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We consider, in general terms, the possible parameter space of thermal dark matter candidates. We
assume that the dark matter particle is fundamental and was in thermal equilibrium in a hidden sector with a
temperature T 0, which may differ from that of the Standard Model temperature, T. The candidates lie in a
region in the T 0=T vs. mdm plane, which is bounded by both model-independent theoretical considerations
and observational constraints. The former consists of limits from dark matter candidates that decoupled
when relativistic (the relativistic floor) and from those that decoupled when nonrelativistic with the largest
annihilation cross section allowed by unitarity (the unitarity wall), while the latter concerns big bang
nucleosynthesis (Neff ceiling) and free streaming. We present three simplified dark matter scenarios,
demonstrating concretely how each fits into the domain.
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I. INTRODUCTION

Of all the scenarios for dark matter (DM), one of the
most appealing possibilities is that it is made of elementary
particles that were in thermal equilibrium in the early
universe. If this is the case, then just like the photons of the
cosmic microwave background, their abundance today
reflects the one they had when they decoupled, or “froze
out,” from their thermal environment [1–3]. We refer to DM
candidates that were once in thermodynamic equilibrium as
thermal candidates. One class of thermal candidates con-
sists of particles that decoupled when they were non-
relativistic. Because of the exponential dependence of their
Maxwell-Boltzmann distribution, the moment of freeze-out
is critical: the later the decoupling, the smaller their relic
abundance and vice versa. Alternatively, the DM particles
may have decoupled when they were relativistic. In that
case, their relic abundance depends on the moment of
decoupling only through entropy transfer effects (like for
the Standard Model (SM) relic neutrinos). The primary
question we would like to address in this work is the
following: what is the domain of all possible thermal
candidates?

The answer is well known if the DM particles were in
thermal equilibrium with SM particles. As we will review
in section II, thermal candidates which give the correct relic
abundance lie somewhere between a few eV (a value which
is ruled out by structure formation constraints, as is well
known) and about 100 TeV. The lower bound corresponds
to DM that decoupled when relativistic [1], and the upper
bound to DM that decoupled when nonrelativistic with the
largest possible annihilation cross section compatible with
unitarity [4]. But what if the DM is secluded and lives in a
hidden sector (HS) with a temperature, T 0, that differs from
that of the thermal bath of SM particles (the visible sector,
or VS), which has temperature T? The possibility that DM
resides in a HS (see, e.g., [5–7]), possibly with its own
temperature, perhaps due to some reheating story after
inflation (see, e.g., [8,9]), has by now been studied in many
scenarios. However the full domain of possibilities has not
been systematically discussed in the literature. In this work,
we aim to determine it in general. This domain of all DM
thermal candidates is two dimensional, as it depends both
on the DM mass and on the temperature ratio, ξ ¼ T 0=T. In
particular, we will derive the equivalent of the lower and
upper mass bounds on thermal DM candidates as a function
of T 0=T. We will also determine which part of this domain
is excluded by various observational constraints.
The plan of this paper is as follows. To lay the ground-

work, we will begin in Sec. II by briefly reviewing the
standard result for particles that were in thermal equilib-
rium with the SM. In Sec. III, we will extend this to DM
particles which reside in a HS. In Sec. III A, we will discuss
the theoretical constraints, in particular from unitarity.
Next, in Sec. III B, we will discuss the bounds from limits
on the number of relativistic degrees of freedom at the time
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of big bang nucleosynthesis (BBN) on one hand, and from
free-streaming (FS) on the other. The main result of our
analysis is summarized in Fig. 2, which depicts the domain
(white region) of all possible thermal candidates which
survive these constraints in the plane T 0=T vs. mdm. The
temperature ratio here is defined at the moment of decou-
pling of the DM particles. Three simple but illustrative
explicit DM models are considered in Sec. IV. We draw our
conclusions in Sec. V. This work is built upon and extends
results from [10,11].

II. DOMAIN FOR T0 =T

We start by reviewing a classic result regarding possible
thermal candidates that were in thermal equilibrium with
the SM thermal bath. If this were the case, the lightest
possible thermal candidate would have a mass at the eV
scale. This lower bound is obtained assuming the largest
possible number of DM particles when it decouples, that is
to say when DM decouples relativistically, in which case

Ωdmh2 ¼
mdmndm;0

ρc;0=h2
≡mdmYdm;decs0

ρc;0=h2

≈ 0.12

�
g0mdm

6 eV

��
g�s;0
g�s;dec

�
: ð1Þ

The parameter g0 ¼ c · gdm counts the effective degeneracy
of the DM candidate, where c is 1 (3=4) for a boson
(fermion) and gdm is the internal DM degrees of freedom,
while g�s;0 counts the total number of degrees of freedom
contributing to the entropy today, g�s;dec is the same but at
DM decoupling and ρc;0 is the critical energy density today.
From this, the DM mass is required to be at least

mdm ≳mdm;CM ≈
6

g0

�
g�s;dec
g�s;0

�
eV: ð2Þ

In the context of SM neutrinos, Eq. (2) is the Cowsik-
McClelland (CM) bound [1].1 It is usually considered as an
upper limit on the sum of neutrino masses. In the present
context, it is a lower limit since it implies that the DM
abundance is too small when mdm < mdm;CM.
A thermal candidate with a larger mass than (2) must

decouple when nonrelativistic so that its abundance is
Boltzmann suppressed. This is the WIMP (weakly inter-
acting massive particle) scenario, in which the abundance is
inversely proportional to the annihilation cross section
(thermally averaged at the time of freeze-out), which is
required to be about hσvi ≈ 3 × 10−26 cm3=s to match

observations of the DM abundance [13]. Although this
number depends on the DM mass only logarithmically, the
cross section itself depends on it, albeit in a model-
dependent way. In the nonrelativistic limit, relevant for
WIMP freeze-out, and when the DM mass is the largest
relevant mass scale, the annihilation cross section scales
like hσvi ∝ 1=m2

dm. For fixed mdm, unitarity sets the upper
limit on the DM mass by fixing the maximal possible
annihilation cross section of a pair of particles with angular
momentum J,

σv ≤
4πð2J þ 1Þ

m2
dmv

; ð3Þ

where v is their relative velocity. This translates into an
upper limit on the mass of thermal candidates, known as the
Griest-Kamionkowski (GK) bound [4],

mdm ≲mdm;GK ≈ 300 TeV: ð4Þ

Together, the lower (2) and upper (4) limits define a one-
dimensional domain,

mdm ∈ ½mdm;CM; mdm;GK�: ð5Þ

Below this range, the DM is always underabundant, while
above it is overabundant. The abundance of the DM
increases with the DM mass at both the lower and upper
limits in (5) (with Ωdm;CM ∝ mdm and Ωdm;GK ∝ m2

dm
respectively). Thus, assuming continuity of the abundance
as a function of the DM mass, ΩdmðmdmÞ implies that for
any given DM model, one obtains the observed relic
abundance for at least one value of mdm within the range
of Eq. (5). Where precisely the thermal candidates lie is
model-dependent, so the scope of this continuity argument
is limited (the DM mass range (5) spans about 13 orders of
magnitude), but is robust. Another generic result is that for
a given model there is in general an odd number of DM
candidates, except for specific and thus fine-tuned choices
of parameters (this will be seen more explicitly when we
consider specific models in Sec. IV).
These well known facts are illustrated by the case of a

massive Dirac neutrino [1,2,14]. Consider Fig. 1, repro-
duced from [15]. It shows Ωdmh2 as a function of mdm, i.e.,
the neutrino mass, the only free parameter in this setup. As
the figure shows, there are three possible thermal candi-
dates: one at low mass, corresponding to the CM mass
bound; a heavy one, corresponding to the GK mass bound2;

1For SM neutrinos, g0 → gν ¼ 2 × 3=4 per species and, due to
entropy transfer from the electrons and positrons to the photons
after SM neutrino decoupling, g�s;0=g�s;dec ¼ 4=11. For Ωh2 ≲ 1,
this gives

P
mν ≲ 92 eV. Here, in general, we have in mind that

g0 is of the order of a few, corresponding to Oð1Þ species of DM.
See [12] for a recent scenario in which g0 is considered to be a
huge number.

2The behavior of the relic abundance as a function of the
neutrino mass for masses above the Z resonance is peculiar. The
fact that it decreases is due to emission of longitudinal gauge
bosons with a cross-section that scales as hσvi ∝ m2

ν , which
therefore breaks the unitarity limit for sufficiently large neutrino
masses. This part of the curve that leads to the GK candidate is
clearly schematic, see [15].
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and an intermediate one, with a mass in the GeV range. The
latter is the Lee-Weinberg (LW) bound [2]. There are thus
three possible candidates in this simple model (all of which
are excluded by well known constraints).
We want to argue that all models with thermal DM

candidates share similar features. What are possible cav-
eats? The most important hypothesis is that DM was in
thermal equilibrium in the early universe. We will come
back to this condition and its implications in Sec. III A 2.
Here, we assume DM in thermal equilibrium and explore
the other possible shortcomings, beginning with the GK
mass bound. The GK mass bound (4) is quite general but
still rests on some assumptions. First, it assumes that the
DM particle annihilates with itself or with its antiparticle.
Instead, it is possible that the abundance is set by co-
annihilation of the DM particle with some almost degen-
erate companions [16,17]. Provided there is sufficiently fast
chemical equilibrium between these companion particles
and the DM candidate, the DM abundance is determined by
the most efficient annihilation channel(s). The GK mass
bound thus applies to the companion particles, whose mass
cannot be too much larger than the DM particle itself.
Hence mdm ≲mdm;GK in that case too.
Another possibility is that DM is complex and that, like

for the baryons in our universe, the DM abundance is set by
an asymmetry instead of thermal freeze-out, see, e.g.,
[18,19]. This scenario is also subject to a GK bound.
Indeed, a key feature of the asymmetric DM scenario is that
the thermal, or symmetric, component of the DM abun-
dance must be efficiently depleted, otherwise the

asymmetry is hardly relevant. Efficient annihilation of
the DM particle-antiparticle pairs (or their companions,
as in the coannihilation scenario) requires a larger cross
section than the canonical value 3 × 10−26 cm2=s. This is
suggested by the dashed line depicted in Fig. 1. In the
absence of an asymmetry, the thermal abundance would be
far below observations. Translating this to the maximum
possible cross section set by unitarity considerations, the
mass of the asymmetric DM must be below the standard
GK bound (4), mdm;asym < mdm;GK.
Finally, the GK mass bound only applies if DM particles

are fundamental. Indeed, composite DM candidates [4]
with radius much larger than their Compton wavelength,
rdm ≫ 1=mdm, can have a geometric cross section, σ ∼
πr2dm (see, for instance, [20] for a recent concrete example).
With this possible exception kept in mind, we assume that
generic thermal particle DM candidates all fall in the
domain (5).

III. DOMAIN FOR T0 ≠ T

We now extend the established results of Sec. II to
scenarios in which the DM was in thermal equilibrium in a
hidden sector (HS). This HS is assumed to be feebly
interacting with the VS, so that the different sectors may
have distinct temperatures, T 0 ≠ T, at the moment of DM
decoupling. Then, for a given T 0=T ≠ 1, we expect a
generalized form of the interval (5), with

mdmðT 0=TÞ ∈ ½mdm;CMðT 0=TÞ; mdm;GKðT 0=TÞ�: ð6Þ

Understanding the dependence of this range on T 0=T is one
of our main goals. The result is summarized in Fig. 2 (white
region) in the plane T 0=T vs. mdm. The boundaries of that
regions are explained in Secs. III A and III B. Illustrations
in terms of explicit models are given in Sec. IV. From now
on, we use ξ≡ T 0=T for the ratio of temperatures of the
hidden and visible sectors.

A. Theoretical bounds

In this section, we consider theoretical constraints on the
domain of all possible thermal DM candidates. These will
be set by 1) the DM abundance from relativistic decoupling
(relativistic floor), 2) the condition of thermalization of the
DM within the HS (thermalization condition), and 3) the
DM abundance set from decoupling when nonrelativistic
with largest possible cross section (unitarity wall). We
study the corresponding limits in that order.

1. Relativistic floor

We first discuss the generalization of the Cowsik-
McClelland bound for ξ ≠ 1. The basic assumption is that
the DM particle decoupled when relativistic at a temper-
ature T 0

dec. For given values of mdm and ξ, relativistic
decoupling generates the largest possible relic DM

FIG. 1. Relic density of Dirac neutrinos (solid). Adapted from
[15], with courtesy of K. Kainulainen. The solid (dashed) line
corresponds to symmetric (asymmetric) DM. The dotted line is
unphysical, as neutrinos become strongly interacting above∼ few
TeV. The red line corresponds to Ωνh2 ¼ 0.12.
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abundance. Comparing with the observed DM density
gives a relation between ξ (defined at decoupling) and
the DM mass, ξðmdmÞ. Following [10,11], we call this
relation the relativistic floor as for fixed mdm, ξ < ξðmdmÞ
gives too little DM. As in the previous section, the
degeneracy of the DM species will be denoted by g0,
including a factor 3=4 for fermionic DM. The effective
number of relativistic degrees of freedom in entropy in the
HS is denoted with a prime, g0�s.
One can distinguish two main scenarios of relativistic

decoupling. The first scenario is analogous to the neutrino
relativistic decoupling scenario in the SM. In the same way
that the interaction rate for SM neutrinos changed from
Γ ∝ α2WT to Γ ∝ G2

FT
5 for T ≲MW [3], we can imagine

that the DM interaction rate was ∼T 05=Λ4 below some scale
T 0 ∼ Λ, with Λ > T 0

dec ≫ mdm. Typically, Λ is the mass of
some heavy mediator. The second scenario instead invokes
a heavy “cut-off” scale which is not the mass of a heavy
mediator but the mass of the particles the DM scatters into.
If these particles are heavier than the DM, the annihilation
rate became Boltzmann suppressed when T 0 went below
their mass. Schematically, this is analogous to nonrelativ-
istic DM decoupling in the sense that decoupling was due
to a Boltzmann suppression. However, this happens at a
higher temperature than mdm, when DM is still relativistic.
A difference between these two scenarios is that in the
second one, DM is reheated just before its decoupling, as
the heavier particle becomes nonrelativistic and annihilates
into it (similarly to photons which are reheated during the

eþe− annihilation catastrophe). Thus, in this case, the initial
value of T 0=T, which we call ξin (before the heavier particle
became nonrelativistic), is different from the value of T 0=T
at DM decoupling, ξdec. They differ by

ξdec ¼
�
g0�s;in
g0�s;dec

�
1=3

ξin ð7Þ

where g0�s;in > g0�s;dec counts the HS degrees of freedom at
the corresponding times.3 In the first scenario instead
there is no such reheating of the HS and ξin ¼ ξdec as
ðg0�s;in=g0�s;decÞ ¼ 1.
Taking into account this possible effect, we find the

general formula [10,11] (see also [21])

Ωdmh2 ¼
mdmndm;0

ρc;0=h2
≡mdmYdm;decs0

ρc;0=h2

¼ 0.12

�
g0mdm

6 eV

��
g�s;0
g�s;dec

��
g0�s;in
g0�s;dec

�
ξ3in; ð8Þ

where g�s;0 and g�s;dec count the total of degrees of freedom
(i.e., from both sectors) at the corresponding times.
Inversion of Eq. (8) gives the ξin required to produce the
correct DM abundance,

ξin ¼
�
50 eV
g0mdm

�
1=3

�
g�s;dec
g�s;0

�
1=3

�
g0�s;dec
g0�s;in

�
1=3

: ð9Þ

This relation defines the relativistic floor, giving the blue
exclusion region in Fig. 2. The small kinks along the floor
are due to the evolution of the VS contribution to g�s.

2. Thermalization condition

By definition, a thermal DM candidate was in thermo-
dynamic equilibrium. We must make sure that this con-
dition was satisfied. In the following, we refer to thermal
equilibrium as both kinetic and chemical equilibrium, so
that the DM initial abundance is entirely determined by the
HS temperature, T 0.4

FIG. 2. Domain of thermal DM candidates: temperature ratio ξ
at the time of DM decoupling vs. the DM mass. The possible
thermal DM candidates lie in the white region. The colored
regions are excluded, see the text for how they are set.

3As an example, consider a HS consisting of massive dark
photons, electrons and positrons. The dark photon is the lightest
particle of the HS, mγ0 < me0 , and so is a DM candidate. In that
case, g0�s;dec counts the dark photon’s degrees of freedom while
g0�s;in also includes the dark electrons and positrons. Also, the
initial dark photon temperature corresponds to T 0

in ≈me0 so that
the abundance of the dark photons after decoupling is
Yγ0 ¼ ðg0�s;in=g0�s;decÞYdmðT 0 ¼ me0 Þ. More generally, the dark
photons could have inherited the entropy from all the charged
particles that were once in equilibrium in the HS.

4Assuming DM chemical equilibrium is in general a stronger
assumption, as processes that keep DM in kinetic equilibrium are
generically more efficient, in particular when the DM is non-
relativistic. Consequently, in the following, we use chemical
equilibrium rates to impose the condition of thermal equilibrium.
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Consider again the case of SM neutrinos in the early
universe. At high temperatures, larger than the electroweak
scale, their interaction rate was Γ ∼ α2WT while the expan-
sion rate of the universe wasH ∼ ffiffiffiffiffi

g�
p

T2=mpl [3]. Thus, SM
neutrinos were in thermal equilibrium at temperatures
T ≤ Teq ≃ α2Wmpl=

ffiffiffiffiffi
g�

p ∼ 1014 GeV. Translating this to
relativistic particles in a HS interacting with a rate
Γ0 ∼ α02T 0, gives

α02T 0
eq ≃HðTeqÞ ⇒ Teq ≃ α02ξeqmpl=

ffiffiffiffiffi
g�

p
; ð10Þ

where ξeq ¼ ðT 0=TÞeq and α0 is a HS analogue of αW . So, if
ξ < 1 (ξ > 1), particles in a HS entered thermal equilibrium
at a later (resp. earlier) time in the history of the universe
than those in the VS. This is illustrated in Fig. 3, where we
plot Γ=H as a function of x≡mdm=T 0, with thermal
equilibrium corresponding to Γ=H > 1.

The way DM decoupled is model-dependent. Here, we
consider three generic possibilities. The first is that the
DM stayed in thermal equilibrium until it became non-
relativistic and its abundance changed from ndm ∝ T 03 to
being Maxwell-Boltzmann suppressed at T 0 ≲mdm, with
ndm ∝ expð−mdm=T 0Þ. This case is represented by solid
lines in Fig. 3. The second and third possibilities are the two
relativistic decoupling scenarios already discussed above,
of annihilation cut off by a heavy mediator mass or by the
mass of the particles that the DM scatters into. The
corresponding rates are shown in Fig. 3 as dashed lines
and dot-dashed lines respectively. Their behavior differs
from the first case when T 0 becomes smaller than the
corresponding cutoff mass scale. Other scenarios are
possible, such as combinations of the above three cases.
However, in what follows, and in particular in considering
explicit models in Sec. IV, we will focus on the three simple
possibilities considered here.
These three cases are depicted in Fig. 3 assuming the

same DM mass, but for two choices of ξ (orange and grey
lines). Candidates along the orange curves were in thermal
equilibrium between T 0

eq and T 0
dec. If the ratio ξ increases

(decreases), these curves move up (resp. down). Thus, a
generic feature which can be read from Fig. 3 is that the
temperature range within which the DM was in chemical
equilibrium shrinks as ξ decreases. If ξ is too small, all
other things being kept the same, then the particle was
never in equilibrium. The absolute minimum value of ξ for
which there is thermalization for a given DM model is
therefore obtained by setting T 0

eq ≈ T 0
decð≈mdmÞ, see the

solid grey curve in Fig. 3. This corresponds to the case of
freeze-out of a mildly nonrelativistic DM particle, thus it
lies close to the relativistic floor.
To be specific, let us take Γ ∼ α02T 0 as above when

T 0 ≫ mdm. This leads to the T 0 temperature range for
thermal equilibrium5

T 0
dec < T 0 < T 0

eq ⇒ mdm ≲ T 0 ≲ α02ξ2
mplffiffiffiffiffi
g�

p ð11Þ

or equivalently,

FIG. 3. Schematic behavior of interaction rates, Γ, divided by
the expansion rate, H ∝ T2, as function of mdm=T 0. DM particles
in thermal equilibrium lie above Γ=H ¼ 1. At high temperatures,
T 0 ≫ mdm, Γ ∼ T 0 in all cases. As the temperature of the HS
drops, we consider three scenarios for DM decoupling, see text:
(1) solid lines, the DM particles become nonrelativistic, (2) dot-
dashed lines, the DM annihilates into heavier particles of massm0
(here chosen to be m0=mdm ¼ 3), and (3) dashed lines, the DM
interacts through some heavy mediator and decouples while still
relativistic. We show these three cases for the same DM mass but
for two choices of ξ ¼ T 0=T (orange and grey lines, respectively).
For the orange curves, the intersections with the horizontal line
correspond to the temperatures T 0

eq and T 0
dec. Between these two

temperatures, the DM is in thermal equilibrium, Γ > H. The grey
curves correspond to smaller ξ. In particular, the solid line is such
that a DM particle barely reaches thermal equilibrium around
T 0 ∼mdm ∼ Teq ¼ T 0

dec.

5This range assumes that the DM mass is the only relevant
mass scale (the first of the three possibilities discussed above). If,
instead, the DM is interacting with heavier particles of, say, mass
m0, then the condition of thermalization is more constraining as
decoupling occurs for T 0 ∼m0. Thusmdm → m0 in Eqs. (11), (12),
(13) and the thermalization condition becomes independent of the
DM mass for mdm ≲m0,

ξmin ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g1=2� m0

α02mpl

s
:

We will meet such a situation in Sec. IV.
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mdm

ξ
≲ T ≲ α02ξ

mplffiffiffiffiffi
g�

p ð12Þ

This range shrinks to zero as ξ decreases down to a
minimum value found by taking T 0

dec ≈ T 0
eq,

ξmin ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1=2� mdm

α02mpl

s
: ð13Þ

This condition of thermalization of the HS crosses the
relativistic floor, Eq. (9), at

mdm ∼ α06=5 PeV; ð14Þ
corresponding to

ξmin ∼ 10−6α0−2=5: ð15Þ

As expected, ξ can be lower if the DM and its companion
particles have stronger interactions. However, for fundamen-
tal particles, cross sections are constrained from above by
unitarity [4]. Thus, even if the DM abundance does not
depend on the cross section in the case of relativistic
decoupling, the DM mass along the relativistic floor cannot
be arbitrarily large due to the requirement of thermalization.
To determine the absolute limits on the DM mass along

the relativistic floor, we consider the maximal, thermally
averaged cross section allowed by unitarity. Assuming
annihilation in J ¼ 0 state, it is given by [11]

hσvi ¼ π

4T 02 I ϵ

�
mdm

T 0

�
ð16Þ

where I ϵ is

Iϵðx0Þ ¼
1

N2
ϵ
×
Z

∞

4x02
dw

Z
∞ffiffiffi
w

p dkþ

Z
k−;max

−k−;max

dk−

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w=ðw − 4x02Þ

p
ðekþþk−

2 þ ϵÞðekþ−k−
2 þ ϵÞ

�
ð17Þ

with Nϵ ≡ R
∞
x0

ffiffiffiffiffiffiffiffiffiffi
k2−x02

p
kdk

ekþϵ
, where ϵ ¼ 1 for fermions, −1 for

bosons and 0 in the classical (Maxwell-Boltzmann) case, and
k−;max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4x02=w

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ − w

p
. As we will consider

regimes in which the DM is relativistic or mildly non-
relativistic, it is important to keep track of quantum statistics
effects. In the relativistic limit, T 0 ≫ mdm, Eq. (16) is

hσvi ¼ nϵ
T 02 ð18Þ

with nþ1 ¼ 5π=12 and n−1 ¼ 15π=16. For a classical
Maxwell-Boltzmann distribution, (16) takes the form

hσvi ¼ 4π

m2
dm

K2ð2x0Þ
K2

2ðx0Þ
ð19Þ

This gives n0 ¼ π=2 in the relativistic limit and h1=vi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mdm=πT 0p

for T 0 ≪ mdm, see Eq. (3).
Using Eqs. (16)–(17), we can find the lowest temperature

T 0
dec ¼ T 0

eq at which a HS can be in thermal equilibrium,
given the maximally allowed cross section of the DM. This
condition is depicted as the orange region in Fig. 2. It is set
by simply requiring that

ndmhσvi ≈H

at T 0
dec ¼ T 0

eq, which gives what we call the thermalization
condition,

ξdec ¼ 1.2 × 10−8
�

mdm

100 GeV

�
1=2

� ffiffiffiffiffiffiffiffiffiffi
g�;dec

p
g0

�
1=2

×
�

1

x0decIðx0decÞ
�

1=2
ð20Þ

where g�;dec counts the effective number of degrees of
freedom contributing to the expansion rate at T 0

dec ¼ T 0
eq.

Modulo the dependence through x0dec ¼ mdm=T 0
dec, we see

that essentially ξeq ∝ m1=2
dm as in (13). As above, the thermal-

ization condition crosses the relativistic floor, Eq. (8), at

ξmin ≈ 1.4 × 10−5; ð21Þ

which gives the lowest possible temperature for a HS with
thermal DM that decouples when (barely) relativistic. This
temperature corresponds a DM candidate of mass

mdm ≈ 30 PeV: ð22Þ

3. Unitarity wall

If we depart from the point corresponding to (22), going
along the orange thermalization condition, the HS temper-
ature increases as T 0 ∝ mdm, so that the possible DM
candidates are less and less relativistic and we enter into
a secluded regime of nonrelativistic freeze-out [6,7]. In this
case, the relic abundance depends on the annihilation rate.
In the instantaneous freeze-out approximation, i.e., fixing
x0dec ¼ mdm=T 0

dec from the condition Γ=HjT 0¼T 0
dec

¼ 1 and
determining Ydm by assuming that the yield after freeze-out
is equal to ndm;eq=sjT 0¼T 0

dec
, the relic abundance obtained is6

6It can be checked that the relic abundance obtained in this way
differs from the one obtained from a proper integration of the
Boltzmann equation by less than a factor ∼2, regardless of the
value of ξ considered in the allowed domain of Fig. 2, and as
long as x0dec ≳ 3. The agreement can be somewhat further
improved using the following expression:Ωdmh2 ¼ 1.3 × 108gdm·
ðmdm=GeVÞð

R∞
x0dec

hσvis=x0Hdx0Þ−1.
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Ωdmh2 ¼ 4.7 × 108
gdmg

1=2
�;decx

0
decξ

g�s;decmplhσviGeV
ð23Þ

with x0dec given by7

x0dec ≃ ln

�
0.038ξ2hσvimplmdm

�
gdmffiffiffiffiffiffiffiffiffiffi
g�;dec

p
��

þ 1

2
ln ln

�
0.038ξ2hσvimplmdm

�
gdmffiffiffiffiffiffiffiffiffiffi
g�;dec

p
��

: ð24Þ

We first consider the case in which the expansion of the
universe is dominated by the VS. This is natural for ξ ≪ 1.
In this case

Hðx0Þ ¼ 1.67
ffiffiffiffiffiffiffiffiffiffiffi
g�ðTÞ

p m2
dm

mplx02ξ2
; ð25Þ

sðx0Þ ¼ 2π2

45
g�sðTÞ

m3
dm

x03ξ3
: ð26Þ

Taking the maximal annihilation cross section allowed by
unitarity, Eqs. (16) and (17), gives an upper bound on ξdec
as a function of mdm,

ξdec ≤ ξunitardec ≡ 1.18 × 105
�
100 GeV
mdm

�
2

×
g�s;decffiffiffiffiffiffiffiffiffiffi
g�;dec

p x0decIðx0decÞ ð27Þ

This equation leads to the diagonal part of the red boundary
in Fig. 2. For fixed ξdec, a value of the DMmass beyond this
diagonal leads to an excess of DM. Clearly, the relation (27)
generalizes the standard unitarity bound which is set
assuming T 0 ¼ T [4].
Let us make a few remarks. First we note that the

condition (27) scales as ξdec ∝ 1=m2
dm, so heavier DM

candidates are possible for T 0 < T. Second, this expression,
which is obtained for the unitarity limited cross section,
implies that in general ξdec ∝ hσvi. Indeed, for fixed DM
mass, decreasing the cross section by decreasing the
coupling leads to a increase of the DM abundance (as
for standard nonrelativistic FO at T 0 ¼ T), which is
compensated by a decrease of the HS temperature.
Lastly, we see from Eq. (24) that x0dec decreases as the
DMmass increases when hσvi ∝ m−2

dm. While x0dec ¼ Oð20Þ
for T 0 ∼ T, the DM is less nonrelativistic at decoupling if
T 0 ≪ T, as expected since in this case the DM particles are
less numerous already to start with and thus must be less
Boltzmann suppressed to account for the relic density.

The crossing of the unitarity constraint (27) and the
condition for thermalization (20) gives the heaviest pos-
sible thermal DM candidate (denoted by the little red dot in
Fig. 2), which has mass

mdm;max ≈ 52 PeV ð28Þ

when DM is a Dirac fermion. This is slightly heavier than
(22) and corresponds to a temperature ratio,

ξ ≈ 6.9 × 10−5 ð29Þ

to be compared with (21). It may be worth mentioning that
taking freeze-out at T 0

dec ∼mdm;max implies that the DM
decoupled around T ∼ 1011 GeV.
So far, we have assumed that the expansion of the

universe was dominated by the VS. If there are many
degrees of freedom in the HS or if ξ≳ 1, the entropy and
energy densities of the HS can be dominant at the time of
the decoupling of the DM. In this case, we can approximate
the expansion rate and entropy by

Hðx0Þ ≈ 1.67
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g0�ðT 0Þ

p m02
dm

mplx02
; ð30Þ

sðx0Þ ≈ 2π2

45
g0�sðT 0Þm

3
dm

x03
ð31Þ

by neglecting the VS contributions, where g0� is the
effective number of HS relativistic degrees of freedom.
In this approximation, the DM abundance no longer
depends on ξ. Put simply, the VS, and its temperature,
are irrelevant at the time of DM decoupling. Thus, because
the annihilation cross section is set by unitarity, there is a
unique value for the maximum DM mass as long as the HS
dominates the universe.
In this scenario it is crucial that after DM freeze-out,

most of the entropy and energy of the HS, which is shared
by the DM companions, is transferred to the VS. There are
two main possibilities, depending on whether or not the
entropy is conserved in this transfer:

(i) If the transfer occurs while the companions are in
thermal equilibrium with the VS, entropy is con-
served and Eq. (23) together with Eqs. (30) and (31)
apply. This gives the upper bound on mdm corre-
sponding to the vertical part of the red exclusion
region in Fig. 2,

mdm ≈ 35 TeVg1=4dm ðx0decIðx0decÞÞ1=2 ð32Þ

To draw this limit, we considered a minimal sce-
nario, with Oð1Þ companion particles on top of the
DM and only the known, SM degrees of freedom in
the VS. It intersects the curve (27) at roughly
ξ ≈

ffiffiffiffiffiffiffiffiffiffiffi
g�=g0�4

p
≈ 3. If there were more particles in

7The power of ξ in the logarithm which gives x0dec can be
obtained different from the value 2 in Eq. (24), if one uses another
prescription for determining x0dec, see [7,22] for other prescrip-
tions which lead to a value 5=2 or 3=2 in the ξdec < 1 case.
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the VS than the Oð100Þ of the SM, the line would
shift toward the left but, as it scales as the fourth root
of the number of particles, their effect would
be mild.

(ii) If transfer happens through a slow, out-of-equilib-
rium decay of the companion particles, entropy is
produced. Energy conservation leads to heating of
the VS [23] and dilution of the DM abundance. Such
a scenario has been considered in [24]. The effect of
entropy production is to slightly shift the vertical line
in Fig. 2 to the right. The shift can be approximated
by multiplying (32) by a factor of

f ≃
�

g4�s
g0�g3�

�
1=8

≥ 1 ð33Þ

obtained by imposing that ρtot ¼ ρVS þ ρHS is con-
served and then extracting the evolution of the
temperature ratio due to this conservation. As (32)
is derived assuming entropy conservation, the factor
(33) divides by the contribution coming from en-
tropy conservation [g�s, as defined in Eq. (8)] and
multiplies the contribution from energy conservation
(g�). This factor lies between f ∼ 1 and f ∼ 1.6
depending on the VS temperature when the entropy
is injected (T < 10 keV and T > TeV respectively)
for g0� ¼ Oð1Þ. We note at this stage also that the DM
abundance from relativistic freeze-out given by
Eq. (8) also assumed entropy conservation. An out-
of-equilibrium processes resulting in entropy produc-
tion would cause the rhs of Eq. (8) to be a factor
of ðg0�s;dec=g0�s;inÞ1=4 smaller. Since g0�s;dec ≤ g0�s;in, this
could slightly raise the relativistic floor.

B. Observational constraints

In this section, we consider two observations that set
important restrictions on the domain of thermal DM
candidates. These are depicted in Fig. 2, see the green
(Neff ceiling) and purple (free streaming) regions. Our aim,
as in the previous section, is to be as model-independent as
possible.

1. Neff ceiling

We know that the universe was dominated by radiation at
the time of big bang nucleosynthesis (BBN) and until about
the recombination epoch.. A crude constraint is set by
considering the possible contribution of the HS particles to
the number of relativistic degrees of freedom at the time of
BBN and recombination. This is expressed in terms of Neff ,
the effective number of neutrinos. Too large a value of
ΔNeff at temperatures around T ∼Oð1Þ MeV will increase
the Hubble rate and thereby impact the abundances of light
nuclei, which are rather well measured. The latest CMB
measurement by Planck [13] gives Neff ¼ 2.99� 0.17 (the

results from BBN are similar [25]), which is to be
compared with the SM prediction, Neff ¼ 3.04, see e.g.
[26]. Hence, we impose the constraint that ΔNeff ≤ 0.29 at
2σ. We will distinguish two contributions to ΔNeff , one
from the DM degrees of freedom and one from other HS
particles. The latter is much more model-dependent than
the former.
We first look at the contribution of the DM degrees of

freedom. The shift in Neff due to the dark matter at T ¼
1 MeV can be computed by taking the ratio of the DM and
neutrino energy densities. Using the fermionic (þ) or
bosonic (−) equilibrium number densities, we can express
ΔNeff as

ΔNeff ¼
8

7

�
11

4

�
4=3 ρdm

ργ
¼ 60gdmξ4

7π4

�
11

4

�
4=3

×
Z

∞

mdm
T0
BBN

dz
z2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − ðmdm=T 0

BBNÞ2
p

ez � 1
; ð34Þ

where z ¼ Edm=T 0 with T 0
BBN ¼ ξTBBN Any other relativ-

istic degrees of freedom in the HS will give an additional
contribution to ΔNeff , so we are being very conservative
here. The constraint it leads to is depicted by the green
region of Fig. 2. Its two key features may easily be
understood. Firstly, it is clear from Eq. (34) that the
contribution of a DM particle toΔNeff is only sizeable when
it is relativistic at the time of BBN, TBBN ∼ 1 MeV, i.e. for
ξ≳mdm=MeV. This basic condition sets the diagonal part of
the green boundary for mdm ≳ 10 MeV. Next, suppose that
DM is indeed relativistic at BBN, i.e. mdm ≪ T 0

BBN. For
fermionic DM, we have ΔNeff ≃ gdmð11=4Þ4=3ξ4=2, mean-
ing that a Dirac fermion (gdm ¼ 4) counts as two families of
neutrinos,while aMajoranaDMparticle (gdm ¼ 2) counts as
one. For bosonic DM instead, ΔNeff ≃ 4gdmð11=4Þ4=3ξ4=7
(with gdm ¼ 1 for a real scalar). Collectively, we write
this as ΔNeff ¼ 4gdm;effð11=4Þ4=3ξ4=7 with gdm;eff ¼P

B gdm;B þ 7=8
P

F gdm;F. The bound from Planck then
corresponds to

ξ≲ 0.60=ðgdm;effÞ1=4; mdm ≪ ξTBBN; ð35Þ

which excludes any value of ξ larger than ∼1 when
mdm ≪ T 0

BBN. As soon as T 0 is below T, however, the ξ4

suppression allows a large number of relativistic degrees of
freedom [6]. Notably, the constraint (35) is independent of
the DMmass. This limit corresponds to the horizontal part of
the green region. To draw it, we assumed gdm;eff ¼ 3.5 (i.e. a
Dirac fermion), but taking instead gdm;eff ¼ 10, for instance,
barely changes the figure.
Next, we discuss the possible additional contribution of

companions in the HS. This is much more model-depen-
dent as it is related to the number of particles which are left
after DM freeze-out and how their number changes
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afterwards. Consider first the typical situation in which DM
annihilates into lighter particles which decouple relativis-
tically. In this case, if they disappear (say, by decaying to
SM particles) before the BBN epoch they are harmless for
BBN. However, since these particles will not disappear
until they are nonrelativistic, this requires their mass to be
larger than T 0

BBN. In this case, if the mass of the companion
particle is about the DM mass the constraint remains as
given by the green area in Fig. 2. If the companion particle
is lighter than the DM by a fixed ratio, the diagonal part
instead moves to the right by a factor of mdm=mcomp.
Alternatively, for a fixed value of mcomp, one gets an
horizontal line, i.e. a fixed upper bound on the temperature
ratio: ξ < mcomp=TBBN. In the extreme case, where the
companion is much lighter than the DM particle and/or it
decays after BBN, the bound (35) becomes

ξ≲ 0.60=ðgdm;lightÞ1=4 ð36Þ

where gdm;light now includes all HS degrees of freedom that
are still abundant at the BBN time (see also [6]). This
corresponds to a horizontal exclusion line which for low
DM mass is somewhat below the horizontal boundary of
the green region in Fig. 2 [due to a larger number of degrees
of freedom contributing in Eq. (36) than in Eq. (35)], and
extends horizontally for larger DM masses (with a some-
what small step up at mdm ∼ 1 MeV, since above this value
DM ceases to contribute). Thus, to first approximation, (36)
leads to an extension of the horizontal green exclusion
region toward larger DM mass, which is depicted by the
dashed green line in Fig. 2. To summarize, the region
allowed by BBN can, if there are no HS degrees of freedom
left at BBN time, extend to the white domain depicted in
Fig. 2. If this is not the case, values of ξ larger than ∼1 are
excluded.
The above discussion was deliberately general. For

specific models, the constraints can be expected to be
stronger than the generic BBN bound we discussed here.
The most delicate situation is when the DM and/or its
companion particles annihilate or decay at the time of BBN,
as the production of light elements can be affected by
changes to the expansion rate and, more importantly, by
energy transfer into the VS, see, e.g., [27–29]. Determining
this, however, necessarily demands specifying a HS
scenario.

2. Free-streaming

Thermal DM cannot be too light, otherwise it remains
relativistic for too long and does not permit the formation of
large-scale structures that we observe. For a thermal relic
with ξ ¼ 1, the strongest bound is mdm > 5.3 keV [30],
obtained from Lyman-α forest data. This bound can be
generalized to account for different values of T 0=T by
converting it to a limit on the DM free-streaming horizon,
the average distance a DM particle travels after production

(a study bounding thermal DM with ξ ≠ 1 from structure
formation arguments in terms of DM damping lengths can
be found in [21]).
The average momentum of a population of particles in

thermal equilibrium with temperature T 0 is

hpi≡
R
d3pfðpÞpR
d3pfðpÞ ¼ T 0 ×

�
3.15 for a fermion;

2.70 for a boson:
ð37Þ

This average persists after the population goes out of
thermal equilibrium. The particle species can then be said
to be nonrelativistic when hpi ≤ m, i.e., below T 0

nr ¼
mdm=3.15 for a fermion, with the corresponding time being
tnr ¼ 1=½2HðT 0

nr=ξÞ�. If tnr < teq ¼ 1.9 × 1011 s, the time
of matter-radiation equality, then the free-streaming hori-
zon can be estimated as [3]

λFS ¼
Z

t0

tdec

hvðtÞi
aðtÞ dt

≃
ffiffiffiffiffiffiffiffiffiffi
teqtnr

p
aeq

�
5þ log

teq
tnr

��
g�s;0 þ ξ3g0�s;0

g�s;dec þ ξ3g0�s;dec

�1=3

; ð38Þ

where aeq ¼ 8.3 × 10−5 is the scale factor at teq. On the
other hand, if tnr > teq, we have

λFS ≃
�
6ðt2eqtnrÞ1=3 − teq

aeq

��
g�s;0 þ ξ3g0�s;0

g�s;dec þ ξ3g0�s;dec

�1=3

; ð39Þ

since for t > tnr, hvðtÞi ≃ anr=a ≃ ðtnr=tÞ2=3. Note that
Eqs. (38) and (39) coincide when tnr ¼ teq.
An early decoupled fermionic thermal relic of mass

5.3 keV has a free-streaming horizon λFS ≃ 0.066 Mpc.
Imposing this upper limit on the free-streaming horizon
leads to the bound given by the purple region in Fig. 2. The
behavior is quite different depending on whether ξ is smaller
or larger than 1. When T 0 ≪ T, then tnr ∝ ξ2=m2

dm, hence
λFS ∝ ξ=mdm, up to the logarithm in Eq. (38) (see also [11]).
Conversely, whenT 0 ≫ T, the hidden sector dominates, with
HðT 0

nrÞ ∼m2
dm=mpl. Then if tnr < teq, as is the case for

mdm ≳ 10 eV, we have λFS ∝ 1=ðξmdmÞ, neglecting the
logarithm. As a result of all that, the absolute minimum
value of mdm lies at the intersection of the free-streaming
constraint and the relativistic floor, which is at mdm ≃
1.0 keV and ξ ≃ 0.16. Thus we obtain

mdm ≳ 1.0 keV; ð40Þ

see also [11].

C. Domain of thermal DM candidates

Wesummarize here the constraints discussed in Secs. III A
(theory) and III B (observations). Figure 2 depicts the bounds
obtained from the ξ ¼ T 0=T relativistic floor (Eq. (9),
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boundary of blue region), the thermalization constraint
(imposing unitarity, Eq. (20), orange) and the unitarity wall
(Eqs. (27) and (32), red). Along the ξ ¼ 1 horizontal dashed
black line lies the domain of DM candidates that were in
equilibrium with the SM bath when they decoupled, Eq. (5).
The observational constraints come from the Neff ceiling
(green region, Eq. (34), assuming the products of DM
annihilation are gone by the time of BBN) and from free-
streaming [purple region, Eqs. (38) and (39)]. All these
constraints define the possible domain of thermal DM, as
given by thewhite region. In specific cases, this region can be
further reduced. For instance, the dashed green line gives the
approximate (somewhatmodel-dependent) upper bound on ξ
which holds when the (or some of the) companion(s) of the
DM are still around during BBN. The vertical part of the red
region corresponds to Eq. (32) rather than Eq. (33) (i.e., for
ξ > 1, conservation of entropy rather than of energy when
the HS particles disappear into SM particles later on) but the
difference is small.
In the blue region, bounded by the relativistic floor, the

thermal DM particles would be underabundant, while in the
red region, bounded by the unitarity wall, they would be
overabundant. Only in between can viable thermal DM
candidates exist. To make this clear, consider Fig. 4, in
which we show the DM parameter density against the DM
mass for different choices of ξ ¼ T 0=T. The horizontal
dashed black line corresponds to the observed density,
Ωdmh2 ≈ 0.12. The solid curves below this line correspond
to particles that decoupled when relativistic for different
choices of ξ (from ξ ¼ 1 to ξ ¼ 10−5). Thus they give the
maximum value of Ωdm one can obtain for the values of
mdm and ξ considered. The intersections of these curves

with the horizontal line define the relativistic floor. The
solid curves above the dashed line correspond to particles
that decoupled when nonrelativistic, assuming the unitarity
bound for their annihilation cross section (thus giving the
minimum value ofΩdm one can obtain for the values ofmdm
and ξ considered). The intersections of these curves with
the dashed line define the unitarity wall. For fixed ξ, the line
of given ξ that overlaps the horizontal dashed line defines
the corresponding thermal DM mass range within which it
may be possible to have the observed relic density; this is
illustrated by the horizontal black solid line in the case of
ξ ¼ 1. As explained above, and as can also be seen on this
figure, as ξ decreases the DM mass range shrinks and also
shifts toward higher DM masses. Around ξ ∼ 10−5, the
nonrelativistic floor and unitarity wall merge (see blue
curves), corresponding to DM candidates around the PeV
scale. All together, they form the domain of thermal DM
candidates, as depicted in the plane ξ vs. mdm in Fig. 2.
How specific models fit into this picture is the subject of

the next section but, as an illustration, in Fig. 4 we
reproduce the case of a Dirac neutrino for ξ ¼ 1, see the
grey line and Fig. 1. As discussed in Sec. II, this theory has
three thermal DM candidates. The one that lies between the
floor and the wall (the Lee-Weinberg candidate around
mdm ∼ GeV) will move around if, forgetting for the sake of
the argument the relation with electroweak interactions, we
change its interactions, keeping ξ ¼ 1. For instance,
increasing αW will make it moves toward lighter DM
while increasing the mass of the gauge boson(s) moves it
toward heavier DM, etc. One may further convince oneself
that, playing with the parameters of this model, the
horizontal black solid interval may be filled by thermal
candidates.

IV. EXPLICIT MODELS

In this section, we illustrate how some concrete models
of hidden DM fit in the domain of thermal DM candidates
of Fig. 2. We will do so using three simplified DM
scenarios. In the first one, fermionic DM particles annihi-
late into a pair of vector bosons. We dub this the t-channel
scenario after the topology of the tree-level annihilation
process. In the second scenario, the DM annihilates into HS
fermions through an s-channel process. Finally, we con-
sider scalar DM annihilation into HS scalars via a contact
interaction. We will skim over the fate of the DM
companions, except in the last scenario.

A. Scenario 1: t-channel

For this first model, the DM consists of a Dirac fermion,
χ, charged under a local Uð1Þ0. The dark photon has mass
mγ0 ; the origin of its mass is not important here, but mγ0 can
be smaller or larger than the mass of the χ, called mdm as
above. We consider separately the cases ξ < 1 and ξ > 1.

FIG. 4. DM density versus DM mass for various temperature
ratios, T 0=T. The solid black line is for T 0 ¼ T (the dashed line
corresponds to the case of heavy neutrino DM, see Fig. 1).
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(1) If ξ < 1, the DM and the dark photons have little
impact on the expansion rate. For fixed DM abun-
dance, HS coupling α0 and dark photon mass, the
temperature ratio ξ can be expressed as a function of
the DM mass, ξ ¼ ξðmdmÞ. An example of such a
relation is the black solid curve in Fig. 5. Its salient
features are the following:
(i) For mdm < mγ0, the DM particles can efficiently

annihilate into the γ0 only as long as T 0 ≳mγ0 .
The annihilation becomes Boltzmann sup-
pressed for T 0 ≲mγ0, so the DM particles de-
couple relativistically around T 0 ∼mγ0 > mdm.
Thus, the only way to account for the relic
density is if DM lies on the relativistic floor,
see Fig. 5. This can further be seen in Fig. 6 (a
model-specific version of Fig. 4), which displays
the DM abundance as a function of the DMmass
for several different values of ξ. For mdm < mγ0,
the DM density parameter is ∝ mdm, a signature
of relativistic decoupling, so the candidates lie
along the relativistic floor.

(ii) At the threshold mdm ∼mγ0 , the annihilation
rate into dark photons, which was strongly
Boltzmann suppressed at T 0 ≃mdm for mdm <
mγ0 (proportionally to e−2mγ0=mdm), increases
very quickly. The resulting efficient annihila-
tion into dark photons leads to a drop in the
abundance for fixed ξ, as can be also seen in
Fig. 6. Thus, to account for the relic density one
needs a larger value of ξ, as displayed in Fig. 5.

This marks a sharp transition from the relativ-
istic freeze-out regime to the nonrelativistic
freeze-out one, i.e. from the relativistic floor
value of ξ to the value of ξ needed when the
annihilation rate is no longer Boltzmann sup-
pressed by the higher value of mγ0 . Note that
such a threshold feature is not automatically
present. Indeed, if the coupling decreases, it
may no longer be possible to deplete the
abundance through nonrelativistic freeze-out.
In this case, the curves of the DM candidates lie
along the relativistic floor up to a value of mdm
(below mγ0), above which DM can no longer be
in thermal equilibrium, see below.

(iii) Well above the threshold, mdm > mγ0 , the DM
lies in the secluded, nonrelativistic freeze-out
regime, Ωdm ∝ m2

dm=α
02, see Fig. 6, and the

relationship between ξ and mdm evolves sim-
ilarly to Eq. (27), with ξdec ∝ α02=m2

dm. The
dependence on α0 stems from the discussion
below Eq. (27), so the impact of changing α0 is
manifest. For instance, for ξ < 1, compare this
solid line with the part of the black dashed line
which lies in the ξ < 1 region: it is obtained for
a larger value of α0 and consequently lies at
larger values of mdm.

(iv) Still along these solid and dashed curves, as the
DM mass increases and so ξ decreases, FO
occurs for larger T 0

dec and smaller x0dec ¼
mdm=T 0

dec, see Eq. (24). Eventually, FO takes

FIG. 5. Parameter space for DM freeze-out driven by DM
annihilating into two dark photons in the t-channel. The param-
eters are α0 ¼ 3 × 10−4, mγ0 ¼ 10 GeV for the solid curve and
α0 ¼ 0.1, mγ0 ¼ 30 MeV for the dashed curve.

FIG. 6. Parameter space for DM freeze-out driven by DM
annihilating into two dark photons in the t-channel for α0 ¼ 0.1
and mγ0 ¼ 30 MeV. The contours correspond to different values
of logðξÞ.
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placewhen theDMis onlymildly nonrelativistic,
mdm ≳ T 0. This mildly nonrelativistic FO is the
reason for the upturn of the solid and dashed
curves as they go close to the relativistic floor.
However, around such masses, thermalization of
the HS is no longer guaranteed, see III A 2 and in
particular Fig. 3. Lack of thermal equilibrium
implies that the curves stop at some DM mass,
see the black dots on the solid and dashed black
curves and Fig. 6 of [10]. This dot corresponds to
the intersection of the solid curve with the
thermalization diagonal which can be drawn
for the given value of α0, Eq. (13) (this is not
drawn in Fig. 6 but is simply parallel to the
orange thermalization line, given by Eq. (20)).

(v) The condition for thermal equilibrium scales
like ξmin ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mdm=α02

p
, see Eq. (14). Thus, as α0

changes, the endpoint runs parallel and close to
the relativistic floor. It ends in the lower right
corner of the domain (the little red dot) for
maximal coupling, where the unitary wall
and the thermalization condition meet. If, on
the other hand, we decrease α0, the thermal-
ization endpoint moves up, eventually reach-
ing mdm ≈mγ0 . At this point, the condition for

thermal equilibrium becomes ξmin ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mγ0=α02

q
(see footnote 5) so that for smaller α0 the
thermalization endpoints run along the relativ-
istic floor.

(vi) We pointed out in Sec. II that, varying the DM
mass and all other things being kept constant
(here ξ, mγ0 and α0), we can in general expect to
have an odd number of DM candidates, except
at some fined tuned points (corresponding here
to the regimemdm ≈mγ0). This can be seen from
the fact that most contours in Fig. 6 cross the
Ωdmh2 ¼ 0.12 line either once or thrice.

(2) So far, we assumed that the model parameters are
such that the DM candidates lie in the region ξ < 1.
Large values α0 brings in DM candidates for which
ξ > 1, see the dashed black curve in Fig. 5. We
recognize on this curve several patterns that are
similar to the case of smaller α0. Starting from the left
of the figure, with low mass DM, the abundance
along the solid line is set by relativistic decoupling
until mdm ≈mγ0 , at which point the annihilation
channel opens up, leading to a Boltzmann suppres-
sion of the relic density that must be compensated by
a sharp rise of ξ. Also, as for smaller values of α0, at
large values of mdm the candidates follow a diagonal
line, ξdec ∝ α02=m2

dm (parallel to the unitarity wall),
corresponding to a nonrelativistic secluded freeze-

out regime. The line is closer of the unitarity wall
than the solid line because α0 is larger.

There is nevertheless a clear difference between the solid
and dashed lines for intermediate values of mdm corre-
sponding to the ξ > 1 region. For large α0, the line extends
itself to this region because as soon as the annihilation
channel opens up at mdm ≈mγ0 , the large annihilation cross
section leads to a large Boltzmann suppression factor which
can only be compensated by a value of ξ ≫ 1. In this case,
however, the DM particle and the dark photons dominate
the expansion rate, so the DM abundance no longer
depends on the temperature of the visible sector, see
Sec. III A 3. The DM mass then depends only on the dark
gauge coupling α0:

mdm ≈ 1.3 TeV

�
0.1
α0

��
g0�s;decffiffiffiffiffiffiffiffiffiffi
g0�;dec

q �
1=2

�
30

x0dec

�
1=2

ð41Þ

This gives the vertical dashed black line at mdm ∼ 2 TeV in
Fig. 5. As explained in Sec. III A 3, the fate of the HS
companions, here the γ0, may lead to a slight shift of
position of the vertical line. Assuming that they decay into
SM particles (e.g., through kinetic mixing) leads to the
vertical line at mdm ∼ 2 TeV obtained by imposing con-
servation of energy [instead of entropy, as in Eq. (41)],
again see Sec. III A 3.
Note that the dark photons can generically be made to

decay before BBN, so that the domain below the green
shaded area but above the green dashed line is potentially
allowed. For the two sets of parameters considered here,
where mγ0 ¼ 10 GeV and mγ0 ¼ 30 MeV, the constraint
associated with the γ0, ξ≲mγ0=TBBN, is ξ≲ 104 and ξ≲ 30

respectively (or a more stringent constraint if the decay of
the γ0 occurs after BBN has started, see e.g. [27–29]). The
gap in the mass range for candidates for which ξ≳ 1 (see
also Fig. 6) could be filled in several ways for this theory.
Changing the coupling and the mass of the dark photon is
one way. Another way, but a less effective one, is to play
with the ratio of degrees of freedom between the VS and
HS. We thus conclude that, with an appropriate choice of
parameters (possibly all the way to the maximum cross
sections allowed by unitarity), the DM candidates of this
simple model can fill the whole domain of thermal DM
candidates.

B. Scenario 2: s-channel

We next consider a model in which the DM can annihilate
into a companion particle through a mediator in the
s-channel. It is potentially richer than scenario 1 as it contains
an extra coupling and more particles. Nevertheless, most of
the features discussed in the case of scenario 1 are similar, so
we will be brief. For definiteness, we consider the following
Lagrangian,
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LHS ¼ iχ̄∂χ −mdmχ̄χ þ iψ̄∂ψ −mψ ψ̄ψ

þ 1

2
∂μϕ∂μϕ −

1

2
m2

ϕϕ
2 − yχϕχ̄χ − yψϕψ̄ψ : ð42Þ

Here the DM is χ, a Dirac fermion, and its companion
particles are a scalar,ϕ, and anotherDirac fermion,ψ . If theψ
is substantially heavier than the DM (and has a subleading
contribution to the DM relic density or decays), we have
essentially scenario 1, albeit with a spin zero particle instead
of a dark photon. The new aspect is that the annihilation of χ
into ψ , which is mediated by ϕ, can be resonant and depends
on αx ¼ yχyψ=4π.
Consider Fig. 7, in particular, the solid curve, which

mostly lies in the ξ < 1 domain and for which
mϕ ¼ 100 GeV, mψ ¼ 5 GeV and αx ¼ 0.001. The fea-
tures of this curve are similar to those of the solid curve in
Fig. 5 for the t-channel scenario. At low massesmdm < mψ ,
the DM candidates lie along the relativistic floor, then there
is the threshold effect at mdm ∼mψ . The most notable new
feature is due to resonant annihilation at mdm ∼mϕ which
occurs here in the nonrelativistic freeze-out regime. It peaks
because the sharp drop of the DM abundance around the
resonance (resulting from a sharp rise of the annihilation
cross section) must be compensated by an increase of ξ. To
the left of the resonance but after threshold, σv ∼
α2xm2

dm=m
4
ϕ so the curves grow as ξdec ∝ α2xm2

dm=m
4
ϕ. To

the right of the resonance, the mediator mass becomes less
and less relevant and we recover the behavior already

observed in the t-channel scenario, ξdec ∝ α2x=m2
dm. Again,

the curve stops when the DM cannot thermalize. The
features of the dashed line, obtained for a large coupling
value, are similar to those of the dashed line in Fig. 5. It
shows a mass gap for the same reasons as discussed for
that model.

C. Scenario 3: Contact interaction

Finally, we consider a model with no mediator, wherein
the DM and companion particle interact via a contact
interaction. To that end, we introduce two real scalar fields,
Φ and η, which are charged as ðþ1;−1Þ and ð−1;þ1Þ
respectively under a Z2 × Z2 symmetry. The potential in
the HS is then

VHS ¼
1

2
m2

dmΦ2 þ λΦ
4!

Φ4

þ 1

2
m2

ηη
2 þ λη

4!
η4 þ λΦη

4
Φ2η2: ð43Þ

For concreteness, we take the Φ as the DM candidate (thus
theΦ field has no vev). Being scalars, they both could have
portal couplings to the Higgs, jHj2Φ2 and jHj2η2. As
before, we assume that these are small enough that the HS
does not thermalize with the VS. The features of the ξðmdmÞ
contours are similar to the t-channel scenario, see Fig. 8.
First, there is a regime of relativistic freeze-out, then a sharp
rise at the threshold mdm ≈mη for ΦΦ → ηη annihilation,
and finally the ξdec ∝ λ2Φη=m

2
dm behavior parallel to the

FIG. 7. Parameter space for DM freeze-out driven by DM
annihilating into two Dirac fermions in the s-channel mediated by
a scalar. We used αx ¼ 0.001, mψ ¼ 5 GeV and mϕ ¼ 100 GeV
for the solid line and αx ¼ 0.1, mψ ¼ 30 MeV and mϕ ¼ 1 GeV
for the dashed line.

FIG. 8. Parameter space for DM freeze-out driven by DM
annihilation into two dark scalars via a contact interaction. The
temperature ratio is plotted as a function of the DM candidate
mass for λΦη ¼ 0.01 and mη ¼ 100 GeV (solid line) and λΦη ¼ 1
and mη ¼ 1 GeV (dashed line).
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unitarity wall. We depict these for the cases mη ¼ 1 GeV,
λΦη ¼ 1 and mη ¼ 100 GeV, λΦη ¼ 0.01.
Despite these similarities, this simple model also allows

us to consider the following question. So far we looked
only at 2 → 2 annihilation processes. Could we go outside
the domain by considering processes involving more
particles? Although we will not look at this question in
full generality, this model illustrates the fact that in general
one can expect that the answer to this question is no.
Besides the 2 → 2 processes, which can put η and Φ
particles in thermal equilibrium, (with rate per unit volume
Γ2↔2 ∝ λ2i n

2
i =m

2
dm with i ¼ Φ; η), the DM abundance can

also be changed by 4 ↔ 2 processes, with Γ4↔2 ∝
λ4i n

4
i =m

8
dm (we follow the notation of [31], see also

[32]). Such processes are slower than the usual 2 ↔ 2
ones because of extra couplings, phase-space and, in the
NR regime, Boltzmann factors. However, they can never-
theless play an important role.
First, we can imagine that the companion is simply

absent (or heavier than the DM) in which case the HS
consists only of the DM, Φ. This is the scenario that was
studied in detail in [31]. It is clear that FO cannot occur
when the DM is relativistic, since Γ4↔2 ∝ T 0 for T 0 ≫ mdm,
rather FO occurs as the rate becomes Boltzmann sup-
pressed for mdm ≲ T 0, see Fig. 3. As there are no DM
candidates along the relativistic floor, and no threshold
from the companion, all DM candidates, for a given choice
of self-coupling, lie (roughly) on a line that runs to the
unitarity wall, but this refers to the unitarity of the 4 ↔ 2
process, not the DM freeze-out from a companion. The
freeze-out of 4 ↔ 2 processes is distinct from that of the
2 ↔ 2 case. According to the analysis of [31], the relic
abundance is determined by Γ4→2 ∼ niH. This condition
leads to ξ ∝ ðλΦ=mdmÞ4=7, as opposed to ξ ∝ m−2

dm in the
case of 2 ↔ 2 processes, see Eq. (9). The slope is actually
much closer to that of the relativistic floor, ξ ∝ m−1=3

dm , see
Eq. (9). This stems from entropy conservation in the HS,
which leads to reheating of the HS at the same time as the
scalar particles deplete their number via self-interactions.
The net effect is still a diminution of the particle abundance,
but a much less drastic one than in the case of standard
nonrelativistic freeze-out. Still, the analysis of [31] reveals
that cosmic DM abundance can be reached for a broad
range of DM masses, with a maximum possible mass
mdm ∼ 105 GeV (see Fig. 8 in [31]). Thus, DM candidates
of this minimal scenario are well within the domain of
thermal DM candidates. They do not reach the unitarity
wall (based on 2 ↔ 2 processes), being qualitatively closer
to the case of freeze-out in the relativistic regime.
A further interesting feature of this type of scenarios

which is worth to point out is that a similar mechanism
could lead to the depletion of the companion particles
themselves. If mdm ≫ mη, such that the DM decouples
before the η self-interactions go out of equilibrium, then the

situation is precisely the single scalar scenario studied by
[31], except in this case the η scalar is not DM and so its
abundance should be subdominant. Considering their Fig. 8
and fixing mη ¼ 10 MeV for concreteness, we can see that
relatively small ξ are required in order for the η abundance
not to be too large, and moreover there is a mild
dependence on the quartic coupling. Taking λη ¼ 10 (about
the largest allowed by unitarity), we find that Ωη < Ωdm for
ξ≲ 0.1, while taking λη ¼ 10−3 (about the smallest that
allows η thermalization), we have Ωη < Ωdm for ξ≲ 0.03.
Note that if mdm ≲mη, the results of [31] do not apply,
indeed ϕ − η interactions could further suppress the η
abundance, thus in principle allowing larger ξ. These
considerations only apply to ξ≲ 1 since the entropy is
conserved in the HS. If ξ≳ 1, the DM must have com-
panions (as otherwise its abundance is too large), and they
must decay back to the VS.

V. CONCLUSIONS

Thermal relic dark matter candidates may come in many
forms, and there is a vast literature concerning this class of
models. For scenarios in which the candidate was in
equilibrium with the SM bath, the allowed range of dark
matter masses is well known, as reviewed in Sec. II. It is,
however, also plausible that dark matter thermalized within
some hidden sector with a temperature, T 0, different to the
temperature of the SM bath, T. This would happen for any
hidden sector which involves relatively large interactions
between the particles it contains but is connected to the SM
thermal bath via significantly weaker interactions. In this
paper we studied this general scenario and identified the
allowed domain of thermal dark matter candidates in terms
of the DM mass and the ratio of temperatures, ξ ¼ T 0=T.
This domain is given in Fig. 2. While parts of this result

is implicit in many works, see [7,10,11,24,31], it provides a
unifying, and to a large extent model-independent, picture.
In Sec. III Awe explored the theoretical bounds which lead
to the exclusion of the blue (relativistic floor), red (unitarity
wall) and orange (no thermalization) regions depicted in the
figure. Moreover, trying to maintain the generality of our
discussion, we placed two observational bounds on the
DM, as discussed in Sec. III B. This led to the green (ΔNeff
ceiling) and purple (free streaming) exclusion regions
in Fig. 2.
Putting everything together, we have identified the

largest and smallest allowed mass and temperature of
thermal DM candidates. The DM mass range, when it is
a Dirac fermion, is

mdm ∈ ½1.0 keV; 52 PeV�: ð44Þ

The possible temperature ratio range is

ξ ∈ ½1.4 × 10−5; 6.9 × 105�: ð45Þ
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In particular, the lower right corner of the domain depicted
in Fig. 2 corresponds to a candidate that decoupled while
being mildly nonrelativistic, mdm ∼ T 0

fo. Hence, the corre-
sponding temperature of the VS at the time of decoupling is
bounded from above by Tfo ∼mdm=ξ ∼ 1011 GeV.
Several other features, although rather obvious in retro-

spect, are made clear from our analysis. First, for ξ < 1, the
permitted window of DM masses shrinks, and shifts to
larger values of mdm, as ξ decreases. Second, all other
factors being kept constant, the function ξðmdmÞ has in
general an odd number of DM candidates, except for very
fine-tuned instances. These features are illustrated by three
simple models, discussed in Sec. IV. The results, plotted in
Figs. 5, 6, 7 and 8, give specific examples of the general
findings of Fig. 2. The different types of HS interactions
considered—t-channel, s-channel and contact interaction—
illustrate the applicability of our model-independent con-
clusions. The last model also includes scenarios in which
the DM abundance is set by 4 → 2 processes.
Several possible developments could be of interest. First,

we treated thermal decoupling with a broad brush.
Although we do not expect our results to change signifi-
cantly, it could be interesting to study more carefully and
precisely how the DM abundance evolves if it is barely in
thermal equilibrium, possibly in the vein of [33]. Second,
the observational constraint based on Neff is very
conservative and more stringent constraints, especially
for candidates which decoupled (or have a companion that
decayed back to the VS) around TBBN, could and should be
derived. Another possibility is that some candidates have
self-interactions that are constrained by, e.g., the bullet
cluster [24]. All this is, however, model-dependent and
beyond our scope.

Finally, we assumed that the portal interactions between
the HS and the VS played little role in determining the relic
abundance of the DM. Yet, they could be necessary to get
rid of DM companions if their own abundance becomes a
nuisance. This is particularly true for ξ > 1 scenarios. We
briefly mentioned the impact of such a connection if the
mediator decays back to the SM, as for instance studied in
[24]. One could also question how our picture changes if a
portal interaction leads to a reannihilation regime [7]. In
this case, the HS thermalizes while DM is being produced
from the VS, and DM becomes nonrelativistic when the
production is still operative. However, one can check8 that
DM candidates produced through reannihilation lie within
the domain of thermal DM candidates.
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