the parameters given in Table IV and
Fig. 1 of that article. The parameters corresponding to the
lowest y? value were found from a fit started in 10° random
initial points of the 15-dimensional parameter space,
representing the parameters of the ELoM Lagrangian.
Their values are given in Table IV and can be compared
to those appearing in Table IV of Ref. [7]. Both parameter
sets are compatible with the constraints among m3, 1,
and A, required by the spontaneous symmetry breaking,
which were derived in Chap. 44.13 of Ref. [40] from the
classical potential.

In Fig. 1 we compare the 7" dependence of the (pseudo)
scalar masses obtained with a parametrization that takes
into account the one-loop contribution of the quarks in the
vacuum masses of all the mesons (g, # 0) to the previous
result of Ref. [7] (g, = 0). In the inset we plot the wave-
function renormalization constants that correspond to
the two cases and are computed with the formulas of
Secs. VIB and VIA, respectively. Given that the field
equations are the same in both cases and that the parameter
values are not much different, we see similar behaviors as
the temperature increases. The temperature evolution of the
scalar condensates and of the Polyakov-loop expectation
values is almost identical to that shown in Fig. 1 of Ref. [7],
as can be explicitly seen here in Fig. 2.

The mass of the pseudoscalars is more affected by the
change in the parametrization than the mass of the scalars,
especially around the pseudocritical temperature 7. and
above it. This is expected because all the pseudoscalar
mesons mixes with an axial-vector meson with matching
quantum numbers, while from the vector mesons only the
mass of K* is directly affected by the mixing with the scalar

1L n solid: gy # 0
dashed: gy =0
S
(o)
S
a
©
£
0 s s s s s s s ‘
0 005 01 015 02 025 03 035 04 045
T [GeV]
FIG. 1. Temperature dependence of the (pseudo)scalar one-

loop curvature masses obtained in the isospin symmetric case
with a parametrization of the model that includes fermionic
corrections also in the (axial-)vector masses (solid lines),
compared to the case when the parametrization uses tree-level
(axial-)vector masses (dashed curves, taken from Ref. [7]). The
underlying field equations are in both cases the mean-field ones
given in Eq. (40) of Ref. [7]. f(l){/ L denotes the eigenstates of the
scalar mixing sector with higher/lower mass, respectively. The
inset shows the T dependence of the wave-function renormaliza-
tion constants.

meson K. Interestingly, the decrease of the # and " masses
around 7', is more prominent for the parametrization with
gy # 0. For both parametrizations the a, meson becomes
degenerate with the # meson at large 7. Such a pattern was
observed also within the FRG formalism, but only when

0.16 ‘ ‘ ‘ 1
solid: gy = 0

dashed: gy =0

0.14

0.12

0.1

0.08

[GeV]

0.06

0.04

0.02 |

. ‘ I 0
0 005 01 015 02 025 03 035 04 045
T[GeV]

FIG. 2. Temperature dependence of the scalar condensates and
their derivatives and of the Polyakov-loop expectation values
compared to the case shown also in Fig. 1 of [7], where the vector
Yukawa coupling is zero, gy = 0. The values of the normalization
constants used for the sake of presentations are cy = —0.028
and c¢g = —0.18, while the position of the global maximum of
g}ﬁN = d¢n/dT gives T, = 175.238 and 174.566 MeV for the
solid and dashed curves, respectively.
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dotted: tree-level (gy = 0) “

16
dashed: 4-L, 3-t "
14 F solid: 3-1 g b
12F ' ]
2 1
o,
2 0.8
©
€
0.6
0.4
0.2
fis To=175 MeV
0 Il Il Il Il Il Il Il Il
0 005 01 015 02 025 03 035 04 045
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FIG. 3. Temperature dependence of the (axial-)vector

one-loop curvature mass of the 4-longitudinal, 3-transverse/
3-longitudinal modes (solid and dashed lines) compared to the
tree-level ones (dotted lines). The masses of the 3-transverse
and the 4-longitudinal modes are the same, and for the p and
wy s vector mesons they also coincide with the tree-level mass
(not shown in these cases).

one goes beyond the local potential approximation [41].
We also mention that if the model is solved at nonzero
temperatures with unchanged parameter values but with all
the Z factors set to 1, then ay degenerates with 7.

The drop of the #' mass around T, seen in Fig. 1, which
is observed experimentally in [42], is accompanied in our
case by a drop of the # mass. This behavior is related only
to the decrease of the ¢y ¢ condensates, as in [41], and not
to the restoration of the U(1), symmetry, which in our case
would require a temperature-dependent 't Hooft coupling
c. The effect of such a coefficient that decreases exponen-
tially with T2 was studied in [43] within the (2 + 1)-flavor
Polyakov-loop quark-meson model. In [44] mesonic fluc-
tuations were incorporated into the axial anomaly in the
Ny =2+1 flavor linear sigma model using the FRG
method in the local potential approximation. The chiral-
condensate-dependent anomaly coefficient is subject to its
own flow equation, and it was shown that under certain
circumstances the thermal evolution of the condensate
could induce a reduction of the axial anomaly. However,
a careful parametrization of the model done later in [45]
showed that the anomaly actually increases around 7.
While in that paper m, increases monotonically with the
temperature, m,y has a nonmonotonic thermal evolution,
showing a slight decrease above T ., before becoming equal
with m,, at high T. A direct link between the restoration of
U(1), symmetry and the drop in the m,/(T), without a drop
in mn(T), was reported in [46]. A recent model-independent
analysis done in [47] suggests that the axial symmetry is
restored when the chiral partners become degenerate.

In Fig. 3 we show the temperature dependence of the
one-loop curvature mass of various (axial-)vector modes.

In the case of p and @ vector mesons only the mass of the
3-longitudinal mode acquires fermionic correction, and the
mass of the other modes remains the tree-level one. In
the case of all (axial-)vector mesons this is the mode whose
mass increases with increasing temperature deep in the
symmetric phase, similarly to the mass of the (pseudo)
scalar mesons. Compared to the Ny =2 version of the
model studied with FRG techniques in [12,14,15], where
all the chiral partners degenerate basically at the same
temperature, the light vector and axial-vector chiral part-
ners p and a; degenerate at slightly higher temperatures
than the (pseudo)scalar ones, f§ and z. The chiral partners
K* and K; having both light and strange quark content
degenerates at a higher temperature than those containing
only light quarks, as the strange condensate is still large
around the temperature where the nonstrange condensate
¢n melts (see Fig. 2). The purely strange chiral partners
wg and fg degenerate at even higher temperatures, where
¢s also melts. The degeneracy of the chiral partners
is displayed also by the masses of 4-longitudinal and 3-
transverse modes. The mass gap between the 3-longitudinal
and 3-transverse modes increases with 7 as a result of the
violation of the Lorentz symmetry.

VIII. CONCLUSIONS AND OUTLOOK

We investigated the one-loop fermionic contribution
to the curvature masses of (pseudo)scalar and (axial-)vector
mesons in the framework of a U(3); x U(3)y linear sigma
model with a Yukawa type interaction between mesons and
constituent quarks. These corrections were calculated by
evaluating the self-energy of the mesons at zero external
momentum. It was showed explicitly that this is equivalent
to the direct calculation of the second field derivative of the
fermionic functional determinant. The one-loop curvature
masses of the (pseudo)scalars agree with those derived in
Ref. [16] with an alternative method that uses fluctuation-
dependent quark masses. We pointed out that this alter-
native method cannot be used for the (axial-)vector mesons
due to the presence of the momentum-dependent Lorentz
scalars V#Q, and A*Q, in the fermion determinant.

The renormalization of the curvature masses was
discussed in detail. The divergencelessness of the vector
current, which occurs on a specific scalar background
for certain flavor indices (e.g., for a # 4-7 in the isospin
symmetric case), has the consequence that the corre-
sponding vector self-energy is 4-transverse and vanishes
at zero momentum. To comply with this property a
suitable regularization scheme is needed. To keep the
discussion uniform, dimensional regularization was
used in the renormalization of both the vector and the
(axial-)vector self-energies for all flavor indices.
Additionally, the renormalization revealed that a chiral-
invariant term appeared twice in the ELcM Lagrangian
[5,6]. This can be cured with the appropriate redefinition
of some couplings.
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The occurrence of the S — V and P — A mixing already
showed the importance of the mode decomposition of the
(axial-)vector self-energy, which was investigated in detail
atboth 7 = 0 and T # 0, as the 4-longitudinal mode of the
(axial-)vectors mixes with the (pseudo)scalars. As a result,
in the case of the Gaussian approximation, the one-loop
curvature mass of the (pseudo)scalar mesons is modified by
a wave-function renormalization constant determined in
terms of the one-loop curvature mass of the 4-longitudinal
(axial-)vector mode. In a simpler approximation we
recovered the already known versions of these constants
appearing in [6].

The vacuum parametrization of the model was redone
based on curvature masses that include one-loop fermionic
contributions for all the mesons. The temperature depend-
ence of all these masses was investigated. The (axial-)
vector tensor splits up into 3-transverse modes (which turns
out to have the same contribution as the 4-longitudinal one)
and a 3-longitudinal mode. In the isospin symmetric case
the mass of 3-transverse modes of the vector mesons p, @
(or wy), and ¢ (or wg) coincides with the corresponding
tree-level mass, while for the other particles the mass of the
3-transverse modes is slightly different from the tree-level
mass. For all (axial-)vector particles the mass of the
3-longitudinal mode significantly deviates from the tree-
level one. It increases with increasing temperature, sim-
ilarly to the (pseudo)scalar curvature mass, while the mass
of the 3-transverse components decreases with increasing
temperature. The particle masses of the two modes become
degenerate separately as the chiral symmetry restores with
increasing temperature and the mass gap increases between
them as a reflection of Lorentz symmetry violation.

As a side benefit of the new parametrization of the
model, the value of the vector meson Yukawa coupling gy
was determined. This value influences the equation of state
used to describe properties of the compact star, where it has
a prominent role in determining the maximal value of the
compact star mass of the M-R curves (see e.g., Ref. [48]).

The curvature masses of the various (axial-)vector modes
determined here can be used not only in the localized
Gaussian approximation proposed in Sec. II, but also in the
localized version of the two-particle irreducible formalism
in which in [8] the gauged version of the purely mesonic
model was solved at two-loop level for Ny = 2. In the latter
context the mode decomposition of self-energy presented
here would allow for an improved approximation, as there
the complexity of the numerical problem was reduced by
using even at finite temperature a curvature mass tensor of a
vacuum form, that is, proportional to g, .
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APPENDIX A: THE COMPONENTS
OF 1))/ FOR N;=1

mat

It is instructive to examine the matter part of the vector
self-energy at vanishing momentum (32). The 0i matrix
element vanishes by symmetric integration, while the
temporal and spatial components are different due to the
breaking of the Lorentz symmetry by the heat bath.

Using kg = k* + m7 + G7' for the 00 component and

/d3kk,-kjf(k2) —%/d3kk2f(k2) (Al)

for the ij component, one obtains [7° ;1) =7 (m)]

arl  a(m,)
V.00 _ 4 5 [+) Sl f
n)% =45 [Tf +2m} ant? +2 an? } (A2)
y (1)
WV)ij _ g0 s [ 2dU T (my)
n\i = 4@ st |7V 4 22 0 A3
mat v |: f +3 dm} ( )

Here we used the matter part of the integral U(m;) =
i [¢ K*Gf(K), which—having only an extra factor of

k*> = k> compared to the tadpole defined in Eq. (23)—is
given [see Egs. (27) and (28)] by

UM (my) = —47112/0% dk;(k)[f,f(k) )] (Ad)

With a partial integration, as in Eq. (29), one obtains

au(ms) 3

= -7 ) A5

=57 m) (45)

As a result of Eq. (AS) we see from Eq. (A3) that
HE,Q’H =0, and therefore trLHSnVa)t = HEH‘;)[’OO - 3H£r‘1;)[’“ =

Hf:a)t'oo, and thus from Eq. (A2) one obtains

% V).00 d 1
tr ) =TI = _g2 [1 — m? d_mﬁ] TV, (A6)

This expression agrees (up to a convention related sign) to
that obtained from Eq. (5.51) of Ref. [33] by taking there
k — 0 at ky = 0 (the limits do not commute).
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APPENDIX B: VACUUM PROPERTY OF I1\)**(Q)
FOR CERTAIN FLAVOR INDICES

The vector fields Vi, a=0,...,8 couple in the
N; =2+ 1 version of the Lagrangian (11) to the vector

current’ J¥ = gy*T w, where T, = J,/2. Using the

Euler-Lagrange equations one finds

B, 10" = i M. T . (B1)

where

M = [g5(S* —iysP?) + gyr* (Vi +1sAQ)| T, (B2)
The divergence of the current (B1) has the same form as in
QCD [49], where M is the current quark matrix.

Interestingly, when evaluated on the background of the
mesonic fields, that is, with

M=23" iy =2 % o

b=0.3.8 b=3.N.S

(B3)

the divergence of the vector current vanishes for certain
flavor indices, namely

0, for a =3,N,S when 0,
aﬂjgv)ﬂm _ { a ¢ #

0, fora=1,2,3,N,S when ¢; =0,
(B4)

as one can check using the values of the antisymmetric
structure constant.

We show below that at quantum level the divergence-
lessness of the current has the consequence that the vacuum
part of the one-loop self-energy defined in Eq. (37) satisfies

() =0=0"" @ =0)=0,

ab,vac

V)uv
0,1,

vac (BS)
in the cases listed in Eq. (B4), where from Table II we know
that the self-energy is nonzero only when b = a (for the
implication above see p. 233 of Ref. [50]).

Considering the meson fields as classical external fields,
we start by relating the expectation value of the current
and its divergence with the fermion propagator matrix
(see p. 66 in [51])

(7 (x)) = ~lim (7,8 (x.y)). (B6a)

(0,07 () = ~limu((M(x), T,)S(x.v)). (B6b)

*Note that we call JE,V”' the vector current by abuse of
terminology and by analogy with QCD, as in the context of
the linear sigma model the true vector current also contains
mesonic fields.

The trace in Eq. (B6a) is to be taken in color, flavor, and
Dirac spaces. In the SSB case, when the fields are shifted
with their expectation values, the full propagator obeys

(ifhe = M = M(x))S(x,y) = i (x~y).  (B7)
with M(x) given in Eq. (B2) and M in Eq. (B3).

Next, we expand the full propagator about the tree-
level propagator introduced in Sec. IV, which obeys
(i, — M)Sy(x,y) = is® (x — y). To do so, we write the
formal solution of Eq. (B7) as S =i/(A— M), where
A =iS;", and use

1
M
A A-M

(B8)

This gives at one-loop level

B(x.y) = Bo(xy) — i / Bolx. )M ()30(z.y).  (BY)

Taking the derivative of Eq. (B6a) and using Eq. (B9)
we obtain
5 -

(T () i / yﬂ%“f?o(x,y)M (»)So(y.x),  (B10)

where the contribution of Sy (x,y) from Eq. (B9) vanishes
due to translational invariance.

It would be tempting to say that the left-hand side of
Eq. (B10) vanishes as result of Eq. (B4), but the usual proof
using the invariance of the functional integral with respect
to the vector U(3), transformation does not go through
because we neglected the mesonic fields in Eq. (B1) and the
current vanishes only on a specific scalar background.
What is easy to prove, however, is that Eq. (B6b) vanishes
at linear order in M(x), i.e., the order at which Eq. (B10)
was derived. Indeed, using the first term in Eq. (B9), one
has in the cases listed in Eq. (B4)

B, (I (x)) = (8,057 (x))

~ —tr([M(x), T,)So(x,x)) =0, (B11)
because S'O =u ., c =0, 3,8, with u3 =0 for ¢p; =0,
and the structure constant is such that trg([4;, 4,]4.)u, =
4ifpactte =0 for ¢ =0, 3, 8, b=0,...,8 and a taking
the values given in Eq. (B4) (instead of N and S one can
use 0 and 8).

Since for the flavor indices* of Eq. (B4) only the vector
term in M(x) contributes in Eq. (B10), we obtain using
Eq. (B11)

*For other flavor indices the scalar term can also contribute.
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, A, - 2y = )
0=igud% [ |5, 28 x i 2S00 | Vi), (B12

Going to momentum space and using the definition (37) of
the self-energy, one easily obtains Eq. (B5), which holds in
the cases listed in Eq. (B4).

APPENDIX C: INTEGRALS DETERMINING
THE SELF-ENERGY FOR N;=2+1

Here we calculate the integrals (41) relevant for the
expression of the curvature mass.

In the case of a (pseudo)scalar field one has 'y =1
(Ip = 75) and the Dirac trace gives (G;'(K) = K* —m3)

trD [FXSfFXSf/] = —4(mfmf/ :l: Kz)Gfo/, (C])

with a plus sign for the scalar. One adds and subtracts in the
numerators produced by partial fraction decomposition the
mass squared of the corresponding denominators to obtain

LT (mg) F mpT(my')
mf + mff

IS/P(mf,mfr) = (Cz)

For equal masses the limit in Eq. (40) gives [7 ; = T (m/)]

IS(mf)_<1+2mfd )Tf, P(m;) = =T, (C3)

Using Egs. (37) and (39) and Tables I and II one obtains, for
example, HS/P (Q =0) =F2N g5 (m,, my).

For (ax1al yvector fields we start with the momentum-
dependent integral in Eq. (39), as this is needed in
some relations derived in Appendix F. With I'y =y, and
[’y = y,¥s the Dirac trace gives (P = K — Q)

IV/A’”D(Q;mf, mf/)

=i [ K06 (P

X [(£mpmp — K - P)g" + KFPY + K*PH],  (C4)

with the upper sign for the vector. Next we consider
separately the vacuum and the matter parts of this integral.

1. Vacuum part
In a covariant calculation at 7' = 0, Feynman paramet-
rization and dimensional regularization give (d = 4 — 2¢)

ngW(Q mfﬂnﬂ)

F(z - L_i) - 1 d_n
=< % s
X [(M*(x) F mpmp) g™ + 2x(1 — x) Q°PY(Q)].
(CS)

Here « is the renormalization scale, P{’(Q) is the 4-
transverse projector (E2), and A = M?(x) — x(1 — x)Q?
with M?(x) = (1 — x)mj% + xm]%,. We see that

lim (M?(x) F mymp) = (C6)

n‘lf-r—ﬂ’l’lf

0, for V(-),
{ 2m3,  for A(+),

and therefore

0, (Qsmy) =0 and Iy (m;) =0. (C7)
At vanishing momentum, where
= gLyl (my.my),

we split the integral into divergent and finite parts:

(0 = 0ymy, my) (C8)

V/A
IVd/C D(ml ’ mZ) + Iva/c,F(mlv mZ)’
1
32x%e

I\"/a/CA(ml s mZ)

V/A
Iva/c,D<m17 m2> =

(my F m2)2,

1
:W m% —i—m% F 4m1m2
fx(my,my) = fo(my,my)

2 2 )
my —m;

—4

(C9)

where f-(x,y) = x*(x F 2y)In(x/k) and the divergence
was given in the MS scheme (&> = 4re™"x?). To obtain the
finite part, the x integral in Eq. (C5) was evaluated to O(¢),
as the prefactor contains 1/e.

For equal masses one has, in accordance with Eq. (C7),

I\‘//acF( ) = IXac.D(m) =0.

m2 m2
If}ac.F(m) == 82 lnp )
2
m
s = C10
vac,D(m) 871'26 ( )

It is easy to see that IX!CA(ml, m,) can be given in terms
of tadpole integrals. Indeed, setting Q = 0 in Eq. (C4) one
uses the identity

/ddKK K (k) =% /ddKKZf(KZ) i)

and partial fractioning to obtain

lm]T(())(ml) F sz ( )

IX/A £ -
ac (ml mZ) d my F m,
_d-1 m T (my) £ my T (my)
d nmy + my ’

(C12)

and for equal masses
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d-2 ZZV A d 0
A m) = - 1 / 7Om), (C13
Wom) == 422 |14 2 70, (c13)
with zy = —1 and z4, = d — 1. Here we defined
T(Q)(m):K4_d/ dK i :F(Z—%) KA-d
‘ Qn) K> —m?  (4n)4? (m2)1=5"
(C14)

which can be split into divergent and finite parts as

TOm) = T (m) + T (m),
2

1
T(O) m- L 1],
enlm) =162
2 2
0 m m
TO)(m) = el (C15)

Using Eq. (C14) or (C15) in Egs. (C12) and (C13), one
recovers Egs. (C9) and (C10).

2. Matter part

We evaluate the integral in Eq. (C4) for Q = 0. The 0i
component of the integral vanishes, while for the 00
component we use k3 = K? +k? to write

K? +2k* £ mmy
LAy ) = / My
e 7 (Kz_mf)(KZ_m ’) mat

7
m; T F mp T zu}” ~uly
= + .
mp F my iy = mj,
(C16)

Here we used partial fractioning, as described below
Eq. (C1), and then Eq. (27) to write the result in terms
of the integrals given in Eqs. (28) and (A4).

The ij component of the integral is proportional with §;;,
and thus it is enough to give the 11 component. Setting
Q =0 in Eq. (C4), we use Eq. (Al), followed by partial
fractioning, as in Eq. (C16), to obtain

_ 74
L{f,
2 2 -

3 ny = my,

(C17)

(1) (1) ()

VAL
nh (mp,myp) =

Using Eq. (AS), the equal mass limit of Egs. (C16) and
(C17) is

Is(mg) = =2| T+ 2BV 1t mg) =0,
Insl(mp) = =273 Il (my) = —2m3BY. (C18)

with B
bubble integral at zero momentum given in Eq. (29).

=B (m ) being the matter part of the Euclidian

APPENDIX D: BRUTE FORCE CALCULATION
OF THE CURVATURE MASS
IN THE N;=2+1 CASE

After shifting the scalar fields with their expectation
values, the integration over the fermionic fields in the
Euclidean partition function gives (see Chap. 2.5 of [33])
the expression on the right-hand side of Eq. (14) with

Sﬁ,ljf(K§ ) = —diag(kg,kg,k?) Q Tyus + 133 ® }’077‘7_5
mg) ® 7’
+95[S® 7" —iP ® ¢
+ vV ® Y7 + A ® YOr'ys),

+ diag(m,, my,

(D1)

where & ={S,,P,, Vi, Ahla=1,...,7,N,S} denotes the
set of fields contained in the nonets, ® is the Kronecker
product, my, f=u,d,s, is the constituent quark mass
given in Eq. (36), while k% =iv, +pu;, with v, the
Matsubara frequency and p the chemical potential.

We calculate the determinant of Sp'/(K;&) with the
symbolic program MAPLE keeping only those (pseudo)
scalar or (axial-)vector fields which are used for differ-
entiation in Eq. (16) and setting to zero the remaining set of
fields, denoted as & = &\{X,}. This simplified determi-
nant is evaluated in Dirac and flavor spaces and denoted as
D) = det[Sg Y (K; €)]| 2o We found that it can have two
forms: for the mixing sector involving the fields X3, Xy,
and X the three quark sectors completely factorize, while
for fields with other flavor indices there is a mixing
between two quark sectors.

The contribution of the scalar (X = S) and pseudoscalar
(X = P) mixing sectors can be written with X, = (Xy *+
X3)/ v/2 in the following factorized form:

2

(K|

2
D(XN.S.B) = H [%X% + C<X)gSmiXi — Gl_

i==+,S

(D2)

where ¢ = /2,

m, =m,, m_=my; and mg = my.

brackets there is no summation over i.
For the V. = (V4 4 V%4)/+/2 vector fields one has

¢ =0 and G;'=K?>-m? with
Inside the square

2

2

DVxs3) = H {gzv V24 V290V K +G7Y(K)| , (D3)
i=+.S

where V2 V-V, = V” V. ., while for the axial vectors

iy
A% = (A% + A})/V/2 the factorized form is
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4
D@Axs3) — H [%TV (AIZ)Z + Gi_z(K)
i=+.S

+ gy (A} (K? +mi) —2(A; - K)?)|. (D4)

When there is no complete factorization of quark sectors,
the contribution for scalar (X = S, upper sign) and pseu-
doscalar (X = P, lower sign) is

DXo) = g—zs‘x‘*—g—gx2 K2+
= 17674 > al mgmy)

+G; 1 (K)G/ (K)] 2GJ:,?(K), (D5)

while for vector (X =V, upper sign) and axial vector
(X = A, lower sign)

4
D) = |9 (x2)2 4 671 (K)G7!(K)

16 I
9 2
+5V(X§(K2 Fmemp) —2(X, - K)?) G (K),

(Do)

where (f,f,f") = (u,d,s) for a=1,2, (f,f,f") =
(u,s,d) for a=4, 5, and (f,f,f")=(d,s,u) for
a=206,7.

Now, one just has to use the expressions (D2)-(D6) of
the determinant in the effective potential (14) to obtain the
fermionic contribution to the curvature mass, according to
its definition (16). Simple derivation with respect to the
remaining fields leads to the Q = 0 limit of the integral
(39), evaluated in Appendix C. For example, the determi-
nant D¥e) given in Eq. (D6) leads through Eq. (19) to

Ami}fx)’w = 2N g I**(ms,my), in accordance with the

formula given in Table III for the first three flavor indices.
We multiplied by the number of colors, N, as the
determinant was calculated only in Dirac and flavor spaces.

APPENDIX E: DECOMPOSITION OF THE
SELF-ENERGY TENSOR

In this Appendix we consider at zero and finite temper-
ature the decomposition into physical modes of the one-
loop fermionic contribution to the momentum-dependent
self-energy tensor of massive vector and axial-vector
bosons, generically denoted by II,,(Q). Special interest
is devoted to the curvature mass of the modes, obtained
from the self-energy in the limit Q — 0, which at 7 # 0
represents the limit g, — 0, followed by ¢ — 0.

1. T =0 case

The vacuum self-energy [Ty, (Q) can be decomposed as

HI\?ZC(Q) - Hvac,L(Q>Plliy(Q) + Hvac,T(Q)P!ll"y(Q)? (El)
with the 4-longitudinal and 4-transverse projectors

Pr(0) = 2L and PE(Q) = g — P E2
L(Q)_7 an T (Q) =g -P(0Q), (E2)
satisfying

P4, =3P =3.
(E3)

Prr-Pr =Py, Prp-Pr=0,

Writing the tree-level inverse propagator as iD,}(Q) =
M*PL, + (m? — Q?)PL,, where m? is the tree-level curva-
ture mass, one obtains from the Dyson equation iG! (Q) =

hw
iD;,) (Q) + I12°(Q) the propagator

iP’{” iP’ﬁ”
g (Q) = 2 2 ~2 :
_Q +m” + Hvac,T(Q) m°+ Hvac,L(Q)

(E4)

Itis evident that the curvature masses of the propagating (T)
and nonpropagating (L) modes are

A

M%ac,L/T =’ + Hvac,L/T(O)' (ES)

In the Ny = 1 case, due to the fermion number (current)
conservation, the vector boson self-energy not only is
transverse, that is, Q,I1*(Q) =0, but also satisfies
[1"(Q =0) =0, and therefore Il ,7(0) =0, just like
in the case of the photon polarization tensor in the QED.
In the Ny =2+ 1 case the above relations hold due to
Eq. (B12) for the vector boson self-energy with flavor
indices listed in Eq. (B4). These indices correspond to the
last three entries of Table II (also for the first entry in the
¢3 = 0 case), when the integrals involve fermion propa-
gators with identical masses. For the first three entries
of the table (except for the first one in the ¢35 = 0 case)
the vector polarization tensor is alike the axial-vector
one, that is, Q,II*(Q)#0 and I"(Q =0)#0, so
that, using HZNaC(Q) = 3Hvac,T(Q) + Hvac,L(Q) and
[ (Q = 0) «x ¢, one obtains

Hvac.T(O) = Hvac,L(O) = Hggc (0) = _H\I/éc(o) (E6)

Therefore, one can write unambiguously

. 1
M2, = in® +T1,,.(0), with Tl (0) = Znﬁ,m (0).
(E7)
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2. T # 0 case

In a Lorentz-covariant formulation one has to take into
account besides Q” a second Lorentz-invariant quantity,
@ = Q - u, where u, is the 4-velocity of the thermal bath,
which satisfies u?> = 1. The self-energy depends on two
scalars, @ and ¢ := ((Q-u)*> — Q?)"/2, which are inter-
preted as the Lorentz-invariant energy and modulus of the
3-momentum [52]. In the rest frame of the thermal bath,
also used here in what follows, one has u* = (1,0), and
therefore @ = g, and g = |q.

A basis for the decomposition of self-energy has
to be constructed from the four rank-2 tensors g,,,
0,0,, uyu,, and Q,u, + Q,u,. The physically motivated
basis [53] consists of P{”, given in Eq. (E2), and the three
tensors

Mﬂ u 2
P = Z%T = ——5 upuf,

P/:v:gﬂy_P/ﬁy_P{w:_gﬂi<5[j

q:4;\ ;
)
_ Qo

Ve u -0
where uy = u, — (Q - u)Q,/Q*. P, are three-dimensional
transverse/longitudinal projectors (they are both four-
dimensional transverse, P; + P, = Pr), while C,, is not a

projector. Further relations of interest, in addition to those
in Eq. (E3), are

cw

(E8)

Py - Py =Py, Py - Py =0,
PyL-P =Py Py =P -C=C-P =0,
P.C-P,=P_-C-P_=0, C2=—P_—P,
C.P,=P,-C, P,-C=C-P,
C-P,+P -C=P,.C+C-P,=C,
=Pl =1, d=P,=2 Ci=0.
(E9)

In the above basis the general self-energy tensor reads

(Q) = Y I,(Q)Py(Q) + e (Q)C™(Q).

p=tlL

(E10)

with tensor components given by (d;, = 2d,;, = 2)

1
I, = (I Py),

1
HC = —ftr(l—[ . C)
b 2

. (E11)

The expression of the dressed propagator G,, can be
obtained with the method described in Chap. 5.2.2 of
Ref. [54]. Using a similar decomposition for G,, as in

Eq. (E10) and the Dyson equation G, (Q) = iD,,} (Q) +
I1,,(Q) in the identity G,'G** = ¢4 one obtains by
exploiting Eqgs. (E3) and (E9)

o P P (2 4 TI1,(0))
Q) = g e o) 50)
L IOl A IL(Q)P Mle(Q)C
5(0) 50)
(E12)

with  §(Q) = (i* +T1(0))(=Q + i + I(Q)) + TIZ.
We will see below that T1-(0, 0) = 0, and hence the squared
curvature masses of the remaining modes simplify to

M7y = m? +T11.(0,0), (E13)

where @2 is the classical curvature mass squared and

I1,(0,0) = T1,.(0) + I15(0,0), p=LtL, (El4)
with the vacuum part I1,,.(0) defined in Eq. (E7) and ITj*"
being the matter part.

The tensor components ITj, (Q) can be given in
terms of the Lorentz components of the self-energy tensor.
Specifically for g, = 0, using the explicit expression of the

projectors, one obtains from Eq. (E10)

H{nat(o’q) — H{)[bat(o’ q)’

IP(0, ) = —%nff;m(o, q).

mal qi mal
11z*(0,9) = g '(0.9). (E15)
while taking the trace in Eq. (E10) gives
1
Q) = 5 Iy ma(Q) — IM(Q) ~IIF*(Q)].  (EL6)
The vector boson self-energy is 4-transverse

(QJ1"(Q) =0) in the Ny =1 case and also in the
N;=2+1 case, for those flavor indices for which the
bubble integral involves propagators of equal masses (for
¢3 # 0, the last three lines of Table II). In these cases
IT. (Q) = (Q) = 0 and the 00 component of Eq. (E10)

gives I (Q) = —g—zzﬂi“a‘(Q). From this relation or the
first entry of Eq. (E15) and from Eq. (E16) one has

3
1m0, 0) = I35 (0, 0), I1"(0,0) = —EH‘Ff"(O, 0).

(E17)

For the axial-vector bosons and, in the Ny = 2 + 1 case,
for the vector boson self-energy involving bubble integrals
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with different fermion masses (for ¢; # 0, the first three
lines of Table II), the direct calculation presented in
Appendix F shows that

I15(0,q) = 0, (E18a)

.49
lim =2 TI(0.4) =

mm(0,0).  (E18b)

As a result IT?*(0,g) = 0 and, therefore,

H{}‘i‘(o 0) = —I177(0, 0), I1"(0,0) = II15¢(0,0).

(E19)

APPENDIX F: PROOF OF SOME
PROPERTIES OF II;*'(Q)

The one-loop (axial-)vector boson self-energy (37) can
be given (see Table II) in terms of the integral defined in
Eg. (39), containing different fermion masses m, and m,
or (a linear combination of) its equal mass limit (40).
In order to prove Eq. (E18), it is enough to consider the
integral in Eq. (C4), obtained from Eq. (39) by doing
the Dirac trace. The following calculation refers to the
matter part, as indicated by the separation of the k integral,
which becomes a Matsubara sum in the imaginary time
formalism.

1. Proof of Eq. (E18a)

Setting go = 0 in Eq. (C4), one has

ko( i)G
By —¢.f

(F1)

with Ey , = (k* + m7)'"/? and G;' = K* — m}. The inte-
gral is obviously zero, as the integrand is odd in k.

2. Proof of Eq. (E18b)

On the one hand, it follows again from Eq. (C4) by
qo = 0 substitution that

q; qJ JV/A i (0, q;my, mf/)

= l 0 )(k2 k qf/)

)/qz‘

(F2)

Changing to spherical coordinates in the k integral and
using k - g = kq cos 9 = kgx the g — 0 limit gives —2k>x?
in the numerator. Doing the angular integral leads to

lim 2= ('Ilql IV/A l](
q—0 q

4+ K2+ k2/3

— din dko dk:':mfmf S VEY (F3)
E; ;) (kg — Eg )
kf’

0, q, mf, I’Vlff)

On the other hand, using the identity Eq. (Al) in
Eq. (C4) gives

Fmmmp+K>+k*/3
IV/AI](OOm’m ) / S f
Pk G- B3 )03 -

4
£ ) (F4)

Changing to spherical coordinates in the k integral, the
angular integral readily gives 4z, as the integrand is
independent of the angles. The resulting formula agrees
with the rhs of Eq. (F3), from which Eq. (E18b) follows.
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