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Motivated by recent attempts to quantum simulate lattice models with continuous Abelian symmetries
using discrete approximations, we define an extended-O(2) model by adding a γ cosðqφÞ term to the
ordinary O(2) model with angular values restricted to a 2π interval. In the γ → ∞ limit, the model becomes
an extended q-state clock model that reduces to the ordinary q-state clock model when q is an integer and
otherwise is a continuation of the clock model for noninteger q. By shifting the 2π integration interval, the
number of angles selected can change discontinuously and two cases need to be considered. What we call
case 1 has one more angle than what we call case 2. We investigate this class of clock models in two space-
time dimensions using Monte Carlo and tensor renormalization group methods. Both the specific heat and
the magnetic susceptibility show a double-peak structure for fractional q. In case 1, the small-β peak is
associated with a crossover, and the large-β peak is associated with an Ising critical point, while both peaks
are crossovers in case 2. When q is close to an integer by an amountΔq and the system is close to the small-
β Berezinskii-Kosterlitz-Thouless transition, the system has a magnetic susceptibility that scales as
∼1=ðΔqÞ1−1=δ0 with δ0 estimates consistent with the magnetic critical exponent δ ¼ 15. The crossover peak
and the Ising critical point move to Berezinskii-Kosterlitz-Thouless transition points with the same power-
law scaling. A phase diagram for this model in the ðβ; qÞ plane is sketched. These results are possibly
relevant for configurable Rydberg-atom arrays where the interpolations among phases with discrete
symmetries can be achieved by varying continuously the distances among atoms and the detuning
frequency.
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I. INTRODUCTION

In recent years, the idea of using quantum computers or
quantum simulation experiments to approach the real-time
evolution or the finite-density behavior of lattice models of
interest for high-energy physics has gained considerable
interest [1–10]. As the current noisy intermediate scale
quantum (NISQ) devices that are available to implement
this research program have a very limited number of
quantum computing units, such as qubits, trapped ions
or Rydberg atoms, it is essential to optimize the discretiza-
tion procedure. Starting from the standard Lagrangian
formulation of lattice field theory models with continuous
field variables, one can either discretize the field variables
[11–13] used in the path integral, expand the Boltzmann

weights using character expansions [3,14,15], or use the
quantum link method [16,17].
Models with continuous Abelian symmetries are of great

physical interest. Besides the electromagnetic interactions
of charged particles in 3þ 1 dimensions, this also includes
models where a mass gap is dynamically generated [18,19]
or a Berezinskii-Kosterlitz-Thouless (BKT) transition
[20–22] occurs. For models with a Uð1Þ symmetry, the
character expansion mentioned above is simply the Fourier
series. It has been shown [23,24] that the truncation of
these series preserves the original symmetry. On the other
hand, the Zq clock approximation of the integration over
the circle only preserves the Zq discrete subgroup. A recent
proposal applies the Zq clock approximation to the
simulation of the Abelian gauge theory in 2þ 1 dimen-
sions, where transformations between the electric repre-
sentation and the magnetic representation can significantly
reduce the required computational resources [25]. In order
to decide how good the Zq approximation is in a variety of
situations, it is useful to build a continuous family of
models interpolating among the various possibilities.
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In this article, we focus on the case of the O(2) nonlinear
sigma model in 1þ 1 dimensions. This model was key to
understanding the BKT transition [20–22,26] and the
correspondingZq clock model has been studied extensively
[27–47]. We propose to interpolate among these models by
starting with the standard O(2) action and introducing a
symmetry-breaking term,

ΔSðγ; qÞ ¼ −γ
X
x

cosðqφxÞ: ð1Þ

When q is an integer, if we take the limit γ → ∞, we
recover theZq clock model. For the rest of the discussion, it
is important to realize that the O(2)-symmetric action is
2π-periodic for all the φx variables. In contrast, ΔS has a
2π=q periodicity. When q is an integer, if we apply the shift
q times we obtain the periodicity of the O(2) action. In
order to interpolate among the clock models, we will
consider noninteger values of q while keeping a fixed φ
interval of length 2π. The model and the effect of the
symmetry breaking are discussed in Sec. II both in the
standard Lagrangian and tensor formulations.
The idea of having a doubly continuous set of models is

interesting from a theoretical point of view but also from a
quantum simulation point of view. If we attempt to
quantum simulate these models using Rydberg atoms as
in Refs. [48–50], it is possible to tune the ratio Rb=a of the
radius for the Rydberg blockade and the lattice spacing, as
well as local chemical potentials continuously. This
allowed interpolations among Zq phases for different
integer values of q [50]. Sequences of clock models also
appear in models for nuclear matter when the number of
colors is varied [51].
It is often a difficult task to detect BKT transitions in the

quantum Hamiltonian approach, as it is hard to find a good
indicator of BKT transitions that has a clear discontinuity,
peak or dip. The equivalence of the path integral formu-
lation and statistical mechanics can be used to access
universal features and detect phase transitions in statistical
mechanics based on Monte Carlo (MC) simulations and
tensor renormalization group (TRG) calculations. The
Markov chain MC (MCMC) simulations efficiently explore
the typical set of the physical configurations. MC calcu-
lations use the universal jump in the helicity modulus [52]
as an indicator for BKT transitions. But ambiguities in the
definition of the helicity modulus in theZ5 clock model can
result in controversial conclusions [39,53]. The TRG
[54,55] calculations provide a coarse-grained theory where
the size of the lattice spacing doubles at each step. If the
truncations performed are under control, one can go to the
thermodynamic limit quickly. Calculation of the magnetic
susceptibility in the presence of a weak external field is a
universal method to detect critical points that can be easily
implemented in the TRG. However, it does not show a peak
to indicate the large-β BKT transition in the five-state clock

model [44,56]. The study of the γ → ∞ limit with fractional
q not only provides us a clear picture of what phases the
symmetry-breaking term will drive the XY model to,
paving the way to discussions for the full phase diagram
at finite γ, but also brings us a new tool to detect BKT
transitions in Zn models. In contrast, the calculation of the
specific heat at increasing volume allows us to discriminate
between a second-order phase transition—where it diverges
logarithmically with the volume in the Ising case—and a
BKT transition or a crossover.
This paper is organized as follows. Section II introduces

the definition of the extended-O(2) model, the extended
q-state clock model and thermodynamic quantities. The
MC and TRG methods are introduced in Sec. III. The MC
method is used to validate the TRG at small volume. The
symmetry breaking is discussed in tensorial language. We
discuss the behaviors of thermodynamic quantities and
point out the crossover peak and the Ising peak in both the
specific heat and the magnetic susceptibility in Sec. IVA.
We analyze the crossover peak and the Ising critical point in
Secs. IV B and IV C respectively. We change the integra-
tion interval and discuss a new case in Sec. IV D. The phase
diagram in the ðβ; qÞ plane is sketched in Sec. IV E. We
summarize our results and give outlooks in Sec. V.

II. THE MODEL

To define the models that we consider in the following
we start with the two-dimensional classical O(2) nonlinear
sigma model, or XY model, where the spin degrees of
freedom σ⃗ are unit vectors whose possible directions are
confined to a plane. They reside on the sites of a two-
dimensional lattice of volume V ¼ Nx × Nt (we prefer to
label the second dimension as t to maintain the connection
between two-dimensional classical models and 1þ 1-
dimensional quantum field theories). The action is

SOð2Þ ¼ −
XV
x¼1

�
β
X2
μ¼1

σ⃗x · σ⃗xþμ̂ þ h⃗ · σ⃗x

�
; ð2Þ

where the sum on x is over the sites of the two-dimensional
lattice, and on μ ¼ 1; 2 over the directions. The field, h⃗, is
a uniform constant external magnetic field. It is conven-
ient to parametrize the spins σ⃗ with a single angle
φ ∈ ½φ0;φ0 þ 2πÞ. The action then takes the form

SOð2Þ ¼ −β
X
x;μ

cosðφxþμ̂ − φxÞ − h
X
x

cosðφx − φhÞ; ð3Þ

where h ¼ jh⃗j and φh is the direction of the external field
that in the absence of other symmetry-breaking terms can
be set to zero for convenience.
Next, let us extend the model by introducing a term that

can favor certain values of the angle:
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Sext�Oð2Þ ¼ −β
X
x;μ

cosðφxþμ̂ − φxÞ

− γ
X
x

cosðqφxÞ − h
X
x

cosðφx − φhÞ: ð4Þ

We call the model with the action (4) the “extended-O(2)”
model. For integer q the limit γ → ∞ forces the spin angles

to take the values φðkÞ
x ¼ 2πk=q with k ∈ Z. Thus, while

γ ¼ 0 corresponds to the O(2) model, γ → ∞ corresponds
to the q-state clock model. The action defined in Eq. (4) is
also valid for noninteger q and we therefore consider
Eq. (4) as our definition of the extension of the q-state
clock model to noninteger q in the γ → ∞ limit. In this case

the angle φðkÞ
x takes the values

φ0 ≤ φðkÞ
x ¼ 2πk

q
< φ0 þ 2π; ð5Þ

with k ∈ Z and some choice of domain ½φ0;φ0 þ 2πÞ. By
varying φ0, we can obtain different sets of angles that are
equivalent to either k ¼ 0; 1;…; bqc (case 1) or k ¼
0; 1;…; bqc − 1 (case 2), since in the γ → ∞ limit—in
the absence of an external field—the action only depends
on the relative angle between nearest-neighbor sites

ΔφðkÞ
x;μ ¼ φðkÞ

xþμ̂ − φðkÞ
x (see Appendix A). Case 2 just has

one fewer angle than case 1. As shown in Fig. 1, the angular
distance between two adjacent values of φx on a circle takes
two values: 2πðq − bqcÞ=q < 2π=q for case 1, and 2π=q <
2πð1þ q − bqcÞ=q for case 2. These values including 0
have the largest Boltzmann weights in the partition func-
tion. The small angular distance is

ϕ̃≡ 2π

�
1 −

bqc
q

�
; ð6Þ

in case 1 and 2π=q in case 2. With the choice φ0 ¼ 0, we
have case 1, while choosing φ0 ¼ −π is equivalent to case 2
(1) for odd (even) bqc. At noninteger q the Zq symmetry is
explicitly broken since the action is not invariant under the
operation k → mod ðkþ 1; bqcÞ. But there is still a Z2

symmetry because the action is invariant under the
operation k → bqc − k.
We also consider the limit γ → ∞ directly by simply

restricting the values of the originally continuous angle φ to
the values given in Eq. (5):

Sext-q ¼−β
X
x;μ

cosðφðkÞ
xþμ̂−φðkÞ

x Þ−h
X
x

cosðφðkÞ
x −φhÞ: ð7Þ

We call the model (7) the “extended q-state” clock model
for all values of q and the “fractional-q-state” clock model
for fractional values of q. For integer q the extended q-state
clock model reduces to the ordinary q-state clock model.
Numerical results presented in later sections are from the
extended q-state clock model.
The partition function is

Z ¼
Z Y

x

dφx

2π
e−S; ð8Þ

where the
R

corresponds to
R
φ0þ2π
φ0

for the continuous
angles in the O(2) and extended-O(2) models and to

P
φðkÞ

for the discrete angles in the extended q-state clock model.
With the models defined we turn to observables. The

main observables that we compute to study the critical
behavior are the internal energy, magnetization, and their
corresponding susceptibilities. These quantities are defined
in the same way for both the continuous and discrete angle
cases. The internal energy is defined as

hEi ¼
�
−
X
x;μ

cosðφxþμ̂ − φxÞ
�

¼ −
∂
∂β lnZ; ð9Þ

where h� � �i denotes the ensemble average. The specific
heat is

C ¼ −β2

V
∂hEi
∂β ¼ β2

V
ðhE2i − hEi2Þ: ð10Þ

In addition we consider the magnetization. The magneti-
zation of a given spin configuration is

M⃗ ¼
X
x

σ⃗x ð11Þ

and the ensemble average is then

hM⃗i ¼ ∂
∂h⃗ lnZ ¼

�X
x

σ⃗x

�
: ð12Þ

The magnetic susceptibility defined in a manifestly
O(2)-invariant way is

FIG. 1. Arrows indicate the allowed spin orientations for the
extended q-state clock model with the choice φ0 ¼ 0 (left) and
φ0 ¼ −π (right). In this example, q ¼ 5.5.
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χM⃗ ¼ 1

V
∂hM⃗i
∂h⃗ ¼ 1

V
ðhM⃗ · M⃗i − hM⃗i · hM⃗iÞ: ð13Þ

We note that in Monte Carlo simulations at zero external
field in a finite system in the absence of explicit symmetry
breaking terms the definition of the spontaneous magneti-
zation (12) gives hM⃗i ¼ 0. In such situations one often
resorts to using a proxy observable [29,31,32,35,44,45]

hjM⃗ji ¼
�����

X
x

σ⃗x

����
�

ð14Þ

in place of hM⃗i. The corresponding susceptibility is

χjM⃗j ¼
1

V
ðhjM⃗j2i − hjM⃗ji2Þ: ð15Þ

While one expects that hjM⃗ji indicates the same critical
behavior, in general, hjM⃗ji is numerically different from
hM⃗i except deep in the ordered phase. Nevertheless, we
expect both definitions of the magnetic susceptibility—
Eqs. (13) and (15)—possess the same critical behavior, and
can be relied upon to extract universal features. In the next
section we detail the methods used to study the observables
defined above.

III. METHODS

The allowed spin orientations in the extended q-state
clock model, given by Eq. (5), are discrete, and the
model can be studied using a heatbath algorithm. The
heatbath algorithm is a MCMC algorithm that drives the
lattice toward equilibrium configurations by choosing
the new spin at each update according to the probability
distribution defined by its neighboring spins. We adapted
FORTAN code developed by Bernd Berg for the standard
Potts model [57].
Initial exploration of the extended q-state clock model

was performed via MC on a 4 × 4 lattice with zero external
magnetic field. For this model, the heatbath approach
suffers from a slowdown that makes it difficult to study
the large-β regime already on very small lattices. An
alternative approach, the TRG, which does not suffer from
this slowdown, was used to study the model on much larger
lattices and in the thermodynamic limit. This allows us to
perform finite-size scaling and characterize the phase
transitions in the extended q-state clock models. The
TRG results are validated by comparison with exact and
Monte Carlo results on small lattices (see Appendix C). The
TRG methods are not exact. Because the bond dimension,
Dbond, of the coarse-grained tensor increases exponentially
with the renormalization-group (RG) steps, a truncation for
Dbond must be applied to avoid uncontrolled growth of
memory needs on classical computers. For noncritical
phases, the fixed-point tensor of the RG flow has small

Dbond, but a larger bond dimension is needed to have the
correct RG flow near the critical point. It has been reported
that TRG methods using Dbond ¼ 40 can locate the phase
transition point with an error of order 10−4 for the Ising
model [56], and of order 10−3 for the O(2) model [56,58]
and the clock models [44,56].
To perform TRG calculations, we need to express the

partition function as a contraction of a tensor network. We
rewrite the weight of each link by a singular value
decomposition (SVD):

eβ cos ½
2π
q ðkxþμ̂−kxÞ� ¼

Xbqc
nx;μ¼0

Ukxþμ̂nx;μGnx;μVkxnx;μ : ð16Þ

Then we sum over the original k indices and the partition
function can be expressed in the dual space from the
expansion in terms of n indices,

Z ¼
X
fng

Y
x

Tlrdu; ð17Þ

where l ¼ nx−ŝ;s, r ¼ nx;s, d ¼ nx−τ̂;τ, u ¼ nx;τ for each site
x, and the local rank-four tensor is defined as

Tlrdu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GlGrGdGu

p
Clrdu;

Clrdu ¼
Xbqc
kx¼0

eh cos ð
2π
q kx−ψhÞUkxlVkxrUkxdVkxu: ð18Þ

Notice that for integral q, the matrix U ¼ V−1 can be
chosen as Ukn ¼ expði2πkn=qÞ, then if h ¼ 0, the tensor
Clrdu becomes a δ-function that gives aZq selection rule for
values of n:

mod ðnx−ŝ;s þ nx−τ̂;τ − nx;s − nx;τ; qÞ ¼ 0: ð19Þ

The tensor reformulation of the expectation value of a
local observable can be obtained in the same way. For
example, the first component of the magnetization is equal
to the expectation value of cosðφÞ at an arbitrary site x0,

m1 ¼ hcosðφðkÞ
x0 Þi, which can be expressed as

m1 ¼
P

fngT i
x0;lrdu

Q
x≠x0TlrduP

fng
Q

x Tlrdu
; ð20Þ

where T i
x0;lrdu

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GlGrGdGu

p
Ci
x0;lrdu

is an impure tensor
residing at site x0, and

Ci
x0;lrdu

¼
Xbqc
kx0¼0

cos

�
2π

q
kx0

�
eh cos ð

2π
q kx0−ψhÞ

×Ukx0 l
Vkx0 r

Ukx0d
Vkx0u

: ð21Þ
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To compute the internal energy, we need to calculate
the expectation values of link interactions ϵμ ¼
hcosðφðkÞ

x0þμ̂ − φðkÞ
x0 Þi. Taking μ ¼ s as an example, we

perform another SVD for the target link,

cos

�
2π

q
ðkx0þŝ − kx0Þ

	
eβ cos ½

2π
q ðkx0þŝ−kx0 Þ�

¼
Xbqc

nx0 ;s¼0

Ui
kx0þŝnx0 ;s

Gi
nx0 ;s

V i
kx0nx0 ;s

; ð22Þ

and introduce two impure tensors T̃ i
x0þŝ;lrdu, T̃

i
x0;lrdu

resid-
ing at nearest neighbor sites x0 þ ŝ; x0, by replacing
Ukx0þŝ ;l; Gl with Ui

kx0þŝ ;l
; Gi

l and replacing Vkx0 ;r
; Gr with

V i
kx0 ;r

; Gi
r in Eq. (18), respectively. Thus the tensor refor-

mulation of the expectation value of the link interaction is
written as

ϵμ ¼
P

fngT̃
i
x0þμ̂;lrduT̃

i
x0;lrdu

Q
x≠x0þμ̂;x0TlrduP

fng
Q

x Tlrdu
: ð23Þ

In the following, we use TRG and higher-order TRG
(HOTRG) to contract tenser networks with impure tensors
[59,60] up to a volume V ¼ L2 ¼ 224 × 224, calculate the
first component of the magnetization m⃗ ¼ ðm1; m2Þ and
internal energy E ¼ ϵs þ ϵτ, and take derivatives of m⃗ and
E with respect to h⃗ and β, respectively, to find the magnetic

susceptibility and specific heat.1,2 The locations and heights
of the peaks of χM and Cv are obtained via a spline
interpolation on datasets with Δβ ¼ 10−3. The tensor
contraction in HOTRG is performed with ITENSORS
JULIA LIBRARY [61].

IV. RESULTS

A. Thermodynamics

In the extended q-state clock model, there is a Zq
symmetry when q ∈ Z. When q ∉ Z, this symmetry is
explicitly broken. We choose φ0 ¼ 0, so the allowed spin
orientations divide the unit circle into ⌈q⌉ arcs of which
⌈q⌉ − 1 have measure 2π=q. The remainder has measure ϕ̃
given in Eq. (6) and illustrated in Fig. 1. There remains aZ2

symmetry and an approximate Z⌈q⌉ symmetry.
Monte Carlo results obtained with a heatbath algorithm

on a 4 × 4 lattice with zero external field are shown for
4.1 ≤ q ≤ 5.0 in Fig. 2. The four panels show the energy
density and the specific heat defined in Eqs. (9) and (10) as
well as the proxy magnetization and susceptibility defined
in Eqs. (14) and (15). For q ¼ 5, the energy density is zero
at β ¼ 0 because there is no linear term in the series
expansion of the partition function due to the Z5 symmetry.

FIG. 2. Monte Carlo results for the extended q-state clock model on a 4 × 4 lattice for 4.1 ≤ q ≤ 5.0. The top panel shows energy
density and specific heat, and the bottom panel shows proxy magnetization and magnetic susceptibility. Statistical error bars are omitted
since they are smaller than the line thickness. Dashed lines indicate regions where we have data but we do not have the uncertainty fully
under control.

1One can assume that the TRG and the HOTRG return the
same results if the bond dimension is sufficiently large.

2If it is not declared in the main text or in the captions, the bond
dimension is set to be sufficiently large so that the outputs
converge.
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The nonzero energy density at β ¼ 0 for q < 5 is consistent
with the explicit Z5 symmetry breaking. As q → 4þ, the
stronger symmetry breaking results in a more negative
energy density. There is a double-peak structure in the
specific heat, where the large-β peak moves toward β ¼ ∞
as q is decreased. The proxy magnetization also increases
for smaller values of q with stronger symmetry breaking,
and the peak of the magnetic susceptibility moves toward
smaller β values. Note that the double-peak structure of this
proxy magnetic susceptibility will appear at larger system
sizes L ≥ 12 [31]. The true magnetic susceptibility with an
external field at large volumes will show the double-peak
structure (see below). More MC results and additional
details are given in Appendix B.
In Fig. 3, we show the logarithm of the energy density of

this model from TRG for q ¼ 4.1, 4.3, 4.5, 4.7, and 4.9
with 0 ≤ β ≤ 16 and V ¼ 1024 × 1024. For large enough
β, we have

Z ¼ e2Vβ½⌈q⌉þ 2Ve−4βð1−cos ϕ̃Þ þ � � ��; ð24Þ

so that the energy density converges exponentially with β.
The results in Fig. 3 confirm this behavior. We also notice
that for smaller q, there is a larger range of β where the
energy density does not change much. In this range,
1 − cos ϕ̃ is close to zero for q close to 4 from above,
and the inverse temperature β is large enough that
terms containing larger angular distances are negligible,
but β is still not large enough to change the values of
exp½−βð1 − cos ϕ̃Þ� significantly from 1 and ignore higher
orders. The result for q ¼ 4.1 shown in Fig. 3 indicates that
the specific heat is almost zero for β > 2.5, which is
confirmed in Fig. 4.
In Fig. 4, we show the specific heat for q ¼ 4.1, 4.5, 4.9,

and 5.0 at volumes ranging from 4 × 4 to 128 × 128.

For generic q, there are two peaks in the specific heat.3

In Fig. 4 we see only a single peak for q ¼ 4.1 since the
second peak is at much larger β. For q ∉ Z and not too
close to 5, the first peak shows little or no dependence on
volume. The second peak grows logarithmically with
volume, as shown in the insets for q ¼ 4.5, 4.9. This is
in contrast to the integer case q ¼ 5 where there are two
BKT transitions and both peaks show little dependence on
volume for lattice sizes larger than 32 × 32. Because the
specific heat is the second-order derivative of free energy,
the results in Fig. 4 indicate that the first peak is associated
with either a crossover or a phase transition with an order
larger than 2, and the second peak is associated with a
second-order phase transition. To conclusively characterize
the phase transitions, if any, associated with these two
peaks in the fractional-q-state clock model, we study the
magnetic susceptibility in the next two subsections.
We find that the thermodynamic curves vary smoothly

for n < q ≤ nþ 1 where n is an integer. When q is taken
slightly larger than n from below, these curves change
abruptly since an additional degree of freedom is intro-
duced. The specific heat exhibits a double-peak structure
with the second peak at very large β. As q is increased
further, this second peak moves toward small β, until at
q ¼ nþ 1, the thermodynamic curves of the integer-
(nþ 1)-state clock model are recovered.
In the small-β (high temperature) regime, all allowed

angles are nearly equally accessible, and the model behaves
approximately like a ⌈q⌉-state clock model. The model is
dominated by the approximate Z⌈q⌉ symmetry, and there is
a peak in the specific heat. In Fig. 5, we show that at
intermediate β, an explosion of the integrated autocorre-
lation time of the energy is observed in the MC simulation
as the model quickly reduces to a rescaled Ising model. At
large beta, the configuration space separates into thermo-
dynamically distinct sectors, and the Markov chain has
trouble adequately sampling both sectors. This is discussed
further in Appendix B. At large-β, spin flips across the
small angular distance ϕ̃ are strongly favored relative to
spin flips across the other distances. Thus, in the large-β
regime, the model behaves as a rescaled Ising model.
The existence of an Ising critical point is conclusively
established via TRG in Sec. IV C.
We next present our TRG results and discuss the phase

transitions in the fractional-q-state clock model in the rest
of this section. We first present the results for the magnetic
susceptibility without an external field at small volumes in
Fig. 6. For q < 5, there is a small-β peak converging
quickly with volume, which means the peak is associated
with a crossover. As q is increased, there is a high plateau
moving toward small β. The height of the plateau increases
with volume as a power law (notice the logarithmic scale in

FIG. 3. The energy density for the fractional-q-state clock
model from TRG for q ¼ 4.1, 4.3, 4.5, 4.7, and 4.9. These results
were obtained with a volume 1024 × 1024. The energy is shifted
vertically by 2 (to make it positive) and plotted on a log scale to
better illustrate the difference between the curves.

3There is only a single peak for q ¼ 2, 3, 4 and for fractional q
just below these integers.
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the y-axis). The divergent plateau signals a phase transition.
As there is no spontaneous symmetry breaking in small
volumes, the response of the system to an external field
remains high at low temperatures, so we cannot see the
transition from a critical phase to the symmetry-breaking
phase where there is a small magnetic susceptibility based
on these results for h ¼ 0 and small volumes. But notice

that for fractional q like q ¼ 4.9, there is a higher plateau
after the first one for each volume. This is due to an
“approximate Z⌈q⌉ symmetry breaking” after a Z2 sym-
metry breaking. This approximate Z⌈q⌉ symmetry breaking
is not a true phase transition so it moves to β ¼ ∞ in the
thermodynamic limit as shown in the results for q ¼ 4.9.
There is only one Z5 symmetry breaking for q ¼ 5 so there
is a single plateau for each volume. We will use the
magnetic susceptibility with a weak external field in the
thermodynamic limit to detect the phase transitions.
In Fig. 7 we present the magnetic susceptibility in the

thermodynamic limit as a function of β for q ¼ 4.995,
4.999, 4.9999 with a small external field h ¼ 4 × 10−5,
2 × 10−5. The height of the large-β peak is large for all
three values of q, indicating a phase transition near this
peak. The small-β peak for q ¼ 4.995, h ¼ 4 × 10−5 is
invisible because it is very small. For q ¼ 4.999,
h ¼ 4 × 10−5, closer to 5, the small-β peak is higher,
and the large-β peak moves toward the large-β BKT
transition point βBKTq¼5;c2 for q ¼ 5. When the external field

is decreased to h ¼ 2 × 10−5, the large-β peak height is
almost doubled, while the small-β peak height does not
change, which means there is no phase transition near
the small-β peak. For q ¼ 4.9999 (closer to 5) with
h ¼ 4 × 10−5, one can see that the small-β peak becomes
higher than the large-β one, and the large-β peak is fading
away, which is consistent with the results in Refs. [44,56]
for the five-state clock model. When the external field is
decreased to h ¼ 2 × 10−5, the large-β peak grows a much

FIG. 5. The integrated autocorrelation time of the energy
density for several q on a 4 × 4 lattice using a heatbath algorithm.
At large β, the integrated autocorrelation time τint grows abruptly
when q ∉ Z. Note the log scale on the vertical axis. Connecting
lines are included to guide the eyes.

FIG. 4. Specific heat of the extended q-state clock model from TRG for q ¼ 4.1, 4.5, 4.9, and 5.0 at volumes from 4 × 4 up to
128 × 128. All vertical axes use a shared scale, and all horizontal axes use a shared scale. In general, there is a double-peak structure in
the specific heat (for q ¼ 4.1, the second peak is at β ∼ 75). Insets show the height of the second peak versus the linear system size
L ¼ ffiffiffiffi

V
p

plotted on a log scale, where the solid line is a linear fit.
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larger amount of height than the small-β one does and
becomes higher than the small-β one. We have confirmed
that the small-β peak will eventually converge for small
enough h. All these behaviors are evidence that for all
fractional q > 4, the small-β peak in χM does not diverge,
and the large-β peak diverges at h ¼ 0 indicating a phase
transition.
In the following, we discuss the behavior of the two

peaks in the thermodynamic limit in detail. The main
observations are that for φ0 ¼ 0 and q > 4, there are two
peaks in the specific heat and the magnetic susceptibility,
the small-β one is finite and is associated with a crossover,
and the large-β one diverges which is characteristic of an
Ising critical point. When q is approaching an integer

from below, the height of the crossover peak of the
magnetic susceptibility diverges as ⌈q⌉ − q goes to zero
with a power law:

χ�M ∼ ð⌈q⌉ − qÞ−y: ð25Þ

We can formulate the scaling hypothesis with Δq¼⌈q⌉−q
and h,

fðλpΔq; λrhÞ ¼ λdfðΔq; hÞ; ð26Þ

where λ parametrizes a scale transformation, p and r are the
scaling dimensions, and d ¼ 2 in two-dimensional space.
Notice that the reduced temperature should not enter the
homogeneous function independently because there is an
essential singularity in the correlation length as a function
of temperature for BKT transitions. We assume Eq. (26)
holds for any critical temperature, in particular, the BKT
crossover peak position βBKTðΔq; hÞ, which is a power-law
function of Δq and h, considered in the following calcu-
lations. Then the magnetization and the magnetic suscep-
tibility satisfy the following relations:

λrMðλpΔq; λrhÞ ¼ λdMðΔq; hÞ; ð27Þ

λ2rχMðλpΔq; λrhÞ ¼ λdχMðΔq; hÞ; ð28Þ

from which one can obtain

M ∼ h
1
δ ∼ ðΔqÞ 1

δ0 ; ð29Þ

χM ∼ h−1þ1
δ ∼ ðΔqÞ−δ−1

δ0 ; ð30Þ

FIG. 6. The magnetic susceptibility as a function of β for finite volumes. Dbond ¼ 40.

FIG. 7. The magnetic susceptibility as a function of β at V ¼
224 × 224. For q ¼ 4.995, the external field is h ¼ 4 × 10−5. For
q ¼ 4.999, 4.9999, the external field is h ¼ 4 × 10−5 for the
lower curve and h ¼ 2 × 10−5 for the upper curve.
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where 1=δ ¼ ðd − rÞ=r, 1=δ0 ¼ ðd − rÞ=p. We then have
δ0 ¼ ðδ − 1Þ=y ¼ 14=y, where we have used the fact that
δ ¼ 15 for BKT transitions. Note that the expansion of the
action to the first order in Δq is

Sext-q ¼ SZ⌈q⌉
þ β

Δq
q

Δφx;μ sinðΔφx;μÞ; ð31Þ

where SZ⌈q⌉
is the action for the integer-q clock model. The

perturbation term that breaks the Z⌈q⌉ symmetry has a very
different form from the one for the external field h cosðφxÞ.
We numerically show in the following that δ0 is equal to the
magnetic critical exponent δ ¼ 15 for the BKT transitions
and Ising critical points in two dimensions. Thus if we
define a new susceptibility as ∂M=∂Δq, which should scale
as ðΔqÞ−1þ1=δ0 , the exponent y0 ¼ 1 − 1=δ0 ¼ 14=15, still
the same as y. However, calculating δ0 from y0 requires
higher accuracy since δ0 ¼ 1=ð1 − y0Þ where one signifi-
cant digit is subtracted in the denominator. Both the peak
position of the crossover and the Ising critical point go to
the two BKT transition points at integer q with the same
power law, which provides us a new way to locate the phase
transitions in models with Zn symmetry. However, for
φ0 ¼ −π and odd bqc, both peaks of χM are finite for
fractional q so there are no critical points. For q → 5þ, only
the small-β peak can be used to extract the BKT transition
of q ¼ 5 since the large-β peak fades away.

B. Small-β peak: Crossover

We have shown in Fig. 7 that for q ¼ 4.999, the height of
the small-β peak converges to about 400 for small enough
external field. The dependence of the peak height on the
external field is larger for values of q closer to an integer
from below. In Fig. 8, we show another example for
q ¼ 4.3. One can see that the h dependence of the peak
height is much smaller. The peak height at h ¼ 10−2 differs

from the value in the h → 0 limit by only about 0.04. As the
external field is decreased, the peak height converges to a
constant χM ≈ 1.2, implying that there is no phase tran-
sition around this peak. This is true for all fractional q.
Thus, for fractional q, the first peak in the specific heat is
associated with a crossover rather than a true phase
transition. As q approaches 5 from below, we expect the
small-β peak height to diverge because there is a BKT
transition for q ¼ 5, and we expect the location of the peak
to go to the small-β BKT transition point.
To check this, we calculate the converged peak height χ�M

of the magnetic susceptibility for values of 5 − q ≤ 10−4

with Dbond ¼ 40 and Dbond ¼ 50, where we use dh ¼
10−10 in the numerical differentiation. We plot χ�M versus
5 − q in Fig. 9, where we see that the dependence of
the peak height on Dbond is very small for Dbond ≥ 40.
Applying a linear fit to lnðχ�MÞ versus lnð5 − qÞ shows that
the peak height diverges as q → 5− with a power law

χ�M ∼

 ð5 − qÞ−0.948ð6Þ if Dbond ¼ 40

ð5 − qÞ−0.9389ð6Þ if Dbond ¼ 50;
ð32Þ

from which we obtain δ0 ¼ 14.77ð9Þ for Dbond ¼ 40 and
δ0 ¼ 14.911ð10Þ for Dbond ¼ 50. The value of δ0 is close to
the magnetic critical exponent δ ¼ 15 for BKT transitions
and Ising critical points in two dimensions, but now 5 − q
(rather than the external field h) is playing the role of the
symmetry-breaking parameter. Since both h and 5 − q
break the Z5 symmetry to a Z2 symmetry, the agreement
on the critical exponents is reasonable. The value of δ0 is
also checked for q → 6− in Fig. 10, where a larger Dbond is
applied in HOTRG. In this case, the linear fit gives

χ�M ∼

 ð6 − qÞ−0.937ð2Þ if Dbond ¼ 50

ð6 − qÞ−0.9329ð16Þ if Dbond ¼ 60;
ð33Þ

FIG. 9. The log-log plot of the maximal value of the magnetic
susceptibility χM for the small-β peak as a function of 5 − q. The
peak height diverges with a power law when q → 5−.

FIG. 8. The small-β peak of magnetic susceptibility as a
function of β for q ¼ 4.3. The peak height converges when
the external field is taken to zero.
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from which we obtain δ0 ¼ 14.94ð3Þ with Dbond ¼ 50 and
δ0 ¼ 15.007ð26Þ with Dbond ¼ 60. Within uncertainty, the
results of q → 6−, Dbond ¼ 60 agree perfectly with the
value of the magnetic critical exponent δ ¼ 15.
The location of the converged peak βp as a function of

5 − q is depicted in Fig. 11. The discrepancy of the peak
positions between Dbond ¼ 40 and Dbond ¼ 50 is invisible
at 5 − q ¼ 10−4 and increases as 5 − q is decreased,
which is reasonable because a larger bond dimension is
needed for systems closer to a critical point. The overall
discrepancy is small. We extrapolate the peak position to
q ¼ 5 with a power law and obtain the small-β BKT
transition point βBKTq¼5;c1 ¼ 1.0494ð6Þ with Dbond ¼ 40 and
βBKTq¼5;c1 ¼ 1.0506ð4Þ with Dbond ¼ 50 for the five-state
clock model. The results are consistent with 1.0503(2) in
Ref. [47]. The same procedure is performed for q → 6− in
Fig. 12. The peak positions βp forDbond ¼ 50 and those for
Dbond ¼ 60 have little discrepancy for 6 − q ≥ 7 × 10−7.
For 6 − q < 7 × 10−7, βp for Dbond ¼ 60 becomes larger
than that for Dbond ¼ 50. The power-law fit gives us

βBKTq¼6;c1 ¼ 1.0983ð4Þ with Dbond ¼ 50 and βBKTq¼6;c1 ¼
1.1019ð5Þ for Dbond ¼ 60. The results are consistent with
1.101(4) in Ref. [62].
We have shown that ⌈q⌉ − q plays the same role as an

external magnetic field for the small-β BKT transition in
integer-q-state clock models. The magnetic susceptibility is
always finite for fractional q < ⌈q⌉, and diverges as
q → ⌈q⌉− with a critical exponent y ¼ 14=15. This pro-
vides us an alternative way to extract the locations of BKT
transitions in clock models. However, the situation is very
different for the large-β peak of the magnetic susceptibility.

C. Large-β peak: Ising criticality

To understand the large-β peak in the specific heat, we
again study the magnetic susceptibility χM. For a fixed q,
the critical point, if any, is given by the location of the peak
of χM in the limit h → 0 where the height χ�M of the peak is
infinite. A power-law extrapolation to h ¼ 0 is performed
on peak positions of χM for small values of h. In Fig. 13, we
present the peak height χ�M of the susceptibility as a

FIG. 10. Same as Fig. 9, but for q → 6−.
FIG. 12. Same as Fig. 11, but for q → 6−.

FIG. 13. The maximal magnetic susceptibility in Fig. 16 as a
function of the external field for q ¼ 4.9. A linear fit of the log-
log plot gives the exponent δ ¼ 14.97ð4Þ. This is consistent with
the value δ ¼ 15 of the Ising universality class. Dbond ¼ 40.

FIG. 11. The power-law extrapolation of the small-β peak
position to q ¼ 5 from below. Here the extrapolation gives
βc ¼ 1.0506ð4Þ.
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function of the external field h. The linear fit of lnðχ�MÞ
versus lnðhÞ gives χ�M ∼ h−0.93318ð16Þ, from which we obtain
the magnetic critical exponent δ ¼ 14.97ð4Þ. This value is
consistent with the value δ ¼ 15 of the BKT transitions and
Ising critical points. We have shown before that there is no
phase transition around the small-β peak of χM. A BKT
transition should be accompanied with a continuous critical
region, so the divergent large-β peak of χM must be an Ising
critical point. In the Ising universality class,

ξ ∼ jβ − βcj−νe ∼ L;

M ∼ ðβ − βcÞβe ∼ L−1=8 ∼ h1=15;

χM ∼ jβ − βcj−γe ∼ L7=4; ð34Þ

where νe ¼ 1, βe ¼ 1=8, γe ¼ 7=4 are the universal critical
exponents. There is a universal function relating χM=L1.75

and Lðβ − βcÞ with fixed hL15=8. In Fig. 15, we plot
χM=L1.75 versus Lðβ − βcÞ for various lattice sizes around
the large-β peak of χM, where the value of βc is obtained
from the Ising approximation in Eq. (37) described below.
One can see that all the data collapse onto a single curve,
which gives strong evidence that this is a critical point of
the Ising universality class.
In Fig. 14, we show the logarithm of χM as a function of

log2ðLÞ for β ¼ 1.1. For q ¼ 5, β ¼ 1.1 is between two
BKT points so is a critical point, and χM keeps increasing
with a positive power of L as expected. When q < 5, even
for a very small 5 − q ¼ 10−6, χM always saturates at a
large enough volume. These results again prove that there
are no BKT transitions in fractional q, no matter how close
to ⌈q⌉ the q is. Because the maximal value of χM should
diverge as a negative power of 5 − q when q → 5−, the
increment of the height of the plateaus between 5 − q ¼
10−n and 5 − q ¼ 10−n−1 should be a constant for any
integer n, which is also confirmed in Fig. 14.

We next obtain the Ising critical point by extrapolating
the peak position of χM to h ¼ 0. An example for q ¼ 4.9 is
shown in Fig. 16. The power-law extrapolation gives
βc ¼ 1.44614ð2Þ. We can repeat the same procedure for
other values of q. But notice that we need a larger bond
dimension in TRG when q is very close to an integer from
below, because more degrees of freedom become impor-
tant, and the critical point is close to a BKT transition point.
The phase transition in the Ising universality class is a
transition from a disordered phase to a symmetry-breaking
phase. The structure of the fixed-point tensor in TRG can
easily characterize this phase transition. As proposed in
Ref. [63], the symmetry-breaking indicator

X ¼ ðPruTrruuÞ2P
lrduTlruuTrldd

ð35Þ

should be 1 in the disordered phase and 2 in the Z2

symmetry breaking phase. Thus the discontinuity in X for

FIG. 15. Data collapse of the rescaled magnetic susceptibility
versus the rescaled inverse temperature for q ¼ 4.3. The reduced
external field is hL15=8 ¼ 40, and βc ≈ 9.3216, which is the
approximate critical point of the model with q ¼ 4.3, is obtained
from Eq. (37).

FIG. 14. The dependence of magnetic susceptibility on the
size of the system L for β ¼ 1.1 with Dbond ¼ 40. The line
on the circles is a linear fit for the first ten points:
1.275ð3Þ log2ðLÞ − 0.74ð2Þ.

FIG. 16. The power-law extrapolation of the peak position of
χM to zero external field for q ¼ 4.9. Here the extrapolation gives
βc ¼ 1.44614ð2Þ. Dbond ¼ 40.
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the fixed point tensor as a function of β can be used to
locate the phase transition. An example for q ¼ 4.9 is
shown in Fig. 17, where the value of X changes from 1 to 2
at 1.4461 < β < 1.4462, consistent with the result from the
extrapolation of the peak position of χM in Fig. 16. The
advantage of this method is that we only need to contract a
single tensor network for each value of β and scan a β range
once to locate the phase transition point. This saves us a lot
of computational effort when we extrapolate the Ising
critical point to q ¼ ⌈q⌉ from below.
Now we use the value of X to locate the Ising critical

point and find the large-β BKT transitions for q ¼ 5, 6.
Notice that for q ¼ 5, although both a small external field
and a small deviation of q from an integer break the Z⌈q⌉

symmetry to a Z2 symmetry, the magnetic susceptibility
with a weak external field does not have a peak around the
large-β BKT transition, so it fails to predict the location of
the phase transition [44,56], but here we always have an
Ising critical point for fractional q. In Fig. 18(a), we
calculate the Ising critical point for q → 5− with
Dbond ¼ 40 and extrapolate the result to q ¼ 5 with a
power law. The value of 5 − q is between 6 × 10−4 and
10−3, where the dependence of βc on Dbond is small. The
extrapolated BKT transition point for q ¼ 5 is
βBKTq¼5;c2 ¼ 1.1027ð14Þ, consistent with the result 1.1039
(2) obtained in Ref. [47]. As a comparison, we also present
the extrapolation of the crossover peak with the sameDbond
in the same figure. The exponents of the two power-law
scalings are the same within uncertainties, and the values of
the exponents are consistent with 0.2677(84) obtained in
Ref. [44] for magnetic susceptibility with an external
field h ≤ 10−3.
The results for q → 6− are shown in Fig. 18(b), where we

use a larger bond dimension Dbond ¼ 60 and data with
6 − q ≤ 10−4. The extrapolated BKT transition point is

βBKTq¼6;c2 ¼ 1.435ð3Þ, consistent with 1.441(6) in Ref. [62].
Comparing the Ising critical points and the crossover peak
positions, we find that the power-law scaling parts are
exactly the same except for a minus sign within uncer-
tainties, which means they approach the two BKT tran-
sition points in the same manner. We believe this behavior
can be seen for all q → n− for integer n ≥ 5. To determine
the exponent accurately, we need to use a larger Dbond and
data closer to an integer, which is beyond the scope of this
work. However, this exponent should be the same as the
power-law scaling of βp of χM in a weak external field
for all clock models with integer q ≥ 5, where there is
always an emergent O(2) symmetry [42,64]. In the limit
of O(2) model, this exponent is found to be around
0.162 [58,65,66].
At large β, the fractional-q-state clock model is a

rescaled Ising (q ¼ 2) model because the link interactions
for the two angles 0 and ϕ̃ dominate the weights in the
partition function. There are two peaks in the specific heat,

FIG. 17. The β dependence of X from the fixed point tensor for
q ¼ 4.9. The discontinuity is located between 1.4461 and 1.4462,
consistent with the result from the extrapolation of the peak
position of χM to zero external field in Fig. 16. The tensorial bond
dimension is 40.

(a)

(b)

FIG. 18. Power law extrapolation of the small-β peak position
(triangles) of χM with zero external field to q ¼ 5 [lower curve in
(a)] and to q ¼ 6 [lower curve in (b)]. The same procedure is
performed for the Ising critical points (circles) at higher β [upper
curves in (a) and (b)]. The horizontal dashed lines in (a) are the
locations of two BKT transitions for q ¼ 5 obtained from
Ref. [47]. The horizontal dash-dotted lines in (b) are the locations
of two BKT transitions for q ¼ 6 obtained from Ref. [62].
Dbond ¼ 40 in (a) and Dbond ¼ 60 in (b).
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and if these peaks are sufficiently separated, then the
second peak is that of an Ising model where β is rescaled
as β → αβ, with a rescaling factor

α ¼ 1 − cos ϕ̃
2

; ð36Þ

where the small angular distance ϕ̃ in the model depends on
q and is defined in Eq. (6). Thus the critical point βc of the
fractional-q-state clock model can be approximated by the
critical point βrIsing of the two-dimensional rescaled Ising
model,

βc ≃ βrIsing ≡ ln ð1þ ffiffiffi
2

p Þ
1 − cos ϕ̃

: ð37Þ

In Table I we list some of these critical points for different
values of q. These points give approximately the location of
the large-β peak in the specific heat for the extended q
clock model.
The critical point βrIsing of the rescaled Ising model (see

Table I) is a good approximation for the true critical point
βc for values of q that are not too close to an integer from
below. For example, in Fig. 19 we compare the specific heat

from TRGwith the specific heat of the rescaled Ising model
for q ¼ 4.5 and several different lattice sizes. For lattices
16 × 16 and larger, the specific heat for the rescaled Ising
model accurately captures the large-β peak of the frac-
tional-q-state clock model. As q approaches an integer
from below, the approximation begins to fail. In Fig. 20, we
compare the rescaled Ising critical points with the true
critical points as q → 5 from below. Most of the true critical
points are obtained from X defined in Eq. (35), and five
points are from χM and agree perfectly with those from X.
For 4.0 < q≲ 4.7, the difference between the true critical
point and the Ising approximation is less than 0.01. As
q → 5−, the difference becomes larger and is around 0.175
for q ¼ 5.

FIG. 19. The specific heat for q ¼ 4.5 for several different
lattice sizes. The dotted curves are from TRG and the solid curves
are from the rescaled Ising model. For 16 × 16 and larger lattices,
the rescaled Ising model accurately captures the second peak in
the specific heat.

TABLE I. The critical points of the rescaled Ising model for
different values of q. They are calculated by Eq. (37) and give the
approximate location of the large-β peak in the specific heat of the
fractional q-state clock model in the infinite-volume limit.

q βrIsing q βrIsing

1.1 5.5521 3.6 1.7627
1.2 1.7627 3.7 1.4054
1.3 1.0022 3.8 1.1681
1.4 0.7209 3.9 1.0022
1.5 0.5876 4.0 ∞
1.6 0.5163 4.1 75.2052
1.7 0.4764 4.2 19.8386
1.8 0.4544 4.3 9.3216
1.9 0.4437 4.4 5.5521
2.0 ∞ 4.5 3.7673
2.1 19.8386 4.6 2.7764
2.2 5.5521 4.7 2.1665
2.3 2.7764 4.8 1.7627
2.4 1.7627 4.9 1.4808
2.5 1.2755 5.0 ∞
2.6 1.0022 5.1 116.284
2.7 0.8329 5.2 30.3313
2.8 0.7209 5.3 14.0839
2.9 0.6433 5.4 8.2861
3.0 ∞ 5.5 5.5521
3.1 43.0567 5.6 4.0399
3.2 11.5787 5.7 3.1120
3.3 5.5521 5.8 2.4995
3.4 3.3770 5.9 2.0728
3.5 2.3409 6.0 ∞

FIG. 20. The difference between the critical point of the
rescaled Ising model βrIsing and the true critical point βc for
fractional-q-state clock models as a function of q. The circles are
from the discontinuity of values of X, βcX , the stars are from the
extrapolations of the peak position of χM to zero external field,
βcχ . The inset shows the values of the true critical point as a
function of q and the solid line is Eq. (37).
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D. Integration interval

For the extended q-state clock model, the allowed angles
are restricted to the integration interval φ ∈ ½φ0;φ0 þ 2πÞ.
All results presented so far used φ0 ¼ 0, which is in the so-
called case 1. We also considered the possibility φ0 ¼ −π.
As shown in Fig. 21, for q ¼ 4.5, the number of allowed
spin orientations and their relative sizes are the same. In
fact, the models with φ0 ¼ 0 and φ0 ¼ −π are equivalent
and in case 1 for all even bqc. For odd bqc, the choice of
φ0 ¼ 0 or φ0 ¼ −π results in a different number of allowed
spin orientations and different thermodynamic behaviors.
For example, when 5 < q < 6, there are six allowed
orientations when φ0 ¼ 0, but only five allowed orienta-
tions when φ0 ¼ −π (see Fig. 21 for q ¼ 5.5). One can
show that the model with φ0 ¼ −π is in case 2 for all odd
bqc. For integer values of q, the extended q-state clock
model reduces to the ordinary q-state clock model for both
φ0 ¼ 0 and φ0 ¼ −π.
We consider 5 < q < 6 and φ0 ¼ −π. In Fig. 22, we

show the magnetic susceptibility at h ¼ 0 as a function of
β. First of all, one can see that the magnetic susceptibility is
finite for all values of q presented here, which means there
are no phase transitions for any 5 < q < 6 and φ0 ¼ −π.
The maximal values of χM are larger for q closer to 5.
For q ¼ 5.1, we see a double-peak structure in χM, with the
large-β peak higher than the small-β peak. As q increases
toward 6, the first crossover peak fades away and
disappears around q ¼ 5.3. The magnetic susceptibility

eventually converges to a single-peak structure with the
peak position around β ¼ 1.5 and the peak height around 4.
In order to see the behavior of χM for q → 5þ, we plot χM
versus β for q ¼ 5.001 and q ¼ 5.00001 in Fig. 23. We see
that the maximal value of χM is much larger than those in
Fig. 22, because we are approaching aZ5 clock model from
above. Unlike q ¼ 5.1, the small-β peak becomes higher
than the large-β peak for q ¼ 5.001, and the large-β peak
fades away as we move closer to q ¼ 5. The small-β peak
moves towards the small-β BKT transition for q ¼ 5 so it
can be used to extrapolate the value of βBKTq¼5;c1, while the
large-β peak moves across the large-β BKT transition for
q ¼ 5 from right to left so it fails to predict the value of
βBKTq¼5;c2. This means that the magnetic susceptibility cannot
capture the crossover going to the large-β BKT transition
point for q → 5þ. But the crossover should go to the
BKT transition point as the Zbqc symmetry is recovered.

FIG. 22. The magnetic susceptibility at V ¼ 224 × 224, h ¼ 0,
and Dbond ¼ 40, as a function of β for φ0 ¼ −π. The suscep-
tibility does not diverge with the volume, which implies there is
no phase transition here. This is different from the model with
φ0 ¼ 0, which has a divergent peak in the susceptibility corre-
sponding to a second-order phase transition.

FIG. 23. Same as Fig. 22, but for q ¼ 5.001, 5.00001. The
large-β peak fades away and moves across the BKT phase
transition point at q ¼ 5.

FIG. 21. The allowed spin orientations for the extended q-state
clock model when φ0 ¼ 0 (left column) and φ0 ¼ −π (right
column) for two different values of q. When q ¼ 4.5 (top row),
the number of allowed spin orientations and their relative sizes
are the same, and the models are equivalent. When q ¼ 5.5
(bottom row), there are six allowed spin orientations when
φ0 ¼ 0, but only five allowed orientations when φ0 ¼ −π, so
the two models are different. The dashed gray lines indicate the
Z2 symmetry axes.
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The cross derivative of the free energy should be able to
capture this [56], but we will just focus on the magnetic
susceptibility.
We then check the divergent behavior of the small-β peak

of χM as q → 5þ using Dbond ¼ 50. Figure 24 shows
the linear fit for lnðχ�MÞ versus lnðq − 5Þ. We see
that the peak height of χM diverges as a power law
χ�M ∼ 1=ðq − 5Þ0.9275ð15Þ, which again gives a value of the
critical exponent δ0 ¼ 15.09ð2Þ, close to the expected value
15. We extrapolate the peak position to q ¼ 5 from above
in Fig. 25. One can see that the power-law scaling is the
same as case 1 where q → 5−, φ0 ¼ 0, and gives
βBKTq¼5;c1 ¼ 1.0514ð5Þ, consistent with the result in Fig. 11.

E. Phase diagram

The clock model with integer q has been studied
extensively [27–47]. For q ¼ 2, 3, 4, there is a disordered
phase and a Zq symmetry-breaking phase separated by a
second-order phase transition. For q ≥ 5, there is a dis-
ordered phase at small-β and a Zq symmetry-breaking
phase at large-β with a critical phase for intermediate β
between them. The boundaries of the critical phase are two
BKT transition points of infinite order [42]. In our extended
q-state clock model, one must make a choice of the
integration interval φ ∈ ½φ0;φ0 þ 2πÞ. For the choice
φ0 ¼ 0 and fractional q, both the specific heat and the
magnetic susceptibility have a double-peak structure. We
have shown that the small-β peak is associated with a
crossover, and the large-β peak is associated with a phase
transition of the Ising universality class. For the choice
φ0 ¼ −π and fractional q, the phase structure is a little
more complicated. For even bqc, we get the same behavior
as with φ0 ¼ 0, but for odd bqc, we get a trivial case with
no critical point.

FIG. 24. Same as Fig. 9, but for φ0 ¼ −π, q → 5þ.Dbond ¼ 50.

FIG. 25. Same as Fig. 11, but for φ0 ¼ −π, q → 5þ.
Dbond ¼ 50.

FIG. 26. The phase diagram of the extended q-state clock model [i.e., the γ ¼ ∞ plane of the extended-O(2) model] for φ0 ¼ 0 (left)
and φ0 ¼ −π (right). For q ¼ 2, 3, 4, there is a second-order phase transition with a Zq ordered phase at large β. For finite integer q ≥ 5,
there is a critical phase between a pair of BKT transitions and a Zq ordered phase at large β. For fractional q > 2 with φ0 ¼ 0, there is a
crossover line, a second-order transition line, and aZ2 ordered region between every consecutive pair of integers. For φ0 ¼ −π, the same
is true for every other consecutive pair of integers.
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The phase diagrams for both φ0 ¼ 0 and φ0 ¼ −π are
shown in Fig. 26. For φ0 ¼ 0, as q → ⌈q⌉−, the Z⌈q⌉

symmetry is recovered. For q > 4 and φ0 ¼ 0, both the
small-β crossover line and the large-β Ising critical point
are smoothly connected to the small-β BKT transition point
and the large-β BKT transition point for integer q from
below, respectively. Notice that for q < 4 and φ0 ¼ 0, only
the large-β Ising critical point is smoothly connected to the
second-order phase transition for integer q from below,
while the crossover peak fades away for q close enough
(around 3.9 for 3 < q < 4) to an integer from below. When
q → bqcþ and φ0 ¼ 0, the Ising critical point goes to
infinity, while the crossover line goes to a smaller value
than the phase transition point for the bqc-state clock model
because there is 1 more degree of freedom than the Zbqc
clock model. For even bqc and φ0 ¼ −π, the phase diagram
is the same as that for even bqc and φ0 ¼ 0. For odd bqc
and φ0 ¼ −π, the Zbqc symmetry is recovered when
q → bqcþ. For 5 < q < 6, both crossover lines are
smoothly connected to the two BKT transition points for
integer q from above. When q is increased toward an even
⌈q⌉ and φ0 ¼ −π, the small-β crossover line fades away
and the large-β crossover line goes to a larger value than the
large-β BKT transition for integer q because there is 1
fewer degree of freedom than the ⌈q⌉-state clock model.
For 3 < q < 4, there is only one crossover line that is
smoothly connected to the second-order phase transition
point for q ¼ 3 and goes to around 0.77 when q → 4−.

V. SUMMARY AND OUTLOOK

Interpolations among Zn clock models have been real-
ized experimentally using a simple Rydberg simulator,
whereZn (n ≥ 2) symmetries emerge by tuning continuous
parameters, the detuning and Rabi frequency of the laser
coupling, and the interaction strength between Rydberg
atoms [50]. This paves the way to quantum simulation of
lattice field theory with discretized field variables. We are
interested in a theory that can interpolate among the O(2)
model and Zn clock models. We define an extended-O(2)
model by adding a symmetry breaking term γ cosðqφxÞ
to the action of the two-dimensional O(2) model. For
integer q, Zq clock models emerge for large enough γ. For
fractional q, we believe there exists a much more interest-
ing phase structure. The first step to graph the full phase
diagram in the ðγ; q; βÞ cube is to consider the limit γ → ∞.
In this work, we studied the fractional-q-state clock model
as the γ → ∞ limit of the extended-O(2) model with
angular variables in the domain ½φ0;φ0 þ 2πÞ. In this
limit, the angular variable takes discrete values φx;k ¼
2πk=q with k integral. By varying φ0, the set of values of
integer k take either case 1 ð0; 1;…; bqcÞ or case 2
ð0; 1;…; bqc − 1Þ. In case 1, Z⌈q⌉ symmetry is recovered
as q → ⌈q⌉−, while Zbqc symmetry is recovered as
q → bqcþ in case 2.

For the integer-q-state clock model, there is a single
second-order phase transition when q ¼ 2, 3, 4. When
q ≥ 5, there are two BKT transitions with a critical phase
between them. We studied the fractional-q-state clock
model using Monte Carlo (MC) and tensor renormalization
group (TRG) methods. We establish the phase diagram of
the model for both φ0 ¼ 0 and φ0 ¼ −π. When φ0 ¼ 0, we
are in case 1, and analysis of the finite-size scaling shows a
crossover and a phase transition of the Ising universality
class. When φ0 ¼ −π, we are in case 1 for even bqc and in
case 2 for odd bqc. There are no critical points for case 2.
In case 1, we found that there are two peaks in both the

specific heat and the magnetic susceptibility. The height of
the small-β peak is always finite for fractional q. The large-
β peak diverges and characterizes an Ising critical point.
When q → ⌈q⌉− and q < 4, the large-β Ising critical point
is smoothly connected to the second-order phase transition
point for Z⌈q⌉ clock models, while the small-β peak fades
away. When q → ⌈q⌉− and q > 4, the large-β Ising critical
point and the position of the small-β peak are smoothly
connected, with the same power-law scaling ∼ð⌈q⌉ − qÞb,
to the large and small BKT points respectively for Z⌈q⌉

clock models. We also found that the height of the small-β
peak of the magnetic susceptibility diverges as a power law
1=ð⌈q⌉ − qÞ14=15, from which we obtain a critical exponent
δ0 ¼ 15 in the ansatz of the scaling of the magnetization
M ∼ ð⌈q⌉ − qÞ1=δ0 . This critical exponent is equal to δ
associated with the magnetization with an external field
M ∼ h1=δ. In case 2, there are no critical points. When q →
bqcþ and q > 5, the small-β peak also goes to the small
BKT point with the same power-law scaling and the same
δ0 exponent as case 1, while the large-β peak fades away
and cannot be used to extrapolate the large BKT point of
Zbqc clock models.
To use the magnetic susceptibility to locate a critical

point, a weak external field must be applied for the
magnetic susceptibility to be finite, and extrapolate the
peak position to h ¼ 0. This method works in most cases,
but the peak fades away near the large-β BKT point of
integer-q-state clock models. Our procedure provides an
alternative approach to locate the BKT transitions of clock
models, by breaking the Z⌈q⌉ symmetry to a Z2 symmetry
in the q direction instead of h direction. This procedure
creates an Ising critical point that can be used to extrapolate
the large-β BKT point for clock models.
Our results clarify what phases the symmetry-breaking

term γ cosðqφxÞ will drive the system to. These phases
should have boundaries in the finite-γ direction. For small
enough γ, the extended-O(2) model should go back to the
same universality class as the ordinary XY model, which
has been studied extensively [58,65,67–72]. For the ordi-
nary XY model, there is a single BKT transition from a
disordered phase to a quasi-long-range-ordered critical
phase at βc ¼ 1.11995ð6Þ [65]. Figure 27 shows the work
that remains to be done to figure out the phase diagram in
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the ðβ; γ; qÞ space interpolating between the known phase
diagram at γ ¼ 0 and the phase diagram at γ ¼ ∞ discussed
here. There should be a rich phase diagram in the finite-γ
region, which is beyond the scope of this work and will be
discussed in future work.
It is interesting to note that the BKT critical point found

in the O(2) model—and here at the limit of the extended
phase diagram—can also be reached through a completely
different interpolation. By considering the O(3) nonlinear
sigma model with an additional symmetry breaking term
which breaks the O(3) symmetry down to an O(2) sym-
metry, one can interpolate between Z2 to O(3), and from
O(3) to O(2) by tuning the sign, and magnitude, of the
additional symmetry-breaking term [73]. Further additional
symmetry breaking terms could be interesting. Positive-
definite worm algorithms have been constructed for the
O(3) nonlinear sigma model, and could be used to simulate
the model efficiently [74,75].
Topics currently under study include the autocorrelations

at different volumes, dynamical critical exponents, spatial
correlations, vortices, density of states, and zeros of the
partition function.
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APPENDIX A: EFFECT OF THE ANGLE CUTOFF

In the extended q-state clock model, the spins are
allowed to take the angles φðkÞ ¼ 2πk=q, where k is an
integer. By restricting the values of the angle to the domain
½φ0;φ0 þ 2πÞ, the values of k must satisfy φ0q=2π ≤
k < φ0q=2π þ q. Let q ¼ bqc þ δq, φ0q=2π ¼ pþ ϵ, p
is an integer and 0 ≤ ϵ, δq < 1, then

k∈

8<
:

ðp;pþ 1;…;pþbqcÞ if ϵ¼ 0;

ðpþ 1;pþ 2;…;pþbqcÞ if ϵ> 0;ϵþ δq< 1;

ðpþ 1;pþ 2;…;pþbqcþ 1Þ if ϵ> 0;ϵþ δq≥ 1:

ðA1Þ

Because the action only depends on the angular distance,
we actually have two cases: k ¼ 0; 1; 2;…; bqc (case 1),
k ¼ 0; 1; 2;…; bqc − 1 (case 2). This defines a particular
model that interpolates between the integer q’s of the
ordinary q-state clock model. If φ0 ¼ 0, we are in case 1.
For this model, the interpolation is smooth (in the sense that
the thermodynamic curves change smoothly) as an integer
q is approached from below. In this case, the allowed angles
feature a cutoff at bqc2π=q that breaks the periodicity.
One could choose the allowed angles differently and go to
case 2, where the allowed angles feature a cutoff at
2πðbqc − 1Þ=q that breaks the periodicity, and the inter-
polation is smooth as an integer q is approached from
above.
One could remove the cutoff and restore a form of

periodicity by allowing angles

φðkÞ ¼ 2πk
q

; k ¼ 0; 1; 2;…;∞:

However, in this case, for a rational q ¼ r=s, where r=s is a
reduced fraction, the model is the ordinary r-state clock
model since 2πk=ðr=sÞ ¼ 2πks=r and ks is an integer.
Thus, removing the cutoff would destroy the smooth
interpolation in n < q ≤ nþ 1 for integer n. For any
irrational q, this model without cutoff becomes equivalent
to the ∞-state clock model, that is, the XY model.
In Fig. 28 we explore the effect of increasing the cutoff

for the model with q ¼ 3.141592654 ≈ π. For example, for
the case φ ∈ ½0; 2πÞ, the allowed angles are 2πk=π ¼ 2k
with k ¼ 0, 1, 2, 3, whereas for the case φ ∈ ½0; 4πÞ, we
have k ¼ 0; 1;…; 6. In all of these cases there remains a Z2

symmetry, and we expect the model to have an Ising
transition at very large β for certain cutoffs. As the
upper limit of the domain is moved to infinity (i.e., as
the cutoff is removed), this Ising transition moves to
infinity and the model becomes the XY model. A minor
detail is that 3.141592654 ¼ 3141592654=1000000000 is
in fact a rational number, so one would actually get the
3141592654-state clock model if the cutoff were removed

FIG. 27. For the extended-O(2) model, the phase diagram is
three-dimensional. In the γ ¼ 0 plane, it is the XY model for all
values of q. The XY model has a disordered phase at small β, a
single BKT transition at βc ¼ 1.11995ð6Þ [65], and a critical
phase at large β. In the γ ¼ ∞ plane, it is the extended q-state
clock model, which has the phase diagram shown in Fig. 26. In
this example we have φ0 ¼ 0. Establishing the phase diagram at
finite-γ will be addressed in future work.
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completely. However, it would be indistinguishable from
the XY model for practical purposes.

APPENDIX B: MONTE CARLO RESULTS

We used a heatbath algorithm to study the extended
q-state clock model on a 4 × 4 lattice. The general structure
of the Monte Carlo algorithm is as follows:

Equilibration:
for iequi ¼ 1 to nequi do

heatbath sweep
end
Measurements:
for irpt ¼ 1 to nrpt do

for imeas ¼ 1 to nmeas do
for idisc ¼ 1 to ndisc do

heatbath sweep
end
measure observables

end
save measurements to file

end

Parameters used in the primary data production for the
extended q-state clock model are given in Table II. The total
number of heatbath sweeps performed (not including
equilibration) is nrpt × nmeas × ndisc. The number of
measurements taken is nrpt × nmeas. Ensemble averages
and error bars for the energy and magnetization were
calculated after binning with nrpt bins each of size nmeas.

For specific heat and magnetic susceptibility, the measure-
ments were binned and jackknifed.
We studied the extended q-state clock model on a 4 × 4

lattice with zero external magnetic field. For each β, we
initialized to a random lattice (hot start) then we performed
215 equilibrating sweeps followed by 222 measurement
sweeps. Each measurement sweep was followed by 28

discarded sweeps. We calculated the energy density and
specific heat as defined in Eqs. (9) and (10). We calculated
the proxy magnetization and susceptibility as defined in
Eqs. (14) and (15). Results for 1 < q < 6 are shown in
Figs. 2, 31–34.
In the large-β (low temperature) regime, the heatbath

algorithm has difficulty appropriately sampling the con-
figuration space. At large-β, the lattice freezes along a
particular magnetization direction. When q ∈ Z all mag-
netization directions are equivalent, however, when
q ∉ Z, the discrete rotational symmetry is broken and
the direction of magnetization matters. The configuration
space is split into two sectors with different thermodynamic
properties. In one sector, the magnetization is in the
direction 0 or −ϕ̃, defined in Eq. (6), where relatively
large fluctuations may still be possible. In the other sector,
the magnetization is in one of the other directions where
fluctuations are less likely. To appropriately sample the
configuration space one has to use very large statistics or
run multiple heatbath streams at the same parameters
but with different seeds for the random number generator.
In Fig. 29, we show an example of this phenomenon for
q ¼ 4.5 and β ¼ 2.5 on a 4 × 4 lattice. In this example, we
need ≳232 heatbath sweeps to adequately sample both
sectors. This Monte Carlo slowdown makes it difficult to
study larger lattices, and is a strong motivation for
using TRG.
TheMonte Carlo slowdown is illustrated by an explosion

of the integrated autocorrelation time in the intermediate-β

FIG. 28. The specific heat for the extended q-state clock model
with q ¼ 3.141592654. Results are from Monte Carlo on 4 × 4
lattices. The different curves correspond to different allowed
domains for the spin angles φ. The specific heat of the XY model
is included for reference. As the upper limit of the domain goes to
infinity, we get the XY model. Statistical error bars are omitted
since they are smaller than the line thickness. Dashed lines
indicate regions where we have data but we do not have the
uncertainty fully under control.

TABLE II. The Monte Carlo parameters used in the primary
data production for the extended q-state clock model. See Figs. 2
and 31–34). Here, q refers to the q-state clock model, H is the
external magnetic field, nequi is the number of equilibrating
heatbath sweeps used, nrpt is the repetitions of measurement
sweeps, nmeas is the number of measurement sweeps, and ndisc
is the number of sweeps discarded between each measurement
sweep.

q [1.1, 6.0] with Δq ¼ 0.1
β [0.0, 2.0] with Δβ ¼ 0.01
H 0.0
Lattice 4 × 4
Start type Random (hot)
nequi 215

nrpt 26

nmeas 216

ndisc 28

LEON HOSTETLER et al. PHYS. REV. D 104, 054505 (2021)

054505-18



regime. For an observable O, an estimator of the integrated
autocorrelation time is given by

τ̃O;int ¼ 1þ 2
XT
t¼1

CðtÞ
Cð0Þ ; ðB1Þ

where CðtÞ ¼ hOiOiþti − hOiihOiþti is the correlation
function between the observable O measured at Markov
times i and iþ t. The integrated autocorrelation time τO;int

is estimated by finding a window in t for which τ̃O;int is
nearly independent of t. The integrated autocorrelation time
for 4 < q ≤ 5 is shown in the main document in Fig. 5. The
values of T needed to extract these points are given
in Fig. 30.
To mitigate the effect of autocorrelation in our results, we

discarded 28 heatbath sweeps between each saved meas-
urement. The saved measurements were then binned (i.e.,
preaveraged) with bin size 216 before calculating the means
and variances.

APPENDIX C: VALIDATING TRG WITH MC

Whereas Monte Carlo methods are well understood in
the context of classical spin models, TRG is a relatively
new approach. We validate TRG results at small β and

small volume using exact and Monte Carlo results. Exact
results can be computed for q ¼ 2 (Ising model) and q ¼ 4
(two coupled Ising models). We use Monte Carlo to
validate the TRG results for other (including fractional)
values of q.
In Fig. 35, we show that the energy density from TRG

agrees very well with the exact calculation, and that the tiny
discrepancy appears only around the critical point. In TRG,
the specific heat is calculated by taking a finite difference
derivative of the energy. In Fig. 36, we compare the specific
heat from TRG with the exact values for q ¼ 4.0. TRG
deviates from the exact results near the peak of the specific
heat, but this deviation is mostly due to the discretization
error from the derivative.
Exact solutions are not known for fractional-q, so we

validate TRG by comparing with results from Monte Carlo
at small β and small volume. For example, Fig. 37 shows
that the discrepancy between the energy density from TRG
and that from Monte Carlo is only of order 10−4. In Fig. 38,
we compare the specific heat from TRG with that of
Monte Carlo for q ¼ 4.9. TRG deviates from the
Monte Carlo results near the peak of the specific heat.
However, this deviation is again almost entirely due to
discretization error from the derivative.

FIG. 30. The values of T defined in Eq. (B1) needed to extract
the integrated autocorrelation times shown in Fig. 5. The vertical
axis gives the values of q and the horizontal axis gives the values
of β. Blank/white regions in this heatmap indicate cases where
T > 216 is needed to get a reliable estimate of the integrated
autocorrelation time. These were not attempted due to the
computational cost.

FIG. 29. The measured energy density for q ¼ 4.5 at different
number of heatbath sweeps for different random-number-
generator (RNG) seeds. The vertical axis is the energy density.
The horizontal axis gives the number of heatbath sweeps used
(not including equilibration sweeps). The different colors indicate
runs with different seeds for the RNG. All runs were performed at
β ¼ 2.5 with hot-started 4 × 4 lattices. This shows that the
configuration space consists of two distinct sectors, and the
heatbath algorithm has difficulty appropriately sampling both
sectors unless the number of heatbath sweeps is taken very large.
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FIG. 31. Monte Carlo results for the extended q-state clock model on a 4 × 4 lattice for 1.1 ≤ q ≤ 2.0. The top panel shows energy
density and specific heat, and the bottom panel shows proxy magnetization and magnetic susceptibility. Statistical error bars are omitted
since they are smaller than the line thickness. Dashed lines indicate regions where we have data but we do not have the uncertainty fully
under control.

FIG. 32. Monte Carlo results for the extended q-state clock model on a 4 × 4 lattice for 2.1 ≤ q ≤ 3.0. The top panel shows energy
density and specific heat, and the bottom panel shows proxy magnetization and magnetic susceptibility. Statistical error bars are omitted
since they are smaller than the line thickness. Dashed lines indicate regions where we have data but we do not have the uncertainty fully
under control.
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FIG. 33. Monte Carlo results for the extended q-state clock model on a 4 × 4 lattice for 3.1 ≤ q ≤ 4.0. The top panel shows energy
density and specific heat, and the bottom panel shows proxy magnetization and magnetic susceptibility. Statistical error bars are omitted
since they are smaller than the line thickness. Dashed lines indicate regions where we have data but we do not have the uncertainty fully
under control.

FIG. 34. Monte Carlo results for the extended q-state clock model on a 4 × 4 lattice for 5.1 ≤ q ≤ 6.0. The top panel shows energy
density and specific heat, and the bottom panel shows proxy magnetization and magnetic susceptibility. Statistical error bars are omitted
since they are smaller than the line thickness.
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FIG. 35. An example comparison of the energy density from
exact calculation and that from TRG for q ¼ 4.0. The top panel
shows the energy density for lattices of size 4 × 4, 8 × 8, and
16 × 16. The three panels on the bottom show the difference
between exact and TRG results. TRG shows deviations from
exact results near the phase transition. Here Dbond ¼ 64.

FIG. 36. Same as Fig. 35, but for the specific heat. TRG shows
deviations from exact results near the peak, however, this is
mostly due to discretization error from the derivative.

FIG. 37. An example comparison of TRG and Monte Carlo
measurements of the energy density for q ¼ 4.9. The top panel
shows the energy density for lattices of size 4 × 4, 8 × 8, and
16 × 16. The three panels on the bottom show the difference
between Monte Carlo and TRG results. Here, Monte Carlo is
taken to be the baseline. Here Dbond ¼ 64.

FIG. 38. Same as Fig. 37, but for the specific heat. TRG shows
deviations from Monte Carlo results near the peak, however, this
is mostly due to discretization error from the derivative.
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