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A pseudo-Nambu-Goldstone boson (pNGB) is an attractive candidate for dark matter (DM) due to the
simple evasion of the current severe limits of DM direct detection experiments. One of the pNGB DM
models has been proposed based on a gauged Uð1ÞB−L symmetry. The pNGB has long enough lifetime to
be a DM and thermal relic abundance of pNGB DM can be fit with the observed value against the
constraints on the DM decays from the cosmic-ray observations. The pNGB DM model can be embedded
into an SOð10Þ pNGB DM model in the framework of an SOð10Þ grand unified theory, whose SOð10Þ is
broken to the Pati-Salam gauge group at the unified scale, and further to the Standard Model gauge group at
the intermediate scale. Unlike the previous pNGB DM model, the parameters such as the gauge coupling
constants of Uð1ÞB−L, the kinetic mixing parameter of between Uð1ÞY and Uð1ÞB−L are determined by
solving the renormalization group equations for gauge coupling constants with appropriate matching
conditions. From the constraints of the DM lifetime and gamma-ray observations, the pNGB DM mass
must be less than Oð100Þ GeV. We find that the thermal relic abundance can be consistent with all the
constraints when the DM mass is close to half of the CP even Higgs masses.
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I. INTRODUCTION

The existence of dark matter (DM) has been confirmed
by several astronomical observations such as spiral galaxies
[1,2], gravitational lensing [3], cosmic microwave back-
ground [4], and collision of bullet cluster [5]. There are no
viable DM candidates in the Standard Model (SM), so the
identification of DM plays an important role in particle
physics as well as cosmology.
Due to the lack of understanding the nature of DM, there

are a lot of DM candidates. One of the candidates is so-
called weakly interacting massive particle (WIMP). To
realize the relic abundance of DM, the WIMP mass is
expected to the range of Oð10Þ GeV to Oð100Þ TeV.
Further, since the WIMPs have nongravitational interac-
tion, the direct and indirect detections are expected, but

there are still no clear signals of WIMPs, which lead to the
strong constraint for WIMP mass and interactions, espe-
cially from the direct detection.
Several mechanisms in WIMP DM models are proposed

to avoid the severe constrains from the direct detection by
considering, e.g., a fermion DM with pseudoscalar inter-
actions [6–11] and a pseudo-Nambu-Goldstone boson
(pNGB) DM [12–21]. Usually, in pNGB DM models,
additional global Uð1Þ symmetry is assumed in an ad hoc
manner.
In Refs. [19,20], a pNGBDMmodel is proposed based on

GSM × Uð1ÞB−L gauge groups, where GSM ≔ SUð3ÞC×
SUð2ÞL ×Uð1ÞY . Two complex scalars with QB−L ¼ þ1
and þ2, denoted as S and Φ, and three right-handed
neutrinos due to the gauge anomaly cancellation are intro-
duced. The gauge symmetry is spontaneously broken via the
nonvanishing vacuum expectation value (VEV) of the scalar
fields S and Φ as below:

GSM ×Uð1ÞB−L → GSM: ð1:1Þ

The results in the model are summarized below. The DM
direct detection cross section is naturally suppressed as the
same as other pNGB DM models. The pNGB can decay
through the new high scale suppressed operators, but the
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pNGB has a lifetime long enough to be a DM in the wide
range of the parameter space of the model. The thermal relic
abundance of pNGB DM can be fit with the observed value
against the constraints on the DM decays from the cosmic-
ray observations.
From other viewpoints, the charge quantization of

Uð1ÞY , the gauge anomaly cancellation of GSM, and the
almost SM gauge coupling unification even in nonsuper-
symmetric SM seem to imply the existence of grand
unification [22]. The unification scale is expected to be
Oð1015–1018Þ GeV, where the lower bound comes from
the current nonobservation of the nucleon decay [23] and
the upper bound comes from the Planck scale. Also, the
tiny neutrino masses from the neutrino oscillation data
seem to suggest an intermediate scale Oð1010–1014Þ GeV
through a see-saw mechanism [24].
In this paper, we propose an SOð10Þ pNGB DM model

in the framework of grand unified theories (GUTs). Each
Weyl fermion in 16 of SOð10Þ contains one generation of
quarks and leptons, which includes a right-handed neutrino
[25]. The SM Higgs and two complex scalar fields S and Φ
in Refs. [19,20] are assigned to a scalar field in 10, 16, and
126 of SOð10Þ, respectively. There are several symmetry
breaking patterns of SOð10Þ to GSM × Uð1ÞB−L as below.

SOð10Þ → GI → GSM ×Uð1ÞB−L; ð1:2Þ

where GI stands for the intermediate gauge group such as
the Pati-Salam gauge group GPS ≔ SUð4ÞC × SUð2ÞL ×
SUð2ÞR [26] and a left-right gauge groupGLR ≔ SUð3ÞC ×
SUð2ÞL × SUð2ÞR ×Uð1ÞB−L [27,28]. We mainly focus on
the case of GI ¼ GPS, but we also consider the possibility
for such as GI ¼ GLR, where the cases are not favored for a
pNGB DM model under our assumption and experimental
constraints. (For more information about GUT model
building in general, see, e.g., Refs. [29,30].)
We discuss the following three things. First, the value of

the gauge kinetic mixing between Uð1ÞY and Uð1ÞB−L is a
free parameter in e.g., the non-GUT pNGB DM models
[19,20], while that is determined mainly by the GUT gauge
group in SOð10Þ models. Second, gauge coupling uni-
fication can be achieved due to the contribution from the
additional scalar fields that contain a DM candidate. Then
the intermediate scaleMI , the unification scaleMU, and the
gauge coupling constant of Uð1ÞB−L are fixed by using the
renormalization group equations (RGEs) for gauge cou-
pling constants. Third, the mass of the pNGB in the SOð10Þ
pNGB DM model is limited to be Oð10 − 100Þ GeV from
experimental constraints.

The paper is organized as follows. In Sec. II, we
introduce the SOð10Þ pNGB DM model. In Sec. III, we
find gauge coupling unification determines mass scales and
gauge coupling constants of the model. In Sec. IV, the
constraints from experiments are discussed. Section V is
devoted to summary and discussions.

II. THE MODEL

The model consists of an SOð10Þ gauge field Aμ,
fermions in 16 of SOð10Þ, a real scalar field in 210 of
SOð10Þ, and complex scalar fields in 10, 16, and 126 of
SOð10Þ. The SOð10Þ gauge field contains GSM and
Uð1ÞB−L gauge fields. Each fermion in 16 of SOð10Þ
corresponds to quarks and leptons. Scalar fields in 10, 16,
and 126 of SOð10Þ include the Higgs H, S and Φ,
respectively. A scalar field in 210 of SOð10Þ is responsible
for breaking the SOð10Þ symmetry to GPS. The matter
content in the SOð10Þ model is summarized in Table I.1

The Lagrangian is given by

L¼
X

y¼10;16;126

ðDμΦyÞ†ðDμΦyÞþ
1

2
ðDμΦ210ÞTðDμΦ210Þ

þ
X3
a¼1

ΨðaÞ
16 i=DΨðaÞ

16 −
1

2
tr½FμνFμν�

−
� X

y¼10;126

X
a;b

yðabÞy ΦȳðΨðaÞ
16 Ψ

ðbÞ
16 ÞyþH:c:

�
−VðfΦxgÞ;

ð2:1Þ

where Dμ ≔ ∂μ þ igAμ, Fμν ≔ ∂μAν − ∂νAμ þ ig½Aμ;Aν�.
The scalar potential VðfΦxgÞ contains quadratic, cubic,
and quartic coupling terms, where x ¼ 10; 16; 126; 210.
We consider the following symmetry breaking patterns

of SOð10Þ broken to GPS at the unification scale MU by
the nonvanishing vacuum expectation value (VEV) of the
scalar field in 210 in SOð10Þ, further to GSM at the
intermediate scaleMI by the VEVof the scalar field in 126
in SOð10Þ, where the MU and MI will be determined by
gauge coupling unification using the renormalization
group equations (RGEs) for the gauge coupling constants
in the next section.

TABLE I. The matter content in the SOð10Þ model is shown.

Aμ Ψ16 Φ10 Φ16 Φ126 Φ210

SOð10Þ 45 16 10 16 126 210
SLð2;CÞ ð1=2; 1=2Þ ð1=2; 0Þ (0, 0) (0, 0) (0, 0) (0, 0)

1In this paper, we introduced a scalar in 10 of SOð10Þ as a
complex scalar. To reproduce the observed mass spectra of quarks
and leptons, it is discussed in e.g., Ref. [31] that only the real
scalar in 10 of SOð10Þ has some tensions.
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SOð10Þ→hΦ210i≠0
GPSð⊃ GSM ×Uð1ÞB−LÞ→

hΦ
126

i≠0
GSM→

hΦ10i≠0
SUð3ÞC ×Uð1ÞEM; ð2:2Þ

where the dominant contribution for the symmetry breaking
from the VEVs are shown. The type of symmetry breaking
has been already discussed in e.g., Refs. [25,31–43]. The
field content of fermion, scalar, and gauge bosons are shown
in Tables II, III, and IV. (The potential analysis of 210 in
SOð10Þ has already discussed in, e.g., Ref. [44]; SOð10Þ is
broken to GPS for appropriate parameter sets.)

A. Scalar sector

Here we focus on the scalar potential of SM Higgs and
pNGB relevant part that contains scalar fields H, S, Φ
belonging to 10, 16, and 126 of SOð10Þ, respectively. We
assume that the other components of Φ10, Φ16, and Φ126

shown in Table III have the intermediate scale or larger
masses and they do not contribute SUð2ÞL ×Uð1ÞY and
Uð1ÞB−L breakings.
From the scalar potential VðfΦxgÞ in Eq. (2.1), we

extract the terms that contain only H, S, Φ:

VðH; S;ΦÞ ¼ −
μ2H
2
jHj2 − μ2S

2
jSj2 − μ2Φ

2
jΦj2

þ λH
2
jHj4 þ λS

2
jSj4 þ λΦ

2
jΦj4

þ λHSjHj2jSj2 þ λHΦjHj2jΦj2

þ λSΦjSj2jΦj2 −
�
μcffiffiffi
2

p Φ�S2 þ c:c:

�
: ð2:3Þ

The quadratic terms jHj2, jSj2, and jΦj2 come from
ðΦ10Φ10Þ1, ðΦ16Φ

�
16Þ1, and ðΦ126Φ

�
126

Þ1, respectively; the
quartic terms jHj4, jSj4, and jΦj4 come from ððΦ10Φ10Þ1Þ2
and jðΦ10Φ10Þ54j2 jðΦ16Φ16Þ126j2, and jðΦ126Φ126Þ2772j2,
respectively; the quartic terms jHj2jSj2, jHj2jΦj2, and
jSj2jΦj2 come from ðΦ10Φ10Þ1ðΦ16Φ

�
16Þ1, ðΦ10Φ10Þ1

ðΦ126Φ
�
126

Þ1, and ðΦ16Φ
�
16Þ1ðΦ126Φ

�
126

Þ1, respectively;

the cubic term Φ�S2 comes from Φ�
126

ðΦ16Φ16Þ126,2 where
the above subscript such as 1 and 54 stands for the product
representation of SOð10Þ. This potential is exactly the same
as that in Refs. [19,20].
We assume that the scalar fields H, S, and Φ develop the

VEVs, which are parametrized by

H ¼
�

0

vþhffiffi
2

p

�
; S ¼ vs þ sþ iηsffiffiffi

2
p ;

Φ ¼ vϕ þ ϕþ iηϕffiffiffi
2

p ; ð2:4Þ

where h, s, and ϕ are CP-even modes, ηs and ηϕ areCP-odd
modes, and v, vs, and vϕ are the VEVs of H, S, and Φ,
respectively. The CP phase of the cubic term Φ�S2 is
eliminated by the field redefinition ofΦ. In the limit μc → 0,

TABLE II. The content of fermions in the SOð10Þ model is
shown in the GPS ¼ SUð4ÞC × SUð2ÞL × SUð2ÞR basis, where
the fermions belong to ð1=2; 0Þ under SLð2;CÞ. The Uð1ÞB−L
charge QB−L is given by Uð1Þð⊂ SUð4Þ=SUð3ÞÞ [30].

Ψ16
SOð10Þ 16

ψ ð4;2;1Þ ψ ð4̄;1;2Þ
GPS ð4; 1; 2Þ ð4̄; 1; 2Þ

QL L ucR dcR ecR νcR

SUð3Þc 3 1 3̄ 3̄ 1 1
SUð2ÞL 2 2 1 1 1 1
Uð1ÞY þ1=6 −1=2 −2=3 þ1=3 þ1 0
Uð1ÞB−L þ1=3 −1 −1=3 −1=3 þ1 þ1

TABLE III. The content of scalar fields in the SOð10Þ model is
shown, where the scalars belong to (0, 0) under SLð2;CÞ; Φ10,
Φ16, and Φ126 are complex scalar fields. Here we assume all
unlisted components of GPS have OðMUÞ masses and also all
unlisted components ofGSM × Uð1ÞB−L haveOðMIÞ andOðMUÞ
masses, respectively. Other information is the same as in Table II.

Φ10 Φ16 Φ126
SOð10Þ 10 16 126

ϕð1;2;2Þ ϕð4̄;1;2Þ ϕð10;1;3Þ
GPS ð1; 2; 2Þ ð4̄; 1; 2Þ ð10; 1; 3Þ

H S Φ

SUð3Þc 1 1 1
SUð2ÞL 2 1 1
Uð1ÞY þ1=2 0 0
Uð1ÞB−L 0 þ1 þ2

2When we take into account the nonvanishing VEV of Φ210,
quadratic terms jHj2, jSj2, and jΦj2 and the cubic term Φ�S2 also
come from ðΦ10Φ10Þ1ðΦ210Φ210Þ1, ðΦ16Φ

�
16Þ1ðΦ210Φ210Þ1,ðΦ126Φ

�
126

Þ1ðΦ210Φ210Þ1, Φ16Φ16Φ126Φ210, respectively. There-
fore, each coefficient such as μc in Eq. (2.3) should be regarded as
the total value including all the corresponding terms such as
Φ16Φ16Φ126 and Φ16Φ16Φ126Φ210.
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there are two independent global Uð1Þ symmetries associ-
ated with the phase rotation of S andΦ. For μc ≠ 0, theUð1Þ
symmetries are merged to the Uð1ÞB−L (or Uð1ÞX) sym-
metry. Once Uð1ÞB−L is broken, one of two CP-odd modes
is absorbed by theUð1ÞB−L gauge field denoted as Cμ, while
the other appears as a physical pNGB whose mass is
proportional to μc.
The scalar fields H, S, Φ have five modes; three of them

are CP-even scalar modes and the other two are CP-odd
modes. The mass matrix for the CP-even scalars in the
ðh; s;ϕÞ basis is given by

M2
even¼

0
BB@

λHv2 λHSvvs λHΦvvϕ

λHSvvs λSv2s λSΦvsvϕ−μcvs

λHΦvvϕ λSΦvsvϕ−μcvs λΦv2ϕþ μcv2s
2vϕ

1
CCA:

ð2:5Þ

Since the matrix is real and symmetric, it can be diagon-
alized by a real orthogonal matrix. The gauge eigenstates
ðh; s;ϕÞ are related with the mass eigenstates ðh1; h2; h3Þ as

0
B@

h

s

ϕ

1
CA ¼ Ue

0
B@

h1
h2
h3

1
CA; ð2:6Þ

where the approximate form of the real orthogonal matrix
and its mixing angle are given by

Ue ≃

0
BBB@

1 0 λHΦv
λΦvϕ

0 1 λSΦv
λΦvϕ

− λHΦv
λΦvϕ

− λSΦv
λΦvϕ

1

1
CCCA
0
BBB@

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

1
CCCA;

ð2:7Þ

tan 2θ ≃
2vvsðλHSλΦ − λHΦλSΦÞ

v2ðλ2HΦ − λHλΦÞ − v2sðλ2SΦ − λSλΦÞ
: ð2:8Þ

The masses of ðh1; h2; h3Þ are given by

m2
h1
≃ λHv2 −

λ2HΦλS − 2λHSλHΦλSΦ þ λΦλ
2
HS

λSλΦ − λ2SΦ
v2; ð2:9Þ

m2
h2
≃
λSλΦ − λ2SΦ

λΦ
v2s þ

ðλΦλHS − λHΦλSΦÞ2
λΦðλSλΦ − λ2SΦÞ

v2; ð2:10Þ

m2
h3
≃ λΦv2ϕ: ð2:11Þ

The mass eigenstate h1 is identified as the SM-like Higgs
boson with the massmh1 ≃ 125 GeV, h2 is a light CP-even
scalar, and h3 is a heavy CP-even scalar.
The mass matrix of the CP-odd scalars in the gauge

eigenstates ðηs; ηϕÞ is given by

M2
odd ¼

μc
2vϕ

�
4v2ϕ −2vsvϕ

−2vsvϕ v2s

�
: ð2:12Þ

The gauge eigenstates ðηs; ηϕÞ are related with the mass
eigenstates ðχ; χ̃Þ as

�
ηs

ηϕ

�
¼ Uo

�
χ

χ̃

�
; ð2:13Þ

where the real orthogonal matrix is given by

Uo ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2s þ 4v2ϕ
q �

2vϕ vs
−vs 2vϕ

�
: ð2:14Þ

By using the 2 × 2 real orthogonal matrix Uo, the mass
eigenvalues of ðχ; χ̃Þ are given by

m2
χ ¼

ðv2s þ 4v2ϕÞμc
4vϕ

; ð2:15Þ

m2
χ̃ ¼ 0: ð2:16Þ

The χ̃ is the NGB absorbed by the Uð1ÞB−L gauge boson
Cμ, and χ is the pNGB identified as DM in the paper.

B. Gauge sector

The gauge kinetic term of the SOð10Þ can be canonically
normalized at the unification scale MU as in Eq. (2.1). In
general, the kinetic-mixing term of multiple Uð1Þ sym-
metries are allowed for the case of at least two Abelian
groups because a field strength itself is gauge-invariant for
abelian groups, while that is not gauge-invariant for non-
Abelian groups. So, in the energy scale MI < μ < MU,

TABLE IV. The content of gauge fields in the SOð10Þ model is
shown, where the gauge fields belong to ð1=2; 1=2Þ under
SLð2;CÞ; Other information is the same as in Tables II
and III.

Aμ

SOð10Þ 45

G0
μ Wμ W0

μ

GPS ð15; 1; 1Þ ð1; 3; 1Þ ð1; 1; 3Þ
Gμ Cμ Wμ Z0

μ

SUð3Þc 8 1 1 1
SUð2ÞL 1 1 3 1
Uð1ÞY 0 0 0 0
Uð1ÞB−L 0 0 0 0
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there is the gauge kinetic mixing of GPS. At the scale
μ ¼ MI , there are two Uð1Þs, i.e., Uð1ÞY and Uð1ÞB−L
although one of the Uð1Þs, which is the Uð1ÞB−L, is broken
at the scale. It is generated by threshold corrections or via
RGE flows. In SOð10Þ models, SOð10Þ=ðSUð3ÞC ×
SUð2ÞLÞ contains Uð1ÞY and Uð1ÞB−L as two independent
Uð1Þ s, while they are not orthogonal. In fact, Uð1ÞY is
orthogonal to Uð1ÞXð⊂ SOð10Þ=SUð5ÞÞ; Uð1ÞB−L is
orthogonal to Uð1ÞRð⊂ SUð2ÞR). Therefore, it is expected
that the kinetic mixing parameter between Uð1ÞY and
Uð1ÞB−L denoted as ϵ is nonzero at classical level.
To determine the value of the kinetic mixing parameter

betweenUð1ÞY andUð1ÞB−L, we focus on the kinetic terms
of the gauge fields. First, from Eq. (2.1), the gauge kinetic
term of SOð10Þ is given by

Lgauge ¼ −
1

2
tr½FμνFμν�: ð2:17Þ

Next, the gauge kinetic terms of GPS are given by

Lgauge ∋ −
1

2
tr½G0

μνG0μν� − 1

4
Wa

μνWaμν −
1

4
W0a

μνW0aμν;

ð2:18Þ

where G0
μν, Wa

μν, and W0a
μν stand for the field strengths of

SUð4ÞC, SUð2ÞL, and SUð2ÞR, respectively; the gauge
kinetic terms and mass terms of SOð10Þ=GPS are omitted
atMU. The gauge coupling constants are running fromMU
to MI . Third, the SUð3ÞC × SUð2ÞL ×Uð1ÞR ×Uð1ÞB−L
are given by

Lgauge ∋ −
1

2
tr½GμνGμν� − 1

4
Wa

μνWaμν −
1

4
B0
μνB0μν

−
1

4
C0
μνC0μν; ð2:19Þ

where Gμν, B0
μν and C0

μν stand for the field strength of
SUð3ÞCð⊂ SUð4ÞCÞ, Uð1ÞRð⊂ SUð2ÞRÞ, and Uð1ÞB−Lð⊂ S
Uð4ÞC=SUð3ÞCÞ, respectively; the gauge kinetic terms and
mass terms of SUð4ÞC=ðSUð3ÞC ×Uð1ÞB−LÞ and SUð2ÞR=
Uð1ÞR are omitted at MI. Further, by using the following
GLð2;RÞ transformation

Uð1ÞY
Uð1ÞB−L

∶
�
Bμ

Cμ

�
¼

�
1 − tan ϵ

0 1
cos ϵ

��
B0
μ

C0
μ

�

≕UGK

�
B0
μ

C0
μ

�
∶
Uð1ÞR
Uð1ÞB−L

;

ð2:20Þ

we can change the basis of Uð1Þs from Uð1ÞR ×Uð1ÞB−L
to Uð1ÞY ×Uð1ÞB−L;

−
1

4
B0
μνB0μν −

1

4
C0
μνC0μν ¼ −

1

4
BμνBμν −

1

4
CμνCμν

−
sin ϵ
2

CμνBμν; ð2:21Þ

where Bμν and Cμν stand for the field strength of Uð1ÞY and
Uð1ÞB−L, respectively; ϵ is the kinetic mixing parameter
between Uð1ÞY and Uð1ÞB−L. In the case, since the Uð1ÞY
generator is given by the following linear combination of
Uð1ÞR and Uð1ÞB−L

IY ¼
ffiffiffi
3

5

r
I3R þ

ffiffiffi
2

5

r
IB−L: ð2:22Þ

Due to the orthogonality, the kinetic mixing parameter ϵ at
μ ¼ MI is given by

ϵ ¼ − tan−1
ffiffiffi
2

3

r
: ð2:23Þ

The Lagrangian for the electromagnetic neutral part of the
SUð2ÞL ×Uð1ÞY × Uð1ÞB−L gauge fields including mass
terms generated by the VEVs of the spontaneous SUð2ÞL ×
Uð1ÞY and Uð1ÞB−L breaking scalar fields is given by

L ¼ −
1

4
BμνBμν −

1

4
W3

μνW3μν þ 1

2
M2

Z̄ZμZμ

−
1

4
CμνCμν þ 1

2
M2

CCμCμ −
sin ϵ
2

CμνBμν; ð2:24Þ

where Zμ ¼ cos θWW3
μ − sin θWBμ is the usual Z boson, θW

is the Weinberg angle tan θW ≔ g1=g2; g1 and g2 stand for
theUð1ÞY and SUð2ÞL coupling constants, respectively. The
mass parameters are given by

M2
Z̄ ¼ g21 þ g22

4
v2; M2

C ¼ g2B−Lðv2s þ 4v2ϕÞ; ð2:25Þ

where gB−L is the gauge coupling constant of Uð1ÞB−L.
To discuss the physical implications of Uð1ÞB−L gauge

boson, we requires both diagonalizing the field strength
terms and the mass terms. First, we diagonalize the kinetic
term in Eq. (2.24) by using the following GLð2;RÞ
transformation:

Uð1ÞY
Uð1ÞB−L

∶
�
Bμ

Cμ

�
¼

�
1 − tan ϵ

0 1
cos ϵ

��
B̂μ

Ĉμ

�

¼ UGK

�
B̂μ

Ĉμ

�
; ð2:26Þ

where B̂μ and Ĉμ stand for the gauge fields of the Uð1ÞY
and “Uð1ÞB−L” in the physical basis. The transformation is
exactly the same as that in Eq. (2.20). That is, “Uð1ÞB−L”
can be identified as Uð1ÞXð⊂ SOð10Þ=SUð5ÞÞ. Then, the
gauge kinetic terms in Eq. (2.24) become

PSEUDO-NAMBU-GOLDSTONE DARK MATTER MODEL INSPIRED … PHYS. REV. D 104, 035011 (2021)

035011-5



LGK ¼ −
1

4
B̂μνB̂

μν −
1

4
Ŵ3

μνŴ
3μν −

1

4
ĈμνĈ

μν: ð2:27Þ

Next, we consider the physical eigenstate via an Oð3Þ
rotation by diagonalizing the mass terms that arise after

both Uð1ÞB−L and SUð2ÞL ×Uð1ÞY breaking. One mass
eigenstate is massless corresponding to the photon Aμ,
while the other two denoted Z and Z0 receive masses. The
mass terms of the neutral gauge boson in terms of
ðBμ;W3

μ; CμÞ is given by

Lmass ¼
1

2
ðBμW3

μCμÞ

0
BB@

sin2θWM2
Z̄ − sin θW cos θWM2

Z̄ 0

− sin θW cos θWM2
Z̄ cos2θWM2

Z̄ 0

0 0 M2
C

1
CCA
0
BB@

Bμ

W3μ

Cμ

1
CCA: ð2:28Þ

By using GLð2;RÞ transformation in Eq. (2.26), we change the basis whose kinetic term is diagonalized as below:

Lmass ¼
1

2
ðB̂μW3

μĈμÞŨT
GK

0
BB@

sin2θWM2
Z̄ − sin θW cos θWM2

Z̄ 0

− sin θW cos θWM2
Z̄ cos2θWM2

Z̄ 0

0 0 M2
C

1
CCAŨGK

0
BB@

B̂μ

W3μ

Ĉμ

1
CCA; ð2:29Þ

where

ŨGK ≔

0
BB@

1 0 − tan ϵ

0 1 0

0 0 1
cos ϵ

1
CCA: ð2:30Þ

The above mass matrix is a real symmetric matrix. In fact, it
can be diagonalized by using a real orthogonal matrix:

UG ¼

0
BB@

cos θW − sin θW 0

sin θW cos θW 0

0 0 1

1
CCA
0
BB@

1 0 0

0 cos ζ − sin ζ

0 sin ζ cos ζ

1
CCA;

ð2:31Þ

where the mixing angle ζ is given by

tan 2ζ ¼ −2M2
Z sin θW sin ϵ cos ϵ

M2
C −M2

Zðcos2 ϵ − sin2 θW sin2 ϵÞ : ð2:32Þ

From the above, we find the masses of Aμ, Zμ, and Z0
μ as

M2
A ¼ 0; ð2:33Þ

M2
Z ¼ 1

2

�
M̄2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̄4 −

4M2
Z̄M

2
C

cos2ϵ

s �
; ð2:34Þ

M2
Z0 ¼ 1

2

�
M̄2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̄4 −

4M2
Z̄M

2
C

cos2ϵ

s �
; ð2:35Þ

where M̄2 is given by

M̄2 ≔ M2
Z̄ð1þ sin θW tan2 ϵÞ þ M2

C

cos2 ϵ
: ð2:36Þ

In this section, we find that the gauge kinetic mixing ϵ in
Refs. [19,20] is regarded as the mixing angle. In
Appendix A, we will show this more explicitly.

III. GAUGE COUPLING CONSTANTS

To determine such as the Uð1ÞB−L breaking scale, i.e.,
intermediate scale MI , and magnitude of the gauge cou-
pling constant of the Uð1ÞB−L, we discuss the RGEs for
gauge coupling constants running among the electroweak
scale MZ, the intermediate scale MI , and the unification
scale MU.
The RGE for the gauge coupling constant αiðμÞ ≔

g2i ðμÞ=4π at one-loop level is given in, e.g., Refs.
[29,30] by

d
d logðμÞ α

−1
i ðμÞ ¼ −

bi
2π

; ð3:1Þ

where i stands for a gauge group G; e.g., 4C stands for the
gauge coupling constant of SUð4ÞC, and the beta function
coefficient is given by

bi ¼ −
11

3

X
Vector

TðRVÞ þ
2

3

X
Weyl

TðRFÞ þ
1

6

X
Real

TðRSÞ;

ð3:2Þ
where Vector, Weyl, and Real stand for real vector, Weyl
fermion, and real scalar fields, respectively. Since the vector
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bosons are gauge bosons, they belong to the adjoint
representation of the Lie group G: TðRVÞ ¼ C2ðGÞ.
C2ðGÞ is the quadratic Casimir invariant of the adjoint
representation of G, and TðRiÞ is a Dynkin index of the
irreducible representation Ri of G. Note that when the Lie
group G is spontaneously broken into its Lie subgroup G0,
it is convenient to use the irreducible representations of G0.
(For the Dynkin index and the branching rules, see, e.g.,
Refs. [30,45] or calculated by using appropriate computer
programs such as Susyno [46], LieART [47,48], and
GroupMath [49]. For the RGEs at the two-loop level,
see, e.g., Refs. [50–52].)
Let us consider the RGEs for gauge coupling constants

in the pNGB DM model shown in Tables II, III, and IV.
For the energy scale between MZ < μ < MI and
MI < μ < MU, we use the RGEs for the gauge coupling
constants of GSM and GPS, respectively. In the following
calculation, we assume that there is only one intermediate
scale MI and one unification scale MU, which should be
recognized as effective scales.
We can obtain the beta function coefficients of the gauge

coupling constants of GSM and GPS by using the generic
RGE in Eq. (3.2) and the matter content of the model given
in Tables II, III, and IV. The beta function coefficients of
GSM in MZ < μ < MI are given by

0
B@

b3C
b2L
b1Y

1
CA ¼

0
B@

−7
−19=6
þ41=10

1
CA; ð3:3Þ

where i ¼ 3C; 2L; 1Y stand for SUð3ÞC, SUð2ÞL, Uð1ÞY ,
respectively, and we took the SUð5Þ normalization for
Uð1ÞY . (The values of bi are the same as the ordinary SM.)
The beta function coefficients of GPS in MI < μ < MU are
given by

0
B@

b4C
b02L
b2R

1
CA ¼

0
B@

−22=3
−3

þ13=3

1
CA; ð3:4Þ

where i ¼ 4C; 2L; 2R stand for SUð4ÞC, SUð2ÞL, SUð2ÞR,
respectively. To distinguish the beta function coefficient of
the SUð2ÞL in GSM and that in GPS, we use unprimed and
primed, and the same notation is used below.
To solve the above RGEs, we need to set the initial

conditions at μ ¼ MZ. The gauge coupling constants must
satisfy the matching conditions between GSM and GPS at
μ ¼ MI and also the matching condition between GPS and
SOð10Þ at μ ¼ MU. They are listed below.

(i) The input parameters for the three SM gauge
coupling constants at μ ¼ MZ ¼ 91.1876�
0.0021 GeV are given in Ref. [53]:

α3CðMZÞ ¼ 0.1181� 0.0011;

α2LðMZÞ ¼
αEMðMZÞ

sin2θWðMZÞ
;

α1YðMZÞ ¼
5αEMðMZÞ

3cos2θWðMZÞ
; ð3:5Þ

where the experimental values of the EM gauge
coupling constant αEM and the Weinberg angle are
given as

α−1EMðMZÞ ¼ 127.955� 0.010;

sin2θWðMZÞ ¼ 0.23122� 0.00003: ð3:6Þ

(ii) The matching conditions between GSM and GPS at
μ ¼ MI are given by

α3CðMIÞ ¼ α4CðMIÞ; α2LðMIÞ ¼ α02LðMIÞ;

α−11Y ðMIÞ ¼
3

5
α−12RðMIÞ þ

2

5
α−14CðMIÞ; ð3:7Þ

where they are determined by the normalization
conditions of the generators of GPS and GSM. (See
e.g., Ref. [54] at one-loop level; Refs. [55,56] at two-
loop level.)

(iii) The matching condition at the unification scale MU
is given by

α4CðMUÞ ¼ α02LðMUÞ ¼ α2RðMUÞ: ð3:8Þ

By using the RGEs of GSM and GPS and the matching
conditions at μ ¼ MI andMU, we can obtainMI andMU as

MI ¼ MZ exp

�
A1B3 − A3B1

A2B3 − A3B2

�
;

MU ¼ MZ exp
��

A1B3 − A3B1

A2B3 − A3B2

�
þ
�
A1B2 − A2B1

A3B2 − A2B3

��
;

ð3:9Þ

where

A1 ¼ α−13CðMZÞ − α−12LðMZÞ; A2 ¼
b3C − b2L

2π
;

A3 ¼
b4C − b02L

2π
; B1 ¼

5

3
ðα−13CðMZÞ − α−11Y ðMZÞÞ;

B2 ¼
5

3

b3C − b1Y
2π

; B3 ¼
b4C − b2R

2π
: ð3:10Þ

The gauge coupling constants such as α4CðMUÞ and
α02LðMUÞ are also expressed by the Z boson mass MZ,
the gauge coupling constants at μ ¼ MZ and the beta
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function coefficients of GSM and GPS bis. (The detail
analysis is given in Appendix B.)
By substituting bi in Eqs. (3.3) and (3.4) and the

parameters at μ ¼ MZ in Eqs. (3.5) and (3.6) into the
expressions of MI and MU in Eq. (3.9), we find the values
of the MI and MU as

MI ¼ ð1.261� 0.242Þ × 1011 GeV;

MU ¼ ð2.057� 0.688Þ × 1016 GeV: ð3:11Þ

Note that we ignore such as mass splitting at the inter-
mediate and unification scales, so the uncertainty must be
larger. The values of the model parameters at μ ¼ MI are
given by

α−14CðMIÞ ¼ 31.92� 0.23; α0−12L ðMIÞ ¼ 40.19� 0.10;

α−12RðMIÞ ¼ 54.20� 0.26: ð3:12Þ

We also find the gauge coupling constants of Uð1ÞB−L and
Uð1ÞR at μ ¼ MI

gB−LðMIÞ ¼ 0.3843� 0.0009;

gRðMIÞ ¼ 0.4815� 0.0011; ð3:13Þ

by using gB−LðMIÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3π
2
α4CðMIÞ

q
and gRðMIÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4πα2RðMIÞ
p

. Since the standard normalization of
Uð1ÞB−L is not the same as that of “Uð1ÞB−L”
ð⊂ SUð4ÞC=SUð3ÞCÞ, the modified normalization factor
is used. The unified gauge coupling constants at μ ¼ MU is
given by

α−1U ¼ 45.92� 0.50: ð3:14Þ

The energy dependence of the gauge coupling constants
αiðμÞ in the SOð10Þ pNGB model is plotted in Fig. 1.
As the same as the usual GUT models, nucleon can decay

via the so-called leptoquark gauge bosons. The proton
lifetime via the gauge bosons is roughly estimated as τ ≃
M4

U=α
2
Um

5
p [53,54,57], wheremp is the proton mass and the

gauge boson masses are assumed to beMU. From the values
of MU and αU given in Eqs. (3.11) and (3.14), the proton
lifetime τ ≃ 1.1 × 1037 years is predicted. It is far from
the current constraint τðp → eþπ0Þ > 2.4 × 1034 years at
90% CL [58]; MU > ð4.3 − 4.8Þ × 1015 GeV for
40≲ α−1U ≲ 50. There is contribution for the proton decay
modes via colored scalar fields shown in Table III. The color
triplet component of Φ10 has assumed to have OðMUÞ, so
the contribution for the proton decay via the Yukawa

coupling constant yðabÞ10 of the term Φ10ðΨ ðaÞ
16 Ψ

ðbÞ
16 Þ10 in

Eq. (2.1) is small. Color nonsinglet components of Φ126
have assumed to OðMIÞ, so the contribution for the proton

decay via the Yukawa coupling constant yðabÞ
126

of the term

Φ�
126

ðΨ ðaÞ
16 Ψ

ðbÞ
16 Þ126 in Eq. (2.1) can be larger than the current

experimental bounds. This leads to an upper bound of the

values of yðabÞ
126

in the model.
We comment on proton decay via a colored Higgs

scalar or leptoquark scalar denoted as S1 in Ref. [59],
which belongs to ð3; 1; 1=3Þ under GSM. In the following,
we omit Clebsch-Gordan coefficients for simplicity.
When the leptoquark scalar S1 has di-quark and quark-
lepton couplings, there are proton decay modes such as
p → eþπ0, and the proton lifetime is roughly estimated as
τ ≃m4

LQ=ðjyj2jzj2m5
pÞ, where mLQ is a leptoquark mass, y

and z represent generic values of relevant Yukawa
coupling constants of the leptoquark with the quark-
lepton and quark-quark pairs, respectively. For example,

1000 107 1011 1015 1019
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50

60

1000 107 1011 1015 1019

10

20

30

40
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60

FIG. 1. The gauge coupling constants αi vs the energy scale μ for the SM (the left figure) and the SOð10Þ pNGB model (the right
figure) are shown. The left figure shows the energy dependence of three gauge coupling constants of SUð3ÞC, SUð2ÞL, and Uð1ÞY , α3C,
α2L, and α1Y in all the energy ranges μ ¼ ½MZ;MH�, where MH ¼ 1019 GeV. The right figure shows α3C, α2L, and α1Y in the
energy ranges μ ¼ ½MZ;MI �; α4C, α2L, α2R in the energy ranges μ ¼ ½MI;MH�, where the value of α3C is fixed as the central value
α3CðMZÞ ¼ 0.1181 [53].
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for the leptoquark with the intermediate scale mass
mLQ ¼ MI and the universal Yukawa coupling constants
jyj ¼ jzj, we obtain a constraint for the Yukawa coupling
constants jyj ¼ jzj≲ 4.2 × 10−6 from the current con-
straint τðp → eþπ0Þ > 2.4 × 1034 years at 90% CL. To
apply this for the current model, for the scalar field S1 in
10 of SOð10Þ, which belongs to ð6; 1; 1Þ under GPS, the
mass of the leptoquark scalar is the unification scale mass
mLQ ¼ MU and the Yukawa coupling constants are

roughly expected as jyj ¼ jzj ≃ jyð11Þ10 j. The current con-
straint τðp → eþπ0Þ > 2.4 × 1034 years at 90% CL leads

to jyð11Þ10 j ≲ 0.68. To realize the mass of up quark, yð11Þ10 is
roughly Oð10−5Þ, so it is consistent with the current
constraint, where the actual values of the Yukawa
coupling constants depend on how to realized the
observed quark and lepton masses. Next, for the scalar
fields S

1ð10;1;3Þ and S1ð1;1;3Þ in 126 of SOð10Þ, which

belongs to ð10; 1; 3Þ and (6,1,1) under GPS. The lepto-
quark scalar S

1ð10;1;3Þ and S1ð6;1;1Þ have the intermediate

scale mass MI and the unification scale mass MU,
respectively. For S

1ð10;1;3Þ, the Yukawa coupling couplings
are given by jyj ¼ 0 and jzj ≃ jy126j, so the proton decay
mediated by S

1ð10;1;3Þ does not occur. Therefore, this does

not lead to any constraint for yðabÞ
126

. For S1ð6;1;1Þ, the

Yukawa coupling couplings are given by
jyj ¼ jzj ≃ jy126j. the current constraint τðp → eþπ0Þ >
2.4 × 1034 years at 90% CL leads to jyð11Þ

126
j≲ 0.68 as the

same as S1 in 10 of SOð10Þ. In the above discussion, we
assumed S

1ð10;1;3Þ does not mix with S1ð6;1;1Þ, but they have
the same quantum numbers, so it depends on the structure
of the scalar potential, they can be mixed in general.
Even when the mixing parameter denoted as ε between
S
1ð10;1;3Þ and S1ð6;1;1Þ is about the ratio of the masses

ε ≃MI=MU ≃ 6.1 × 10−6, the current constraint τðp →
eþπ0Þ > 2.4 × 1034 years at 90% CL leads to the con-
straint for the first generation Yukawa coupling constant

jyð11Þ
126

j≲ 1.7 × 10−3. (For ε ¼ 1, jyð11Þ
126

j ≲ 4.2 × 10−6.)
Further, we comment on the relation between neutrino

masses and the Yukawa coupling constants yðabÞ
126

of
the cubic term Φ16Φ16Φ126. Since the right-handed neu-

trino masses are given by MðabÞ
N ¼ yðabÞ

126
vϕ, we obtain

2.1 × 108 GeV≲Mð11Þ
N ¼ yð11Þ

126
vϕ ≲ 1.4 × 1011 GeV for

1.7 × 10−3 ≲ yð11Þ
126

≲ 0.68 and vϕ ¼ MI . From the type-I

seesaw mechanism, the light neutrino mass is roughly

mð11Þ
ν ≃ jyð11Þ10 vj2=Mð11Þ

N when we ignore the off-diagonal

part of MðabÞ
N . Therefore, 4.4 × 10−8 eV≲mð11Þ

ν ≲ 2.9 ×

10−5 eV for 1.7 × 10−3 ≲ yð11Þ
126

≲ 0.68, jyð11Þ10 j ≃ 10−5 and

v ≃ 246 GeV. The proton decay constraints only a part of

the Yukawa coupling constants yðabÞ
126

, so it is expected that
the observed neutrino masses can be reproduced, but to
perform it properly, we need to investigate how to repro-
duce the observed quark and charged lepton masses. We
leave it for a future study.
Up to this point, we only consider the specific symmetry

breaking pattern, SOð10Þ broken to GI ¼ GPS at μ ¼ MU
in Eq. (1.2). We comment on other cases GI ¼ GPS ×D,
GLR, GLR ×D discussed in, e.g., Refs. [41,55,56,60],
where D stands for a discrete Z2 left-right exchange
symmetry [61,62]. (Note that the same analysis in
SOð10Þ GUT models whose matter content is slightly
different from the present model has been already discussed
in e.g., Refs. [55,56] by using two-loop RGEs [63] and the
corresponding matching condition [64,65].) To realize the
appropriate symmetry breaking patterns, we need different
SOð10Þ breaking Higgs fields; each GI ¼ GPS, GPS ×D,
GLR, GLR ×D is realized by the VEV of a scalar field in,
e.g., 210, 54, 45, 210 of SOð10Þ, respectively.
The values of MI , MU, and α−1U for several matter

contents and symmetry breaking patterns are summarized
in Table V, which are estimated by using each analytical
solution shown in Appendix B. Substituting the values of
MU and α−1U for the GPS ×D and GLR ×D cases into
τ ≃M4

U=α
2
Um

5
p, rapid proton decay is expected. For the

GLR case, the proton decay via leptoquark gauge bosons is
consistent with the current experimental constraints, but the
pNGB cannot be identified as DM because pNGB decays
too rapidly or the observed relic abundance cannot be
reproduced.

IV. LONG-LIVED pNGB AS DM CANDIDATE

The DM lifetime should be longer than the age of
the universe, 1017 s at least. The bound on DM lifetime
becomes stronger depending on DM decay channels due to
the constraint of cosmic-ray observations. In particular, the
bound from gamma-ray observations is strong as roughly
τχ ≳ 1027 s for two body decays [66]. Since the DM
lifetime is proportional to the power of the VEV vϕ, it
becomes longer for larger vϕ. The evaluation of DM
lifetime without GUT has been studied in Refs. [19,20],
and it has turned out that the VEV should roughly be vϕ ≳
1013 GeV in order to be consistent with the gamma-ray
observations if three body decays χ → hiff̄ and Zff̄ can
occur. Since in the current GUT pNGB model the kinetic
mixing sin ϵ and the VEV vϕ are fixed to be sin ϵ ¼ −

ffiffiffiffiffiffiffiffi
2=5

p
and vϕ ≃ 1011 GeV by the requirement of the gauge
coupling unification, the three body decays should kine-
matically be forbidden. Therefore we consider the mass
region mχ ≲Oð100Þ GeV and estimate dominant four
body decay channels.
Before proceeding to four body decays, we comment on

the two body decay channel χ → νν, which is possible even
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in the case mχ ≲Oð100Þ GeV. Similarly to the Uð1ÞB−L
model in the previous paper [19], this process occurs via the
scalar mixing given by Eq. (2.14) and the mixing between

the left-handed and right-handed neutrinos after the electro-
weak symmetry breaking. The decay width for this channel
is calculated as

Γνν ¼
mχ

64π

v2s
v4ϕ

X
i

m2
νi ¼ 5 × 10−59 GeV

�
mχ

100 GeV

��
vs

1 TeV

�
2
�
1011 GeV

vϕ

�
4X

i

�
mνi

0.1 eV

�
2

; ð4:1Þ

where mνi is the small neutrino mass eigenvalues. Equa-
tion (4.1) roughly corresponds to the lifetime
τνν ¼ Oð1034Þ s, which is too small to be observed in
neutrino cosmic-rays [67,68] because of the suppression by
the small neutrino mass squared m2

νi . Note that since the
scale of the VEV in the GUT pNGB model is vϕ ≃
1011 GeV which is much smaller than the previous analysis
[19], the order of the lifetime for this channel is much
shorter. However it is still too long to be detectable by
experiments and observations.
The four body decay processes χ → ff̄f0f̄0 mediated by

hi; Z; Z0 can occur as shown in Fig. 2. Note that if f and f0
are identical particles, additional diagrams exist due to
interference. We numerically evaluated the decay width
for all the four body decay processes using CalcHEP
[69], and furthermore we took into account three body
decay processes when these are kinematically possible. The

results are shown in Fig. 3 in (mχ , vϕ) plane where the
second Higgs mass is fixed to be mh2 ¼ 70 GeV (left) and
130 GeV (right). The orange region below the solid, dashed,
and dot-dashed lines are the region where the DM lifetime is
shorter than the conservative bound τχ ¼ 1027 s for the
Higgs mixing angle sin θ ¼ 10−1; 10−2; 10−3, respectively.3

The horizontal black dotted line denotes vϕ ¼ MI ¼
1011.10 GeV. The most part of the region in the plots is
dominated by the four body decays except for the region
mχ ≳ 60 GeV in the left panel where the three body decay
χ → h2ff̄ can open up. One can read off the upper bound of
the DM mass mχ for a given mixing angle sin θ.

TABLE V. The values ofMI ,MU, and α−1U for several matter contents and symmetry breaking patterns are summarized. The top of the
table corresponds to the present SOð10Þ pNGB model. The first, second, and third columns represent the intermediate scale group GI ,
the matter content for scalar sector at μ ¼ MI , the beta function coefficients bj ofGI , respectively. The fourth and fifth columns show the
values of MI , MU , and α−1U . The subscript in the second column stands for each SOð10Þ representation.

log10ðM=1½GeV�Þ
Group GI Scalars at μ ¼ MI bj MI MU α−1U

GPS ð1; 2; 2Þ10
0
B@ b4C

b02L
b2R

1
CA ¼

0
B@ − 22

3

−3
þ 13

3

1
CA

11.10� 0.08 16.31� 0.15 45.92� 0.50
ð4̄; 1; 2Þ16
ð10; 1; 3Þ126

GPS ×D ð1; 2; 2Þ10
0
B@ b4C

b02L
b2R

1
CA ¼

0
B@ −4

þ 13
3þ 13
3

1
CA

13.71� 0.03 15.22� 0.04 40.82� 0.13
ð4; 2; 1Þ16
ð4̄; 1; 2Þ16
ð10; 1; 3Þ126
ð10; 3; 1Þ126

GLR ð1; 2; 2; 0Þ10 0
B@

b03C
b02L
b2R
bB−L

1
CA ¼

0
B@

−7
−3
− 13

6þ 23
4

1
CA

8.57� 0.06 16.64� 0.13 46.13� 0.41
ð1; 1; 2; 1Þ16
ð1; 1; 3; 2Þ126

GLR ×D ð1; 2; 2; 0Þ10 0
B@

b03C
b02L
b2R
bB−L

1
CA ¼

0
B@

−7
− 13

6

− 13
6þ 15
2

1
CA

10.11� 0.04 15.57� 0.09 43.38� 0.30
ð1; 1; 2; 1Þ16
ð1; 2; 1; 1Þ16
ð1; 1; 3; 2Þ126
ð1; 3; 1;−2Þ126

3The actual bound on the DM lifetime for four body decays is
weaker than τχ ≳ 1027 s since the energy of the emitted gamma
rays is softer than two body decays.
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Figure 4 shows the parameter space in (mχ , mh2) plane
for the Higgs mixing angle sin θ ¼ 10−1; 10−2, and 10−3

where vϕ ¼ MI . The region mχ ≳mh2 is strongly con-
strained by three body decay χ → h2ff̄ while the other
region is constrained by four body decays. In particular, if

the second Higgs mass is degenerate with the SM-like
Higgs boson (mh1 ≃mh2), the four body decay width can be
small and the constraint is weaken. This is because the
effective coupling χ − f − f0 mediated by h1 and h2
becomes small when mh1 ≃mh2 .
Thermal relic abundance of DM is calculated using

micrOMEGAs [70]. The results are shown in Fig. 5, where
the other parameters are fixed to bemh2 ¼ 70 GeV, sin θ ¼
0.05 in the left panel andmh2 ¼ 130 GeV and sin θ ¼ 0.05
the right panel. The red line denotes the parameter space
which can reproduce the observed relic abundance of DM
Ωχh2 ≃ 0.12 [4]. The purple region is excluded by the
constraints of the Higgs invisible decay and Higgs signal
strength [71,72], and the gray region is excluded by the
perturbative unitarity bound λS < 8π=3 [73]. The green and
orange region are ruled out by the constraints of the
gamma-ray observations for DM annihilations [74] and
four body decays [66], respectively. One can see that
the thermal relic abundance can be consistent with all
the constraints when the DM mass is rather close to the
resonances mχ ≲mhi=2. This is the characteristic due to
the requirement from the gauge coupling unification in the
current GUT pNGB model.

FIG. 2. The Feynman diagrams for the four body decays χ → ff̄f0f̄0 are shown.

FIG. 3. Parameter space in the (mχ , vϕ) plane where the second Higgs mass is fixed to bemh2 ¼ 70 GeV in the left and 130 GeV in the
right. The orange region is excluded by the bound of the gamma-ray observations (τχ ¼ 1027 s) for sin θ ¼ 10−1; 10−2 and 10−3.

FIG. 4. Parameter space in (mχ , hh2) plane, where the VEV is
fixed to be vϕ ¼ MI . The orange region is excluded by the bound
of the gamma-ray observations (τχ ¼ 1027 s) for sin θ ¼
10−1; 10−2 and 10−3.
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We comment on the allowed parameter space
mχ ≲mhi=2. For the second Higgs mass rather heavier than
the SM-like Higgs mass, the constraint of the gamma-ray
observations can be avoided only if the DM mass is light
enough mχ ≲ 35 GeV as can be seen from Fig. 4. On the
other hand, this mass region cannot be consistent with the
thermal relic abundance of DM since it is far from the Higgs
resonances. Therefore the mass region mh2 ≳mh1 is com-
pletely excluded as long as thermal production mechanism
of DM is assumed. For more precise calculations in the
regionmχ ≲mhi=2, the effect of the early kinetic decoupling
from the SM thermal bath should be taken into account
[75,76]. If this effect is included, one can expect that the red
line in Fig. 3 is shifted slightly upward.

V. SUMMARY

In this paper, we proposed an SOð10Þ pNGB DM model
in the framework of GUTs. Each Weyl fermion in 16 of
SOð10Þ contains one generation of quark and leptons. The
SM Higgs and two complex scalar fields H, S and Φ in the
previous gauged Uð1ÞB−L pNGB DM model are embedded
into scalar fields in 10, 16, and 126 of SOð10Þ. Assuming a
symmetry breaking pattern of SOð10Þ to GPS at μ ¼ MU,
and further to GSM at μ ¼ MI , the intermediate and unified
scales MI and MU, the gauge coupling constants of
Uð1ÞB−L, and the kinetic mixing parameter of between
Uð1ÞY and Uð1ÞB−L are determined by solving the RGEs
with appropriate matching conditions such as gauge cou-
pling unification at μ ¼ MU.
The DM lifetime without GUT has analyzed in

Refs. [19,20]. It suggests that the VEV should roughly be
the VEVof Φ vϕ ≳ 1013 GeV in order to be consistent with
the gamma-ray observations if three body decays χ → hiff̄
and Zff̄ are possible. In the current GUT pNGB model, the
kinetic mixing and the VEVare fixed to be sin ϵ ¼ −

ffiffiffiffiffiffiffiffi
2=5

p

and vϕ ≃ 1011 GeV, respectively. To satisfy the constraint
from the gamma-ray observations, the pNGBDMmass must
be mχ ≲Oð100Þ GeV to forbid the three body decays
kinematically. In the mass region, the dominant contribution
for DM decay channels comes from four body decay
channels χ → ff̄f0f̄0. We find that the thermal relic abun-
dance can be consistent with all the constraints when the DM
mass is rather close to the resonances mχ ≲mhi=2.
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APPENDIX A: KINETIC MIXING
AS MASS MIXING

As discussed in the main part of this paper, the gauge
kinetic mixing in Refs. [19,20] is regarded as the mixing
angle. In this appendix, we will show this explicitly. The
scalar fields in Refs. [19,20] are embedded into the scalars
of SOð10Þ shown in Table III as

Φ10 ⊃ ϕð1;2;2Þ ⊃ ϕð1;2;1=2Þ ¼ H; ðA1Þ

Φ16 ⊃ ϕð4̄;1;2Þ ⊃ ϕð1ðþ3Þ;1;−1=2Þ ¼ S; ðA2Þ

Φ126 ⊃ ϕð10;1;3Þ ⊃ ϕð1ðþ6Þ;1;−1Þ ¼ Φ: ðA3Þ

Here we will consider the following two symmetry break-
ing pattern:

FIG. 5. Parameter space thermally reproducing the observed relic abundance consistent with some other observations. The red line
represents the parameter space reproducing the correct thermal relic abundanceΩχh2 ≃ 0.12. The orange and green region are excluded by
gamma-ray observations coming from the DM decay and annihilations, respectively. The purple region are excluded by the constraints of
the Higgs invisible decay h1 → χχ and the Higgs signal strength. The gray region is perturbative unitarity bound λS > 8π=3.
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GPS → GSM; GPS → GLR → GSM: ðA4Þ

1. GPS → GSM

First, let us consider the following symmetry breaking
pattern

SUð4ÞC × SUð2ÞR⟶
hϕð1̄0;1;3Þi≠0;hϕð4̄;1;2Þi≠0

SUð3ÞC ×Uð1ÞY;
ðA5Þ

using minimal scalar fields Eqs. (A1)–(A3). This breaking
pattern is suitable for the pNGB dark matter model
embedding into an SOð10Þ GUT model because the
intermediate scale can be large enough to make the dark
matter candidate long-lived.
The covariant derivative of GPS gauge group acts on S

and Φ as

DμS ¼ ∂μSþ ig4G03̄;a
μ ISUð4ÞC

3̄ð−4Þ;aSþ igB−LEμQS
B−LS

þ i
gRffiffiffi
2

p W0þ
μ I

SUð2ÞRþ Sþ igRW03
μI

SUð2ÞR
3 S

¼ ∂μSþ ig4G03̄;a
μ ISUð4ÞC

3̄ð−4Þ;aSþ i
gRffiffiffi
2

p W0þ
μ I

SUð2ÞRþ S

þ igB−LEμS −
igR
2

W03
μS; ðA6Þ

DμΦ ¼ ∂μΦþ ig4G03;a
μ ISUð4ÞC

3ð4Þ;a Φþ igB−LEμQΦ
B−LΦ

þ i
gRffiffiffi
2

p W0þ
μ I

SUð2ÞRþ Φþ igRW03
μI

SUð2ÞR
3 Φ

¼ ∂μΦþ ig4G03;a
μ ISUð4ÞC

3ð4Þ;a Φþ i
gRffiffiffi
2

p W0þ
μ I

SUð2ÞRþ Φ

þ 2igB−LEμΦ − igRW03
μΦ; ðA7Þ

where Eμ is the gauge field associated with Uð1ÞB−L ⊂
SUð4ÞC and gB−L is the gauge coupling constant given by

gB−L ¼
ffiffi
3
8

q
g4. The B − L charge comes from the diagonal

component of SUð4Þ denoted by

QB−L ¼
ffiffiffi
8

3

r
ISUð4ÞC
15 ;

ISUð4ÞC
15 ¼

ffiffiffi
3

8

r
diagð1=3; 1=3; 1=3;−1Þ: ðA8Þ

G03;a
μ and G03̄;a

μ are color charged vector boson with the
representation 3ð4Þ and 3̄ð−4Þ of SUð3ÞC ×Uð1ÞB−L
belonging to 15 of SUð4ÞC respectively. (For the details
of the branching rules and the tensor products, see

Ref. [30].) These scalars are assumed to develop the
following VEVs,

hSi ¼ vsffiffiffi
2

p ; hΦi ¼ vϕffiffiffi
2

p ; ðA9Þ

and these gives the mass terms of the gauge fields

LSUð4ÞC×SUð2ÞR;mass ¼ G03;a†
μ M2

3;abG
03;bμ

þG03̄;a†
μ M2

3̄;ab
G03̄;bμ

þ g2R
4
ðv2s þ 2v2ϕÞW0−

μW0þμ

þ 1

2

�
v2s
4
þ v2ϕ

�
ð2gB−LEμ − gRW03

μÞ2;

ðA10Þ
where the mass matrices for the color charged vector

bosons G03;a
μ and G03̄;a

μ are defined by

M2
3;ab ¼

g24v
2
ϕ

2
tr
h
ðISUð4ÞC

3ð4Þ;a Þ†ISUð4ÞC
3ð4Þ;b

i
;

M2
3̄;ab

¼ g24v
2
s

2
tr
h
ðISUð4ÞC

3̄ð−4Þ;aÞ†I
SUð4ÞC
3̄ð−4Þ;b

i
: ðA11Þ

The last term of Eq. (A10) leads the mass mixing between
Uð1ÞB−L ⊂ SUð4ÞC and Uð1ÞR ⊂ SUð2ÞR, and the mass-
less direction becomesUð1ÞY in the SM gauge group. From
this term, the massive vector boson C0

μ and the orthogonal
massless gauge boson B0

μ are introduced by�
B0
μ

C0
μ

�
¼

�
cos ϵ sin ϵ

− sin ϵ cos ϵ

��
W03

μ

Eμ

�
; ðA12Þ

where the mixing angle is defined by

sin ϵ ¼ gRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2R þ 4g2B−L

p ; cos ϵ ¼ 2gB−Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2R þ 4g2B−L

p ;

ðA13Þ
and the mass of C0

μ becomes M2
C0 ¼ ðg2R þ 4g2B−LÞ

ðv2s=4þ v2ϕÞ. In this basis, the Lagrangian is

L ⊃ −
1

4
Wa

μνWaμν −
1

4
B0
μνB0μν −

1

4
C0
μνC0μν

þ 1

2
M2

C0C0
μC0μ. ðA14Þ

If the color charged vector bosons are dropped, the
covariant derivative is rewritten by using these bosons as

Dμ ⊃ ig1B0
μ þ igC0C0

μ

�
QB−L

2
− sin2 ϵQY

�
; ðA15Þ
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where the hypercharge is defined by

QY ¼ ISUð2ÞR
3 þQB−L

2
; ðA16Þ

and the couplings are given by

g1 ¼
2gRgB−Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2R þ 4g2B−L

p ; gC0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2R þ 4g2B−L

q
: ðA17Þ

a. Correspondence between the pNGB model [19,20]
and the SOð10Þ pNGB model

We will discuss the kinetic mixing in the GUT model.
First, from Eq. (A12), B0

μ is written by using ðW03
μ; EμÞ as

B0
μ ¼ W03

μ=cos ϵþ sin ϵEμ=cos ϵ, and the field redefinition
by cos ϵ leads the canonically normalized gauge kinetic
terms. The massive direction of broken Uð1Þ symmetry
does not change in this rewriting. Then Let us introduce
new fields after the rescaling by�

B0
μ

C0
μ

�
¼

�
1 sin ϵ

0 cos ϵ

��
Bμ

Cμ

�
;

�
Bμ

Cμ

�
¼

�
1 − tan ϵ

0 1=cos ϵ

��
B0
μ

C0
μ

�
; ðA18Þ

so that the massive direction does not change but the
massless component is replaced. The relation between
ðW03

μ; EμÞ and ðBμ; CμÞ is given by

�
W03

μ

Eμ

�
¼

�
cos ϵ sin ϵ

− sin ϵ cos ϵ

��
Bμ

Cμ

�
: ðA19Þ

The Uð1ÞB−L ×Uð1ÞR gauge sector in the Lagrangian
(A14) is rewritten by using these fields as

L ⊃ −
1

4
Wa

μνWaμν −
1

4
BμνBμν −

1

4
CμνCμν −

sin ϵ
2

BμνCμν

þ 1

2
M2

CCμCμ; ðA20Þ

withM2
C ¼ g2B−Lðv2s þ 4v2ϕÞ, and the covariant derivative is

given by

Dμ ⊃ igB−LEμQB−L þ igRW03
μI

SUð2ÞR
3

¼ igB−LCμQB−L þ ig1BμQY; ðA21Þ

where Eqs. (A16) and (A17) are used. Eqs. (A20) and
(A21) are parts of the Lagrangian of the gauged Uð1ÞB−L
pNGB model, and the gauge kinetic mixing is naturally
regarded as the mixing angle coming from the GUT
inspired symmetry breaking. The correspondence is sum-
marized in Table VI.

2. GPS → GLR → GSM

If the adjoint Higgs bosons ϕð15;1;1Þ and ϕð1;1;3Þ are
introduced in addition to the scalars Eqs. (A1)–(A3), these
VEVs break the Pati-Salam gauge symmetry as

TABLE VI. The correspondence table of the kinetic mixing and the gauge fields between the gauged Uð1ÞB−L
model [19,20] and SOð10Þ GUT model.

Gauged Uð1ÞB−L model [19] pNGB in SOð10Þ GUT
GSM × Uð1ÞB−L GPS

QY QY ¼ ISUð2ÞR
3 þ QB−L

2

QB−L QB−L ¼
ffiffi
8
3

q
ISUð4ÞC
15

Bμ Bμ in Eq. (A18)
B̂μ B0

μ in Eq. (A12)
Xμ Cμ in Eq. (A18)
X̂μ C0

μ in Eq. (A12)
g1 g1 ¼ 2gRgB−L=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2R þ 4g2B−L

p
gB−L gB−L ¼

ffiffi
3
8

q
g4

g2 gL
Dμ ¼ ∂μ þ igsGa

μI
SUð3ÞC
a þ ig2Wa

μI
SUð2ÞL
a Dμ ¼ ∂μ þ igsGa

μI
SUð3ÞC
a þ igLWa

μI
SUð2ÞL
a

þ ig1QYBμ þ igB−LQB−LXμ þ ig1QYBμ þ igB−LQB−LCμ

Kinetic mixing
Gauge kinetic mixing of Bμ and Xμ: ϵ Gauge kinetic mixing of Bμ and Cμ: ϵ
¼ free parameter ¼ mixing angle ϵ of ðW03

μ; EμÞ ↦ ðB0
μ; C0

μÞ
in Eq. (A14)
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SUð4ÞC→
hϕð15;1;1Þi≠0

SUð3ÞC ×Uð1ÞB−L; SUð2ÞR→
hϕð1;1;3Þi≠0

Uð1ÞR: ðA22Þ

By this breaking pattern, the covariant derivative of GPS
reduces to that of SUð3ÞC × SUð2ÞL ×Uð1ÞR3 ×Uð1ÞB−L
as

Dμ ¼ ∂μ þ igsGa
μI

SUð3ÞC
a þ igB−LEμQB−L

þ igLWa
μI

SUð2ÞL
a þ igRW03

μI
SUð2ÞR
3 ; ðA23Þ

where the B − L charge is defined by Eq. (A8) and the

gauge couplings are introduced by gs ¼ g4, gC ¼
ffiffi
3
8

q
g4.

The VEVs of S and ϕ (A9) break the residual gauge
symmetry as

SUð3ÞC × SUð2ÞL ×Uð1ÞR ×Uð1ÞB−L → GSM; ðA24Þ

and lead the mass term for the gauge bosons

LUð1ÞR3×Uð1ÞB−L;mass ¼
1

2

�
v2s
4
þ v2ϕ

�
ð2gB−LEμ − gRW03

μÞ2;

ðA25Þ

which is the same as the last term of Eq. (A10). In this
breaking pattern, the charged gauge bosons become mas-
sive via the VEV of the adjoint Higgs fields.
The mixing angle ϵ and correspondence between the

mixing angle and kinetic mixing are same in the previous
discussions.

APPENDIX B: RGEs FOR GAUGE COUPLING
CONSTANTS

Here we analyze the RGEs for gauge coupling constants
of GSM and GI ¼ GPS; GLR, and SOð10Þ in the pNGB DM
model. (For the RGE analysis, see, e.g., Ref. [54].)
The RGE for the gauge coupling constants given in

Eq. (3.1) can be solve as

α−1i ðμ1Þ ¼ α−1i ðμ0Þ −
bi
2π

log

�
μ1
μ0

�
: ðB1Þ

when the beta function coefficients bi are constant in the
energy range μ0 < μ < μ1. In the following, we apply the
solution for GSM, and GI ¼ GPS; GLR cases.
In the following, we find the intermediate scale MI and

MU can be described by using the gauge coupling constants
ofGSM at μ ¼ MZ and the beta function coefficients ofGSM
and GIð¼ GPS; GLRÞ. Therefore, all the gauge coupling
constants such as the unified gauge coupling constant αU
can be analytically solved if they exist.

1. GI =GPS case

We list up the RGEs of GSM and GPS in MZ < μ < MI
and MI < μ < MU, respectively, and the matching con-
ditions at μ ¼ MI;MU.

a. MZ < μ < MI

For MZ < μ < MI, the RGEs of the gauge coupling
constants of GSM ¼ SUð3ÞC × SUð2ÞL ×Uð1ÞY are
given by

α−13CðμÞ ¼ α−13CðMZÞ −
b3C
2π

log

�
μ

MZ

�
;

α−12LðμÞ ¼ α−12LðMZÞ −
b2L
2π

log

�
μ

MZ

�
;

α−11Y ðμÞ ¼ α−11Y ðMZÞ −
b1Y
2π

log

�
μ

MZ

�
: ðB2Þ

b. μ = MI

The matching conditions between GSM and GPS ¼
SUð4ÞC × SUð2ÞL × SUð2ÞR at μ ¼ MI are given as

α−14CðMIÞ ¼ α−13CðMIÞ; α0−12L ðMIÞ ¼ α−12LðMIÞ;

α−12RðMIÞ ¼
5

3
α−11Y ðMIÞ −

2

3
α−13CðMIÞ: ðB3Þ

c. MI < μ < MU

For MI < μ < MU, the RGEs of the gauge coupling
constants of GPS are given by

α−14CðμÞ ¼ α−14CðMIÞ −
b4C
2π

log

�
μ

MI

�
¼ α−13CðMZÞ −

b3C
2π

log

�
MI

MZ

�
−
b4C
2π

log

�
μ

MI

�
;

α0−12L ðμÞ ¼ α0−12L ðMIÞ −
b02L
2π

log

�
μ

MI

�
¼ α−12LðMZÞ −

b2L
2π

log

�
MI

MZ

�
−
b02L
2π

log

�
μ

MI

�
;

α−12RðμÞ ¼ α−12RðMIÞ −
b2R
2π

log

�
μ

MI

�
¼ 5

3
α−11Y ðMZÞ −

2

3
α−13CðMZÞ −

�
5

3

b1Y
2π

−
2

3

b3C
2π

�
log

�
MI

MZ

�
−
b2R
2π

log

�
μ

MI

�
: ðB4Þ
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d. μ=MU

For μ ¼ MU, the matching condition between GPS and SOð10Þ at μ ¼ MU is given by

α−14CðMUÞ ¼ α0−12L ðMUÞ ¼ α−12RðMUÞ; ðB5Þ

where

α−14CðMUÞ ¼ α−13CðMZÞ −
b3C
2π

log

�
MI

MZ

�
−
b4C
2π

log

�
MU

MI

�
; α0−12L ðMUÞ ¼ α−12LðMZÞ −

b2L
2π

log

�
MI

MZ

�
−
b02L
2π

log

�
MU

MI

�
;

α−12RðMUÞ ¼
5

3
α−11Y ðMZÞ −

2

3
α−13CðMZÞ −

�
5

3

b1Y
2π

−
2

3

b3C
2π

�
log

�
MI

MZ

�
−
b2R
2π

log

�
MU

MI

�
: ðB6Þ

e. MI and MU

From the matching condition in Eq. (B5), we can
analytically solve the intermediate scaleMI and unification
scale MU as

MI ¼ MZ exp

�
A1B3 − A3B1

A2B3 − A3B2

�
;

MU ¼ MZ exp

��
A1B3 − A3B1

A2B3 − A3B2

�
þ
�
A1B2 − A2B1

A3B2 − A2B3

��
;

ðB7Þ

where

A1 ¼ α−13CðMZÞ − α−12LðMZÞ; A2 ¼
b3C − b2L

2π
;

A3 ¼
b4C − b02L

2π
; B1 ¼

5

3
ðα−13CðMZÞ − α−11Y ðMZÞÞ;

B2 ¼
5

3

b3C − b1Y
2π

; B3 ¼
b4C − b2R

2π
: ðB8Þ

2. GI =GLR case

We list up the RGEs of GSM and GI ¼ GLR in MZ <
μ < MI andMI < μ < MU, respectively, and the matching
conditions at μ ¼ MI;MU.

a. MZ < μ < MI

ForMZ < μ < MI, the RGEs of the gauge coupling cons
tants of GSM ¼ SUð3ÞC × SUð2ÞL × Uð1ÞY are given by

α−13CðμÞ ¼ α−13CðMZÞ −
b3C
2π

log

�
μ

MZ

�
;

α−12LðμÞ ¼ α−12LðMZÞ −
b2L
2π

log

�
μ

MZ

�
;

α−11Y ðμÞ ¼ α−11Y ðMZÞ −
b1Y
2π

log

�
μ

MZ

�
: ðB9Þ

b. μ=MI

The matching conditions between GSM and GLR ¼
SUð3ÞC × SUð2ÞL × SUð2ÞR ×Uð1ÞB−L at μ ¼ MI are
given as

α0−13C ðMIÞ ¼ α−13CðMIÞ; α0−12L ðMIÞ ¼ α−12LðMIÞ;

α−12RðMIÞ ¼
5

3
α−11Y ðMIÞ −

2

3
α−1B−LðMIÞ: ðB10Þ

Note that unlike the above GI ¼ GPS case, the gauge
coupling constants of GLR at μ ¼ MI cannot be determined
only by using those of GSM at μ ¼ MI . To fix them, we
need to use the matching conditions of the gauge coupling
constants at μ ¼ MU.

c. MI < μ < MU

For MI < μ < MU, the RGEs of the gauge coupling
constants of GLR are given by

α0−13C ðμÞ ¼ α0−13C ðMIÞ −
b03C
2π

log

�
μ

MI

�
¼ α−13CðMZÞ −

b3C
2π

log

�
MI

MZ

�
−
b03C
2π

log

�
μ

MI

�
;

α0−12L ðμÞ ¼ α0−12L ðMIÞ −
b02L
2π

log

�
μ

MI

�
¼ α−12LðMZÞ −

b2L
2π

log

�
MI

MZ

�
−
b02L
2π

log

�
μ

MI

�
;

α−12RðμÞ ¼ α−12RðMIÞ −
b2R
2π

log

�
μ

MI

�
; α−1B−LðμÞ ¼ α−1B−LðMIÞ −

bB−L
2π

log

�
μ

MI

�
: ðB11Þ
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d. μ=MU

For μ ¼ MU, the matching condition between GLR and SOð10Þ at μ ¼ MU is given by

α0−13C ðMUÞ ¼ α0−12L ðMUÞ ¼ α−12RðMUÞ ¼ α−1B−LðMUÞ; ðB12Þ

where

α0−13C ðMUÞ ¼ α−13CðMZÞ −
b3C
2π

log

�
MI

MZ

�
−
b03C
2π

log

�
MU

MI

�
; α0−12L ðMUÞ ¼ α−12LðMZÞ −

b2L
2π

log

�
MI

MZ

�
−
b02L
2π

log

�
MU

MI

�
;

α−12RðMUÞ ¼
5

3
α−11Y ðMZÞ −

2

3
α−1B−LðMIÞ −

5

3

b1Y
2π

log

�
MI

MZ

�
−
b2R
2π

log

�
MU

MI

�
; α−1B−LðMUÞ ¼ α−1B−LðMIÞ −

bB−L
2π

log

�
MU

MI

�
:

ðB13Þ

e. MI and MU

From the matching condition in Eq. (B12), we can
analytically solve the intermediate scaleMI and unification
scale MU as

MI ¼ MZ exp

�
C1D3 − C3D1

C2D3 − C3D2

�
;

MU ¼ MZ exp

��
C1D3 − C3D1

C2D3 − C3D2

�
þ
�
C1D2 − C2D1

C3D2 − C2D3

��
;

ðB14Þ

where

C1 ¼ α−13CðMZÞ − α−12LðMZÞ; C2 ¼
b3C − b2L

2π
;

C3 ¼
b03C − b02L

2π
; D1 ¼ α−12LðMZÞ − α−11Y ðMZÞ;

D2 ¼
b2L − b1Y

2π
; D3 ¼

b02L − 3b2Rþ2bB−L
5

2π
: ðB15Þ
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