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Nonconformality, subregion complexity, and meson binding
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We study holographically the zero and finite temperature behavior of the potential energy and
holographic subregion complexity corresponding to a probe meson in a nonconformal model. Interestingly,
in the specific regime of the model parameters, at zero and low temperatures, we find a nicely linear relation
between dimensionless meson potential energy and dimensionless volume implying that the less binding
meson state needs less information to be specified and vice versa, but this behavior can not be confirmed in
the high temperature limit. We also observe that the nonconformal corrections increase the holographic
subregion complexity in both the zero and finite temperature states. However, nonconformality has a
decreasing effect on the dimensionless meson potential energy. We finally find that in the vicinity of the
phase transition, the zero temperature meson state is more favorable than the finite temperature state, from

the holographic subregion complexity point of view.
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I. INTRODUCTION

The gauge/gravity duality is a conjectured relationship
between quantum field theory and gravity. This duality is a
strong-weak duality which maps a strongly-coupled quan-
tum gauge field theory to a weakly-coupled classical
gravity in a higher dimension [1]. The duality provides
an important framework to study key properties of the
boundary field theory dual to some gravitational theory on
the bulk side. This idea is used to describe phenomena in
strongly-coupled quantum field theories ranging from
condensed matter physics to low-energy quantum chromo-
dynamics (QCD), the theory of the strong interactions [2].
The most significant example of gauge/gravity duality is
the AdS/CFT correspondence which proposes a duality
between IIB string theory on anti—de Sitter (AdS) space-
times in d 4+ 1 dimensions and d-dimensional supercon-
formal field theories. This framework has been applied to
study quantities such as Wilson loops, entanglement
entropy and has recently been extended to the quantum
computational complexity in field theory. The generaliza-
tion of AdS/CFT correspondence to field theories which
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are not conformal seems to be important. It is then
interesting to develop our understanding of this duality
for more general cases.

There are many different families of nonconformal field
theories and one can study the effect of the noncoformality
on their physical observables [3]. Some of the most
important gauge-invariant and nonlocal observables in gauge
theories are Wilson loops. In quantum field theory, potential
energy can be obtained by this quantity as a gauge invariant
nonlocal operator. The expectation value of Wilson loops has
valuable applications to the confinement/deconfinement and
QCD-like theories [4—7]. In particular the expectation value
of this operator on a rectangular loop gives us the potential
energy between a static quark and antiquark.

Entanglement entropy is another intriguing nonlocal
quantity which measures the quantum entanglement
between two subsystems of a given system. This quantity
is extremely useful in many quantum systems, ranging
from condensed matter physics to black hole physics. It can
be used to classify the various quantum phase transitions
and critical points [8—13]. Since the quantum field theories
have infinite degrees of freedom, the entanglement entropy
is divergent. Thus, it is a scheme-dependent quantity and
needs to be regulated. It has been shown that the leading
divergence term is proportional to the area of the entangling
surface (for d > 2) [14,15]. The entanglement entropy has
a holographic dual given by the area of minimal surface
extended into the bulk whose boundary coincides with the
boundary of the subregion [16].

Concepts from quantum information theory are having a
rapidly growing influence in investigations of quantum field
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theory and quantum gravity. One of the most important
information quantities is quantum computational complex-
ity. This is a state-dependent quantity which measures how
difficultitis to prepare a given state, from the reference state.
More precisely, quantum computational complexity
involves minimizing the number of unitary transformations
required to transform a reference state to a target state. For
more details, see [17,18]. There have been two prescriptions
to calculate the quantum complexity in terms of the gauge/
gravity duality, which are known as the Complexity =
Volume (CV) conjecture [19] and the Complexity =
Action (CA) conjecture [20,21]. Note that these proposals
correspond to the complexity of a pure state in the whole
boundary space of the dual quantum field theory. If one
would like to compute the complexity of a mixed state,
corresponding to a subsystem, then one should generalize
the notion of complexity to the subregion complexity. There
are two known proposals called holographic subregion
complexity (HSC) for the CV conjecture [22] and the CA
conjecture [23]. The reader can find other studies on the
holographic subregion complexity in [24-30].

The remainder of the paper is organized as follows:
Section II considers a brief review of modified AdSs
(MAdS) background and its black hole version, which is
called modified black hole (MBH), and we investigate the
thermodynamic properties of them including entropy,
density, and pressure, which are given in terms of non-
conformal parameter theory. In Sec. III, we study some
nonlocal observables such as potential energy, entangle-
ment entropy, and HSC corresponding to a bound state
meson and express how to calculate them through holo-
graphic prescriptions. In Sec. IV we study the meson
potential energy at both zero and finite temperatures. In
order to obtain the analytical results we develop a system-
atic expansion (see [31-33]), up to some specific order of
the expansion parameter and consider a specific limit of the
underlying field theory called high energy limit. However,
since we cannot obtain analytical results, we will not study
the low energy limit. At finite temperature, we focus on two
favorable low and high temperature limits. In Sec. V, we go
through the same steps as Sec. IV and obtain the analytical
results corresponding to the HSC. At the end of this section
we reach an interesting result regarding a linear relation
between dimensionless HSC and dimensionless meson
potential energy. In Sec. VI, we conclude with a brief
discussion of our results and we consider some directions
for future research. In Appendix A, we present the full
details of our calculations corresponding to meson potential
energy. In Appendix B we do the same for HSC results.

II. REVIEW ON THE BACKGROUNDS

We are interested in studying the nonlocal quantities
such as Wilson loops and HSC of a probe meson (a stable
quark and antiquark bound state) using the framework of
holography. Therefore, we start with a five-dimensional

background and its black hole version, which is called
modified AdSs; and modified black hole, respectively.
These backgrounds are dual to QCD-like gauge theories
at zero and nonzero temperature.

A. The backgrounds

The gravitational backgrounds we study here are the
following MAdS background [34]

2 R4

r R* o
ds* = ﬁg(r) <—dt2 +dx? +r4dr2> ., glr)=e?, (1)

and the black hole version of the above model, the MBH
background [35]

r2

ds? = ﬁg(r) <—f(r)dt2 +dxX? + r4§zr) dr2>,

fr)=1--, (2)

where r is the radial coordinate, r;, is the position of the
horizon, X = (x, y, z), R is the asymptotic AdSs radius and
the boundary is located at r = co where the QCD-like
model lives. The modifier parameter ¢ has (energy)?
dimension whose value is fixed from the p meson trajectory
estimated to be of order 0.9 GeV? [35]. There is an upper
bound on the maximum value of the radial coordinate
called r, = R? \/g Note that as ¢ goes to zero then 7 is not
bounded, as expected for the AdS background [34]. In the
QCD-like theory, . corresponds to a mass gap which is the
lowest excitation and its energy order is the same as
the QCD scale. Therefore, we assign a energy scales A,
to . in such a way that A, = /c. The asymptotically AdSs
solution and its black hole version will be respectively
recovered if one sets the modifier parameter zero, say
¢ = 0, in backgrounds (1) and (2).

B. Thermodynamics

Consider a general class of black brane metrics of the
form

ds* = g(r)[—f(r)df* + dx*] + h(lr)drz, (3)

where f(r) and h(r) have a first order zero at the horizon
r =ry,, while g(r) is nonvanishing there. The Hawking
temperature 7 and the entropy density s of the black brane
is given by

3

IN/IGYAGLLG VG
4n —r, 4Gy |,=,,’

where Gy is the Newton constant. According to (2) and
using the fact that f(r,) =0, the temperature and the
entropy density of the boundary field theory become
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It is clearly seen from the above equations that the theory
will be conformal if one takes the limit ¢ — 0 (or A, — 0).
Hence, one expects that the entropy density must coincide
with that of a relativistic conformal theory which scales as
T3. We are now in a position to determine the pressure p
and the energy density ¢ of the thermal system through
standard thermodynamic relations

p—/de(T),

Using (2), (5), and (6) the pressure and the energy density
are expressed

e+ p=Ts. (6)

@4r2T?

S [ ﬁ(3A3T2 T_4> _9A2‘Ei(4f£§2)]

T 4Gy 162> 4 64r*
SRI[ 32 /3T* 3AZT2\  [9AGEi(2N,
6‘:77: e’ [ —— ¢ 5 + (‘ZTZT ) , (7)
4Gy 4 lox 64

where Ei(x) is the exponential integral defined for a real
nonzero values of x

Ei(x) = —/_°° a (8)

x t

III. WILSON LOOP, ENTANGLEMENT
ENTROPY AND SUBREGION COMPLEXITY

We explore the behavior of some nonlocal observables
including potential energy and subregion complexity of a
probe meson. To obtain analytic expressions for these
observables we do a systematic expansion at both zero and
finite temperature using the holography idea.

A. Wilson loop

In quantum filled theory, the potential energy can be
obtained by the Wilson loop operator. The expectation
value of this operator on a rectangular loop, R with two
sides, time 7z and distance /, where 7> [, gives us the
potential energy between a static quark and antiquark with
the distance /. The holographic prescription of the expect-
ation value of the Wilson loop is the on-shell action of a
classical string S(R) whose endpoints correspond to a
quark and antiquark on the boundary and is suspended from
the boundary to the extra dimension in the bulk [36]

(W(R)) = &7 ©)

It is then straightforward to find the potential energy
corresponding to the binding energy of the meson.

Further information about the holographic Wilson loop
can be found in [7].

B. Entanglement entropy

If we decompose the total Hilbert space of a system, H,,
into two subsystems H, and Hp such that H,,; =H, @ Hp,
then we will trace out the subsystem B and define the
reduced density matrix p, for the subsystem A as p, =
Trgp where p is the total density matrix. The entanglement
entropy S, measures how much information is hidden
inside the subsystem A and defined as the von Neumann
entropy of the reduced density matrix p,

Sa = —trpslogpy. (10)

The AdS/CFT correspondence provides an elegant way to
compute the entanglement entropy in terms of a geomet-
rical quantity on the bulk. This is the so-called holographic
entanglement entropy formula, first proposed by Ryu and
Takayanagi [16,37]

Area(yy,)
Sy = Tzdv”’ (11)

where S, is the holographic entanglement entropy for the
sub-system A, y, is a codimension-two minimal area
surface (RT surface) whose boundary dy, coincides with
OA, and G4 is the d + 2-dimensional Newton constant.

C. Subregion complexity: CV duality

If we would like to compute the complexity of the mixed
state, then we will need to extend the holographic complex-
ity to the subregions. The holographic volume prescription
for calculating subregion complexity states that the HSC
for a subregion A on the boundary equals the volume of
codimension-one RT surface enclosed by y, which is given
by the following form [22]

1%
Cy=—" 12
A7 87RGy (12)

where R is the AdS radius and C4 is known as the HSC for
the subregion A.

IV. POTENTIAL ENERGY

Heavy-quark potential is one of the fundamental observ-
ables which is relevant to confinement. Based on [38] the
following heavy-quark potential, Cornell potential, is
proposed

K r
Vir)=—+—=5+V, 13

(N =-"+5+ (13)

where « is treated as a phenomenological parameter and a

is inferred from lattice gauge theory. These parameters are
adjusted to be
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k~048, a=~234GeV™', Vx-025GeV. (14)
The first term of the potential is in complete accordance with
the known Coulomb potential at short distance r — 0 and the
second one with confinement at large distance r — oo.

At zero temperature, in the background (1), the potential
energy between the quark and antiquark pair is obtained
and shows that this background describes the low energy of
QCD-like theory, confined phase [34]. This meson poten-

tial energy is given by

[ p(=Rtor+0(7) r=0
V(r)—{p(ar) oo, (15)

where p ~ 0.94 and xy ~ 0.23 are dimensionless parame-
ters, and we have o, ~ 0.16 GeV? and ¢ ~ 0.19 GeV? for
¢ = 0.9 GeV?. These constants are fixed according to the
Cornell potential (13). In the following subsections we
would like to obtain analytically the potential energy of the
probe meson at both zero and finite temperatures. In the rest
of the paper we set the AdS radius R = 1.

A. Potential energy: zero temperature expansion

In this section we consider a state which corresponds to
the MAdS background (1) and probe this state with a
meson in the QCD-like theory. On the gravity side, this
meson is dual to a classical string whose dynamic is given
by Nambu-Goto action

-1
Sv0 = 5 | drdo/=detlga). (16)

where @ = 2 in which [, is the string length and g, is the
induced metric on the world sheet. The world sheet can be
parametrized by 7 = ¢ and ¢ = x and by demanding that
7 — o0, its shape is given by r(x). We set the quark and
antiquark at x = —1/2 and x = /2. At zero temperature
using the MAdS background (1) we can easily see that

T [t o [r?
_ b 2
SNG —ﬂ_a,A ex’r ?4‘7‘ dx, (17)

where 7 = dr/dx. The above action is not explicitly
dependent on x so the corresponding Hamiltonian is a
constant of motion. Hence, using the boundary condition
r(x)],_o =0, we get

where r, = r(x)|,_, is the returning point of the string. By
integration of Eq. (18) the characteristic length / corre-
sponding to the separation of quark and antiquark read as
follows:

—2rez’*/
r’y\/ rt e -t e’

N _/ u2eE 1= (1 = PGPy )y (19)

where u = r,/r. By substituting (18) in (17) and using [36]
we have the following expression for the meson potential

energy
1
= r_*//1 w2 (1 - ez(:_i)z("”2)u4> “du,
T Js

(20)

Va(r.)

where 6 is an ultra violet cutoff due to the UV divergence
structure of the potential energy.
Unfortunately (20) can not be analytically solved.

Therefore, we use binomial expansion, (1—x)72=
®, \/gl(fzz)wx”,—l <x<1. By defining x = 277174 4

and using the fact that . < r, one can easily see that x < 1
and hence the sum is well defined. Following the above
discussion, (19) and (20) can be indicated by the infinite
series

1 .
Z A2, Cn (=) ()2 g
ﬁr n + / ’
(21)

V,: +3) )/1u4n_ze<2n+<1—2,1)u2)(;—i)2dw

Iy
a7 _ﬂaz\/'F n+1
(22)

In order to find the meson potential energy V5 as a function
of the characteristic length [ the following simple procedure
is done. We should solve equation Eq. (21) for r, and then
substitute it in Eq. (22) to obtain V5 in terms of /. In practice,
we can not analytically solve Eq. (21) to find r, as a function
of [. Therefore, we need to focus on the specific limit, which
we call the high energy limit. We will introduce this limit in
the next part. Note that, in the low energy limit, i.e., r, — r,
(or IA. > 1), we do not reach the analytical results and then
we have to neglect studying this limit.

1. High energy limit

As we mentioned at the end of the Sec. IVA, to find V4
in terms of / we focus on the high energy limit. On the
gravity side, by this limit we mean that the upper bound on
the maximum value of the radial coordinate r. should be
much smaller than the turning point of the classical string
r,, 1.e., r. <K r,. On the field theory side, the energy scale
which we assign to 7., called A, should be much smaller
than the energy scale corresponding to the probe meson,
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i.e., IA, < 1. Itis noticed that, in this limit, the corrections
to the boundary observables are small and hence we can
perturbatively do the calculations.

In high energy limit, from Eq. (21) and keeping up to the
fourth order in r./r, we obtain

2 re\ 2 re\4
l(l’*):— a1+a2 - +Cl3 — s al,az,a3>0, (23)
Ty Ty Ty

where numerical coefficients a;, a, and a5 are reported in
Table I in Appendix A. Solving Eq. (23) perturabtively for
r, and then considering the finite terms, the terms which do
not include ¢ in the meson potential energy (the details of
the calculations are written in Appendix A), we finally
reach the following expression

&V (1, IA,)

A
1 /- b LB

- (bl %2 (in 2 + 4<1A>)

b, <0, by, by > 0, (24)

where Vq(-] is the dimensionless meson potential energy at

zero temperature and numerical coefficients by, by, and b
are shown in Table I in Appendix A. Since the underlying
field theory is conformal, it is expected that the dimension-
less parameter /A, will appear. To correctly compare the
underlying field theory with that which includes the energy
scale A., we make the meson potential energy dimension-
less. By doing so we can get meaningful and intuitive
results by taking the conformal limit /A, — 0. The first
negative term in Eq. (24) is just related to the well-known
Coulomb potential and the second and third positive terms
come from the nonconformality appearance. The interest-
ing point is that in high energy limit, /A, < 1, by
increasing /A, one can deduce that qu becomes less
binding, i.e., the more nonconformality effects, the less
binding dimensionless meson potential energy.

B. Potential energy: finite temperature expansion

In this section we would like to study the thermal physics
of meson potential energy V5 in the MBH background (2).
We use the systematic expansion as we did in the previous
section in both low temperature i.e., [T < 1 (or r, K r,)
and high temperature i.e., [T > 1 (or r), ~ r,) limits. Using
(2), (16), and following the same previous calculations we
reach the following expressions for / and V

I(r,) —r—* A (E‘r)* it
X (r*) ) 4 B u
(- ) e

! fe)2y2 rey2 2 -5
qu(l) —r—*// u‘ze(ﬁ) u 1 _f_(r*> €2(Z) (l—u )l/t4 2du,
maJs f(u)

(26)
where & is an ultraviolet cutoff and f(u) = 1 — (r,/r,)*u*.
The above integrals can not be solved analytically, so we
develop a systematic expansion by using the binomial

expansion. If we define x = (f(r,)/f(u))e" =) we
will then get a convergent series, followmg the fact that

r. <r,and r, < r,. Now, (25) and (26) are given by

(r )n+%
r, ,,Z; \/_I“ (n +
4n+2 .
/ e LRGP gy (7

. I(n+1)
Dyl
— valn

u4n—2

s fu)"

Again, in order to find V; in terms of / we should solve
Egq. (27) for r, and use it in (28) to obtain V ; as a function
of [. Practically, it is not possible to solve Eq. (27)
analytically to find r, as a function of /. However, we
can study the behavior of meson potential energy in low
and high temperature limits, in the high energy limit
defined as IA, < 1 (or r. < r,).

e(2n+(1—2n)ﬂ2)(%)2du. (28)

1. Low temperature limit

At low temperature (/T < 1), the extremized classical
string world sheet is positioned next to the boundary and
thus the leading contribution comes from the near boundary
expansion. Finite temperature corrections and nonconfor-
mal effects appear as subleading terms corresponding to the
deviation of the bulk geometry from pure AdS. Focusing on
the high energy limit, and using Eq. (27), we reach the
following expression for [ up to the fourth order in r./r,
and r,/r,

2 4 4 2\ 2
Iy ry ry ry
4 4
+<a3+0‘3<ﬁ> ><ﬁ> ] ay,op,a3 <0, (29)
Ty Ty

where a;, a, and a3 are numerical coefficients reported in
Table II in Appendix A. Solving Eq. (29) perturbatively for
r, we obtain a perturbative expression for meson potential
energy by considering the finite parts (the details of the
calculations are written in Appendix A)
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oV gy (LIAIT)
AT

—% {1_71 +51(ZT)4+%(Z72 +H(IT)*)(IA)?
INLT?

B arn .

p1 <0, Br.p3>0,

Vg (INIT) =

(30)

where qu is the dimensionless meson potential energy at

low temperature and /3, f, and f; are numerical coef-
ficients given in Appendix A and reported in Table II. Note
that we make the meson potential energy dimensionless in
such a way that we can get the intuitive results by taking the
limits /A, — 0 and/or IT — 0 of (30). The first two terms
indicate the known meson potential energy for pure AdS
and AdS black hole, respectively, and the next two terms
are thermal and nonconformal corrections. In the high
energy and low temperature limit, if we fix /7 and increase

[\, we will then find that qu becomes less binding and the

same results will be achieved by fixing /A, and increasing

IT. We summarize the results corresponding to the men-

tioned limits:

(a) IA, — 0, IT finite and small enough: We get the zero
temperature meson potential energy as the leading
term and the subleading term, the term including
py <0, is the finite temperature correction which
makes the meson potential energy less binding.

(b) IT — 0, IA, finite and small enough: The leading term
is the conformal meson potennal energy and the
nonconformal terms, including b, > 0 and b; > 0
terms, appear as the subleading terms. Clearly, these
corrections cause the meson potential energy to be less
binding.

(¢) IA, = 0 and IT — 0: Obviously, we face the con-
formal meson potential energy.

According to the gauge/gravity dictionary, there is a phase

transition point where r, — r. [35] which is equivalent to

the limit 7 — A,./zv/2 and we call it the transition limit.

We would like to study the meson potential energy near this

point, hence we take the transition limit of Vq,-]. Doing some

algebra, up to fourth order in /A, we reach the following
expression

VgaIAc IT) s

N bz B
b IA
TV Y (1) + <4 47

To get a better understanding of the meson potential
energy near transition point, one can fix /A, and com-
pare the zero temperature potential energy qu] with the

2 )unr]. o

finite temperature one qu in the transition limit. To do so,

we should focus on the difference between Egs. (24)
and (31)

aq(IN)] = (32)

: ~ 151
Vo (IA,IT % ——(IA.)? > 0.
| qq( ¢ )|T—>”A7E | 471_4( c)

Near the phase transition point, it is seen that the zero
temperature dimensionless meson potential energy is less
binding; that is the amount of energy required to break
down the meson to quark and antiquark is less. We will

return to this issue later in the paper.

2. High temperature limit

At high temperatures, i.e., [T > 1 (or r, ~ry), the
extremized classical string world sheet tends to reach the
horizon and therefore the leading contribution is related to
the near horizon background. Since we work in the high
energy limit, r. < r,, the high temperature limit can be
identified by r, — r,. As r, touches the horizon the
classical string minimizes its energy by splitting into
two vertical strings ending at the horizon. At high temper-
atures, r;, approaches r, and hence f(r,) = 1 —r}/ri =0,
one can see from (28) that the meson potential energy is
zero and there is no more information regarding the high
temperature expansion of the meson potential energy.

V. HOLOGRAPHIC SUBREGION COMPLEXITY

In this section we would like to study HSC using the
volume prescription written in (12) for the MAdS and
MBH backgrounds [Egs. (1) and (2), respectively].

A. Holographic subregion complexity: zero
temperature expansion

We consider a striplike boundary region A in the X
direction at a constant time slice. This region can be
parametrized as

<x=x(r)<=, <y,z< L>1 (33)

l\)l*\-
l\)ll\-
Nlh
0|

Extremal surface is translationally invariant along y and z
axes and the profile of the surface on the bulk is x(r). If one
identifies the quark/antiquark separation, characteristic
length /, with subregion length, HSC of A can be consid-
ered as the complexity of the probe meson in nonconformal
vacuum. According to (12), we need to obtain the volume
enclosed by subregion A and RT surface which we call V, .
At zero temperature using the MAdS background (1) we get

vV, =2L* /oo rzer%x(r)dr, (34)

where L? is the volume of corresponding yz plane. To find
x(r) we need to compute the area of the RT surface
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N
A=2L rees?\[r* + —dx. (35)
0 r

Solving the equation of motion for x(r), the expressions for

V,, and [ are given by

I(r,) = z/1 w3 1= (1 - 63(:_:)2(1_“2)u6)_%du, (36)
0

1
V}’A (I"*) = 2L27"£/ M_4€2(E>2u2
o

x/lu3e%<f—i>2<1—"2>(1—e3('9 (1)) S, (37)

where again u =r,/r and § is an ultraviolet cutoff
introduced since the volume integral is divergent. This
integration is not solvable analytically. Hence, we use the
same method, systematic expansion, in Sec. IV A and then
(36) and (37) can be written as follows:

1 3 2 (rey2
z 613 A2 (1= (92
ﬁl“ (n T / ’
(38)

1 reN2,.2
(r) =2L%r2 Z U2
ﬁr /

y / 613 A2 (1= g (39)

Again to find HSC as a function of / we need to solve
Eg. (38) for r, and then put it in Eq. (39) to obtain V, in
terms of /. HSC can be computed using Eq. (12). In
practice, this procedure can not be performed analytically
and hence we focus on high energy limit, r. < r,.

1. High energy limit

In the high energy limit, from Eq. (38) and keeping up to
the fourth order in r./r, we get

2 A\ 2 A4
l(r*):r—{/ﬁ‘sz(:—L) +k3<%> ] ky,ky, k3 >0, (40)

where k, k, and k5 are numerical coefficients reported in
Table III in Appendix B. If we solve Eq. (40) perturbatively
for r, then we will finally obtain the following finite
expression (for more details of the calculation refer to
Appendix B)

v, (LIA)
L2A2
= g (7 F 00 n).

Wy, Wy, 03 < O, (41)

v, (IA,)

where \7y . 1s dimensionless volume and w, w, and w; are
numerical coefficients shown in Table III in Appendix B.
Finally, HSC can be obtained using Eqgs. (12) and (41). The
first negative term contributes to the boundary of MAdS. The
second and third negative terms correspond to the non-
conformality effects. In the high energy limit, it is seen that
increasing [A, causes Vy , to decrease. In other words, the
more nonconformality effects, the less required information to
specify the meson state. On the other hand, as we mentioned
in Sec. IVA 1, the more nonconformality effects make less
binding dimensionless meson potential energy. In order to get
a better understanding of a relation between HSC and meson
potential energy, we fix /A, and then the nicely linear relation
between qul and V“ using (24) and (41) is given by

V., (IA
P = ) @)
qq\M}e

where, at leading order, ay is a decreasing function of /A, in
the high energy limit. Due to the above linear relation one can
deduce that the less binding meson state needs less informa-
tion to be specified and vice versa. In Fig. 1, we plot the
relation (42) for two different values of [A,. It is seen that, if
one considers a meson state with specific qu and increases
(decreases) A, then less (more) information will be needed
to obtain the mentioned state. However, it seems that the
nonconformality effect does not respect this result, i.e., in
nonconformal field theory a less binding meson needs more
information to specify.

0.0 0.2 0.4 0.6 0.8 1.0

8000 8000

m IA;=0.0003
| IA;=0.0005

6000 6000

Ya

4000 4000

2000 2000

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 1. At leading order, the dimensionless volume \7“ in
terms of the dimensionless meson potential energy Vq,—{ for fixed
values of /A, at zero temperature. The different curves corre-
spond to different values of [A. = 0.0003 (green curve) and
IA, = 0.0005 (red curve).
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B. Holographic subregion complexity: finite
temperature expansion

Here, we investigate the thermal behavior of HSC in the
MBH background (2). We develop a systematic expansion
in low temperature /T < 1 (or r;, < r,) and high temper-
ature [T > 1 (or r, ~ry) limits and focus on the high
energy limit /A, < 1 (or r, < r,). The same calculations
lead to the following expressions for / and V, ,

_ PP oy gy

3
i(r) =2 [T era-e) g
s Jo f(l/t)
(43)
|

2 X IM(n+Hr(m+1)
Hr) = r_Z an(n +21)F(m —1—21

3 .
« / P R (R O
(44)

where & is an ultraviolet cutoff and f(u) = 1 — (r,/r,)*u*.
Again, analogous to the Sec. IV B, the above integrals
can not be solved analytically and hence we can develop
a systematic expansion. Using binomial expansions

equations (43) and (44) are given by
/1 <Z) 4mu4’”+6"+3e%(szrl)(]_"z)(%)zdu, (45)
) 0 Ty

© oo o0 F(}’l 4 l)r‘(m + l)r‘(p + l) 1 /r 4 reN2 2
V, (r.)=2V,.r - ; : / ) e
(72 »al ;%;fﬂr(w DEm+ OC(p+ ) Js \r.) * ¢
1 4m re\2
8 / (7’) Am6n+3 Ao (=) R g (46)

Since r, <r, and r, <r, we do not worry about the
convergence of the above series and hence these are well
defined. Now, the rest of the procedure is familiar. We have
to take the following steps: Solving Eq. (45) for r, and then
calculating V, by using Eq. (46) and finally computing
HSC using Eq. (12). Unfortunately, this process cannot be
done analytically and hence we have to study the behavior
of the HSC at low and high temperatures, in the high energy
limit.

1. Low temperature limit

At low temperature /7 < 1, the extremal surface is
restricted to be near the boundary and hence the lead-
ing contribution to the HSC comes from near AdS
boundary expansion. Therefore, we should expect the
zero temperature HSC to be the leading term. Finite
temperature corrections correspond to the deviation of
the bulk geometry from pure AdS. Working on the
high energy limit, and using (45), we get the following
expression for [ up to the fourth orderin r./r, and r,/r, we
have

2 4 4 2
l(l"*)——|:k]+l<] <Z> +(k2+K2<ﬁ> ><E>
Iy Iy Iy Iy
4 4
(ool e o
Iy Iy

|

where «;, k,, k3 are numerical coefficients reported in
Table IV in Appendix B. Solving Eq. (47) perturbatively for
r, we reach a perturbative finite expression

A V, (I.IA,.IT)
¥, (A 1T) = et

= ﬁ (\/_Vl + 5)1 (ZT)4
+%(w2 + @y (IT)*)(IA)?
+ % (s + &)3(1T)4)(1Ac)4) ’

@, <0, @3>0, (48)
where \A/“ is dimensionless volume at low temperature and
@,®, and @z are numerical coefficients reported in
Table IV in Appendix B (the details of the calculation
are in Appendix B). HSC can be computed using the
relation (12). We make V, dimensionless to have mean-
ingful and intuitive limits which are favorable such as
IA, — 0 and/or [T — 0. The first two terms are the known
results corresponding to the pure AdS and AdS black hole
HSC, respectively, and the next two terms indicate the
thermal and nonconformal corrections. From Eq. (48), it is
seen that if one fixes /T and increases /A, then VyA will
decrease and the same results will be obtained by changing
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the role of [T and [A,. This result can be clearly observed
from Fig. 2 where we plot V“ as a function of [T (IA,) for
fixed value of IA, (IT). Interestingly, following the results
we get for V 5 in the Sec. IV B 1, one can conclude that the
less binding qu the less information required to specify the
meson state, at leading order, and the thermal effects may
not respect to this result. Below, we represent the results
corresponding to the desired limits of Eq. (48).
(a) IA, — 0, IT finite and small enough: The leading term
corresponding to zero temperature HSC and the
subleading term, the term including @; < 0, is the
finite temperature correction which leads to a decline
in corresponding HSC.
IT — 0, IA, finite and small enough: The leading term
corresponding to the conformal HSC and the non-
conformal corrections, including @, < 0 and @3 < 0
terms, appear as the subleading terms. These correc-
tions lead to a decrease in corresponding HSC.
IA, = 0 and [T — 0: Clearly, we reach the corre-
sponding conformal HSC.

We would like to study HSC near the transition point, by
taking the transition limit 7 — A_/z+/2 of Eq. (48). Up to
the fourth order in /A, we get

(b)

(©)

= (IAIT .
( ¢ )|T—>A7_

[WH_Z(ZA) <

We fix [A, and compare the HSC at zero temperature (41)
and finite temperature (49) in the transition limit. We have

1
NS

w
B 2

R >(ZA)]. (49)

|V, (I IT))| V, (IA)] = (lA) > 0. (50)

A —
T—-—< |
2

If we accept that a state which needs less information to be
specified is a favorable state, then Eq. (50) will indicate

-1.6k
0. OOOO

0.0002 0.0003 0.0004 0.0005

IT

0.0001

that near the phase transition point the meson state at
zero temperature is favorable. Additionally, according to
Eq. (32) the zero temperature meson state is less binding.
Therefore, in short, near the transition point the less
binding meson is more favorable, i.e., it needs less
information to specify in the mentioned limits. Notice that
by taking the transition limit, the meson state at finite
temperature is more binding. These results are in agreement
with [26].

We would like to obtain a relation between HSC and
meson potential energy at low temperature. If we fix /A,
and [T, then using (30) and (48) we will reach a linear
relation between qu and Vy , at low temperature and
leading order, the same as the zero temperature case, which
is given by

JIALIT)

v,
- ar(IA,.IT),
Vg (IAIT)

(51)

where a7 is a decreasing function of /A, and [T at low
temperature and high energy. According to (51) the less
binding meson state needs less information to be specified
and vice versa. In Fig. 3, we plot relation (51) for different
values of /A, and IT. In the left, we fix [T and consider
different values of /A, and in the right we fix /A, and
consider different values of /7. From the left figure, it is
seen that if one considers a meson state with specific \A/q,—i,
then by increasing (decreasing) /A, at fixed IT the less
(more) information will be needed to determine that state.
On the other hand, the right figure shows by increasing
(decreasing) [T at fixed /A, the less (more) information will
be needed to specify that state.

2. High temperature limit

At high temperature, i.e., [T > 1 (or r,~r,), the
thermal fluctuations become considerable and the extremal

-1.6E
0. 0000

0.0002 0.0003 0.0004 0.0005

INc

0.0001

FIG. 2. Left: Atleading order, the dimensionless volume VyA as a function of [T for fixed /A, = 0.0001, in the low temperature limit.

Right: The dimensionless subregion volume VyA

as a function of /A, for fixed [T = 0.0001, in the low temperature limit.
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FIG. 3. Left: Atleading order, the dimensionless volume ‘7“ as a function of the dimensionless meson potential energy V

0.0 0.2 0.4 0.6 0.8 1.0

15000

m IT=0.0003
m T=0.0005

10000

5000 5000

0.0 0.2 04 0.6 0.8 1.0
Vag

i for fixed

values of /A, in the low temperature limit. The different curves correspond to different values of /A, = 0.0003 (green curve) and

IA,. = 0.0005 (red curve). we fix [T = 0.0001. Right: f/“

as a function of ‘A/q;, for fixed values of [T, IT = 0.0003 (green curve) and

IT = 0.0005 (red curve) in the low temperature limit. We fix IA, = 0.0001.

surface gets close to the horizon. The leading contribution
comes from the near horizon background and the full bulk
contributes to the subleading terms. In high temperature
|

and high energy limit r. < r, and r, — r,, respectively,
we integrate Eqs. (45) and (46) and consider finite parts, up
o (r./r,)* and we get

2 & T(n+HT(m + 4 \2
= 2SS L () ()], )
Ty n=0 m Oﬂ n+1)F(m+ ) Iy
XX T+ HPLm+HT(p+3) 1\ 4m+p) 2
eSS (O el ] o
T AIRY 2D G s DTG+ el 59
where L, L,, C; and C, are constant coefficients given by
L= 1
' bn+dm+ 4
3 1
L,==(2 1 —
: 2(n—|— )(6n—|—4m+4 6n—|—4m+6>’
c 1 1
' (6n+4m+4)(4p—3) (6n+4am+4)(6n+4m+4p+1)°
3 1 1
C,==(2 -
=50+ )<(6n+4m—|—4)(4p—3) (61 + 4m + 4)(6n + 4m + 4p + 1)
1 n 1
(6n+4m+6)(4p—3) (6n+4m+6)(6n+4m +4p +3)
2 2
(54)

* (6n+4m+4)(4p—1)

The next step is to write V,,
carefully the convergence of the resulting infinite series.

(6n+4m+4)(6n+4m+4p +3)°

in terms of /. To do so, we perform the calculations order by order up to (r./r,)? and check
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(a) Upto (r./r,)°: We consider the terms including L, and C, which are the known results for AdS black hole. Using
Egs. (52) and (53), we obtain

(Z Val(p (f;;(z)p -3) (Z_h> - %) A G3)

where the term —1/3 corresponds to p = 0 term and expresses the fact that only p = 0 term is divergent and A is
given by

— — — C(n+HT(m+HC(p + 1) ) 4m+p)
A= 2 2 2 <—> . 56
;;;:ﬁ/zr (n+D(m+ D(p+ 1)(6n +4m +4)(6n +4m +4p + 1) \r. (56)

For large p, the first infinite series in (55) goes as ~p~3/%(r;,/r,)*” and hence converges for r, = r,. We are in a
position to check the convergence of (56), then we sum over n and p in (56) and obtain

ASSo(m) Tontd [N 03 11 ()¢
£e\r.) 7200(m+1)[ TE+]) ¥ '\ 4274 \r,

LACG Ay p (L1 L Sm 1m 7 123m 1m 5 (n)?
rE12) °\746°2°6°3 123 12'3°3'4'3 ' 3’3 6\~
_60r(% +3) n\ e (L L13Tm S om 12134 m 2 m T ()"
rez+d \r 122663 123 1231233 33 6 \n,
91“—”’—|—§r8 5573m 3m 54175 m m 3 [(r)\"?
“TZ+2) \n 12°6°6'2°3 743 431233 03 2\

where pF 4 18 the hypergeometric function and we use the following relation for ¢ = p — 1

i q p
qu(al,...,a,,;bl,. wbgiz ZF b ) Jzl <1 or |zl=1 and Re Z Z >0, (58)
q =1 =1

where (a), =T (a + k)/T'(a) is the Pochhamer symbol. Using Eqgs. (58) it can be shown that for large m, each term of
the sum (57) behaves as ~m~!(r;,/r,)*" and hence the series diverges for r, = r;,. We should add and subtract the

divergence piece of this series and then write r, = r;,(1 + €) where at high temperature ¢ < 1 and do an expansion for
small €. We obtain

A=A, +A;In(4¢) + Oe), (59)

where A; and A, are constant coefficients given in Appendix B and In(4¢) is a function of r;, and / obtained in
Appendix B. Using (55) and (59), we reach the following linear relation

0 14 0 0
v ar) = T = MO+ irm?, (60)

where V;;))T is dimensionless volume up to the (r./r,)? at high temperature, M ) and M ) are constant coefficients

given by
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M :_zﬂz[Al+A2<\/36—;r7(l%§%)+z(fr(m+§)r(%m+g)_l))],

z A 61
;r 4p 3) 37 +2Ver4,. (61

Finally, HSC can be obtained using Eqs. (12) and (60). According to Eq. (60), at high temperature, the term including
Méo) is dominant indicating V;;))T is proportional to /7" and the term independent of /T receives contribution from the
full bulk background.

(b) Up to (r./r,)*: We consider the terms including L, and C, which are the nonconformal effects at high temperature.
Using (52) and (53), we have

e @ s ) 3) 2 (e() ) o

where again the term —1/3 comes from p = 0 term which is the divergent part and B is given by

5 iii” F(n+§)r(mr’—1|—§)r(p+§) §(2n+ )

+Dl(p +1)

X

1 1
(6n—|—4m—|—6)(6n—|—4m+4p—|—3)_(6n+4m+4)(6n+4m—|—4p—|—1))

2 2 i\ 40m+p) (63
+(6n+4m+4)(4p—1) (6n+4m + 4)(6n +4m +4p +3)| \r, ’ )

In order to study the convergence of the series in (63) at high temperature, r, ~ r;,, we divide B into the two

infinite series called B; and B, which is investigated respectively. First we study the behavior of 3; whose form is
written by

X &, In+Hrm+Hr(p+4) 3
Zzzn*/zrnﬂ)r(mﬂ) I(p+ )5(2 n+1)

m=0 p=0

=

M

® & [ 32n+1)I(n+HT(m+3) 1 3n

30 30 7 ()
F|= — 4 ol
cei|An (3n42m +3)(6n+4m+3)C(n+ DI(m+1)2 1<2,m+ 5 +4,m+ 5 +4’<r*> )
3

m+—+-—-m+

=0
1 1 rh 4(m+p)
x (6n+4m+6)(6n+4m—+4p+3) (6n+4m—+4)(6n+4m+4p+1))\r,
n
2’ 2 4 2

32n+ 1) (n+H(m+1) (1 3n 1

)" -

where in the last equation we sum over p. For large n and m, there is an equal behavior regarding the two
terms in (64) due to their functional form and both of them converge at high temperature, r, ~ r,. We are left to check
the convergence of the remaining part of B, called B,, which is given by the following expression

- F
4r7(3n+2m+2)(6n+4m+ D(n+ H0(m+1)%""
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(P +5)

2

Dr(m +
C(m

i

+ 1)I(p +
2

(6n +4m +4)(6n+4m+4p +3

C(m+ )T

(6n+4m+4)(4p—1)

)e)

243

1 115m

12°6°2°6° 3

31211

+43312

+1m
4’3

X F5<

(m+ I +1)

()

F(m + D&+

m

3

+13)
2)

x (=12936 — 12096m — 2688m?) +

. F 1157anr
\4°2°6°6° 3

7 m

237

X (924 + 1568m + 448m?) +

84(4m + 3)(4m +7)(4m + 11)I(m

13254m Sm 4
12°3°4’3°3

+ 1)

%)
())
+1)

I'n

4
Iy

53
[(m

3’
(Zm

7573 m

12°6°6'2° 3

+11 m
1273

17 4 19 5

12°3°12°3°

6F5<

x (189 + 360m + 144m?) |,

+9r
84(4m + 3)(4m + 7)(4m

+11)0(m + H)I(Z+ )

L))

m

3

m ry
3

7
6’

*\ |:‘

Iy

(65)

where in the last equation we sum over n and p. There
exist three different types of behavior for large m in
(65). There are specific terms whose large m behavior
goes as ~m =3 (r;/r,)*" and ~m~2(r),/r,)*" which are
clearly convergent at r, = r;,, by isolation of the term
corresponding to m = 0 of the series. However, there
are other terms which go as ~m=!(r;/r,)*" and hence
they are divergent at r, = r,. In order to get con-
vergent series we should extract the divergence piece.
Similar to the previous calculation of the zeroth order
of r./r,, we finally get

B = By + B, In(4¢) + O(e), (66)

where B| and B, are constant coefficients given in
Appendix B and In(4¢) by considering the second

order of r./r,, is a function of r;, and [/ obtained in
Appendix B. Using (62) and (66) we have

V, (1IN, IT)
(2) _ VLA
Vil (IN IT) = YLZT
R
 BAT

2 2
+ (MY + 1M

(MO + 1My (i1)?

AL (67)

(2)

where V77 is dimensionless volume up to the (r./r,)?

at high temperature, M(lz) and Mgz) are constant
coefficients given by

\/EEF > Ver(m+hrE+2)
(2)
M= < Z(srmm r@+) ‘%))
(2n+ 1)I(n +3) 1 3n _3n
Azf;{ 26n 1 2/t 12! (5’7“’7”’1)
2n+ I'(n+1) 13n 33n 5
_2(n—|-1)\/7_rl"(n-i1) 1 <2 2772 5’1)]
= —7V6B,. (68)
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FIG. 4. Left: The dimensionless volume VS)T as a function of IT for fixed /A, = 0.0001, in the high temperature limit. The curve is

(0)

described by VS)T = }yTZ
@ _ 1M
Vir =

The terms including M EO) and Mé()) come from the

order (r./r,)? which appeared in Eq. (60) and terms

including M 52) and Méz) are corrections due to the
nonconformal and thermal effects. Again HSC can be
obtained using Eqgs. (12) and (67). From Eq. (67), it is
seen that if we fix /A, and increase (T, the VS)T will
increase. This can be better observed from the left
panel of Fig. 4, where we plot VS)T as a function of IT
for fixed /A.. This behavior is the opposite of the
behavior of low temperature case, left panel of Fig. 2.

On the other side, if one fixes [T and increases [A,,

then the vﬁj} will decrease, the right panel of Fig. 4

where we plot VS)T as a function of /A, for fixed IT.
This behavior is the same as the behavior of the low
temperature case, right panel of Fig. 2. We would like
to compare HSC in the low and high temperature limit
dropping the nonconformal effect. To do so, we need
to take the limit /A, — O of Eqgs. (67) and (48). The
former limit is just the Eq. (60) and the later one has
the following expression

V.. 1 _
LZYTZ = (lT)Z (Wl + C()](ZT)4),

(69)

where the left-hand side is the conformal dimension-
less volume in the low temperature limit. Unlike
Eq. (60), we do not obtain a linear relation in terms
of IT and it is observed that /T has inverse effect on the
mentioned subregion volume. Note that, in Sec. [V B 2
and V B 2, we use expression r, = r;,(1 +¢),e¢ < 1 to
investigate the high temperature behavior of the meson
potential energy and HSC. To get analytical results,
we do the calculations up to order In(4¢) for HSC,
while the meson potential energy becomes zero up to
that order.

(IT) Right: Vs_? as a function of /A, for fixed /T = 10 in the high temperature limit. The curve is described by

VI. CONCLUSION

In this paper, we study zero temperature and finite
temperature potential energy and HSC of a probe meson
using AdS/CFT correspondence in a nonconformal model.
We develop a systematic expansion for those nonlocal
observables and focus on the high energy limit, r. < r,
or [A. < 1, leading to the analytical expressions in low and
high temperature limits. The length of quark and antiquark
pair is identified as the subregion length and we hence study
the meson subregion complexity in the underlying model. In
the particular regime of the model parameter, fixed /A, at
leading order we find an interesting linear relation between
dimensionless meson potential energy and dimensionless
volume; that is the less binding meson state needs less
information to be specified and vice versa at both zero and
low temperatures. In zero and low temperature limits, non-
conformal corrections decrease meson potential energy and
increase HSC. At the low temperature limit, thermal correc-
tions decrease meson potential energy and do not have a
specific effect on HSC. However, at leading order, non-
conformal and thermal effects have an equal effect on meson
potential energy and HSC, implying a decreasing impact on
them. At high temperature, thermal effects increase HSC,
while at leading order nonconformal effects decrease it.
Furthermore, in the high temperature limit, meson potential
energy becomes zero. Near the transition point our calcu-
lation shows that less information is needed to specify the
meson state at zero temperature. Hence, one can say that the
meson state at zero temperature is more desirable. Several
problems arise which we leave for further investigations:
(a) It would be interesting to study analytically, by using
such systematic expansion, the relation between meson
potential and subregion complexity using action pre-
scription for nonconformal theories and to compare it to
the volume prescription. Itis interesting to check whether
such linear relation exists for action prescription.
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(b) There are other quantum information quantities such APPENDIX A: POTENTIAL ENERGY
as purification and fidelity and one can analytically
study their relations with meson binding in non-
conformal theories in order to establish the powerful
properties of these quantities and match them
with holographic conjectures in such non-conformal
theories.

(a) Zero temperature: In Sec. IV A 1, we reach Eq. (24) for
the dimensionless meson potential energy Vq(—, at zero
temperature in the high energy limit r. < r,. In the
following we write the full calculations. Using
Eq. (21) and keeping up to (r./r,)*, we obtain

_r*;frw /1 4ﬂ+2[1+(2n+1)(1—u2)(:—:>2 %(2n+1)2(1—u2)2<:—i>4}du. (A1)

Integrating the above equation, we have an expression for / as a function of r,
2 re\? re\4
l(r*) = — |:(11 + a, <—L> + aj <—L> :|, ap,ap,ds > O, (A2)

where constant coefficients are given by

z ty) _VAG)
\/_F (4n + 3) 30
e L)) ),

AT(n+Y)(2n +1)2
Z\/_FnJr 1)(4n+3)(4n+5)(4n+17)

4z (T(F) TQ 4 47 .9 1315 39111315
_ 2 or (21020 B b (22 LB D . A
5 (r(g) ro)) T | 2(3 R T (A3)

In high energy limit, the corrections to the pure AdS are small and then one can solve Eq. (A2) perturbatively for r,

1
r*(l) l <CZ] + = 2 (ZA ) 4 (ZAC)4> C_ll,C_lz > 0, El3 < O, (A4)

where a,, @, and a; are constant coefficients given by

_ 2/
611:75,
30(3)
1 1\2 1 9 3791113
Gy = ——————< 31522 + T~ | |42~ |T( = | +5V2mFs( =~ = 5—.—: 1 ,
= savaerr 0 1) e )G ovme i i o))

1 5\ 10 1 5\7 3791113
ay = -82 (= 1 4 T |T(>) Fa=, 50—, —;1
as 574013440”9/2”7)4{ 82657935360v/2 < 4> + 1968046080+/7 (4) <4> ; 2<2,4,4, TR >

379 11 13 \2
715 396 32, F5( =~ —
erval(s) o (o 45 )|
1 3791113 3911 13 15
2016752 ( — ) [1430,F5( =, —,~3—,—; 1 10,F5 (==, —;—,—; 1
5 11 13 17 19

We do the same calculation for qu, Eq. (22), and expanding it to (r./r,)* we get
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Va(r. _ﬂaz\/_rn—ii))/ 4”_2[14—(2n+(1—2n)u2)<%>2+%(2n+(1—2n)u2)2<:—i>4}du. (A6)

*

By integration of Eq. (A6) and considering finite terms (the terms which do not include §) we reach

r, r.\? re\*
qu(l”*) = o b] + b2 r— + b3 }"— s bl < O, bz,b3 > O, (A7)
where constant coefficients b, b, and b3 are given by
+5) VAL ()

Zfl“n—i—l Ydn—1) 1)

1
(1-81)  TE’-T(=prG , 4 (35379
Z\an+1 1—16n): : 8\/54 4+153F2< ————— 1)

44244
\/_Fn—i—l 6—|—8n—96n—128n)

F§23JZF 9 537911 10 795 13 15
:(4)+\Fl() T i I e B [ ey L B e | (A8)
227 () 35 4°2°4°4 4" 231 4°4°2°4° 4
Using Eq. (A4) and substituting r. = A,/+/2, we reach the final result
- V(L IA,) 1 /- b2 b3 - - -
Va(IA,) EWT = A, <b1 > —(IN)* + 1 = (IN)* by <0, by, b3>0, (A9)

where f/qq is dimensionless meson potential energy at zero temperature. All the constant coefficients are summarized
in Table L.

_ 1 1\2 —1 3
by =— <5251 — 315I'( — || =
: 8960nr‘(%>2{ (4> - (4) (4)

35379 37911 13

b ! r I’ 63063072 870 I’ 896I" A%
P— _ — JT — -— —
45921075202 T(D)*F | \4 4 4
1\ 4 12 35379 37911 13
30030 (=) |7350( - 8V27( 84;F, (2.2 21 211 ) =55,F, (2.~ —.—:1
+ (4){ <4>+ ”(32<44244> 2(24444 ))]

N2 /3791113 35379 3791113
—73216aT (= ) Fo (2= 2 — 21 ) |21, Fy (2,225 2 1) =5.F, (2,52 — =1
73 6”(4) 2(24444 )[32<44244>532(24444 ﬂ

35379 5370911 37911 13
—4032[%5/2{120123F2 (— il 1) + 11583,F, (— Zoi2 1) —5005,F, (— g 1)

4°4°2°4°4° 4°2°4°4" 4> 2°4°4 4 4"
3951315 79513 15 5 11 13 17 19

3640, F, | =,~, = — +1950,F5 ( —,=,=;— 1 252, F (=, —,—;—,—;1 . (A10
+ 2<24244) 2(44244>+ 32(24444)”} (A10)
TABLE I. Numerical constant coefficients for potential calculation.
a, = 0.59907 a, = 0.355979 a; = 0.214869
a, = 1.19814 @, = 0.495952 a; = —0.202051
b, = —0.59907 b, = 1.66701 by = 0.813939
b, = —0.228473 b, = 0.348301 by = 0.00584084

026001-16



NONCONFORMALITY, SUBREGION COMPLEXITY, AND MESON ... PHYS. REV. D 104, 026001 (2021)

(b) Low temperature: In Sec. IV B 1, Eq. (30) is reached for the dimensionless meson potential energy qu at low
temperature /7" < 1 in the high energy limit r, < r,. In the following we review the details of the computations. Using
(27) and expanding it up to (r./r,)* and (r;,/r.)* we get

I(r,) Zfr(n+ /1 4n+2{1 + ((n+ Dutnts — (n—f—%)) <%)4
+ [(Zn—f— (1 —u?)+ <(2n+ 1)(1 —u2)<(n+ Dutrts — <n+%>)) (%ﬂ
[ e (n - (i vt (o)) (2)] (2) e )

Integrating Eq. (A11), we obtain [ in terms of r,

2 4 4 2 4 4
l(r*) = — |:(11 + ap <Q> + <az + ) <r—h) > <Q> + <a3 + a3 <r—h) ) (Q> :|, ay, 0y, az < 0, (AIZ)
Iy Iy Iy Iy Iy Iy

where a;, a,, a3 are given by

+3)(@dn+1) VE(LIT(§) + 120(9))

Z\/Trr )(32n% + 80n +42) 92413 ’
i 3r(n+ H@en+1)(160* +320+11)  FTE)? -5TG)?
~\/x 1)(4n +3)(4n +5)(4n +7)(4n +9) V27
67 <3 11 13 15 17 ) 6 <5 11 17 19 21 )

Fo(2,— == — Fo(s,— — 2=
T28632\2° 4444 18772\ 4 a4 s

6 513 15 19 21 16 37 9 15 17
F (2,2 =2 = 1) = F 2.2.2:1,1,—.—:1
EETTE 2(2 4474 4" ) 30033 4(24 4”’4’4’)’

20(n +3)((2n + 1)%(80n + 184n + 69))
“3__Zﬁr 1)(4n + 3)(4n + 5)(4n + 7)(4n + 9)(4n + 11)

2 13513 15 379 17 19
== |:8973F2(_7_7_’_,_,1)+2303F2<_,_,—,—,—,1>

37,9 17 19 37 9 17 19
46,F5( =,—,2,—;1,— 28, F ,2,2,— 1,1, —,—; 1
+5 64 3(2747 74’ ’474 >+5 8 4<2 4 ) ’4, ) 7474’ )

37 9 17 19
160 F5| =,-,2,2,2,—;1,1,1 ;1. Al
+ 606 5<274’ ) &y 47 s Ly 74 4 >:| ( 3)

In low temperature and high energy limits, the corrections to pure AdS and nonconformal terms are small and hence
can be computed perturbatively. Solving Eq. (A12) order by order for r,

| _ _
ro(l) =~ (al + %(ZAC)Z + %(ZAC)“ + a4(lT)4), a;,a, >0, az,a, <0, (A14)

where a, is given by

"= ‘2464(537/1%;%(2» r(s) e (3)) (A13)

We use Eq. (28) and expand it up to (r./r,)* and (r,/r,)*. Then we have
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-t e ()
+ [Zn + (1 =2n)u + (n(2n + (1 = 2n)u?) (u* — 1))<ﬁﬂ (’ )2
+%[(2n+(1—2n)u2) + (n(2n+ (1 =2n)u?)?(u* — 1)) <—h> K )} : (Al6)

7Z(X

\

Integrating Eq. (A16) and keep the finite terms (terms without §),

4 4 2 4 4
qu(r*) :% [b1 + 5 (?) + <bz + <?) > <%> + (bz + 53 (?) > <%> }7 BB, B3 <0 (Al7)

where f3;, f, and ff; are constant coefficients given by

4nl(n + 1) _2yar()
Z\frn+ 16n2+8n—3)__ 210(3)
Z 12nr(n +3)(16n* +8n - 1) _SO(=prh) = (=Hri)
«/al(n+1)(4n—1)(4n+1)(4n +3)(4n+5) 30V 27

2°4°4> 4 1001

32 353 11 13
== F, 2,21, 1L, —,—:1),
315 40402 44

1 (3 7 9 11 13 ) 365F,(5.3. 8,8 101) =28, F, (5.3 . 11 2. 1050)

2nI(n + %) (4n(176n* 4 140n — 17) = 5)
Z\/_F (n+1)dn—1)4n+1)4n+3)4n+5)4n+17)

1 353 13 15 353 13 15
‘10395[”<4424 i 1)””3(442214’4’1)

353 13 15 353 13 15
— 560 F4< 2.2:1,1,— ) 704 F5<——— 2.2,2:1,1,1,— ,—;1)} (A18)

4472 44 4472’ 44

Using Eq. (A14) and substituting . = A./v/2 and r;, = 2T we reach the final result

oV o (LIA.IT)
AT

=T BT g G BT A B+ BTSN |- <0, P =0, (A19

Va(IAIT) =

where qu is dimensionless meson potential energy at low temperature. 31, 5, and S35 are constant coefficients which
are given by
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TABLE II. Numerical constant coefficients for thermal potential calculation.

a; = —0.119814 ay, = —0.274949 az; = —0.330873 a; = —0.116281
By = —0.299535 Br = —0.671444 By = —0.917564
B = —3.23986 By = 24604 By = 1.94742
_ 21THrG)
02
B = i 16r( 1) [312432120v22 — 75810735720 (1)’
2 38288251 (-1 4 g 4

1\ 2 35379 37911 13
256Vl (7 ) (51051,F5( 3.5 5557: s\ s 7!

1315 1 115 1
1240975 F2<z Y B LT, ) 187425 Fz(g > _,_5,_7’1)

11 13 7 19 21
+ 9450 Fz(Z R IVErE 1>>H (A20)

5 is not reported here due to its complex form. The numerical value of all the constant coefficients are summarized in
Table II.

APPENDIX B: HOLOGRAPHIC SUBREGION COMPLEXITY

(a) Zero temperature: In Sec. VA 1, we obtain Eq. (41) for the dimensionless subregion volume Vy , at zero temperature in
the high energy limit r, < r,. Note that VyA is applied to achieve HSC using Eq. (12). Here we review the
computations. Using Eq. (38) and up to (r./r,)* and (r,/r,)* we get

_r*;\/‘rn:j) 16"+3[1+§(2n+1)(1—u2)(r:)2+2(2n+1)2(1—u2)2(”)4]du. (B1)

Performing the above integral, we have
2 re\? re\ 4
l(r*) = — kl +k2 — +k3 — s kl,kz,kg > 0, (BZ)
* ry ry

where k;, k, and k5 are given by

+3) RYZ:3C)
Z\/_FnJr Y(6n +4) 4F(%)3

ky = i [(n+3)(1 +2n) _ 1 VAl
2 g /it )2+ 5n+307) 2 81

i 30(n +3)(1 + 2n)?
4= 8/al'(n 4 1)(8 + 26n + 27n* + 9n?)

1120 {189f[2f(§> (161)—1—1“(%)1“(%)]+8n3F2<%,§,%,§,? ) 28071’} (B3)

Solving (B2) for r, perturbatively we get

k3E

1/- k k _- _
r*(l) = 7 (kl +32(\/El)2 +f(\/gl)4>, kl,kz > O, k3 < 0, (B4)
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where k,, k, and k; are given by

- VAl
kl: 7 5
2r(2)
k2:5x22/3nr(§)+4r(g) (=5+2,F(1,3.8,-1))
57[F(3) ’
ky = ! 5600 x 25327 I Z 4725 21321 (L ’
7255152370 () T () : 6 3
1\2_/7\3 1\4 45 8 2
5670 x 2*/3\/al'( =) T'( - 140 (= | |75 -4 x 223, F [ =.>:=:—1
esor0x20ar () e Q)+ ar(g) [ps-axun (35501 |
1N\2_/1 357810
22340 (= | T 1 Frol =22, —:1 ) B
5% 2 (6) (3)[ 085 + 3, (2,3,3,3,3, )]} (B3)

Using similar calculations for V, , Eq. (39) (and keeping up to (r./ r.)* and (r,/r,)*) we obtain

2

5 © F(n_|_ ) 6n+4
_ g2 2} : 2 /
Vi(r) " g/al(n+1) 6n—|—4
u

+E(2n+l)<6(3n+2)(n )+u6n<6(2n+1 3n+2)> 2l ”6"+4)K:_i)2

-2 u2

3(Z"Jr1><6(3n+2)(n+1)“6n+2(6(f’t+1 3"+2>> 3”“

ut

(2n+1)7 (3(3n O CECE (3(nu+ 0 2(3: 5 (3n1+ 2)) )} (%)4} (B6)

1—u

6n+4)

Integrating (B6) and considering finite parts
re\2 re\*
V},A( ) —2L2 |:W1 +W2(r ) +W3 (r—) :|, Wi, Wo, w3y < 0, (B7)

where w;, w, and w; are given by

. L(n+5) VL)
w = - Z - = N
g 3\/EF(n +1)(6n+1) 3r(3)
- ot VAL (1330 %)
\/_Fn—i— (3+24n+36n>) 4 TG 97 °\6'2'276 2
Z t)(1+20) _VE () STOY 1 p (73 111317\ g
\/7_:1“ (5+36n+36n%)  20\T¢) T3 ) 77°°\62°6°6 6
Using Eq. (B6) and substituting r. = A./v/2 we reach the final result
. v, (LIA,) 1 w o
V,, (IA) = yLzAz - (IA,)? (Wl +5 (ZA )? + f(l/\c)‘l)’ Wi, wa, w3 <0, (B9)

where V, is dimensionless subregion volume at zero temperature. w;, w, and ws are given by
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B ”3/2F(%)2
T Tererd);
o1 ar()? 7/ard) 733135
WZZE{%‘ rer g P (5 32762 lﬂ

1 N3 (7\3
Wy = 1330560223 /7T (= | T~
3 133056O><21/3F(%)5F(§){{ v (3) (6>

2/3.5/2 1 4 2 1/3 4\3 5 8 11
— 4065600V/322/3 2%/ 3 r 3 -+ 69377|32002"/°T" 3 + 2431 3 r 3 r 3

4 4 2
+3193344r(%)4r(§>{ 325+ 16 x 23, F, (3 > §,—1 }

3’3
7311 13 17 N2 /7\2 458
— 256002233 F, (=, 2, —:—=,—~:1) —42240aT (= | T =) (84,F (=.2:2:-1
32(62666) ”<3) <6>< (333 >
357810
223 Fy(=,5, 252 -1 22/3 ) Bl
+3x 2<2333 3 ) 330 x )]} (B10)

All the constant coefficients are summarized in the Table III.

(b) Low temperature: In Sec. VB 1, Eq. (48) is reached for the dimensionless subregion volume V, at low temperature
IT < 1 in the high energy limit r. < r,. HSC is obtained using Eq. (12). In the following we write the full calculation
here. Expanding Eq. (45) up to (r./r,)* and (r,,/r,)* we have

B 0 2 (82

# [ 172 =m0 -y ()] (%) b (B11)

Integrating Eq. (B11) we obtain

2 4 4 2 4 i 4
l(r*) = — |:k1 +K'1 <ﬁ> + (kz +K'2 <r—h) ) <E> + <k3 +K3 <ﬁ> > <Q> :|, Ki,Ky, K3 > 0 (B12)
Ty Iy ry Iy r Ty

where k|, k,, k3 are given by

TABLE III. Numerical constant coefficients for potential calculation.

k; = 0.431185 k, = 0.284408 ks = 0.180262

k, = 0.86237 k, = 0.764864 ky = —0.704896
wy = —0.404775 wy = — 1.45197 wy = —0.264624
w; = —0.602048 wy, = —3.9719 wy = —0.201038
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[(n+13) Val()

Z\/_r(n )(12n+ 16) 161“(1—5)
)(6n +3)

’; )(72n% + 2167 + 160)

3 723F2 2r 378 10 11
:2240{ ( (6) (\ji_[ ()()) 5F2<§§§?3 1)]
. :i": L(n+3(@2n+1)?
P T L6y/al(n + 1) (90 + 4507 + T4n + 40)
9(95ST(B)(Q) — 1840(HrE)) 1 37810 11
’ 700,/7 168 < ' ' )

Solving Eq. (B12) perturbatively we reach

1/- k k _ o _
m(z)—7(k1+§<\/Ez>2+f(ﬁz>4+k4<rhz>4), ke > 0, K <0,

where k, is given by

- @G
ky = 3/2F(5)4le )

Similar calculations yield to an expression for V, from Eq. (46)

1 1= u6n+4 1= u6n+8 1= u6n+4 I 4
Vv =2V, .r; d —
a - Z\/_F (n+1 / u{(6n+4)u4+ (2(6n+8)u4+2(6n+4)) (r*)
3 u™t u? 1 u=?
=(2 1 on — 1 — ybnté
+[2(”+ )<6(3n+2)(n—|—1)+u (6(n+1) 2(3n+2)>>+3n+2( ur)

u™t (3n+ 4)u® u )

(G (e s a0 e

samraain) e e ) (2] ()

-2

' [3(2,1 . <6(3” +u2)(" TR (6<nui N 2(3n1+ 2)>> ’ 3n1+ p (=)
(

u—t

n u? ut 1
e T CES (3(11 +1) 20Bn+4) 203n+ 2)))

9
8
3 u? u? 3u"to(n + 1)
i (E (2n+ 1)(2(3n TG+ TG )t D) Bnr2)(Bn 1 4)

ut 1

ub"+8(3n + 4) 9
33n+5)(n+ 1))

) 2(3n + 4)ub 3+ 1u* _ (6n+ 5)ud ut(1 — ubm+4)
- (3(311 +5)(n+Dub (Bn+2)3n+4) 63Bn+4)(n+ 2))) T en +4

o) ) o

Integrating (B16) and considering finite parts yields
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4 4 2 4 4
VJ,A<F*) = ZV‘,.zri |:W1 + wq (Q> + <W2 + wy (rh> ) <Q> + (W3 + w3 (rh> ) (Q) :| s
: Iy Iy Iy Iy Iy

w1, W3 >0, ) <O, (B17)

where @, w; and w, are given by

=3 +1) VA
£\ /al( n+1 18n+15) 150°(%)
Z +3) _ VAl(g)
< 0\/"r n+ 18n+15) 150(%)
0 ['(n+1)(26n+25) 57 1 533115 13 3115177
EZ Y Y e — .z, =55 i1 (B18)
«15y/al(n+1)(2n+3)(6n+5) 24 6 62262 ) "85 2°6°2°6°2

Then by substituting (B14) in (B17) we get

V, (LIALIT) 1 [ 1 1
7 LQACT = ZZACT <W1 + (Dl(lT)4 + E (Wz + (1)2(1T)4)(1AC)2 + Z (W3 + (1)3(IT)4)<ZAC)4> s

@, <0, @3>0, (B19)

V, (IN.IT) =

where V, is dimensionless subregion volume and @;, @, and @; are given by

7’Pr(2) 108 x 21371 (2)°

BVEYC R YR,
@, = —% [10\@;7/2 - 9nr<%) 3r(g)3 + 162 x 21/3FG> T (2)5] ,

1 1\7 1\ 2
03 = 27720000 x 2'37T( — ) — 1155007°T'( — | — 96096000V 37'/2I"( —
3 35925120><21/3r(§)10r(?1) (){ 8 (6) g <6> Varller 5
1

1\ 4 5 1\ 4 8
+ 59675 x 22/3 r(g> ( ) +404157600x21/3n2r<§) r(%) —484989120x22/3\/7_rl“<§> r(%)
1 1\2 458 \2
2Y ossF _
+154F<6> r<3> {2 (3 33 1) 75]

1\ 4
+46200n7/2r( ) {ﬁ(s F, (3 g 2 1) + 15 x 22/3> —28/37r]

1 1\ . /7311 13 17 1\ /1 357810
7200727 (= | T =) 4Fy (=, =, —;—,—;1 ) = 110v/32%/°T I ). F(=.2.25= 1
+ ”(6) <3)32(62666> Van <6> (3) 2(23333 >
1\2 /1 48
<) Tl3 77000V/3 4 96257 — 12320V/3,F, l3igi-]

11 781 11517 7
—77003F2<§,§,§;—,§;1>—330\/§3F2<§,§,—;§,—0;1>+7283F2<§,—,§;—,—;1>”. (B20)

4240 x 2137921

All constant coefficients are reported in Table IV.
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TABLE IV. Numerical constant of thermal subregion complexity.

x, =0.140218 k> =0.0806394 K3 =0.0480308
w, =0.124472 W, = —0.124472 wy=0.245496
@, =-36.3574 @,=—162.853 @y =539.984

k,=0.507061

(c) High temperature: The constant coefficients corresponding to the Egs. (59)
follows:

_Var(g)
- 18r@3)

71'

111171123

4°12°672712°373°374°

103
5

VAL
12r@) S’

1 5

)-
'3°12°3°

C(m+HrEe +
18T (m + 1)I°(32* +

2
3

\/§F<4626 ’
F(

_W4 3
_) (3 6>

ZLHW+)(

4)6 5
JTU()()F(

T prerd 1227663 123
[ T(m 4504 +3)

_”;[SOF(m+1) (2’"+2)6F5<
IVIM(HIGHTEIrE)

~400v2r()rHreorg (

1 157 m

12'2°6°6° 3

1 1572134

5573 m

12°6°6'2° 3

_ VAEIErE

=

1572134

FC ______

2V/2r(Lrdr@* *\12°'2°6°6’371273”
IVIL(EIEHrEHrE)

+«mﬂk@ran@wg>F<
V3
BTN

)

5573417

12°6°6'2°3712°

3
IR
18v2
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311
Fil——.5:031 ).
4’2’4

and (66) in Sec. VB2 are given as

151121343

(B21)

5

3’

—_—
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ii 32n+ 1)I(n+HI(m + 1) e +3n+3 LT

— L LT S Ly

— 4z(3n + 2m + 3)(6n + 4m + 3)0(m + N0(n + 1) '\ 2° 2 4 2 T4

3(2n + DI(n +HT(m + 1) 1 3n 1 3n 5

- Fi(5.m+5+5m+5 4551

bxGn+am L 2)6n+dm+ D+ Nim+ > "t tymto g

b 11135121111 \/’_TF(%)F117137-2544-1
12'6°474°6°373712° 210(3) * *\4'2'12°12°6’374°3°3°

SV (TS 11734195 5,

3080(2) °

n=0 m=0

12°6°12°12°2°3°12°3°3°

(4m +3)(4m +7)(4m + 11)I(m + 1)I(Z 4 1)

L(m+HrEe+3

—Z< (m + )0 +3) (154+144m))

1
1 115m 1 m 31211l m 1 m

X6F5 +1,1

12°6'2°6'3 437433123 23

N Lim+ )0 +%) 56
mz ((4m +3)(dm +7)(4m + 131)r(fn + R +3) (“ +?m>>

4°2°6°6° 3+12 3712°3°4°3°3
T(m+HrEe+1)
(4m +3)(4m +7)(4m + 11)0(m + 1)I'(Z2 +
7573m 1lm 174195 m Zﬂ+§-1
6’3 3’

A S

(16623 123 1273712373
( 320 (m + HU(ZE 4 3)m?
(4m+3)(4m+7)(4m+11)F(m+1)r(2—m+1)

lm 31211m lm—i—l'l
12°6°2°6"3 4’3 433123 2’3 ’

o (A3
+Z<3(4m+3)(4llsr+(n71)(+4n)z +(2T1) () + (2 +3)

(4 R BT )
ggyf&tzFGlézgéi )

5|
~

4°2°6°673°4’3"
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Now for finding In(4¢) as a function of [ at leading and sub-leading order, we follow below procedure: At high
temperature, we reach the finite expression for [ up to (r./r,)?, Eq. (52). Here, we consider zero order of (r,/r,) and
do sum over n, we obtain

6

I T(m+ )T +3)
) =5 e () (52

For large m, this series goes as ~m~! (r,/r,)*" and hence it diverges for r, = r,. By isolating the divergence part of the
series (B25), we get

- Pt S A () - () e

The convergence of the above infinite series can be obviously seen for r, = r;,. We write r, = r;,(1 + €), following the
fact that at high temperature ¢ < 1, we obtain

In(de) = v, + Yo | $ <ﬁf<m +hrE+)

1
30(F) 30(m+ DO +1) ;) +O(e). (B27)

Now, we consider the second order of (r./r,) and sum over n for zero order of (r./r,) and over m for second order of
(re/r.), we get

- R (1) L (0 (1))

—0
2n + + 5 13 33 5 4 2
_ (@n+D)0(n+3) p (L33 s re\* (B28)
2(n+1)y/al(n+1) 2°2 272 2°\rn, r,
The investigation of convergence of the first sum, summation over m, is similar to Eq. (B25) which was studied before.

For large n, the behavior of two terms corresponding to the second sum, summation over #, is the same and hence it is a
convergent series. We write r, = r;,(1 + €), knowing that at high temperature ¢ < 1, we get

Vérl'(3) Vor(m+HrE+32) 1
() +z<3F(m+1)F(3 +2) _Z>

In(4€) = —V6r,l +

m=1

AR ()
(2n+ D)I(n + 1) <1 3n 3 3n 5.1)](6

2
dnt vt n2 22 T2 T r_h> +O(e). (B29)

As expected when r. = 0, we have (B27).
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