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A pseudo-Nambu-Goldstone boson (pNGB) is an attractive candidate for dark matter (DM) due to the
simple evasion of the current severe limits of DM direct detection experiments. One of the pNGB DM
models has been proposed based on a gauged U(1),_, symmetry. The pNGB has long enough lifetime to
be a DM and thermal relic abundance of pNGB DM can be fit with the observed value against the
constraints on the DM decays from the cosmic-ray observations. The pPNGB DM model can be embedded
into an SO(10) pNGB DM model in the framework of an SO(10) grand unified theory, whose SO(10) is
broken to the Pati-Salam gauge group at the unified scale, and further to the Standard Model gauge group at
the intermediate scale. Unlike the previous pNGB DM model, the parameters such as the gauge coupling
constants of U(1),_,, the kinetic mixing parameter of between U(1), and U(1),_, are determined by
solving the renormalization group equations for gauge coupling constants with appropriate matching
conditions. From the constraints of the DM lifetime and gamma-ray observations, the pPNGB DM mass
must be less than O(100) GeV. We find that the thermal relic abundance can be consistent with all the

constraints when the DM mass is close to half of the CP even Higgs masses.

DOI: 10.1103/PhysRevD.104.035011

I. INTRODUCTION

The existence of dark matter (DM) has been confirmed
by several astronomical observations such as spiral galaxies
[1,2], gravitational lensing [3], cosmic microwave back-
ground [4], and collision of bullet cluster [5]. There are no
viable DM candidates in the Standard Model (SM), so the
identification of DM plays an important role in particle
physics as well as cosmology.

Due to the lack of understanding the nature of DM, there
are a lot of DM candidates. One of the candidates is so-
called weakly interacting massive particle (WIMP). To
realize the relic abundance of DM, the WIMP mass is
expected to the range of O(10) GeV to O(100) TeV.
Further, since the WIMPs have nongravitational interac-
tion, the direct and indirect detections are expected, but
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there are still no clear signals of WIMPs, which lead to the
strong constraint for WIMP mass and interactions, espe-
cially from the direct detection.

Several mechanisms in WIMP DM models are proposed
to avoid the severe constrains from the direct detection by
considering, e.g., a fermion DM with pseudoscalar inter-
actions [6-11] and a pseudo-Nambu-Goldstone boson
(pNGB) DM [12-21]. Usually, in pNGB DM models,
additional global U(1) symmetry is assumed in an ad hoc
manner.

In Refs. [19,20], a pNGB DM model is proposed based on
Gsm X U(1)p_; gauge groups, where Ggy = SU(3)%
SU(2), x U(1)y. Two complex scalars with Qp_; = +1
and +2, denoted as § and ®, and three right-handed
neutrinos due to the gauge anomaly cancellation are intro-
duced. The gauge symmetry is spontaneously broken via the
nonvanishing vacuum expectation value (VEV) of the scalar
fields S and ® as below:

GSMXU(I)B—L —)GSM. (11)
The results in the model are summarized below. The DM
direct detection cross section is naturally suppressed as the
same as other pPNGB DM models. The pNGB can decay
through the new high scale suppressed operators, but the
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TABLE 1. The matter content in the SO(10) model is shown.

A, Y16 Dy D6 D36 D19
SO(10) 45 16 10 16 126 210
SL(2,C) (1/2,1/2) (1/2,0) 0, 0) 0, 0) 0, 0) (0, 0)

pNGB has a lifetime long enough to be a DM in the wide
range of the parameter space of the model. The thermal relic
abundance of pNGB DM can be fit with the observed value
against the constraints on the DM decays from the cosmic-
ray observations.

From other viewpoints, the charge quantization of
U(1)y, the gauge anomaly cancellation of Ggy, and the
almost SM gauge coupling unification even in nonsuper-
symmetric SM seem to imply the existence of grand
unification [22]. The unification scale is expected to be
0O(105-10"8) GeV, where the lower bound comes from
the current nonobservation of the nucleon decay [23] and
the upper bound comes from the Planck scale. Also, the
tiny neutrino masses from the neutrino oscillation data
seem to suggest an intermediate scale O(10'°-10'%) GeVv
through a see-saw mechanism [24].

In this paper, we propose an SO(10) pNGB DM model
in the framework of grand unified theories (GUTs). Each
Weyl fermion in 16 of SO(10) contains one generation of
quarks and leptons, which includes a right-handed neutrino
[25]. The SM Higgs and two complex scalar fields S and ®
in Refs. [19,20] are assigned to a scalar field in 10, 16, and
126 of SO(10), respectively. There are several symmetry
breaking patterns of SO(10) to Ggy x U(1)5_, as below.

SO(10) - G; = Gsq x U(1)_;, (1.2)
where G; stands for the intermediate gauge group such as
the Pati-Salam gauge group Gpg := SU(4)- x SU(2), x
SU(2) [26] and a left-right gauge group Gy := SU(3) X
SU2), x SU(2)g x U(1)g_, [27,28]. We mainly focus on
the case of G; = Gpg, but we also consider the possibility
for such as G; = Gy, where the cases are not favored for a
pNGB DM model under our assumption and experimental
constraints. (For more information about GUT model
building in general, see, e.g., Refs. [29,30].)

We discuss the following three things. First, the value of
the gauge kinetic mixing between U(1)y and U(1),_; is a
free parameter in e.g., the non-GUT pNGB DM models
[19,20], while that is determined mainly by the GUT gauge
group in SO(10) models. Second, gauge coupling uni-
fication can be achieved due to the contribution from the
additional scalar fields that contain a DM candidate. Then
the intermediate scale M, the unification scale My, and the
gauge coupling constant of U(1),_, are fixed by using the
renormalization group equations (RGEs) for gauge cou-
pling constants. Third, the mass of the pNGB in the SO(10)
pNGB DM model is limited to be O(10 — 100) GeV from
experimental constraints.

The paper is organized as follows. In Sec. II, we
introduce the SO(10) pPNGB DM model. In Sec. III, we
find gauge coupling unification determines mass scales and
gauge coupling constants of the model. In Sec. IV, the
constraints from experiments are discussed. Section V is
devoted to summary and discussions.

II. THE MODEL

The model consists of an SO(10) gauge field A,,
fermions in 16 of SO(10), a real scalar field in 210 of
S0(10), and complex scalar fields in 10, 16, and 126 of
SO(10). The SO(10) gauge field contains Ggy and
U(1)p_, gauge fields. Each fermion in 16 of SO(10)
corresponds to quarks and leptons. Scalar fields in 10, 16,
and 126 of SO(10) include the Higgs H, S and @,
respectively. A scalar field in 210 of SO(10) is responsible
for breaking the SO(10) symmetry to Gpg. The matter
content in the SO(10) model is summarized in Table I."

The Lagrangian is given by

1
L= Z (Dﬂq)y)T<Dﬂq)y)J’_E(Dﬂq)Zl())T(DM(DZlO)
y=10,16,126

3
T 1 ,
+ Z\P;Q ipw? —trlFy P
a=1

—( T Zy&”%(?i?\lfi?)y+H.c.) _v({o)).

y=10,126 4-b
(2.1)

where D, := 0, + igA,, F,, == 0,A, — 0,A, +ig[A,. A ].
The scalar potential V({®,}) contains quadratic, cubic,
and quartic coupling terms, where x = 10, 16, 126, 210.

We consider the following symmetry breaking patterns
of SO(10) broken to Gpg at the unification scale M by
the nonvanishing vacuum expectation value (VEV) of the
scalar field in 210 in SO(10), further to Ggy at the
intermediate scale M, by the VEV of the scalar field in 126
in SO(10), where the My and M; will be determined by
gauge coupling unification using the renormalization
group equations (RGEs) for the gauge coupling constants
in the next section.

'In this paper, we introduced a scalar in 10 of SO(10) as a
complex scalar. To reproduce the observed mass spectra of quarks
and leptons, it is discussed in e.g., Ref. [31] that only the real
scalar in 10 of SO(10) has some tensions.
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(@310)#0

50(10)

where the dominant contribution for the symmetry breaking
from the VEVs are shown. The type of symmetry breaking
has been already discussed in e.g., Refs. [25,31-43]. The
field content of fermion, scalar, and gauge bosons are shown
in Tables II, III, and IV. (The potential analysis of 210 in
SO(10) has already discussed in, e.g., Ref. [44]; SO(10) is
broken to Gpg for appropriate parameter sets.)

A. Scalar sector

Here we focus on the scalar potential of SM Higgs and
pNGB relevant part that contains scalar fields H, S, ®
belonging to 10, 16, and 126 of SO(10), respectively. We
assume that the other components of @y, P14, and Py

TABLE II. The content of fermions in the SO(10) model is
shown in the Gps = SU(4)- x SU(2), x SU(2), basis, where
the fermions belong to (1/2,0) under SL(2,C). The U(1),_
)

charge Qp_; is given by U(1)(c SU(4)/SU(3)) [30].

Y16
§0(10) 16
V(421) ¥z
Gps (4.1.2) (4.1,2)
oL L ug dy eq v
SU(3). 3 1 3 3 1 1
SU(?2), 2 2 1 1 1 1
U(l)y +1/6  —-1/2 =2/3  +1/3 41 0
U(l)p_y +1/3 -1 -1/3 -1/3 +1 +1
TABLEIIL.  The content of scalar fields in the SO(10) model is

shown, where the scalars belong to (0, 0) under SL(2,C); @y,
D16, and P3¢ are complex scalar fields. Here we assume all
unlisted components of Gps have O(M ;) masses and also all
unlisted components of Ggy X U(1)_, have O(M;) and O(M )
masses, respectively. Other information is the same as in Table II.

q)10 (D16 (Dﬁ
50(10) 10 16 126
ba.22) 4_51 12) ﬂﬁ.m)
Ghps (1,2,2) (4,1,2) (10,1,3)
H S @
SU(3). 1 1 1
SU2), 2 1 1
u(l), +1/2 0 0
Uy, 0 +1 +2

(Piz5)#0

(@19)7#0

Gps(D Gsm x U(1)p_;)

Gsm SU(3)c x U(1)gys (2.2)

shown in Table III have the intermediate scale or larger
masses and they do not contribute SU(2), x U(1), and
U(1)g_; breakings.

From the scalar potential V({®,}) in Eq. (2.1), we
extract the terms that contain only H, S, ®:

2 2 2
7 U U
V(H,S,®) = —7’1’ |H|? =23 |S]? —7‘1’ ||

An As Ao

ZIHP 2S5+ 2 o)t
+2| |+2||+2| |
+ Aus|HP S| + Apo |H|? | D]

+ Aol SPlOP - (Hoars? + c.c.). (2.3)

(%

2

The quadratic terms , and |®|> come from

(P10P10)1> (P16DPi6)15 and ((bmcbuﬁ)l, respectively; the

quartic terms |H|*, |S|*, and |®|* come from ((D19Pyg)1)?

and [(@19P1o)sal” |(P16P16)755/". and |<¢’m¢m)z7n\2
respectively; the quartic terms , |H]?|®@?, a

IS*|®* come from (DP1yP1g);(P16Pig)1

(Piz® 126)1’ and  (P16Dy6)y ((pﬁ(pm)

the cubic term ®*S? comes from ¢Eﬁ(¢16(p16>126’2 where

the above subscript such as 1 and 54 stands for the product
representation of SO(10). This potential is exactly the same
as that in Refs. [19,20].

We assume that the scalar fields H, S, and @ develop the
VEVs, which are parametrized by

(‘1510‘1510)1
respectively;

0 v, + 5+ ing
() s
NG 2
o et (2.4)
V2

where £, s, and ¢ are CP-even modes, 77, and 74 are CP-odd
modes, and v, vy, and v, are the VEVs of H, §, and @,
respectively. The CP phase of the cubic term ®*S? is
eliminated by the field redefinition of ®. In the limit 4. — 0,

*When we take into account the nonvanishing VEV of @5,
2, and |®|? and the cubic term ®*S? also
come from (D19@19)1(P210P210)1>  (P16Pi6)1(P210P210)1-

(@mém) (@210 @210 ) 1> ¢16 ¢16 %‘DZIO . respectively. There-

fore, each coefficient such as y. in Eq. (2.3) should be regarded as
the total value including all the corresponding terms such as
D16P16Pizg and P16P16P 135 P210-
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TABLE IV. The content of gauge fields in the SO(10) model is
shown, where the gauge fields belong to (1/2,1/2) under
SL(2,C); Other information is the same as in Tables II
and III.

Au
SO(10) 45
G, Wy W,
Gps (15.1.1) (1,3.1) (1,1,3)
G, Cy W, //t
SU(3), 8 1 1 1
SU(2), 1 1 3 1
u(l), 0 0 0 0
U(l)_, 0 0 0 0

there are two independent global U(1) symmetries associ-
ated with the phase rotation of S and @. For u,. # 0, the U(1)
symmetries are merged to the U(1),_; (or U(l)y) sym-
metry. Once U(1),_, is broken, one of two CP-odd modes
is absorbed by the U(1),_; gauge field denoted as C,,, while
the other appears as a physical pNGB whose mass is
proportional to ..

The scalar fields H, S, ® have five modes; three of them
are CP-even scalar modes and the other two are CP-odd
modes. The mass matrix for the CP-even scalars in the
(h,s, @) basis is given by

2
)'H/U j’HSUUS /11.1(1)1)’[]{/)
2
Mg\’en = | Ausvvs Asvy Asa Vs Vg —HcUs
2 | Hevs
AHOVVy AspVsVp— e Vs /1¢U¢ + 20

(2.5)

Since the matrix is real and symmetric, it can be diagon-
alized by a real orthogonal matrix. The gauge eigenstates
(h, s, @) are related with the mass eigenstates (A, h,, h3) as

h hy
s |=u.| n|. (2.6)
é h;

where the approximate form of the real orthogonal matrix
and its mixing angle are given by

1 0 Ano? )
Aoy cos® sinf O
sV .
U, ~ 0 1 qaet —sin€ cosf® O |,
Vg
_lnev _dsev | 0 0 1
Aovy Aopvy

(2.7)

2Ws(/1Hsﬁq> - /1Hc1>/15<1>)

tan 26 ~ . 2.8
o v* (A0 — Ando) — U?(}%@ - Asio) (28)
The masses of (A, h,, h3) are given by
22 ohs — 2AsAuol Apl2
m%l ~ Ayv? — HO™S /IIZS HCD/IZS(D + Aol V2, (2.9)
SAD T s
Ashg — A Aorus — Agodse )’
m%lz ~ S q} SO % ( DOrHS H(DZS‘P) 02’ (210)
(0] /1(1></1S/1<I> - /15(13)
m%} leq,vé. (2.11)

The mass eigenstate 4 is identified as the SM-like Higgs
boson with the mass m;, =~ 125 GeV, h, is a light CP-even
scalar, and A5 is a heavy CP-even scalar.

The mass matrix of the CP-odd scalars in the gauge
eigenstates (1,,1,) is given by

492 2.
JZ ) sV
Mgdd = < >

204 \ =20, v?

(2.12)

The gauge eigenstates (1,7,) are related with the mass
eigenstates (y,7) as

() =0(2)

where the real orthogonal matrix is given by

1 (2% Vg )
A/ v? —i—41}§5 —vy 204)°
By using the 2 x 2 real orthogonal matrix U,, the mass
eigenvalues of (y,7) are given by

(2.13)

U, = (2.14)

(V5 + 407 e

2
m: —=
4U¢

2 : (2.15)

m2=0.

2 (2.16)

The j is the NGB absorbed by the U(1),_; gauge boson
C,, and y is the pNGB identified as DM in the paper.

B. Gauge sector

The gauge kinetic term of the SO(10) can be canonically
normalized at the unification scale My, as in Eq. (2.1). In
general, the kinetic-mixing term of multiple U(1) sym-
metries are allowed for the case of at least two Abelian
groups because a field strength itself is gauge-invariant for
abelian groups, while that is not gauge-invariant for non-
Abelian groups. So, in the energy scale M; < u < My,
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there is the gauge kinetic mixing of Gpg. At the scale
u = My, there are two U(1)s, i.e., U(1)y and U(1)5_,
although one of the U(1)s, which is the U(1)_; , is broken
at the scale. It is generated by threshold corrections or via
RGE flows. In SO(10) models, SO(10)/(SU(3), x
SU(2),) contains U(1), and U(1),_, as two independent
U(1) s, while they are not orthogonal. In fact, U(1), is
orthogonal to U(1)yx(c SO(10)/SU(5)); U(l)g_, is
orthogonal to U(1)xz(C SU(2)g). Therefore, it is expected
that the kinetic mixing parameter between U(1), and
U(1)p_, denoted as e is nonzero at classical level.

To determine the value of the kinetic mixing parameter
between U(1), and U(1),_; , we focus on the Kinetic terms
of the gauge fields. First, from Eq. (2.1), the gauge kinetic
term of SO(10) is given by

(2.17)

1
Egauge = —Etr[Fle'm/].

Next, the gauge kinetic terms of Gpg are given by

1 1 1
‘Cgauge S — Etr[G’;yG/ﬂv} _ Z Wltjbwauv _ Z W;ﬁ,W/“W,

(2.18)

where G,,, Wy, and Wy, stand for the field strengths of
SU4)s, SU(2),, and SU(2)g, respectively; the gauge
kinetic terms and mass terms of SO(10)/Gpg are omitted
at M ;. The gauge coupling constants are running from My,
to M;. Third, the SU(3)- x SU(2), x U(1)g x U(1)p_,.
are given by

1

1 Wﬁywapu _ %BLUBIW/

1
‘cgauge e _EU[G/M/G”D] -

_ l c. Cw,

1 Cw (2.19)

where G,,, B,, and C,, stand for the field strength of
SU(3)c(C SU(4)¢), U(1)g(C SU(2)g), and U(1)_(C S
U(4)-/SU(3)c), respectively; the gauge kinetic terms and
mass terms of SU(4)/(SU(3)c x U(1)p_;) and SU(2)x/
U(1)g are omitted at M;. Further, by using the following
GL(2,R) transformation

v, ()= 6 2 (G)

“tor( 0 )

(2.20)

we can change the basis of U(1)s from U(1)g x U(1)_,
to U(1)y x U(1)g_ys

_lBl B//,w _%C;wc/ﬂv —

1 1
1 Buw _ZB””BW _ZC””CW

sin ¢
C

- wB", (2.21)

where B, and C,, stand for the field strength of U(1)y and
U(1)p_,, respectively; e is the kinetic mixing parameter
between U(1)y and U(1),_; . In the case, since the U(1)y
generator is given by the following linear combination of
U(1)g and U(1)5_,

3 2
IY: §I3R+ gIB—L'

Due to the orthogonality, the kinetic mixing parameter € at

u = M, is given by
€= —tan"! \/2
= 3

The Lagrangian for the electromagnetic neutral part of the
SU(2);, xU(1)y x U(1),_; gauge fields including mass
terms generated by the VEVs of the spontaneous SU(2), x
U(1)y and U(1)g_, breaking scalar fields is given by

(2.22)

(2.23)

1 1 1
— 3 3 2
L= = BuB" = W, W + - M3Z,7

1
Cc

=7 Cw

] .
o 4 EM%C”C” - _s1;e C,B", (2.24)

where Z,, = cos Oy W, — sin Oy B, is the usual Z boson, 8y
is the Weinberg angle tan 8y, := g,/g,; g, and g, stand for
the U(1)y and SU(2), coupling constants, respectively. The
mass parameters are given by

M2— :g% +g% 1]2’

2 i (2.25)

M= @, (02 +423),
where gp_; is the gauge coupling constant of U(1),_; .

To discuss the physical implications of U(1),_, gauge
boson, we requires both diagonalizing the field strength
terms and the mass terms. First, we diagonalize the kinetic
term in Eq. (2.24) by using the following GL(2,R)
transformation:

u(l)y .<Bﬂ>:(1 —tan€><3H>
U()pr \Cy 0 &e /\G,
B
()
CM

where B, and C, stand for the gauge fields of the U(1)y
and “U(1),_,” in the physical basis. The transformation is
exactly the same as that in Eq. (2.20). That is, “U(1),_,”
can be identified as U(1)y(c SO(10)/SU(5)). Then, the
gauge kinetic terms in Eq. (2.24) become

(2.26)
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| B 1

28w ) (2.27)

RN 1. .
Wi, W =G 0.
Next, we consider the physical eigenstate via an O(3)

rotation by diagonalizing the mass terms that arise after
|

2 2
sin“Oy M=,

‘Cmass = (BMW,?!CM)

N =

0

—gi 2
sin Oy, cos Oy M,

both U(1)z_, and SU(2), x U(1), breaking. One mass
eigenstate is massless corresponding to the photon A,
while the other two denoted Z and Z’ receive masses. The
mass terms of the neutral gauge boson in terms of
(B,,W3.C,) is given by

—sin Oy cosOyM2 0 BH
cos? Gy M3, 0 W3k (2.28)
0 MZ ¢

By using GL(2,R) transformation in Eq. (2.26), we change the basis whose kinetic term is diagonalized as below:

sin?0y, M2
1 . n
Emasszi(BﬂWf,C”)U(T;K — sin Oy cos Oy M2
0
where
1 0 —tane
Usk=10 1 0 (2.30)
0 0 1

The above mass matrix is a real symmetric matrix. In fact, it
can be diagonalized by using a real orthogonal matrix:

cosOy —sinfy 0 1 0 0
Us= | sinfy cosOy O 0 cos{ —sind |,
0 0 1 0 sin{ cos¢
(2.31)

where the mixing angle { is given by

—2M? sin Oy sin e cos €
MZ — M%(cos? € — sin® Oy sin’€)

tan 2¢ = (2.32)

From the above, we find the masses of A, Z,, and Z;t as

M2 =0, (2.33)
1[ _ AMZEM>
M2 == |i? 4z C) 2.34
272 cos? (2:34)
1[- _ 4AME M
M2, == | W%+ Mt ——2-C 2.35
Z 2] + cos’e |’ (2.35)

—sin Oy cosOyM2 0 B
cos? Oy M3, 0 [Ugkx| W (2.29)
0 M2 ¢
|
where M? is given by
M? := Mzz(l -+ sin @y, tan? €) + 2C . (236)

Ccos™ €

In this section, we find that the gauge kinetic mixing € in
Refs. [19,20] is regarded as the mixing angle. In
Appendix A, we will show this more explicitly.

III. GAUGE COUPLING CONSTANTS

To determine such as the U(1),_, breaking scale, i.e.,
intermediate scale M;, and magnitude of the gauge cou-
pling constant of the U(1),_;, we discuss the RGEs for
gauge coupling constants running among the electroweak
scale M,, the intermediate scale M,, and the unification
scale My;.

The RGE for the gauge coupling constant a;(u) :=
g?(u)/4r at one-loop level is given in, e.g., Refs.
[29,30] by

()=
a: = —-—,
dlog() X W T T2g
where i stands for a gauge group Gj; e.g., 4C stands for the

gauge coupling constant of SU(4)., and the beta function
coefficient is given by

(3.1)

11

b= T(R) +3 S T(R) + ¢ ST (Ry)

Vector Weyl Real

(3.2)

where Vector, Weyl, and Real stand for real vector, Weyl
fermion, and real scalar fields, respectively. Since the vector
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bosons are gauge bosons, they belong to the adjoint
representation of the Lie group G: T(Ry) = C,(G).
C,(G) is the quadratic Casimir invariant of the adjoint
representation of G, and T(R;) is a Dynkin index of the
irreducible representation R; of G. Note that when the Lie
group G is spontaneously broken into its Lie subgroup G,
it is convenient to use the irreducible representations of G’.
(For the Dynkin index and the branching rules, see, e.g.,
Refs. [30,45] or calculated by using appropriate computer
programs such as Susyno [46], LieART [47,48], and
GroupMath [49]. For the RGEs at the two-loop level,
see, e.g., Refs. [50-52].)

Let us consider the RGEs for gauge coupling constants
in the pPNGB DM model shown in Tables II, III, and IV.
For the energy scale between M, <pu < M; and
M; < u < My, we use the RGEs for the gauge coupling
constants of Ggy and Gpg, respectively. In the following
calculation, we assume that there is only one intermediate
scale M; and one unification scale My, which should be
recognized as effective scales.

We can obtain the beta function coefficients of the gauge
coupling constants of Ggy and Gpg by using the generic
RGE in Eq. (3.2) and the matter content of the model given
in Tables II, III, and IV. The beta function coefficients of
Ggy in M, < u < M; are given by

by | =] -19/6 |, (3.3)
by +41/10

where i = 3C,2L, 1Y stand for SU(3)., SU(2),, U(1)y,
respectively, and we took the SU(5) normalization for
U(1)y. (The values of b; are the same as the ordinary SM.)
The beta function coefficients of Gpg in M; < u < My, are
given by

bac ~22/3
b, | = =3 |. (3.4)
bor +13/3

where i = 4C,2L, 2R stand for SU(4), SU(2),, SU(2)g.
respectively. To distinguish the beta function coefficient of
the SU(2), in Ggy and that in Gpg, we use unprimed and
primed, and the same notation is used below.

To solve the above RGEs, we need to set the initial
conditions at 4 = M,. The gauge coupling constants must
satisfy the matching conditions between Ggy and Gpg at
u = M; and also the matching condition between Gpg and
SO(10) at u = My,. They are listed below.

(i) The input parameters for the three SM gauge

coupling constants at u= M, =91.1876 £
0.0021 GeV are given in Ref. [53]:

(M) = 0.1181 +0.0011,

aEM(MZ)
M =
1 (Mz) sin?@y (M)’
50‘EM<MZ)
M,)=—F7—2 3.5
oy (Mz) 3cos?Oy (M)’ (3-5)

where the experimental values of the EM gauge
coupling constant agy; and the Weinberg angle are
given as

a5l (M) = 127.955 +0.010,

sin20y, (M) = 0.23122 + 0.00003. (3.6)

(i) The matching conditions between Ggy; and Gpg at
u = M, are given by

azc(M;) = ayc(My),

3 2
ary(M)) = S (M) + 5 aie(M)),

ay (M;) = oy (M),

(3.7)

where they are determined by the normalization
conditions of the generators of Gpg and Ggy. (See
e.g., Ref. [54] at one-loop level; Refs. [55,56] at two-
loop level.)

(iii) The matching condition at the unification scale M,
is given by

ae(My) = oy (My) = ap(My).  (3.8)

By using the RGEs of Ggy and Gpg and the matching
conditions at 4 = M; and M;, we can obtain M; and M, as

AB3 — A3B,
M;=Mzexp|——F—|,
AyB3 — A3B,
My = Mzexp [( - - + ,
v AyBy—A;B,) " \A3B, — AB;
(3.9)
where
bio—b
Ay = a3 (Mz) — o3} (M7), A, = 3(?27”%
byc — b 5, _ B
Az = TZL B, :g(%é(Mz) —apy(Myz)),
5bic— by byc — bog
By=——"+——| By =—=—. 3.10
273 2z 3 2 (3.10)

The gauge coupling constants such as ayc(My) and
oy, (My) are also expressed by the Z boson mass M,
the gauge coupling constants at 4 = M, and the beta
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Standard Model

SO(10) pNGB model

60

P S T

1615 1619

1600 167 1(;11
1 [GeV]

FIG. 1.

1000 107 10" 10%3

The gauge coupling constants ; vs the energy scale y for the SM (the left figure) and the SO(10) pNGB model (the right

figure) are shown. The left figure shows the energy dependence of three gauge coupling constants of SU(3)., SU(2),, and U(1)y, asc,
., and @y in all the energy ranges u = [My, My], where My = 10" GeV. The right figure shows as¢, sz, and a;y in the
energy ranges p = [M;, M/]; auc, aor, apg in the energy ranges u = [M;, My|, where the value of as¢ is fixed as the central value

function coefficients of Ggy and Gpg b;s. (The detail
analysis is given in Appendix B.)

By substituting b; in Egs. (3.3) and (3.4) and the
parameters at u = M, in Egs. (3.5) and (3.6) into the
expressions of M; and M, in Eq. (3.9), we find the values
of the M; and My, as

M; = (1261 £0.242) x 10" GeV,

My = (2.057 £+ 0.688) x 10'6 GeV. (3.11)
Note that we ignore such as mass splitting at the inter-
mediate and unification scales, so the uncertainty must be
larger. The values of the model parameters at 4 = M, are
given by

aGl(M;) =31.92+023, o' (M;) =40.19 £ 0.10,
a5l (M) = 54.20 + 0.26. (3.12)

We also find the gauge coupling constants of U(1),_, and
U(l)g at p =M,

gs_1(M;) = 0.3843 = 0.0009,

gr(M;) = 0.4815 £ 0.0011, (3.13)

by using gp_ (M;)= 37”054C(M1) and  ggr(M;) =

4zarp(M;). Since the standard normalization of
U(l)z_; is not the same as that of “U(l)z_,”
(cSU4)-/SU(3)¢), the modified normalization factor
is used. The unified gauge coupling constants at y = M, is
given by

g = 45.92 4 0.50. (3.14)

The energy dependence of the gauge coupling constants
a;(1) in the SO(10) pNGB model is plotted in Fig. 1.
As the same as the usual GUT models, nucleon can decay
via the so-called leptoquark gauge bosons. The proton
lifetime via the gauge bosons is roughly estimated as 7 ~
MY /am3, [53,54,57], where m,, is the proton mass and the
gauge boson masses are assumed to be M ;. From the values
of My and ay given in Egs. (3.11) and (3.14), the proton
lifetime 7~ 1.1 x 10%7 years is predicted. It is far from
the current constraint 7(p — e*7%) > 2.4 x 10* years at
90% CL [58]; My > (43—-4.8)x 10" GeV for
40 < a' < 50. There is contribution for the proton decay
modes via colored scalar fields shown in Table III. The color
triplet component of @y, has assumed to have O(My), so
the contribution for the proton decay via the Yukawa
coupling constant y\¢” of the term ®y(¥\Y ¥, in
Eg. (2.1) is small. Color nonsinglet components of @3¢
have assumed to O(M/), so the contribution for the proton

decay via the Yukawa coupling constant y%;) of the term

q);_zﬁ(l}/;? 'flg? )36 in Eq. (2.1) can be larger than the current

experimental bounds. This leads to an upper bound of the
values of yiaT? in the model.

We comment on proton decay via a colored Higgs
scalar or leptoquark scalar denoted as §; in Ref. [59],
which belongs to (3,1, 1/3) under Ggy. In the following,
we omit Clebsch-Gordan coefficients for simplicity.
When the leptoquark scalar S| has di-quark and quark-
lepton couplings, there are proton decay modes such as
p — et 2, and the proton lifetime is roughly estimated as
v mj o/ (|y]*|z[*m3), where m, ¢ is a leptoquark mass, y
and z represent generic values of relevant Yukawa
coupling constants of the leptoquark with the quark-
lepton and quark-quark pairs, respectively. For example,
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for the leptoquark with the intermediate scale mass
mpo = M, and the universal Yukawa coupling constants
|| = |z|, we obtain a constraint for the Yukawa coupling
constants |y| = |z| <4.2x 10™® from the current con-
straint 7(p — e*z%) > 2.4 x 10 years at 90% CL. To
apply this for the current model, for the scalar field S; in
10 of SO(10), which belongs to (6,1,1) under Gps, the
mass of the leptoquark scalar is the unification scale mass
mpo =My and the Yukawa coupling constants are

roughly expected as |y| = |z| ~ |y(11)1>\. The current con-
straint ’L'(p — etn%) > 2.4 x 10** years at 90% CL leads

to |y1 )| £0.68. To realize the mass of up quark, y<10 Vi
roughly O(107°), so it is consistent with the current
constraint, where the actual values of the Yukawa
coupling constants depend on how to realized the
observed quark and lepton masses. Next, for the scalar

fields §,q5,3 and Syq13) in 126 of SO(10), which

belongs to (10,1,3) and (6,1,1) under Gpg. The lepto-
quark scalar §, (10.1.3) and Sy(6,1,1) have the intermediate

scale mass M; and the unification scale mass My,

respectively. For S, (10.13) the Yukawa coupling couplings

are given by |y| =0 and |z| ~

mediated by S, 75 3

|Viz¢|» so the proton decay
does not occur. Therefore, this does

(ab)

not lead to any constraint for Y36 For $y1.1), the

Yukawa  coupling  couplings are given by

|v| = |z] = |yiz]- the current constraint ‘[(p —etn®) >
2.4 x 10* years at 90% CL leads to \y \ < 0.68 as the

same as S; in 10 of SO(10). In the above discussion, we

assumed 51@,1.3) does not mix with Sy 1 1), but they have

the same quantum numbers, so it depends on the structure
of the scalar potential, they can be mixed in general.
Even when the mixing parameter denoted as & between
S1(1—0’1.3) and Sy1,1) 1S about the ratio of the masses

ex~M;/My~6.1x1075 the current constraint z(p —
etn%) > 2.4 x 10* years at 90% CL leads to the con-
straint for the first generation Yukawa coupling constant
|y 126|<17><10 3. (For e = 1, |y126|<42><10 )
Further, we comment on the relation between neutrino
masses and the Yukawa coupling constants yib of

the cubic term @4P;6D5- 136- Since the right-handed neu-

trino masses are given by Mz(v ) = yi%)

2.1 x 108 GeV s My = yiVv, S 1.4x 10" GeV  for
1.7 x 1073 <y§26 <0.68 and vy = M;. From the type-I
seesaw mechanism, the light neutrino mass is roughly

1 11 11

o
part of M\¢"). Therefore, 4.4 x 1078 eV < m(”) <29 x
1075 eV for 1.7 x 1073 <y <068, [y!y"| ~ 1075 and

126 ~
v ~ 246 GeV. The proton decay constraints only a part of

Vg WE obtain

when we ignore the off-diagonal

(ab)

the Yukawa coupling constants Yiz6 > SO it is expected that

the observed neutrino masses can be reproduced, but to
perform it properly, we need to investigate how to repro-
duce the observed quark and charged lepton masses. We
leave it for a future study.

Up to this point, we only consider the specific symmetry
breaking pattern, SO(10) broken to G; = Gpg at u = My,
in Eq. (1.2). We comment on other cases G; = Gpg X D,
Gir, Gir x D discussed in, e.g., Refs. [41,55,56,60],
where D stands for a discrete Z, left-right exchange
symmetry [61,62]. (Note that the same analysis in
SO(10) GUT models whose matter content is slightly
different from the present model has been already discussed
in e.g., Refs. [55,56] by using two-loop RGEs [63] and the
corresponding matching condition [64,65].) To realize the
appropriate symmetry breaking patterns, we need different
SO(10) breaking Higgs fields; each G; = Gpg, Gps X D,
Gir, Gir x D is realized by the VEV of a scalar field in,
e.g., 210, 54, 45, 210 of SO(10), respectively.

The values of M;, My, and a,jl for several matter
contents and symmetry breaking patterns are summarized
in Table V, which are estimated by using each analytical
solution shown in Appendix B. Substituting the values of
My and aj!' for the Gpg x D and Gig x D cases into
T~ M} /aUm , rapid proton decay is expected. For the
Gy r case, the proton decay via leptoquark gauge bosons is
consistent with the current experimental constraints, but the
PNGB cannot be identified as DM because pNGB decays
too rapidly or the observed relic abundance cannot be
reproduced.

IV. LONG-LIVED pNGB AS DM CANDIDATE

The DM lifetime should be longer than the age of
the universe, 10!7 s at least. The bound on DM lifetime
becomes stronger depending on DM decay channels due to
the constraint of cosmic-ray observations. In particular, the
bound from gamma-ray observations is strong as roughly
7, 2 10*” s for two body decays [66]. Since the DM
lifetime is proportional to the power of the VEV v, it
becomes longer for larger vy The evaluation of DM
lifetime without GUT has been studied in Refs. [19,20],
and it has turned out that the VEV should roughly be vy 2
10" GeV in order to be consistent with the gamma-ray
observations if three body decays y — h;ff and Zff can
occur. Since in the current GUT pNGB model the kinetic
mixing sin € and the VEV v are fixed to be sine = — \/2/—5
and vy~ 10" GeV by the requirement of the gauge
coupling unification, the three body decays should kine-
matically be forbidden. Therefore we consider the mass
region m, < O(100) GeV and estimate dominant four
body decay channels.

Before proceeding to four body decays, we comment on
the two body decay channel y — vv, which is possible even
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TABLE V. The values of M;, M, and a7 for several matter contents and symmetry breaking patterns are summarized. The top of the
table corresponds to the present SO(10) pNGB model. The first, second, and third columns represent the intermediate scale group Gy,
the matter content for scalar sector at u = M, the beta function coefficients b; of G, respectively. The fourth and fifth columns show the

values of M;, My, and a'. The subscript in the second column stands for each SO(10) representation.

log,o(M/1[GeV])

Group G; Scalars at u = M, b; M, My ag!
Gps (1.2,2); b 2 11.10 £ 0.08 1631 £0.15 45.92 + 0.50
(_4’ 1.2)46 by, | =1 -3
(10,1,3)55 bor +13
Gps X D (1.2.2); b 4 13.71 £0.03 15.22 +0.04 40.82 +0.13
(4.2.1)46 by | =1 +%
(4.1.2)4 bog +13
(10,1,3)55 ’
(10,3, 1)
Gir (1.2.2.0)y b —7 8.57 + 0.06 16.64 £0.13 46.13 +£0.41
(11,2, 1), v, | [ -3
(11,3, 2)35 bk —ﬁ
bB—L +*
Gir XD (1,2,2,0)4 bl 7 10.11 £ 0.04 15.57 £0.09 43.38 +0.30
aEE (B[
s &y Ly 16 bZR _?
(1,1,3,2)15 bp_r +L
(1,31, -2)35

in the case m, < O(100) GeV. Similarly to the U(1)_;
model in the previous paper [19], this process occurs via the
scalar mixing given by Eq. (2.14) and the mixing between
|

the left-handed and right-handed neutrinos after the electro-
weak symmetry breaking. The decay width for this channel
is calculated as

m, v? m, v 2/10" GeV\* m, \?2
T, =25 N2 551079 Gev g M _
w 647[U4Z % © (100 GeV) (1 TeV) < v ) Z(O.l eV) ’

where m,_is the small neutrino mass eigenvalues. Equa-
tion (4.1) roughly corresponds to the lifetime
7, = O(10%) s, which is too small to be observed in
neutrino cosmic-rays [67,68] because of the suppression by
the small neutrino mass squared mfi. Note that since the
scale of the VEV in the GUT pNGB model is v, ~
10'" GeV which is much smaller than the previous analysis
[19], the order of the lifetime for this channel is much
shorter. However it is still too long to be detectable by
experiments and observations. ~

The four body decay processes y — fff'f' mediated by
h;,Z,Z' can occur as shown in Fig. 2. Note that if f and f’
are identical particles, additional diagrams exist due to
interference. We numerically evaluated the decay width
for all the four body decay processes using CalcHEP
[69], and furthermore we took into account three body
decay processes when these are kinematically possible. The

(4.1)

|
results are shown in Fig. 3 in (m,, v,) plane where the
second Higgs mass is fixed to be m;, =70 GeV (left) and
130 GeV (right). The orange region below the solid, dashed,
and dot-dashed lines are the region where the DM lifetime is
shorter than the conservative bound 7, = 10%” s for the
Higgs mixing angle sin@ = 10~!, 1072, 1073, respectively.’
The horizontal black dotted line denotes vy = M; =
10'19 GeV. The most part of the region in the plots is
dominated by the four body decays except for the region
m,, Z 60 GeV in the left panel where the three body decay
¥ = hyff can open up. One can read off the upper bound of
the DM mass m,, for a given mixing angle sin 6.

3The actual bound on the DM lifetime for four body decays is
weaker than 7, 2 10?7 s since the energy of the emitted gamma
rays is softer than two body decays.
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FIG. 2. The Feynman diagrams for the four body decays y — fff’ f’ are shown.
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Parameter space in the (m,,, v4) plane where the second Higgs mass is fixed to be m;,, = 70 GeV in the left and 130 GeV in the

right. The orange region is excluded by the bound of the gamma-ray observations (z, = 10%7 s) for sin@ = 10!, 1072 and 1073.

Figure 4 shows the parameter space in (m,, m;, ) plane
for the Higgs mixing angle sin® = 107!, 1072, and 1073
where v, = M;. The region m, 2 mhz_is strongly con-
strained by three body decay y — h,ff while the other
region is constrained by four body decays. In particular, if

103 ¢ =
Fvg = M; ]
= L _
3 102
S 0F T A5
§ C S an /gﬁm ]
10! L L L L L
10 102
my, [GeV]

FIG. 4. Parameter space in (m,, hj,) plane, where the VEV is
fixed to be v, = M. The orange region is excluded by the bound

of the gamma-ray observations (z, = 10*"s) for sinf =
107',1072 and 1073,

the second Higgs mass is degenerate with the SM-like
Higgs boson (my, =~ my, ), the four body decay width can be
small and the constraint is weaken. This is because the
effective coupling y — f — f' mediated by h; and h,
becomes small when mj, ~my,.

Thermal relic abundance of DM is calculated using
micrOMEGASs [70]. The results are shown in Fig. 5, where
the other parameters are fixed to be m;,, = 70 GeV, sinf =
0.05 in the left panel and m;,, = 130 GeV and sin & = 0.05
the right panel. The red line denotes the parameter space
which can reproduce the observed relic abundance of DM
Qxhz ~ (.12 [4]. The purple region is excluded by the
constraints of the Higgs invisible decay and Higgs signal
strength [71,72], and the gray region is excluded by the
perturbative unitarity bound Ay < 87/3 [73]. The green and
orange region are ruled out by the constraints of the
gamma-ray observations for DM annihilations [74] and
four body decays [66], respectively. One can see that
the thermal relic abundance can be consistent with all
the constraints when the DM mass is rather close to the
resonances m, < my, /2. This is the characteristic due to
the requirement from the gauge coupling unification in the
current GUT pNGB model.

035011-11



ABE, TOMA, TSUMURA, and YAMATSU

PHYS. REV. D 104, 035011 (2021)

10!

Higgs deca;)\

10°

107!

v/ vs

1072

103

Aedop N

10~

DO

o
—_
o

o

my, [GeV]

FIG. 5.

10!

EUnitarity ' ! 7 T /T " 3

100 [ Higgs decay ( \\;
10 L .

s £ E
= - ]
1072 E

L o N

1073 3 = 3
Fsind = 0.05 I

Lot Fr = 130Ge B

20 102

my, [GeV]

Parameter space thermally reproducing the observed relic abundance consistent with some other observations. The red line

represents the parameter space reproducing the correct thermal relic abundance thz ~ ().12. The orange and green region are excluded by
gamma-ray observations coming from the DM decay and annihilations, respectively. The purple region are excluded by the constraints of
the Higgs invisible decay i; — yy and the Higgs signal strength. The gray region is perturbative unitarity bound Ag > 87z/3.

We comment on the allowed parameter space
m, < my, /2. For the second Higgs mass rather heavier than
the SM-like Higgs mass, the constraint of the gamma-ray
observations can be avoided only if the DM mass is light
enough m, <35 GeV as can be seen from Fig. 4. On the
other hand, this mass region cannot be consistent with the
thermal relic abundance of DM since it is far from the Higgs
resonances. Therefore the mass region mj,, 2 my, is com-
pletely excluded as long as thermal production mechanism
of DM is assumed. For more precise calculations in the
region m, < my, /2, the effect of the early kinetic decoupling
from the SM thermal bath should be taken into account
[75,76]. If this effect is included, one can expect that the red
line in Fig. 3 is shifted slightly upward.

V. SUMMARY

In this paper, we proposed an SO(10) pNGB DM model
in the framework of GUTs. Each Weyl fermion in 16 of
SO(10) contains one generation of quark and leptons. The
SM Higgs and two complex scalar fields H, S and @ in the
previous gauged U(1),_; pPNGB DM model are embedded
into scalar fields in 10, 16, and 126 of SO(10). Assuming a
symmetry breaking pattern of SO(10) to Gpg at u = My,
and further to Ggy; at 4 = M, the intermediate and unified
scales M; and My, the gauge coupling constants of
U(1)p_,, and the kinetic mixing parameter of between
U(1)y and U(1),_, are determined by solving the RGEs
with appropriate matching conditions such as gauge cou-
pling unification at u = My,.

The DM lifetime without GUT has analyzed in
Refs. [19,20]. It suggests that the VEV should roughly be
the VEVof @ v, 2 103 GeV in order to be consistent with
the gamma-ray observations if three body decays y — h;ff
and Zf f are possible. In the current GUT pNGB model, the

kinetic mixing and the VEV are fixed to be sine = —/2/5

and v, ~ 10" GeV, respectively. To satisfy the constraint
from the gamma-ray observations, the pPNGB DM mass must
be m, < O(100) GeV to forbid the three body decays
kinematically. In the mass region, the dominant contribution
for DM decay channels comes from four body decay
channels y — fff’f. We find that the thermal relic abun-
dance can be consistent with all the constraints when the DM
mass is rather close to the resonances m, < m, /2.
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APPENDIX A: KINETIC MIXING
AS MASS MIXING

As discussed in the main part of this paper, the gauge
kinetic mixing in Refs. [19,20] is regarded as the mixing
angle. In this appendix, we will show this explicitly. The
scalar fields in Refs. [19,20] are embedded into the scalars
of SO(10) shown in Table III as

D10 D P22 D P21z =H. (A1)
D16 D Pa12) 2 Pa3)a-12) =S, (A2)
D36 2 Pz 2 Pacopr-1) = P (A3)

Here we will consider the following two symmetry break-
ing pattern:
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Gps = Ggms Gps = Gir = Ggwm- (A4)

1. Gps — Gsm

First, let us consider the following symmetry breaking
pattern

(Bion.) 2031270
SU(4) e x SU(2)p —2 282

SU(3)e x U(1)y,
(AS)

using minimal scalar fields Eqs. (A1)—(A3). This breaking
pattern is suitable for the pNGB dark matter model
embedding into an SO(10) GUT model because the
intermediate scale can be large enough to make the dark
matter candidate long-lived.

The covariant derivative of Gpg gauge group acts on S
and @ as

D,S=0,S+ ig4G/,§‘a1§U(4>flS +igp_1E,Q%_,S

(=4).
g SU(2)x . SU(2)x
\/REW/;IqL() S+lgRW/2[3 2 S

. BayS
=0,5+ lg4G’3"’I

+ i

U#)e IR 1+ pSUQ)k
()S+ \/EWI kS

+ lgB LE S W/SS (A6)

2

D,® = 0,® + igs Gy I3 ® + igs_ E,0f_, ®

+ l_W/+I e )Rq) + igRW/ilgU(z)Rq)

V2

= 0,0 + ig, Gyl e 4 | IR i SV gy

3(4).a V2

+2igp_1 E,® — igRW’;d), (A7)
where E, is the gauge field associated with U(1)p_; C

SU(4). and gp_; is the gauge coupling constant given by
gp_1 = \/294. The B — L charge comes from the diagonal

component of SU(4) denoted by

8
Op_1 = \/;Ifg(él)c’

3
Y@ = \/%diag(l/?;, 1/3.1/3,-1).  (A8)

G'3* and G'3* are color charged vector boson with the
representation 3(4) and 3(—4) of SU(3). x U(1)y_,
belonging to 15 of SU(4). respectively. (For the details
of the branching rules and the tensor products, see

Ref. [30].) These scalars are assumed to develop the
following VEVs,

Vg y¢
$) =7 (P =%, A9
=5 @@= (49)
and these gives the mass terms of the gauge fields
Lsu@)exsu@)pmass = G'u M3, G
3atan 3b
+ G/ MiabGl g
I
+ :(v + 205 W Wk
Lo, 1312
To\a % (298-LE, — ggW'3)",
(A10)

where the mass matrices for the color charged vector
bosons G'3 and G5 are defined by

94 ¢ SU(4) e+ SU(4)
M3, = ) tr[(13(4),ac) 13(4),bc}’
22
2 941]5 4)c U(4)c
Sab = tr| (15 155 . (A1)

The last term of Eq. (A10) leads the mass mixing between
U(l)g_, € SU(4)c and U(1)g C SU(2)g, and the mass-
less direction becomes U(1), in the SM gauge group. From
this term, the massive vector boson C), and the orthogonal
massless gauge boson Bj, are introduced by

B! cose sine w’
()= (e ) ()
C —sine cose E,
where the mixing angle is defined by

205
29R —, cose — 293 L2 ,
Vg + 4951 Vg +4951

(A13)

sine =

and the mass of Cj becomes M% = (g% +495_,)
(v3/4 + v3). In this basis, the Lagrangian is

1 1 1
LD - 2 Wi W — ZB;WB’”” -2 c,,cw
1
+3 ~MZ%C,C". (A14)

If the color charged vector bosons are dropped, the
covariant derivative is rewritten by using these bosons as

Op-1L
2

D, DigB, + l.gchL< — sin? eQY>, (A15)
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TABLE VI
model [19,20] and SO(10) GUT model.

The correspondence table of the kinetic mixing and the gauge fields between the gauged U(1),_,

Gauged U(1),_
Gsm x U(1)p_;

;, model [19]

pNGB in SO(10) GUT
Gps

Qy
QB—L

D, = 8, +ig,Ge1s" e 4 igywars' P
+1i91QyB, +igp_1 Op_1 X,

Kinetic mixing

Gauge kinetic mixing of B, and X,,: €

= free parameter

Oy I U(2)g + QB L
05p = /34
B, in Eq. (A13)
B;, in Eq. (A12)
C, in Eq. (A13)
C, in Eq. (A12)

91 = 29rGp-L/V/ g%e + 49%;—L

9B-L = \/%94
gL
D, =0, —HgsG“Ia Je +ig Wil,
+i9:QyB, +igp_1 Op- LC;t

sU(2),,

Gauge kinetic mixing of B, and C,: €
= mixing angle € of (W', E,,) (B,.C))

in Eq. (A14)

where the hypercharge is defined by

QY:I3 QBL

(A16)

and the couplings are given by

9o =/ gk +495_1- (A7)

29rY9B-1

T = g
V 9k + 4951

a. Correspondence between the pNGB model [19,20]
and the SO(10) pNGB model

We will discuss the kinetic mixing in the GUT model.
First, from Eq. (A12), B), is written by using (W'3, E,) as
B, = W'} /cose + sineE, /cose, and the field redefinition
by cose leads the canonically normalized gauge kinetic
terms. The massive direction of broken U(1) symmetry
does not change in this rewriting. Then Let us introduce
new fields after the rescaling by

(BL>:<1 sine)(Bﬂ>
C, 0 cose/\C,/)’
<Bﬂ>_<1 —tan€>(B;,)
C, 0 1/cose/\C,)’
so that the massive direction does not change but the

massless component is replaced. The relation between

(W'3,E,) and (B,,C,) is given by

(A18)

W’; cose sine B,
=( . (A19)
E, —sine cose Cy
The U(1)z_; x U(1), gauge sector in the Lagrangian
(A14) is rewritten by using these fields as

1 1 1 sin e
LD —ZWﬁUW“’”’—ZBWB”” 4C,,DC”—TB cw

1
+5MEC,C (A20)

with ME = gp_ (v}
given by

+ 4142/)), and the covariant derivative is

) . sUQ@
D, Digp_1E,Qp_1 + lgRW/;3413 @e

=igp-1C,0p_1 +19:1B,Qy. (A21)
where Eqgs. (A16) and (A17) are used. Egs. (A20) and
(A21) are parts of the Lagrangian of the gauged U(1)z_,
pNGB model, and the gauge kinetic mixing is naturally
regarded as the mixing angle coming from the GUT
inspired symmetry breaking. The correspondence is sum-
marized in Table VI.

2. Gps = Grr — Ggy

If the adjoint Higgs bosons ¢1s11) and ¢q13) are
introduced in addition to the scalars Egs. (A1)—(A3), these
VEVs break the Pati-Salam gauge symmetry as
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(#b(15.1.1))70

SU#) e ———=SUQB)c x U(1)p_y,

By this breaking pattern, the covariant derivative of Gpg
reduces to that of SU(3), x SU(2), X U(1)g3 x U(1)p_,.
as
. SU@3 .
D, = 9, +ig,Gala"V + igy 1 E,Qp

+ig Wers' P igew3 I3, (A23)

where the B — L charge is defined by Eq. (A8) and the
gauge couplings are introduced by g, = g4, gc = \/294.

The VEVs of § and ¢ (A9) break the residual gauge
symmetry as
SUB)ex SU2), x U(1)g x U(1)p_, = Gsm. (A24)

and lead the mass term for the gauge bosons

+ ”5;) (295-LE, — grW'})?,

(A25)

1 (v2
Ly(1) gsxU(1)5_, mass = 3 (4

which is the same as the last term of Eq. (A10). In this
breaking pattern, the charged gauge bosons become mas-
sive via the VEV of the adjoint Higgs fields.

The mixing angle ¢ and correspondence between the
mixing angle and kinetic mixing are same in the previous
discussions.

APPENDIX B: RGEs FOR GAUGE COUPLING
CONSTANTS

Here we analyze the RGEs for gauge coupling constants
of Ggy and G; = Gps, G g, and SO(10) in the pPNGB DM
model. (For the RGE analysis, see, e.g., Ref. [54].)

The RGE for the gauge coupling constants given in
Eq. (3.1) can be solve as

& (ur) = a7 (uo) —

(b1.13)#0

SUQ2)g ———=— U(1)p. (A22)

|

when the beta function coefficients b; are constant in the
energy range uo < 4 < pp. In the following, we apply the
solution for Ggy, and G; = Gpg, Gir cases.

In the following, we find the intermediate scale M; and
M ; can be described by using the gauge coupling constants
of Ggy at 4 = M and the beta function coefficients of Ggy
and G;(= Gps, G1r). Therefore, all the gauge coupling
constants such as the unified gauge coupling constant ay,
can be analytically solved if they exist.

1. G;=Gypg case

We list up the RGEs of Ggy and Gps in M, < u < M,
and M; < u < My, respectively, and the matching con-
ditions at u = M;, M.

a.M; <pu<M;

For M, < u < M,, the RGEs of the gauge coupling
constants of Ggy =SU(3)-xSU(2), x U(1), are
given by

_ b u
“3c1(ﬂ) = 0‘3C(MZ) —%1 g<Mz>

b N
~1(y) = M,) - —Llog
ayl (1) = oyt (M) o My)

The matching conditions between Ggy and Gpg =
SU@4)ex SU(2); x SU(2)g at u = M are given as

o (My) = a3t (M), a5 (M) = a3} (M),

5 2

(M) =% 0’1Y(M1) 3“3_é(M1)~ (B3)

c. My <pu<My

For M; < u < My, the RGEs of the gauge coupling
constants of Gpg are given by

b u b M b u
-1 —a M (M) - 4C1 —a M (M) — 3C1 Iy 4C1
Ge(u) = dyc(My) =5 “log M, c(Mz) == -log M,) " 2z 8\m, )
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d. Y] =MU
For 4 = My, the matching condition between Gpg and SO(10) at u = My, is given by

0‘4C(MU) = a5 (My) = aZR(MU)

where

At (My) = azt(Mz) —

5 2

5b
3a1Y(MZ) —

aZR(MU) 30’36(Mz) <3 o

e. M; and My

From the matching condition in Eq. (B5), we can
analytically solve the intermediate scale M; and unification
scale My as

ABs — A3B,
M;=Mzexp|———F|,
AyB3 — A3B,
My = Myexp AB3 — A3B, n AB, — AyB, ’
(B7)
where
by-—Db
Ay = a3t (My) — o} (M) Ay = 3C2ﬂ 28
byc — b 5
Az = o 2L, B, = g(%c(Mz)—“ly(Mz))
S5bic— by byc — bog
B — , B, = B8
273 g 3 2 (B8)
2. Gy =Gy case

We list up the RGEs of Ggy and G; = G1j in M; <
u < M;and M; < u < My, respectively, and the matching
conditions at y = M;, M.

(BS)

byc M, byc My byt M, by, My
—1lo ——log , My) = M) — —log ——==log(— ),
o < Mz) o M, &y (My) = a3} (Mz) . M, 2 08 M,

_2b5¢
— 1
3 271') 0g<

M, byr My
— —1 — . B
Mz> 27T 0g<M] ( 6)

a.Mz<ﬂ<MI

For M; < u < My, the RGE:s of the gauge coupling cons
tants of Ggy = SU(3) x SU(2), x U(1)y are given by

) = st 07) - Zog (1)
ash ) =zl 047) o ().
(

biv g (H-
).
b.[l=M1

—1
2n o8
The matching conditions between Ggy and Gir =
SUB)exSU(2), xSUQ2)gxU(1)p_, at p=M; are
given as

diy (1) = aiy(Mz) - (B9)

N

i (My) = a3t (M), a5 (M;) = o5} (M),

5 2
(M) = 3 Sy (M) = gaEl—L(MI)' (B10)
Note that unlike the above G; = Gpg case, the gauge
coupling constants of Gy at 4 = M; cannot be determined
only by using those of Ggy at y = M;. To fix them, we
need to use the matching conditions of the gauge coupling

constants at y = M.

c M <pu<My

For M; < u < My, the RGEs of the gauge coupling
constants of Gy are given by

_ b’ H bsc MI b’ H
) = i 1) = 008 () = asdoa) F0g (37 ) - 08 (1)

b} H 2L M1 b H
a/2L] (u) = oy (Ml) 22; 10g<ﬁl> _a2L(MZ)_2—1 g M, —ﬁlog ﬁ/ )

b u bg_ u
1) = a5 (M) — =R log [ L- - =azl, (M;) —ZL10g( = ). Bl1
g () = 0‘2R( )= o og M, ) agl, (1) = agl, (M) o 0og M, ( )
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d. Y/ =MU
For 4 = My, the matching condition between G, and SO(10) at u = M, is given by

did (My) = o' (My) = app(My) = agl (My),

where

b M U M
i (My) = s 0) - Ztog (311) - Stog (L),
5 2

3 My

e. M; and My

From the matching condition in Eq. (B12), we can
analytically solve the intermediate scale M; and unification
scale My, as

M; = Mzexp [7?33 — ?gl] .
2D; — C3D,
MU:MzeXp |:<C1D3_C3D]) <C1D2_C2Dl>:|,
C,D; — G3D,y C3Dy — (D5
(B14)

(B12)

_ — b2L MI ’ MU
a/zLI(MU):azL](MZ)—z—HIOg<M—Z —2%?10% M, )

_ _ _ Sb]y MI b2R MU — — bB—L MU
aR(My) _—alyl(Mz)—gagl—L(Ml)—52—”10g<—) —2—ﬂlog M) agl, (My) = agl (M;) - o log{ —].

M,
(B13)
|
where
byc—Db
Cy = a3t(My) — a5} (M), G, = 3CTZZL
byc — by
G = CT’ Dy = a5} (M7) — a7y (M),
by —b bl — 3bawkt2bpy
D2: 2L27z IY’ ;= 2L 5 5 (BIS)

[1] E. Corbelli and P. Salucci, The extended rotation curve and
the dark matter halo of M33, Mon. Not. R. Astron. Soc. 311,
441 (2000).

[2] Y. Sofue and V. Rubin, Rotation curves of spiral galaxies,
Annu. Rev. Astron. Astrophys. 39, 137 (2001).

[3] R. Massey, T. Kitching, and J. Richard, The dark matter of
gravitational lensing, Rep. Prog. Phys. 73, 086901 (2010).

[4] N. Aghanim er al. (Planck Collaboration), Planck 2018
results. VI. Cosmological parameters, Astron. Astrophys.
641, A6 (2020).

[5] S. W. Randall, M. Markevitch, D. Clowe, A. H. Gonzalez,
and M. Bradac, Constraints on the self-interaction cross-
section of dark matter from numerical simulations of the
merging galaxy cluster 1E 0657-56, Astrophys. J. 679, 1173
(2008).

[6] M. Freytsis and Z. Ligeti, On dark matter models with
uniquely spin-dependent detection possibilities, Phys. Rev.
D 83, 115009 (2011).

[7] S. Ipek, D. McKeen, and A.E. Nelson, A renormalizable
model for the galactic center gamma ray excess from dark
matter annihilation, Phys. Rev. D 90, 055021 (2014).

[8] G. Arcadi, M. Lindner, F. S. Queiroz, W. Rodejohann, and
S. Vogl, Pseudoscalar mediators: A WIMP model at the
neutrino floor, J. Cosmol. Astropart. Phys. 03 (2018) 042.

[9] N.F. Bell, G. Busoni, and I. W. Sanderson, Loop effects in
direct detection, J. Cosmol. Astropart. Phys. 08 (2018)
017.01 (2019) EO1.

[10] T. Abe, M. Fujiwara, and J. Hisano, Loop corrections to
dark matter direct detection in a pseudoscalar mediator dark
matter model, J. High Energy Phys. 02 (2019) 028.

[11] T. Abe, M. Fujiwara, J. Hisano, and Y. Shoji, Maximum
value of the spin-independent cross section in the 2HDM-+a,
J. High Energy Phys. 01 (2020) 114.

[12] V. Barger, M. McCaskey, and G. Shaughnessy, Complex
scalar dark matter vis-a-vis CoGeNT, DAMA/LIBRA and
XENONI100, Phys. Rev. D 82, 035019 (2010).

035011-17


https://doi.org/10.1046/j.1365-8711.2000.03075.x
https://doi.org/10.1046/j.1365-8711.2000.03075.x
https://doi.org/10.1146/annurev.astro.39.1.137
https://doi.org/10.1088/0034-4885/73/8/086901
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1086/587859
https://doi.org/10.1086/587859
https://doi.org/10.1103/PhysRevD.83.115009
https://doi.org/10.1103/PhysRevD.83.115009
https://doi.org/10.1103/PhysRevD.90.055021
https://doi.org/10.1088/1475-7516/2018/03/042
https://doi.org/10.1088/1475-7516/2018/08/017
https://doi.org/10.1088/1475-7516/2018/08/017
https://doi.org/10.1088/1475-7516/2019/01/E01
https://doi.org/10.1007/JHEP02(2019)028
https://doi.org/10.1007/JHEP01(2020)114
https://doi.org/10.1103/PhysRevD.82.035019

ABE, TOMA, TSUMURA, and YAMATSU

PHYS. REV. D 104, 035011 (2021)

[13] C. Gross, O. Lebedev, and T. Toma, Cancellation Mecha-
nism for Dark-Matter—Nucleon Interaction, Phys. Rev. Lett.
119, 191801 (2017).

[14] K. Ishiwata and T. Toma, Probing Pseudo Nambu-
Goldstone boson dark matter at loop level, J. High Energy
Phys. 12 (2018) 089.

[15] K. Huitu, N. Koivunen, O. Lebedev, S. Mondal, and T.
Toma, Probing Pseudo-Goldstone dark matter at the LHC,
Phys. Rev. D 100, 015009 (2019).

[16] J.M. Cline and T. Toma, Pseudo-Goldstone dark matter
confronts cosmic ray and collider anomalies, Phys. Rev. D
100, 035023 (2019).

[17] X.-M. Jiang, C. Cai, Z.-H. Yu, Y.-P. Zeng, and H.-H. Zhang,
Pseudo-Nambu-Goldstone dark matter and two-Higgs-
doublet models, Phys. Rev. D 100, 075011 (2019).

[18] C. Arina, A. Beniwal, C. Degrande, J. Heisig, and A.
Scaffidi, Global fit of pseudo-Nambu-Goldstone dark mat-
ter, J. High Energy Phys. 04 (2020) 015.

[19] Y. Abe, T. Toma, and K. Tsumura, Pseudo-Nambu-Gold-
stone dark matter from gauged U(1),_; symmetry, J. High
Energy Phys. 05 (2020) 057.

[20] N. Okada, D. Raut, and Q. Shafi, Pseudo-Goldstone dark
matter in a gauged B — L extended standard model, Phys.
Rev. D 103, 055024 (2021).

[21] Z. Zhang, C. Cai, X.-M. Jiang, Y.-L. Tang, Z.-H. Yu, and
H.-H. Zhang, Phase transition gravitational waves from
pseudo-Nambu-Goldstone dark matter and two Higgs dou-
blets, J. High Energy Phys. 05 (2021) 160.

[22] H. Georgi and S.L. Glashow, Unity of All Elementary
Particle Forces, Phys. Rev. Lett. 32, 438 (1974).

[23] J. Heeck and V. Takhistov, Inclusive nucleon decay searches
as a frontier of baryon number violation, Phys. Rev. D 101,
015005 (2020).

[24] P. Minkowski, 4 — ey at a rate of one out of 10° muon
decays? Phys. Lett. 67B, 421 (1977).

[25] H. Fritzsch and P. Minkowski, Unified interactions of
leptons and hadrons, Ann. Phys. (N.Y.) 93, 193 (1975).

[26] J. C. Pati and A. Salam, Lepton number as the fourth color,
Phys. Rev. D 10, 275 (1974).

[27] J. Pati, A. Salam, and J. Strathdee, On fermion number and
its conservation, Nuovo Cimento A 26, 72 (1975).

[28] R. N. Mohapatra and G. Senjanovic, Natural suppression of
strong P and T noninvariance, Phys. Lett. 79B, 283 (1978).

[29] R. Slansky, Group theory for unified model building, Phys.
Rep. 79, 1 (1981).

[30] N. Yamatsu, Finite-dimensional Lie algebras and their
representations for unified model building, arXiv:1511
.08771.

[31] B. Bajc, A. Melfo, G. Senjanovic, and F. Vissani, Yukawa
sector in non-supersymmetric renormalizable SO(10),
Phys. Rev. D 73, 055001 (2006).

[32] C. Aulakh and R.N. Mohapatra, Implications of super-
symmetric SO(10) grand unification, Phys. Rev. D 28, 217
(1983).

[33] K. Babu and R. Mohapatra, Predictive Neutrino Spectrum in
Minimal SO(10) Grand Unification, Phys. Rev. Lett. 70,
2845 (1993).

[34] C.S. Aulakh, B. Bajc, A. Melfo, G. Senjanovic, and F.
Vissani, The minimal supersymmetric grand unified theory,
Phys. Lett. B 588, 196 (2004).

[35] T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac, and N.
Okada, SO(10) group theory for the unified model building,
J. Math. Phys. (N.Y.) 46, 033505 (2005).

[36] S. Bertolini, L. Di Luzio, and M. Malinsky, Intermediate
mass scales in the non-supersymmetric SO(10) grand
unification: A reappraisal, Phys. Rev. D 80, 015013
(2009).

[37] G. Altarelli and D. Meloni, A non supersymmetric SO(10)
grand unified model for all the physics below Mgy, J. High
Energy Phys. 08 (2013) 021.

[38] T. Fukuyama, SO(10) GUT in four and five dimensions: A
review, Int. J. Mod. Phys. A 28, 1330008 (2013).

[39] Y. Mambrini, N. Nagata, K. A. Olive, J. Quevillon, and J.
Zheng, Dark matter and gauge coupling unification in
nonsupersymmetric SO(10) grand unified models, Phys.
Rev. D 91, 095010 (2015).

[40] S. A. Ellis, T. Gherghetta, K. Kaneta, and K. A. Olive,
New weak-scale physics from SO(10) with high-scale
supersymmetry, Phys. Rev. D 98, 055009 (2018).

[41] S. Ferrari, T. Hambye, J. Heeck, and M. H. Tytgat, SO(10)
paths to dark matter, Phys. Rev. D 99, 055032 (2019).

[42] J. Chakrabortty, R. Maji, and S. F. King, Unification, proton
decay and topological defects in non-SUSY GUTs with
thresholds, Phys. Rev. D 99, 095008 (2019).

[43] M. Chakraborty, M. Parida, and B. Sahoo, Triplet lepto-
genesis, type-1I seesaw dominance, intrinsic dark matter,
vacuum stability and proton decay in minimal SO(10)
breakings, J. Cosmol. Astropart. Phys. 01 (2020) 049.

[44] D. Chang and A. Kumar, Symmetry breaking of SO(10) by
210-dimensional Higgs boson and the Michel’s conjecture,
Phys. Rev. D 33, 2695 (1986).

[45] W. G. McKay and J. Patera, Tables of Dimensions, Indices,
and Branching Rules for Representations of Simple Lie
Algebras (Marcel Dekker, Inc., New York, 1981).

[46] R. M. Fonseca, Calculating the renormalisation group equa-
tions of a SUSY model with Susyno, Comput. Phys.
Commun. 183, 2298 (2012).

[47] R. Feger and T.W. Kephart, LieART—A Mathematica
application for lie algebras and representation theory,
Comput. Phys. Commun. 192, 166 (2015).

[48] R. Feger, T. W. Kephart, and R. J. Saskowski, LieART2.0—A
Mathematica application for lie algebras and representation
theory, Comput. Phys. Commun. 257, 107490 (2020).

[49] R. M. Fonseca, GroupMath: A Mathematica package for
group theory calculations, arXiv:2011.01764.

[50] M. E. Machacek and M. T. Vaughn, Two loop renormaliza-
tion group equations in a general quantum field theory. 1.
Wave function renormalization, Nucl. Phys. B222, 83
(1983).

[51] M. E. Machacek and M. T. Vaughn, Two loop renormaliza-
tion group equations in a general quantum field theory. 2.
Yukawa couplings, Nucl. Phys. B236, 221 (1984).

[52] M. E. Machacek and M. T. Vaughn, Two loop renormaliza-
tion group equations in a general quantum field theory. 3.
Scalar quartic couplings, Nucl. Phys. B249, 70 (1985).

[53] P. Zyla et al. (Particle Data Group Collaboration), Review
of particle physics, Prog. Theor. Exp. Phys. (2020), 083CO1.

[54] R.N. Mohapatra, Unification and Supersymmetry -The
Frontiers of Quarks-Lepton Physics- (Springer, New York,
2002).

035011-18


https://doi.org/10.1103/PhysRevLett.119.191801
https://doi.org/10.1103/PhysRevLett.119.191801
https://doi.org/10.1007/JHEP12(2018)089
https://doi.org/10.1007/JHEP12(2018)089
https://doi.org/10.1103/PhysRevD.100.015009
https://doi.org/10.1103/PhysRevD.100.035023
https://doi.org/10.1103/PhysRevD.100.035023
https://doi.org/10.1103/PhysRevD.100.075011
https://doi.org/10.1007/JHEP04(2020)015
https://doi.org/10.1007/JHEP05(2020)057
https://doi.org/10.1007/JHEP05(2020)057
https://doi.org/10.1103/PhysRevD.103.055024
https://doi.org/10.1103/PhysRevD.103.055024
https://doi.org/10.1007/JHEP05(2021)160
https://doi.org/10.1103/PhysRevLett.32.438
https://doi.org/10.1103/PhysRevD.101.015005
https://doi.org/10.1103/PhysRevD.101.015005
https://doi.org/10.1016/0370-2693(77)90435-X
https://doi.org/10.1016/0003-4916(75)90211-0
https://doi.org/10.1103/PhysRevD.10.275
https://doi.org/10.1007/BF02849600
https://doi.org/10.1016/0370-2693(78)90243-5
https://doi.org/10.1016/0370-1573(81)90092-2
https://doi.org/10.1016/0370-1573(81)90092-2
https://arXiv.org/abs/1511.08771
https://arXiv.org/abs/1511.08771
https://doi.org/10.1103/PhysRevD.73.055001
https://doi.org/10.1103/PhysRevD.28.217
https://doi.org/10.1103/PhysRevD.28.217
https://doi.org/10.1103/PhysRevLett.70.2845
https://doi.org/10.1103/PhysRevLett.70.2845
https://doi.org/10.1016/j.physletb.2004.03.031
https://doi.org/10.1063/1.1847709
https://doi.org/10.1103/PhysRevD.80.015013
https://doi.org/10.1103/PhysRevD.80.015013
https://doi.org/10.1007/JHEP08(2013)021
https://doi.org/10.1007/JHEP08(2013)021
https://doi.org/10.1142/S0217751X13300081
https://doi.org/10.1103/PhysRevD.91.095010
https://doi.org/10.1103/PhysRevD.91.095010
https://doi.org/10.1103/PhysRevD.98.055009
https://doi.org/10.1103/PhysRevD.99.055032
https://doi.org/10.1103/PhysRevD.99.095008
https://doi.org/10.1088/1475-7516/2020/01/049
https://doi.org/10.1103/PhysRevD.33.2695
https://doi.org/10.1016/j.cpc.2012.05.017
https://doi.org/10.1016/j.cpc.2012.05.017
https://doi.org/10.1016/j.cpc.2014.12.023
https://doi.org/10.1016/j.cpc.2020.107490
https://arXiv.org/abs/2011.01764
https://doi.org/10.1016/0550-3213(83)90610-7
https://doi.org/10.1016/0550-3213(83)90610-7
https://doi.org/10.1016/0550-3213(84)90533-9
https://doi.org/10.1016/0550-3213(85)90040-9
https://doi.org/10.1093/ptep/ptaa104

PSEUDO-NAMBU-GOLDSTONE DARK MATTER MODEL INSPIRED ...

PHYS. REV. D 104, 035011 (2021)

[55] N. Deshpande, E. Keith, and P. B. Pal, Implications of LEP
results for SO(10) grand unification, Phys. Rev. D 46, 2261
(1992).

[56] N. Deshpande, E. Keith, and P. B. Pal, Implications of LEP
results for SO(10) grand unification with two intermediate
stages, Phys. Rev. D 47, 2892 (1993).

[57] P. Nath and P. Fileviez Perez, Proton stability in grand
unified theories, in strings and in branes, Phys. Rep. 441,
191 (2007).

[58] A. Takenaka et al. (Super-Kamiokande Collaboration),
Search for proton decay via p — etz and p — u" 2% with
an enlarged fiducial volume in Super-Kamiokande I-IV,
Phys. Rev. D 102, 112011 (2020).

[59] L Dorsner, S. Fajfer, A. Greljo, J. Kamenik, and N. Ko$nik,
Physics of leptoquarks in precision experiments and at
particle colliders, Phys. Rep. 641, 1 (2016).

[60] K.S. Babu and S. Khan, Minimal nonsupersymmetric
SO(10) model: Gauge coupling unification, proton decay,
and fermion masses, Phys. Rev. D 92, 075018 (2015).

[61] D. Chang, R. N. Mohapatra, and M. K. Parida, Decoupling
Parity and SU(2), Breaking Scales: A New Approach to Left-
Right Symmetric Models, Phys. Rev. Lett. 52, 1072 (1984).

[62] D. Chang, R.N. Mohapatra, and M. K. Parida, A new
approach to left-right symmetry breaking in unified gauge
theories, Phys. Rev. D 30, 1052 (1984).

[63] D.R.T. Jones, The two loop beta function for a G; x G,
gauge theory, Phys. Rev. D 25, 581 (1982).

[64] L.J. Hall, Grand unification of effective gauge theories,
Nucl. Phys. B178, 75 (1981).

[65] D. Chang, R. N. Mohapatra, J. Gipson, R. E. Marshak, and
M. K. Parida, Experimental tests of new SO(10) grand
unification, Phys. Rev. D 31, 1718 (1985).

[66] M. G. Baring, T. Ghosh, F. S. Queiroz, and K. Sinha, New
limits on the dark matter lifetime from dwarf spheroidal
galaxies using Fermi-LAT, Phys. Rev. D 93, 103009 (2016).

[67] S. Palomares-Ruiz, Model-independent bound on the dark
matter lifetime, Phys. Lett. B 665, 50 (2008).

[68] L. Covi, M. Grefe, A. Ibarra, and D. Tran, Neutrino signals
from dark matter decay, J. Cosmol. Astropart. Phys. 04
(2010) 017.

[69] A. Belyaev, N.D. Christensen, and A. Pukhov, calcHEP3.4
for collider physics within and beyond the standard model,
Comput. Phys. Commun. 184, 1729 (2013).

[70] G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov, and B.
Zaldivar, microMEGASS.0: Freeze-in, Comput. Phys. Com-
mun. 231, 173 (2018).

[71] A.M. Sirunyan et al. (CMS Collaboration), Search for
invisible decays of a Higgs boson produced through vector
boson fusion in proton-proton collisions at /s = 13 TeV,
Phys. Lett. B 793, 520 (2019).

[72] M. Aaboud et al. (ATLAS Collaboration), Combination
of Searches for Invisible Higgs Boson Decays with the
ATLAS Experiment, Phys. Rev. Lett. 122, 231801
(2019).

[73] C.-Y. Chen, S. Dawson, and I. M. Lewis, Exploring resonant
di-Higgs boson production in the Higgs singlet model, Phys.
Rev. D 91, 035015 (2015).

[74] A. Albert et al. (Fermi-LAT, DES Collaborations), Search-
ing for dark matter annihilation in recently discovered
Milky Way satellites with Fermi-LAT, Astrophys. J. 834,
110 (2017).

[75] T. Binder, T. Bringmann, M. Gustafsson, and A. Hryczuk,
Early kinetic decoupling of dark matter: When the standard
way of calculating the thermal relic density fails, Phys. Rev.
D 96, 115010 (2017); Erratum, Phys. Rev. D101, 099901
(2020).

[76] T. Abe, Effect of the early kinetic decoupling in a
fermionic dark matter model, Phys. Rev. D 102, 035018
(2020).

035011-19


https://doi.org/10.1103/PhysRevD.46.2261
https://doi.org/10.1103/PhysRevD.46.2261
https://doi.org/10.1103/PhysRevD.47.2892
https://doi.org/10.1016/j.physrep.2007.02.010
https://doi.org/10.1016/j.physrep.2007.02.010
https://doi.org/10.1103/PhysRevD.102.112011
https://doi.org/10.1016/j.physrep.2016.06.001
https://doi.org/10.1103/PhysRevD.92.075018
https://doi.org/10.1103/PhysRevLett.52.1072
https://doi.org/10.1103/PhysRevD.30.1052
https://doi.org/10.1103/PhysRevD.25.581
https://doi.org/10.1016/0550-3213(81)90498-3
https://doi.org/10.1103/PhysRevD.31.1718
https://doi.org/10.1103/PhysRevD.93.103009
https://doi.org/10.1016/j.physletb.2008.05.040
https://doi.org/10.1088/1475-7516/2010/04/017
https://doi.org/10.1088/1475-7516/2010/04/017
https://doi.org/10.1016/j.cpc.2013.01.014
https://doi.org/10.1016/j.cpc.2018.04.027
https://doi.org/10.1016/j.cpc.2018.04.027
https://doi.org/10.1016/j.physletb.2019.04.025
https://doi.org/10.1103/PhysRevLett.122.231801
https://doi.org/10.1103/PhysRevLett.122.231801
https://doi.org/10.1103/PhysRevD.91.035015
https://doi.org/10.1103/PhysRevD.91.035015
https://doi.org/10.3847/1538-4357/834/2/110
https://doi.org/10.3847/1538-4357/834/2/110
https://doi.org/10.1103/PhysRevD.96.115010
https://doi.org/10.1103/PhysRevD.96.115010
https://doi.org/10.1103/PhysRevD.101.099901
https://doi.org/10.1103/PhysRevD.101.099901
https://doi.org/10.1103/PhysRevD.102.035018
https://doi.org/10.1103/PhysRevD.102.035018

