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The next generation of ultralight dark matter (DM) direct detection experiments, which could confirm
sub-eV bosons as the dominant source of DM, will feature multiple detectors operating at various terrestrial
locations. As a result of the wavelike nature of ultralight DM, spatially separated detectors will each
measure a unique DM phase. When the separation between experiments is comparable to the DM
coherence length, the spatially varying phase contains information beyond that which is accessible at a
single detector. We introduce a formalism to extract this information, which performs interferometry
directly on the DM wave. In particular, we develop a likelihood-based framework that combines data from
multiple experiments to constrain directional information about the DM phase space distribution. We show
that the signal in multiple detectors is subject to a daily modulation effect unique to wavelike DM.
Leveraging daily modulation, we illustrate that within days of an initial discovery multiple detectors acting
in unison could localize directional parameters of the DM velocity distribution such as the direction of the
solar velocity to subdegree accuracy, or the direction of a putative cold DM stream to the subarcminute
level. We outline how to optimize the locations of multiple detectors with either resonant cavity (such as
ADMX or HAYSTAC) or quasistatic (such as ABRACADABRA or DM-Radio) readouts to have maximal
sensitivity to the full three-dimensional DM velocity distribution.
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I. INTRODUCTION

Cold, bosonic dark matter (DM) candidates with masses
much smaller than the eV scale havemacroscopic occupation
numbers and may be described in the solar vicinity by
classical fields. Two well-studied DM candidates in this
category, which we broadly refer to as wavelike DM, are
axions [1–11] and dark photons [12–14]. Wavelike DM
candidates require distinctive experimental techniques for
discovery that take advantage of their spatial and temporal
coherence (see, e.g., [15]). The spatial coherence length of
theDMwaves, λc, and the coherence time τ aregivenby1 [16]

λc ∼
1

mDMv0
; τ ∼

1

mDMv̄v0
; ð1Þ

where v0 parametrizes the DM velocity dispersion, v̄ is the
mean velocity, and mDM is the DM mass. In the solar
neighborhood we expect v̄ ∼ v0 ∼ 10−3 for the bulk of the
DM, in natural units, such that the coherence length is around
103 times the Compton wavelength, and the coherence time
is around 106 times the oscillation period for the DM wave.
In this work we show that multiple phase-sensitive wavelike
DM detectors separated by distances of order λc may
join their data—through a process we refer to as “DM
interferometry”—to measure properties of the DM phase-
space distribution that are inaccessible to single experiments
operating in isolation.
Many axion and dark-photon detection strategies already

leverage the axion coherence time as a “quality factor” that
amplifies the DM signal in the experiment. For example,
axion haloscopes [17–22] use a resonant cavity with a
strong static magnetic field to convert axion DM into
electromagnetic cavity modes, which build up coherently
over the DM coherence time; in this setup the DM
Compton wavelength is of order the size of the experiment.
Experiments operating in the quasistatic regime (where
the DM Compton wavelength is much larger than the
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1We briefly review both concepts in the Appendix A.
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experiment)—including searches for the axion-photon
coupling [23–28], axion interactions with nuclear spins
[29], or dark photons [30]—aim to detect a time-varying
magnetic flux through a pickup loop, which can build up
coherently in a lumped-element circuit [31,32].
In this paper, we explore the phenomenology of spatial

coherence for wavelike DM by exploiting spatially sepa-
rated detectors that probe the same DM field. It is straight-
forward to understand why multiple detectors offer unique
insights for wavelike DM. Generically, the wavelike DM
field may be written as aðx; tÞ ¼ a0 cosðωt − k · xþ ϕÞ,
where ω is the oscillation frequency, k is the wave vector, ϕ
is a random phase, and a0 is the amplitude.2 If the DMwave
is traveling in the direction k̂ with speed v ≪ 1, then ω ≈
mDMð1þ v2=2Þ and k ≈mDMvk̂. For a single detector we
may always choose coordinates such thatx ¼ 0. Thismeans
that a single detector is only sensitive to the speed throughω
and is not sensitive to the direction of the DM velocity.3

By contrast, two experiments located at positions x1 and x2

will be sensitive to phase factors k · x1 and k · x2. Only one
of these can be removed by a coordinate choice, leaving a
residual k · x12, with x12 ¼ x1 − x2, which manifestly
probes the velocity rather than the speed. The interferometry
proposed in this work is directly at the level of the DM field:
the effect arises due to the phase difference wavelike DM
exhibits between spatially separated points.4 Indeed, due to
the nonzero velocity dispersion v0, DM waves are coherent
up to distances of order λc; as we will show, phase-sensitive
data combined from two experiments exhibit maximal
modulation when d≡ jx12j ∼ λc, or

d ∼
1

mDMv0
¼ 270 km

�
220 km=s

v0

��
10−9 eV
mDM

�
: ð2Þ

As we will demonstrate, this opens up striking new sig-
natures, such as a unique daily modulation signal applicable
only to wavelike DM with multiple detectors, because the
direction ofx12 rotates over a sidereal daywith respect to the
DM field.5

The main result of this paper is that interference effects
between a pair of detectors separated by a distance x12 are
fully characterized by the modified speed distributions

F c
12ðvÞ ¼

Z
d3vfðvÞ cosðmDMv · x12Þδ½jvj − v�;

F s
12ðvÞ ¼

Z
d3vfðvÞ sinðmDMv · x12Þδ½jvj − v�; ð3Þ

with fðvÞ as the DM velocity distribution. Examples of
these distributions at various times throughout the day are
shown in Fig. 1 for optimally separated detectors. If the
goal is simply to enhance the total signal reach, we should
maximize the constructive interference and take d ≪ λc, in
which case F s

12ðvÞ ¼ 0 and F c
12ðvÞ ¼ fðvÞ, with fðvÞ as

the DM speed distribution. The observation that there is an
enhanced sensitivity for an array of detectors located within
the DM coherence length has been made previously in
Ref. [44]; this is also the basis for the multiplexed cavity
setup proposed by ADMX [45]. However, if the goal is to
extract information about the full three-dimensional DM
phase space distribution, which encodes, e.g., the boost of
the Solar System with respect to the Galactic Center as well
as possible DM substructure (including the Sagittarius
Stream [46] and the Gaia Sausage [47,48]), we should
take d ∼ λc as in (2). Reference [44] points out the
possibility of observing this daily modulation effect for
experiments separated by distances of order λc; here we
extend this analysis by focusing on constraining directional
parameters in the phase space distribution. We will show
that the sensitivity to the phase space information that may
be extracted from multiple detectors is comparable to the
sensitivity to the initial discovery, since the interference
effects have an Oð1Þ effect on the data when d ∼ λc. As
such, in principle these unique signatures could be used to
immediately verify a putative axion signal. More optimis-
tically, DM interferometry would allow for the detailed
mapping of the local DM phase space distribution after an
initial detection.
For concreteness, we focus in this work on the case of

axion DM coupled to electromagnetic signals, but our
results would apply equally well to scalar and vector DM as
long as the readout is proportional to the DM field.
Similarly, for simplicity we will present most results for
the case of two experiments, but our formalism holds for
any numberN ≥ 2 of experiments, and wewill provide our
key results for a general N also. Our results also apply
equally well to resonant-type experiments and to broad-
band-type experiments (such as ABRACADABRA-10 cm
[24,25]), so long as the resonant experiments are able to
preserve the phase of the data as opposed to, e.g., recording
the power directly. One advantage of resonant experiments
for wavelike DM, in addition to generically having
enhanced sensitivity [31,32], is that putative signal candi-
dates may immediately yield detailed and high-significance

2Vector DM also has a polarization component with nontrivial
coherence properties, but in this work we focus only on
the amplitude, as appropriate for scalar or pseudoscalar DM.

3Exceptions would be experiments that make use of ∇a, but
such signals are suppressed by v ∼ 10−3 relative to experiments
that are also sensitive to ∂ta. Experiments only sensitive to the
speed distribution may also detect annual modulation signals
through shifts in the DM speed [33], though these are typically
quite small because the Earth’s speed relative to the Sun is small
compared to the solar speed relative to the Galactic Center.

4This is conceptually distinct from the interferometry proposed
in Refs. [34–36], where the interference results from a phase shift
developed by electromagnetic fields as they propagate through
axion DM.

5Several experimental proposals have noted or exploited sensi-
tivity to the coherence length, see, e.g., [37–43], but here we focus
specifically on combining data between different experiments.
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studies, since the signal-to-noise ratio rapidly grows with
measurement time when frequency scanning is no longer
necessary.
We organize the remaining discussion as follows. In

Sec. II, we sketch a derivation for the statistics of the
correlated Fourier-transformed data from multiple experi-
ments. A more extensive derivation and discussion is
presented in Appendix B, with some useful orthogonality
relations summarized in Appendix C. In Sec. III, we
construct a likelihood function for the axion signal as
observed at N experiments, following the formalism of
[16]; a practical data-stacking procedure is outlined in
Appendix D. In Sec. IV we use several simplified toy
examples to illustrate analytic estimates of uncertainties on
parameters of the velocity distribution using the Asimov
dataset—a technique where the asymptotic properties of the
data are assumed in order to replace Monte Carlo simu-
lations with analytic estimates (see Sec. III)—and demon-
strate that uncertainties on directional parameters in several
simple examples with two detectors are minimized for
d ∼ 2λc.We also highlight the important distinction between
the de Broglie wavelength and the coherence length for cold
but boosted DM substructure. Furthermore, we show that
there is a rotational symmetry of the likelihood which can
lead to degenerate best-fit parameters for N ¼ 2 experi-
ments. In Sec.V,we extend the likelihood analysis to include
daily modulation from the changing detector orientation
throughout the day. We also perform analyses of simulated
datasets to demonstrate how the likelihood may be imple-
mented in practice to constrain the morphology of the DM

phase-space distribution. Using the realistic examples of the
Standard Halo Model (SHM) velocity distribution and the
Sagittarius Stream, we show how daily modulation breaks
the symmetry discussed in Sec. IV and use this to perform
parameter estimation using the effect. We conclude in
Sec. VI with some practical implications for current and
upcoming axion experiments. In Appendix Awe provide a
brief review of the coherence length and time.

II. THE STATISTICS OF
MULTIPLE DETECTORS

In this section we describe the statistics of an axion DM
signal collected by two or more spatially separated detec-
tors. In particular, while we expect background sources to
be generally uncorrelated between detectors, the axion will
induce nontrivial cross-correlations indicative of DM inter-
ferometry. These correlations will be the source of the
additional information available to two or more experi-
ments that we will extract using a likelihood formalism
introduced in Sec. III.
We imagine that a given detector, located at a position x,

is sensitive to the axion through a time-varying signal Φ
proportional to the axion field,

Φðx; tÞ ¼ maκiaðx; tÞ: ð4Þ

The flux Φ is generated by the axion effective current,
Ja ∼ ∂ta ∼maa, which is the origin of ma in the expres-
sion. Accordingly, Φ ∼ κiJa, revealing κi as characterizing

FIG. 1. The imprint of DM interferometry. A single wavelike DM experiment is sensitive to the DM speed distribution fðvÞ. Two
detectors separated by a vector x12, however, are sensitive to the speed distribution modulated by the k · x12 phase of the DM wave,
replacing fðvÞ with functions F c;s

12 ðvÞ as defined in (3). As the figures demonstrate, the modified speed distributions exhibit daily
modulation and carry additional information about the velocity distribution fðvÞ that would be invisible to a single detector. For this
example we take mDM ¼ 25.2 μeV [49], near the window where the HAYSTAC collaboration is searching for axion DM. Taking the
Standard Halo Model ansatz for fðvÞ in (50), we place one detector at a latitude and longitude of (41° N, 73° W), and a second
instrument ∼20 m to the north, corresponding to d ∼ 2λc. A curve is shown for every ten minutes starting from midnight on January 1,
2020. Note that as F c;s

12 ðvÞ are functions of mDMd, qualitatively similar effects exist for, e.g., mDM ∼ 10−9 eV, in the mass range probed
by ABRACADABRA and DM-Radio, for d ∼ 500 km.
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the individual experimental response to the axion field. In
the notation of Ref. [16], we take κi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai=ρDM

p
. The

dimensionful constant Ai is characteristic of the individual
experimental response to the axion field; for instance, in the
case of ABRACADABRA [23–25], the magnetic flux
induced in the pickup loop at the center of the detector
is related to the axion field by A ¼ ρDMg2aγγB2

0V
2
B, where

gaγγ is the axion-photon coupling, B0 is the toroidal
magnetic field strength, and VB is an effective magnetic
field volume associated with the detector. In addition to the
experimental factors, Ai has been defined to include
ρDMg2aγγ , which determines the mean power in the axion
field. We assume for simplicity that the detector response
Ai is purely real and does not include phase delays. Similar
expressions are available for other detectors [16]. For our
discussion, all that is required is a measurement linear in the
axion field in order to ensure direct access to the axion
phase. Measurements intrinsically proportional to a2,
such as the power in the cavity of an axion haloscope,
cannot be directly ported to our formalism. Nevertheless,
interferometry can still be performed by these resonant
cavity experiments, as long as the phase information is
extracted. This may be achieved for example by reading out
electromagnetic signals with phase-sensitive amplifiers
(e.g., [21,50]).
Ultimately, we envision a set of measurements Φi of the

same axion field, made by N detectors at different spatial
locations xi. The correlations between these datasets will
arise due to the statistics of the underlying axion field, as
we will describe in the following subsections, leaving the
full derivation to Appendix B.

A. Construction of the axion field

It is useful to recall the underlying statistics in the axion
field that result from its finite velocity dispersion and
wavelike nature. In [16] it was shown that we may represent
the axion field as seen by a single detector as

aðtÞ ¼
ffiffiffiffiffiffiffiffiffi
ρDM

p
ma

X
j

αj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðvjÞΔv

q
cos ½ωjtþ ϕj�: ð5Þ

Here, the sum over j indicates a sum over subsets of
particles with speeds in the interval v to vþ Δv. The phase
is controlled by ωj ¼ mað1þ v2j=2Þ and a random con-
tribution ϕj ∈ ½0; 2πÞ, and further fðvÞ is the DM speed
distribution in the laboratory frame. In Ref. [16] the
continuum limit for speeds Δv → 0 is taken; below (and
in Appendix B) we will generalize to the continuum limit
for velocities. In addition to the random phase, the random
nature of the axion field is captured in the random variate αj
drawn from the Rayleigh distribution p½α� ¼ αe−α

2=2.
While (5) represents the axion field constructed from the

discretized frequency modes specified by the local DM

velocity distribution, a more fundamental approach can be
understood by considering the local DM field made up ofNa
axion particles (or wave packets), as detailed in [16]. The
enormous occupationnumbers characteristic ofwavelikeDM
will then allow us to eventually convert this sum to an integral
by taking the Na → ∞ limit; in detail, we should have
nDMλ3dB ≫ 1, where nDM is theDMnumber density, which is
satisfied locally for ma ≪ 1 eV. We note that the above
construction also assumes DM is a noninteracting wave,
which means that self-interactions should be negligible.
The axion field described in (5) is appropriate for a single

detector, but to reveal the effects of DM interferometry we
need to extend the description to include the spatial
dependence of the DM wave. In particular, the phase will
also include a contribution k · x, with k ¼ mav for a
nonrelativistic wave. As k depends on the velocity, and
not speed, we need to extend the above sum to three
independent components, vabc ¼ vax̂þ vbŷ þ vcẑ, where
the indexes a, b, c are integers. We may then write

aðx; tÞ ¼
ffiffiffiffiffiffiffiffiffi
ρDM

p
ma

X
abc

αabc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðvabcÞðΔvÞ3

q

× cos ½ωabct − kabc · xþ ϕabc�; ð6Þ

where ωabc depends on vabc ¼ jvabcj, and αabc and ϕabc are
Rayleigh and uniform random variables, respectively, as in
(5). Here, ðΔvÞ3 is a discretization of the three-dimensional
velocity, generalizing Δv for speeds; we will take the
continuum limit in Appendix B.
In (6) we have written the axion field in a convenient

form for revealing DM interferometry. To reiterate the
point, if we measure the axion field at a single location,
we can always choose our coordinates such that x ¼ 0. In
this case, the velocity information in k is lost, and we are
now only sensitive to the speed v ¼ jvj through ω. This
collapses fðvÞ → fðvÞ, and (6) to (5); information about
the phase space is lost. However, if we measure the axion
field at two locations, an irreducible k dependence remains,
and the full velocity information is imprinted in the
multidetector covariance matrix.
We implicitly assume throughout this work that the

noninteracting plane-wave superposition in (6) applies for
all x. Corrections to this picture should arise from, e.g., the
gravitational field of the Earth, which would slightly bend
the DM trajectories between detectors. However, the DM
velocities we consider in this work are much larger than the
Earth’s escape velocity, and also the detector separations
are typically much smaller than the radius of the Earth, so
we are justified in neglecting this effect.

B. The multidetector covariance matrix

We will now outline how the statistics of the axion field,
as described above, lead to a nontrivial covariance matrix in
the data collected by N experiments. In this section we
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will simply state the key results, leaving a derivation to
Appendix B.
We begin by considering the minimal case of

N ¼ 1. Suppose that a single experiment takes a time
series of N measurements fΦnðxÞ ¼ Φðx; nΔtÞg, with n ¼
0; 1;…; N − 1, collected over a time T, so that Δt ¼ T=N.
In order to isolate a signal oscillating at a particular
frequency, as we expect the axion to do, we calculate
the discrete Fourier transform

ΦkðxÞ ¼
XN−1

n¼0

ΦnðxÞe−i2πkn=N: ð7Þ

The transform is indexed by an integer k ¼ 0; 1;…; N − 1,
which is related to the angular frequency, ω ¼ 2πk=T. We
will switch back and forth between talking about frequency
ω and wave number k as convenient. It is convenient to
partition the Fourier transform into appropriately normal-
ized real and imaginary parts as follows,

RkðxÞ ¼
Δtffiffiffiffi
T

p Re½ΦkðxÞ�;

IkðxÞ ¼
Δtffiffiffiffi
T

p Im½ΦkðxÞ�: ð8Þ

We can then write the power spectral density (PSD) as

SkΦΦ ¼ ðΔtÞ2
T

jΦkðxÞj2 ¼ R2
kðxÞ þ I2kðxÞ: ð9Þ

We will assume throughout that T is long enough such that
the signal is sufficiently well resolved; i.e., the bandwidth
of the Fourier transform 2π=T is much smaller than the
width of the signal in frequency space. When specifying
Fourier components by frequency as opposed to wave
number we use notation as in SkΦΦðxÞ → SΦΦðx;ωÞ.
As shown in [16], both Rðx;ωÞ and Iðx;ωÞ are normally

distributed with zero mean and variance given by

hR2ðx;ωÞi ¼ hI2ðx;ωÞi ¼ A
2

πfðvωÞ
mavω

; ð10Þ

where we have defined vω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ω=ma − 2

p
as the axion

velocity corresponding to a frequency ω, and the speed
distribution is defined as

fðvÞ ¼
Z

d3vfðvÞδðv − jvjÞ: ð11Þ

This implies, for example, that SΦΦðxÞ is an exponen-
tially distributed quantity, with mean

hSΦΦðωÞi ¼ A
πfðvωÞ
mavω

: ð12Þ

We can understand the velocity dependence by looking
back to (5); the signal measured by a detector Φ is
proportional to the time-dependent axion field, and since

a is proportional to
ffiffiffiffiffiffiffiffiffi
fðvÞp

, we obtain a power spectrum
SΦΦ proportional to fðvÞ.
In any real experiment there will also be background.

However, as long as the background is normally distributed
in the time domain—as expected for, for example, thermal
noise, SQUID flux noise, or Josephson parametric ampli-
fier noise—then both Rðx;ωÞ and Iðx;ωÞ remain normally
distributed but with variance

hR2ðx;ωÞi ¼ hI2ðx;ωÞi ¼ A
2

πfðvωÞ
mavω

þ λBðωÞ
2

; ð13Þ

where λBðωÞ encapsulates the variance of the potentially
frequency-dependent noise from the background sources
only.
Note that RkðxÞ and IkðxÞ are uncorrelated; in particular,

the 2 × 2 covariancematrix for these two quantities is simply

Σk ¼
�
A
2

πfðvωÞ
mavω

þ λBðωÞ
2

��
1 0

0 1

�
: ð14Þ

This implies that, for a single detector, all information about
the signal is contained in the PSD SΦΦðxÞ. Further, as shown
in (14), the location x never enters for N ¼ 1. Even if we
chose our coordinates such that k · x ≠ 0, the overall phase
remains unphysical as it would vanish when computing the
modulus squared in (9).
Now let us extend the discussion to the case of interest:

data collected by N experiments at positions xi, with
i ¼ 1; 2;…;N . For each dataset, we calculate the real and
imaginary parts of the Fourier transform as above. The
information collected by all detectors can then be organized
into the following 2N -dimensional data vector,

dk ¼ ½Rkðx1Þ; Ikðx1Þ;…; RkðxN Þ; RkðxN Þ�T: ð15Þ
Correlations between the real and imaginary part for any
given detector will be identical to theN ¼ 1 case discussed
above. However, DM interferometry will reveal itself
through nontrivial correlations amongst the different detec-
tors.6 Indeed, as justified in Appendix B, dk will be a
2N -dimensional Gaussian random variable with zero mean
and a symmetric ð2N × 2N Þ-dimensional covariance
matrix given by

6Our analysis assumes that the experiments have identical time
stamps on the data, or equivalently that the relative phase of the
signal at each experiment is precisely known. Of course, this is
not exactly true and in general there will be an additional
contribution to the phase of Φ in (7) of the form ωΔτ, where
Δτ is the timing error. As long as Δτ ≪ jxijjv, this contribution
can be safely neglected. For two detectors with jx12j ∼ 50 m and
v ∼ 200 km=s, this implies Δτ ≪ 10−10 s. Typical atomic clocks
have timing error of 10−9 s=day, so the required Δτ can be
achieved by synchronizing the two experiments to an atomic
clock over data-taking intervals of about 2.5 hours, which is
sufficient for the daily modulation analysis in Sec. V.
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Σk ¼

2
666664

hRkðx1ÞRkðx1Þi hRkðx1ÞIkðx1Þi hRkðx1ÞRkðx2Þi … hRkðx1ÞIkðxN Þi
hIkðx1ÞRkðx1Þi hIkðx1ÞIkðx1Þi hIkðx1ÞRkðx2Þi … hIkðx1ÞIkðxN Þi

..

. . .
.

hIkðxN ÞRkðx1Þi hIkðxN ÞIkðx1Þi hIkðxN ÞRkðx2Þi … hIkðxN ÞIkðxN Þi

3
777775;

hRkðxiÞRkðxjÞi ¼ hIkðxiÞIkðxjÞi ¼
1

2
½cijðωÞ þ δijλB;iðωÞ�;

hRkðxiÞIkðxjÞi ¼ −hIkðxiÞRkðxjÞi ¼
1

2
sijðωÞ: ð16Þ

Here λB;iðωÞ is the background observed by the ith
experiment, and its contribution is purely diagonal. The
axion signal, however, induces off-diagonal correlations,
which we quantify in terms of

cijðωÞ ¼
π

ffiffiffiffiffiffiffiffiffiffi
AiAj

p
mavω

F c
ijðvωÞ;

sijðωÞ ¼
π

ffiffiffiffiffiffiffiffiffiffi
AiAj

p
mavω

F s
ijðvωÞ; ð17Þ

with

F c
ijðvÞ ¼

Z
d3vfðvÞ cosðmav · xijÞδ½jvj − v�;

F s
ijðvÞ ¼

Z
d3vfðvÞ sinðmav · xijÞδ½jvj − v�: ð18Þ

By translation invariance, the entries of the correlationmatrix
only depend on the relative distances xij ≡ xi − xj. These
expressions then simplify for the correlations amongst a
single detector, as F c

iiðvÞ¼fðvÞ and F s
iiðvÞ¼0. But for

i ≠ j, the expressions in (18) contain a modulated version of
the full velocity distribution, allowing us to extract nontrivial
directional information about the velocity distribution fðvÞ
withmultiple detectors separated by distances of order the de
Broglie wavelength, where the integrand in (18) exhibits
maximal variation. We note that the formalism we have
developed assumes that thevelocity distribution is stationary,
or at least varies slowly on timescales compared to the axion
coherence time. InSec.Vwewill develop a formalism to take
into account the daily modulation of fðvÞ through a joint
likelihood over multiple data-taking intervals.

III. A LIKELIHOOD FOR MULTIDETECTOR
AXION DIRECT DETECTION

Having understood the statistics underlying the data
collected by multiple detectors, we now outline how to
incorporate these lessons into an appropriate likelihood.
The likelihood will be a simple generalization of the axion
likelihood (generally applicable to wavelike DM) intro-
duced in [16], and we will closely follow their approach.

However, unlike in [16], we work explicitly with the data as
represented in Rk and Ik rather than the PSD, as the former
notation exposes the full set of multidetector correlations,
as captured by Σ in (16). We will then outline how we can
extract information about the parameters of fðvÞ using this
likelihood, exploiting where possible the asymptotic
Asimov procedure [51] to determine results analytically.
In Sec. IV we will then put the formalism to use in the
context of several toy examples designed to highlight
where interferometry opens up new avenues, and build
intuition for the more realistic scenarios considered
in Sec. V.

A. The multidetector likelihood

As detailed in Sec. II, we imagine we have a dataset
collected by N experiments, which each perform a time
series of N measurements collected at a frequency
f ¼ 1=Δt of a quantity Φ ∝ a. The real and imaginary
part of the discrete Fourier transform of each experiments
dataset is constructed according to (8), and then arranged
into a single dataset d ¼ fd0;d1;…;dN−1g, with dk as
given in (15). We then define a model M with parameter
vector θ that has nuisance parameters θnuis describing the
backgrounds in the individual experiments [encapsulated
by λB;iðωÞ] and signal parameters θsig that characterize the
axion contribution. For example, θsig includes gaγγ ,ma, and
model parameters that describe the DM velocity distribu-
tion fðvÞ. Then, as the dataset is distributed according
to a multivariate Gaussian, the appropriate likelihood is
given by

LðdjM; θÞ ¼
YN−1

k¼0

exp ½− 1
2
dT
k · Σ−1

k ðθÞ · dk�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ2N jΣkðθÞj

q ; ð19Þ

where jΣkðθÞj is the determinant of the covariance matrix.
The utility of the likelihood function is that it facilitates

inferences regarding the signal parameters, θsig, from the
data. The ultimate goal of the axion DM program would be
to infer a nonzero value of A, and hence the existence
of a coupling between the Standard Model and DM,
for example gaγγ. Taking a frequentist approach to that
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problem, it is useful to define the following test statistic
(TS) from the profile likelihood:

ΘðθsigÞ ¼ 2½lnLðdjM; fθ̂nuis; θsiggÞ
− lnLðdjM; fθ̂nuis; θsig ¼ 0gÞ�: ð20Þ

In each likelihood, θ̂nuis denotes the value of the nuisance
parameters that maximizes the likelihood for the given
signal parameters. The TS is then a function of the signal
model parameters. In particular, this means that in the first
term in (20) the nuisance parameters are uniquely deter-
mined at each θsig point by the values which maximize the
log likelihood. The second term in (20) is evaluated on
the null model θsig ¼ 0, which can be achieved by setting
the signal strength parameter A to zero.
The TS in (20) is convenient for quantifying the

significance of a putative signal, and we will use it
throughout the following analysis. In Appendix D we
describe a data-stacking procedure that reduces the data
storage requirements for practical applications of our
formalism.

B. Asimov test statistic

In order to build intuition for the information accessible
to multiple detectors, wewill use the Asimov dataset [51] to
study the asymptotic TS analytically. More precisely, the
Asimov analog of the TS in (20) is the average value taken
over data realization,

Θ̃ðθsigÞ ¼ hΘðθsigÞi; ð21Þ

where the expectation value is taken on the data. In order to
evaluate the asymptotic TS, it is convenient to separate the
model prediction, which enters through Σ, into background
and signal contributions:

Σ ¼ Bþ S: ð22Þ

Referring back to (16), recall that the background is purely
diagonal:

B ¼ 1

2
diagðλB;1; λB;1;…; λB;N ; λB;N Þ: ð23Þ

Using this partitioning of the model prediction, we can then
express the TS as follows

Θ ¼
XN−1

k¼1

�
dT
k ½B−1

k − Σ−1
k �dk − ln

�jΣkj
jBkj

��
: ð24Þ

Note that the values of B appearing in this expression are
understood as being set to the value required by the profile
likelihood technique. In order to evaluate the Asimov form
of this expression, we only need to evaluate the average on

the first term, as the average is taken over the data. This can
be evaluated as follows,

hdT
k ½B−1

k − Σ−1
k �dki ¼ TrðhdkdT

k i½B−1
k − Σ−1

k �Þ; ð25Þ

and then as the data have mean zero, we know the above
expected value is simply given by the true covariance
matrix,

hdkdT
k i ¼ Σkðθ ¼ θtruthÞ ¼ Σt

k: ð26Þ
Here the truth parameters can be considered as, for
example, the parameters one would use when generating
Monte Carlo to simulate expected experimental results. For
instance, to estimate the expected limit, the truth parameters
would commonly have A ¼ 0, whereas if we are estimating
our sensitivity to features in fðvÞ, we will take A ≠ 0 in the
Asimov data. In this work we are interested in the latter
case, and therefore we will further assume the background
has been fixed to the true value as a result of the profile
likelihood technique,

Σt
k ¼ St

k þ Bk; ð27Þ
where St is the true signal model and the same B appears in
both the Asimov and model predictions. We further assume
that the signal is always parametrically smaller than the
background, which is the regime we will be in for any
realistic experimental setup.7 Implementing these assump-
tions, the Asimov form of (24) is8

Θ̃ðθsigÞ ≈
XN−1

k¼1

Tr

��
St
k −

1

2
Sk

�
B−1

k SkB−1
k

�
: ð28Þ

In (28) we have a convenient form of the expected TS
that is amenable to analytic study. In the present work, our
particular interest is the information contained in fðvÞ that
we can only access as a result of DM interferometry. As
such, it is convenient to evaluate a form of the Asimov TS,
where all parameters except for those that control fðvÞ, as
encoded in F c

ijðvÞ and F s
ijðvÞ in (18), are set to their true

values in the presence of a nonzero signal. If we further
assume that our frequency resolution is sufficiently fine
with respect to the scales over which the signal and
background vary, then we can approximate the sum over
Fourier components k with an integral over frequencies ω,
or equivalently speeds v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ω=ma − 2
p

. Under these
assumptions, the TS becomes

7This assumption also ensures the validity of the fixed back-
ground being the same in, e.g., (27) and (24); if the signal is
comparable to the background, then varying A will generically
alter the background determined by the profile likelihood
technique.

8To derive this result, the following identity is useful:
ln jMj ¼ Tr lnM, for a matrix M.
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Θ̃ ¼ Tπ
ma

Z
dv
v

XN
i;j¼1

AiAj

λB;iλB;j

�
F c

ijðvÞ
�
F c;t

ij ðvÞ −
1

2
F c

ijðvÞ
�

þ F s
ijðvÞ

�
F s;t

ij ðvÞ −
1

2
F s

ijðvÞ
��

: ð29Þ

Much of the remainder of this work is devoted to studying
the implications of this result.

C. Limiting cases of zero and infinite separation

We can use (29) to confirm basic asymptotic scalings
expected for an analysis performed with DM interferom-
etry. To begin with, the Asimov TS for a single detector
with response A and background λB, recalling F s

iiðvÞ ¼ 0
and F c

iiðvÞ ¼ fðvÞ, is given by

Θ̃N¼1 ¼
A2Tπ
ma

Z
dv
v
fðvÞ
λ2B

�
ftðvÞ − 1

2
fðvÞ

�
: ð30Þ

This expression agrees with the result in [16], which was
derived for a single detector when analyzing the PSD.
Importantly, we emphasize once more that (30) is only
dependent on the speed distribution, so directional param-
eters that affect the velocity distribution but not the DM
speed distribution are inaccessible. Before moving on to
multiple detectors, we note that the expected discovery
significance, which we denote TS, is given by the Asimov
Θ evaluated at the model parameters that maximize the
likelihood, which are the truth parameters. Setting fðvÞ ¼
ftðvÞ in (30) above gives

TSN¼1 ≈
A2Tπ
2ma

Z
dv
v
fðvÞ2
λ2B

: ð31Þ

In order to extract directional parameters we need at least
two detectors. To that end, consider our expression in (29)
for N ¼ 2. For simplicity, we take A1 ¼ A2 ¼ A and
λB;1 ¼ λB;2 ¼ λB, in which case the Asimov TS becomes

Θ̃N¼2 ¼
2A2Tπ
ma

Z
dv
vλ2B

�
fðvÞ

�
ftðvÞ − 1

2
fðvÞ

�

þ F c
12ðvÞ

�
F t;c

12ðvÞ −
1

2
F c

12ðvÞ
�

þ F s
12ðvÞ

�
F t;s

12ðvÞ −
1

2
F s

12ðvÞ
��

: ð32Þ

In particular, the discovery TS is given by

TSN¼2 ¼
A2Tπ
ma

Z
dv
v
fðvÞ2 þ F c

12ðvÞ2 þ F s
12ðvÞ2

λ2B
: ð33Þ

Through F c
12 and F s

12, the discovery TS depends on the
spatial separation of the two experiments d ¼ jx12j. In the

limit where the experiments are close with respect to the
DM coherence length, i.e., d ≪ λc, then the two experi-
ments see the same phase of the DM wave (k · x does not
vary appreciably between them). In this case, we would
expect a coherent enhancement in the signal. Defining for
future use

TS0 ¼ lim
d→0

TS ¼ 2A2Tπ
ma

Z
dv
v
fðvÞ2
λ2B

; ð34Þ

we see from (18) that for x12 ¼ 0 we have F c
12ðvÞ ¼ fðvÞ

and F s
12ðvÞ ¼ 0, so TS0 ¼ 4TSN¼1. TheN 2 ¼ 4 enhance-

ment of the TS represents a coherent enhancement, a point
emphasized in [44]. This configuration provides a bench-
mark for the largest TS we can achieve for a generalN ¼ 2
configuration, and therefore will provide a convenient
benchmark in the study that follows. On the other hand,
for widely separated detectors with d ≫ λc, the DM fields
will add incoherently. For the problem at hand, again
returning to (18), we see that the sine and cosine factors
will oscillate rapidly, driving the integrals to zero. What
remains is

lim
d→∞

TS ¼ A2Tπ
ma

Z
dv
v
fðvÞ2
λ2B

¼ 2TSN¼1; ð35Þ

so that the TS now only scales as N , an incoherent
enhancement.
The above argument can be readily generalized to N

detectors. Typically the signal strength A is proportional to
g2aγγ , so for N experiments all with pairwise separations
d ≪ λc, we expect our sensitivity to gaγγ should scale
coherently asN 1=2. If instead all experiments have d ≫ λc,
the scaling is reduced to N 1=4, and for scenarios outside
these two extremes the scaling will be somewhere in
between. However, it is precisely this intermediate regime,
where neither F reduces to the speed distribution nor
vanishes, where we expect to be able to extract additional
information about fðvÞ. We turn to the problem of
estimating parameters of fðvÞ in the context of the
Asimov dataset in the next section.

IV. ASIMOV PARAMETER ESTIMATION

In this section we will use (32) to perform frequentist
parameter estimation and show explicitly that additional
information about fðvÞ can be extracted via DM interfer-
ometry. For the purpose of simplifying the discussion, we
will restrict our attention to the case of two detectors with
equal background and detector responses as given in (32).
However, the entire discussion can be readily generalized to
N arbitrary detectors by using the asymptotic TS expres-
sion in (29).
To be specific, imagine we are interested estimating a set

of signal parameters α, which are a subset of the full set of
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signal parameters α ⊂ θsig related to fðvÞ, and which have
true values αt. The Asimov procedure allows us to study
our ability to infer these parameters. For example, it is
straightforward to confirm that Θ̃ðαÞ is maximized for
α ¼ αt.9 Beyond the best fit values, we are interested in
determining the associated expected uncertainties and
correlations between the various parameters, which are
encompassed in the covariance matrix between the param-
eters, which we denote C. An estimator for this covariance
matrix is given by the inverse Fisher information evaluated
at the maximum likelihood, C−1 ¼ Iðα̂Þ (again α̂ are the
parameters that maximize the likelihood), where

IijðαÞ ¼ −
∂2 lnLðαÞ
∂αi∂αj ¼ −

1

2

∂2ΘðαÞ
∂αi∂αj ; ð36Þ

where we use (20). Given this relation, asymptotically our
estimate for the covariance matrix is given by

½C̃−1�ij ¼ −
1

2

∂2Θ̃ðαÞ
∂αi∂αj

����
α¼αt

¼ A2Tπ
ma

Z
dv
vλ2B

½ð∂ifðvÞÞð∂jfðvÞÞ

þ ð∂iF c
12ðvÞÞð∂jF c

12ðvÞÞ
þ ð∂iF s

12ðvÞÞð∂jF s
12ðvÞÞ�: ð37Þ

This expression involves the following shorthand for
derivatives of functions then evaluated at their truth values,
∂i ¼ ∂=∂αijαi¼αti

. The expression in the first line of this

result lays bare a simple fact: if Θ̃ has no dependence on a
particular parameter, for example the incident direction of a
DM stream, or orientation of the Sun’s motion through the
DM halo, then the associated entries of the inverse
covariance matrix vanish along with our ability to estimate
that parameter. For the case of a single parameter α, we can
readily invert the covariance matrix, and the above expres-
sion simplifies to

σ−2α ¼ A2Tπ
ma

Z
dv
vλ2B

½ð∂αfðvÞÞ2

þ ð∂αF c
12ðvÞÞ2 þ ð∂αF s

12ðvÞÞ2�; ð38Þ

where again all parameters are evaluated at their truth
values after derivatives. We can already calibrate our
basic expectation for parameter estimation from this result.
Optimal estimation of α amounts to maximizing the right-
hand side of the expression; indeed, as expected, increasing

the signal strength, A, or the integration time, T, both
achieve this. If a parameter can be estimated from the speed
distribution fðvÞ [in other words, ∂αfðvÞ ≠ 0], then that
parameter may be estimated by a detector configuration
with d ≪ λc. However, the true power in the multidetector
setup arises for parameters invisible to a single detector,
defined by ∂αfðvÞ ¼ 0, but where ∂αF

c;s
12 ðvÞ ≠ 0. In

generic cases, such parameters are optimally estimated
for d ∼ λc.
Continuing, let us assume that λB is independent of

frequency, in which case (38) becomes

σ2α ¼
2

TS0

�Z
dv
v
ðftðvÞÞ2

��Z
dv
v
½ð∂αfðvÞÞ2

þ ð∂αF c
12ðvÞÞ2 þ ð∂αF s

12ðvÞÞ2�
	

−1
; ð39Þ

expressed in terms of TS0 as introduced in (34). In
particular, this result demonstrates the expected scaling
of σα ∼ ðTS0Þ−1=2; the exact details will require a specific
fðvÞ and experimental configuration. In the following
subsections we will continue this line of thinking, dem-
onstrating in several toy examples that a second detector
can lift degeneracies from the single detector likelihood.

A. The minimal N = 2 example

We begin our exploration of the above parameter
estimation formalism with a simple scenario: N ¼ 2
detectors measuring DM drawn from an isotropic velocity
in the laboratory frame, 4πv2fðvÞ≡ fðvÞ. This example is
obviously idealized; in reality, the finite boost velocity of
the Sun about the Galactic Center implies that even an
isotropic velocity distribution in the Galactic frame will
become anisotropic in the laboratory frame. Nonetheless,
this example will provide basic intuition for the impact of
interferometry.
Invoking isotropy to perform the angular integrals,

F c;s
12 ðvÞ can be computed as

F c
12ðvÞ ¼ fðvÞ sinðmavdÞ

mavd
; F s

12ðvÞ ¼ 0; ð40Þ

where again d is the distance between the two detectors.
Thus for this example, we see explicitly that for d → 0, we
have F c

12ðvÞ → fðvÞ, whereas for d → ∞, instead
F c

12ðvÞ → 0. As we will see in the examples below, it is
the dispersion v0 rather than the average speed v̄ which
determines the crossover between small and large d.
To progress further, we assume a concrete form for fðvÞ:

the Maxwell-Boltzmann distribution,

fðvÞ ¼ 4v2ffiffiffi
π

p
v30

e−v
2=v2

0 ; ð41Þ

9We emphasize that there is no guarantee that other parameters
besides αt cannot also maximize the likelihood. Indeed we will
see exactly this possibility realized in a number of examples
considered below.
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where v0 is the velocity dispersion. Taking v0 ≈ 220 km=s,
this velocity distribution is an approximation to the SHM
that is expected to describe the bulk of the local DM,
neglecting the finite velocity boost of the Sun relative to the
Galactic Center, which breaks the isotropy in the laboratory
frame. We will utilize the Maxwellian ansatz repeatedly in
this work as an illustrative example. In Fig. 2 we show
F c

12ðvÞ for various choices of d=λc; there is a clear
deviation from fðvÞ when d ∼ λc, which is a manifestation
of the nontrivial correlations in the multidetector spectrum.
Note that we have defined, for the Maxwell-Boltzmann
distribution, λc ¼ ðmav0Þ−1, where v0 is the velocity
dispersion parameter that enters into (41); this is a par-
ticular realization of (1). Anticipating the more general
scenario where the velocity distribution is not isotropic, it is
precisely the deviation from fðvÞ that we will use to extract
information about the full velocity profile.
As we have chosen an isotropic fðvÞ, there is no

additional information to extract about the velocity dis-
tribution in this case. Indeed, the distribution in (41) is
defined by a single parameter, v0, which we can envision
estimating. Evaluating (39) analytically in this case, we find

σ2v0TS0
v20

¼ 8ξ

9ξ − ξ3 þ ffiffiffi
2

p ð15þ 2ξ2 þ ξ4ÞF½ξ= ffiffiffi
2

p � ; ð42Þ

written in terms of a dimensionless distance scale
ξ ¼ mav0d ¼ d=λc, and Dawson’s integral F. We find
explicitly that σv0 is minimized for ξ → 0, i.e., d ≪ λc,
since ∂v0fðvÞ ≠ 0.

B. The infinitely cold stream

We now consider our first example of an anisotropic
velocity distribution, a DM stream, and show that we can
infer the direction of this stream using DM interferometry.
In addition to the bulk SHM, it is expected that the local
DM velocity distribution could contain nonvirialized sub-
structure, such as cold tidal streams [16,33,52–62]. Streams
are characterized by low velocity dispersions but large
velocity boosts in the solar frame. Let us suppose that in the
laboratory frame the stream is boosted at velocity vstr and
has velocity dispersion v0 ≪ jvstrj. In the limit v0 → 0, the
velocity distribution approaches a delta function,

fðvÞ ¼ δ3ðv − vstrÞ; ð43Þ

which has an infinite coherence length but a finite de
Broglie wavelength. This is clearly an artificial example—it
is the maximally anisotropic velocity distribution—but it is
one we can evaluate fully analytically. Further, a number of
the conclusions that we will reach for the infinitely cold
stream will hold also in more realistic cases. Note that for
this example fðvÞ ¼ δðv − vstrÞ, which has no dependence
on the direction of the stream, and therefore a single
detector cannot infer the direction.
As claimed, for this simple scenario, we can compute the

exact global TS using (32), and find

Θ̃ðθstr;ϕstrÞ ¼ TS0 cos ½madvstrðv̂str − v̂tstrÞ · x̂12�: ð44Þ

We consider the TS as a function of the spherical
coordinates of our test stream direction, α ¼ fθstr;ϕstrg,
with the aim being to use the TS to infer the true direction
of the stream, given by αt ¼ fθtstr;ϕt

strg. In this case we can
also compute TS0, as defined in (34), and we obtain10

TS0 ¼
2A2Tπ
maλ

2
B

δðvstr − vstrÞ
vstr

: ð45Þ

Now consider the angle-dependent factor in (44). Without
loss of generality, we take x̂12 ¼ ẑ and define spherical
coordinates with respect to x̂12, so that the argument of the
cosine in (44) simplifies to

ðv̂str − v̂tstrÞ · x̂12 ¼ cos θstr − cos θtstr; ð46Þ

FIG. 2. The modified speed distribution, F c
12ðvÞ, that carries

the imprint of DM interferometry. Here we show the particularly
simple example of an isotropic SHM for N ¼ 2 detectors, in
which case the expression is given in (40). The result is shown for
various choices of the two detector separation d as compared to
the axion coherence length λc ¼ ðmav0Þ−1, with v0 ¼ 220 km=s.
The limiting cases of F c

12ðvÞ → fðvÞ for d ≪ λc and F c
12ðvÞ → 0

for d ≫ λc are apparent. For d ∼ λc, however, the profile is
modulated with the interference inherent in the cross spectrum. In
this simple case, there is no additional information about the
velocity distribution that may be extracted by having multiple
detectors.

10Note the fact that TS0 formally diverges, TS0 ∝ δð0Þ, which
is an artifact of the stream having a delta-function speed
distribution. The divergence is regulated by the finite dispersion
of the stream, as we discuss below.
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where θstr and θtstr are the usual polar angles in spherical
coordinates. Neither azimuthal coordinate ϕ appears in this
expression, and hence the azimuthal angles are also absent
in the TS. This implies that we cannot infer one of the
angular coordinates of vtstr from the data. For our particular
choice of coordinates, we can infer the parameter θtstr, as we
will describe below, but the likelihood has a flat direction in
ϕstr, so that we cannot infer the associated truth value. The
degeneracy is physical. In our coordinates the symmetry of
the likelihood is represented by an invariance under
changes in ϕ, but more generally the TS is unchanged
by rotations about the detector separation axis, x̂12. This
can be seen from the dependence of the TS on
ðv̂str − v̂tstrÞ · x̂12: any change in the test or true v̂str that
is perpendicular to x̂12 has no impact.
This symmetry of the TS under rotations around x̂12 is in

fact not a relic of our idealized example. Our ability to infer
the direction of a velocity parameter vector that defines a
given fðvÞ enters through the v · x12 in F c;s

12 . But as v · x12

is itself invariant to rotations of the velocity about the x̂12

axis, one can show that this flat direction in the likelihood
exists generally—indeed we will see it in more realistic
cases (a direct analog is apparent in the symmetry observed
in Fig. 4, related to the SHM example discussed below).
This symmetry will be broken by a dependence in the
likelihood on multiple detector axes that are not parallel,
provided either by a third detector or alternatively by daily
modulation, where the single x̂12ðtÞ will vary throughout
the day at different times t. We will explore this latter
example in detail in Sec. V—indeed the optimal detector
configuration will be determined by maximally violating
this symmetry—but until then the symmetry will represent
a basic feature of the physics.
Returning to our specific coordinate system where

x̂12 ¼ ẑ, we may perform parameter estimation on the
angle between the stream and detector. From (39), we have

σ2θstr ¼
2

TS0

1

ðmavstrdÞ2
1

sin2 θtstr
: ð47Þ

Note that the uncertainty on the parameter θstr is minimized
for θtstr ¼ π=2, i.e., when the stream is perpendicular to the
two-detector axis. On the other hand, if the two vectors are
parallel, θtstr ¼ 0 or π, then we see σθstr diverges. Yet we can
still infer θtstr in this case. Indeed, looking to (46) we see
that the asymptotic TS depends on θstr; the likelihood is not
globally flat, and we can estimate the angle from contours
around the maximum likelihood. Instead, in this case there
is a breakdown of the quadratic approximation around the
maximum likelihood. If we were to incorporate higher
derivatives than in (37), we would confirm that the like-
lihood is not truly flat at these points. This of course should
be contrasted with the true flat direction in the likelihood
associated with ϕstr. Note, however, that as θtstr approaches
either 0 or π, becoming parallel to x12, the undetermined

parameter ϕstr is less relevant. In the limit where the two
vectors are parallel, we can infer the true direction of the
stream, in spite of this degeneracy.
There is another interesting feature in (47): the result

suggests that we can take d → ∞ to constrain this one
direction of the stream to arbitrary precision. This is a
manifestation of our assumption that the stream has no
velocity dispersion: it remains coherent over arbitrary large
distances, allowing for an improved baseline over which we
can measure the stream direction. To study this feature
further, imagine making this example slightly more realistic
by introducing a finite velocity dispersion v0, with
v0 ≪ vstr, such that fðvÞ has support in a small volume
of radius ∼v0 around vstr. For small enough v0 we would
expect the results of the δ-function stream to hold. Yet there
is an important conceptual difference: the coherence length
is no longer infinite because the different waves that
constitute the local DM field now have speeds that vary
by Oðv0Þ. Parametrically, the argument of the interfero-
metric terms scale as majvjjx12j ∼madðvstr þOðv0ÞÞ,
but with the Oðv0Þ term varying between states. If we
now take d ≫ ðmav0Þ−1, then the different waves will add
incoherently, suppressing the power. But if we choose
d ∼ ðmav0Þ−1, a degree of coherence can be maintained,
along with the interference pattern carrying the information
we seek to extract (see also the orange curve d ¼ 2λc in
Fig. 2). Accordingly, for the optimal separation, the scaling
of the sensitivities in (47) is (taking sin2 θtstr ∼ 1=2 for
definiteness)

σθ ∼
2ffiffiffiffiffiffiffiffi
TS0

p v0
vstr

¼ 2ffiffiffiffiffiffiffiffi
TS0

p λdB
λc

: ð48Þ

In the more realistic examples we will confirm the
conclusion that d ∼ λc provides the maximum sensitivity.
There is another consequence of this choice. Taking d ¼
ðmav0Þ−1 in (44), the prefactor of the dot product in (46) is
vstr=v0 ≫ 1, by definition of this being a cold stream. Small
variations in ðv̂str − v̂tstrÞ · x̂12 will induce large variations in
the argument of the cosine, implying that the global
structure of the TS is highly nontrivial. Although the
maximum TS will be attained at the true θ, there will be
a pattern of local maxima with comparable TS (this result is
depicted in Fig. 5, and persists even with daily modulation
as shown in Fig. 7).

C. The (boosted) Standard Halo Model

The bulk DM halo of the Milky Way is expected to be
Maxwell-Boltzmann distributed as in (41) in the Galactic
frame, except for a possible cutoff around the escape
velocity ∼500 km=s [63]. On the other hand, the Sun is
boosted with respect to the Galactic frame by [64]

v⊙ ≈ ð11; 232; 7Þ km=s; ð49Þ
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in Galactic coordinates, where x̂ points towards the
Galactic Center, ŷ points in the direction of the local
rotation of the disk, and ẑ points towards the Galactic North
Pole. Thus in the laboratory frame (neglecting the Earth’s
motion), the velocity distribution becomes that of the SHM,

fðvÞ ¼ 1

π3=2v30
e−ðvþv⊙Þ2=v20 ; ð50Þ

with a velocity dispersion v0 ≈ 220 km=s [65,66]. Note in
particular that v0 ∼ jv⊙j≡ v⊙, so for the SHM λc ∼ λdB.
The associated speed distribution is

fðvÞ ¼ vffiffiffi
π

p
v0v⊙

e−ðvþv⊙Þ2=v20ðe4vv⊙=v20 − 1Þ: ð51Þ

As we have emphasized many times already, single
detectors are only sensitive to the speed distribution, which
only depends on v⊙ but not the orientation of the solar
velocity v̂⊙. Thus, a single detector may constrain the
model parameters v0 and v⊙ (as shown in [16]), but
determining the orientation requires multiple detectors.11

To determine the expected sensitivity to the direction v̂⊙
we need to compute the derivatives of F c;s

12 ðvÞ that appear
in (39):

∂θ⊙F
c
12ðvÞjθ⊙¼θt⊙

¼ 4v3v⊙e−ðv
2þv2⊙Þ=v20ffiffiffi

π
p

v50

Z
dθ sin θ exp

�
−
2vv⊙
v20

cos θ cos θt⊙

�
cosðmavd cos θÞ

×

�
I0

�
2vv⊙
v20

sin θ sin θt⊙

�
cos θ sin θt⊙ þ I1

�
2vv⊙
v20

sin θ sin θt⊙

�
sin θ cos θt⊙

�
; ð52Þ

where I0;1 are both modified Bessel functions (an analo-
gous expression holds for F s

12). In computing this result we
have again chosen coordinates x̂12 ¼ ẑ but left the direction
of v̂⊙ arbitrary, defined by ðθt⊙;ϕt

⊙Þ. The most important
feature of this result is that it exhibits no dependence upon
ϕt
⊙: again, there is a symmetry in the likelihood for

rotations around x̂12. Beyond this, we can also see that
the derivative vanishes when v⊙ is parallel to the detector
separation (θt⊙ ¼ 0). Accordingly, in this case we will find
σθ⊙ diverges, as we did for the stream. But again this is not a
global flat direction in this case; the likelihood is just
sufficiently flat at the maximum that the first three
derivatives vanish.
To proceed beyond these analytic insights, we will

compute the remaining results numerically. We define the
angle between v⊙ and x12 as θ⊙. To begin with, we take a
generic value of θt⊙ ¼ π=4 and consider how well we can
infer this angle as a function of detector separation. The
results are shown in Fig. 3. Unlike for the δ-function stream,
there is now a minimum at a finite value of d, and as argued
on general grounds this occurs when d ∼ λc ¼ ðmav0Þ−1.
That the uncertainty diverges ford → 0 is consistentwith the
fact that a single detector cannot infer this direction. In more
detail we find the minimum occurs at d ∼ 2λc, where we
obtain σθd ≈ 2=

ffiffiffiffiffiffiffiffi
TS0

p
. For example, if TS0 ¼ 25, corre-

sponding to a 5σ local significance detection with d ¼ 0,
then at the distance d ∼ 2λc corresponding to minimum
uncertainty, the solar velocity direction with respect
to the detector axis could be localized to 0.4 rad ∼ 20° on
the sky. We can understand the magnitude of σθd at its
minimum from (48): the SHM has the form of a stream

where v0 ∼ vstr ¼ v⊙, and therefore we would expect
σθd ×

ffiffiffiffiffiffiffiffi
TS0

p
∼ 2, exactly as observed.

However, as we have emphasized already, it is important
to keep in mind that our estimate of σθ⊙ is a measure of the
expected curvature of the likelihood in the vicinity of
the true value and does not capture the global structure of
the expected likelihood function. To illustrate these features
we fix d ¼ 2λc for definiteness and illustrate the global map
Θ̃ðθ⊙;ϕ⊙Þ=TS0 in Fig. 4, for three different values of θt⊙.
Note that we have divided out the overall significance TS0,
so that exactly how well we can localize the direction will
depend on how significantly the DM signal has been

11In principle annual modulation may be used by a single
detector to infer v̂⊙, as discussed in [16,33].

FIG. 3. The expected uncertainty on the angle between the
detector axis and solar velocity, θ⊙ ¼ arccosðv̂⊙ · x̂12Þ, as a
function of d=λc ¼ d ×mav0. In this example we have set the
true orientation to θt⊙ ¼ π=4. With this configuration, we find that
the maximum precision is obtained for d ≈ 2λc.
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measured. However, the expected global structure of the TS
will be a rescaled version of these maps. In each case the
true v̂⊙ that we are seeking to infer is located in the center
of the Mollweide projection maps. The left panel illustrates
the scenario with x̂12 ¼ v̂⊙ (θ⊙ ¼ 0), the center has
θ⊙ ¼ π=4, while in the right panel two directions are
perpendicular and x̂12 points between the poles of the
map (θ⊙ ¼ π=2). In all cases the symmetry of the TS
around the x̂12 axis is apparent. The only case where this
flat direction in the maximum TS is not an obstruction to
determining the true direction of v̂⊙ is when θd ¼ 0. In that
case we are still able to localize the true direction, although
we note the likelihood is relatively flat around the maxi-
mum (consistent with the second derivative vanishing). In
Sec. V we illustrate how daily modulation generically
allows us to fully determine both of the angles associated
with the direction of v⊙.

D. The Sagittarius Stream

As a final example working with a single static x̂12, we
return to the case of the cold stream with nonvanishing
velocity dispersion. We expect many of the conclusions
reached in Sec. IV C to hold in this case. In particular, the
symmetry around the x̂12 axis will remain, but we will see
explicitly in this case the nontrivial structure induced in the
global likelihood by the ratio of v0=vstr ∼ λdB=λc ≫ 1. To
make the example concrete, the DM component of the
Sagittarius Stream may extend to the Sun’s location, and
estimates [67,68] suggest that it could make up ∼5% of the
local DM density. However, the DM associated with the
streamwould be highly collimated in phase space; we follow
[16] and model the Sagittarius Stream DM velocity distri-
bution by a boosted Maxwellian as in (50), but with v0 ¼
10 km=s and v⊙ replaced by vstr ¼ ð0; 93.2;−388Þ km=s
[53,55].We consider the stream in isolation, as opposed to in
conjunction with the bulk SHM DM phase-space distribu-
tion, because even though the stream component is

subdominant in terms of DM density, it still dominates in
the narrow region of phase space where the Sagittarius
Stream has compact support. To simplify the discussion we
will simply take vstr ¼ 400 km=s, with a direction that we
will again specify by its anglewith respect to the detector axis
(given the degeneracy in rotations about that axis). Note that
this example could apply equally well to other putative DM
streams, such as the newly discovered S1 stream [60–62].
To begin with, in the left panel of Fig. 5 we show the

expected uncertainty on the recovered angle between the
stream and detector, θstr, as a function of the distance in
units of λc ¼ ðmav0Þ−1, for a true value θtstr ¼ π=4. This
figure is the stream analog of what we showed for the SHM
in Fig. 3. Once more, following the general discussion in
Sec. IV B, the optimal sensitivity is achieved for d ∼ λc, and
from (48), we expect σθd ×

ffiffiffiffiffiffiffiffi
TS0

p
∼ 2v0=vstr ∼ 0.05 at the

minimum-uncertainty distance, compatible with what we
see in Fig. 5.
However, just like in the case of the SHM it is important to

also examine the global properties of the TS in addition to the
curvature of the expected TS at the true parameter values.
Towards that end, on the right of Fig. 5 we show the expected
TS Θ̃, normalized to TS0, as a function of the reconstructed
angle between the stream and detector, θstr. For this figurewe
have fixed the true orientation at θtstr ¼ π=4 along with the
separation d ¼ 2λc. We see that Θ̃ drops off quickly around
the true value of θstr ¼ π=4 (vertical dashed), but that there is
nontrivial structure with local maxima at larger and smaller
θstr values. This is a direct manifestation of the nontrivial
interference patterns discussed in Sec. IV B for cold streams:
the large ratio vstr=v0 enters into the argument of the
trigonometric functions in F c;s

12 ðvÞ.

V. DAILY MODULATION

One of the most dramatic signatures of DM interferom-
etry is the unique daily modulation signal available to

FIG. 4. Left: a Mollweide projection of the Asimov test statistic Θ̃ðθ;ϕÞ for the SHM divided by the colocated detection significance
TS0. The detectors are configured so that the displacement vector between them is parallel to the SHM boost velocity, and the Mollweide
plot is rotated so that it is centered on the maximum test statistic. Center: as on the left, but for a detector configuration where the
displacement vector is at a 45° angle to the north (θt⊙ ¼ π=4) with respect to the SHM boost velocity. Right: as on the left, but for a
detector configuration where the displacement vector is perpendicular to the SHM boost velocity (θt⊙ ¼ π=2). In this configuration the
location of the boost velocity can only be localized to a great circle on the celestial sphere.
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multiple detectors. This effect, which we describe in the
current section, would be a smoking gun signature that an
emerging excess has a DM origin, and it also allows two
detectors to better determine geometric parameters describ-
ing the velocity distribution. The basic idea is simply that
for two detectors fixed at generic locations on the surface of
the Earth, the separation vector x12 is rotating in the inertial
Galactic frame throughout the day. This is in contrast to the
angular parameters entering in the DM velocity distribu-
tion, such as the Solar direction v̂⊙, which should always
point in the same Galactic direction, regardless of the
orientations of the detectors at any point in time on Earth.
The rotation of x12 with respect to the fixed v̂⊙ implies that
we will sample a variety of angles between the two vectors,
and therefore vary the modulation of the speed distributions
in F c;s

12 ðvÞ, as already depicted in Fig. 1. Critically this will
lift the flat direction in the maximum likelihood associated
with rotations around x12 that we observed repeatedly in
Sec. IV: as the likelihood will now depend on a collection
of different vectors x12ðtÞ, the symmetry that exists around
any one of them will not be preserved in the full TS.
In the rest of this section we divide the discussion into

three parts. First, we describe how to construct the like-
lihood for the generic case of N detectors incorporating
daily modulation and describe how it is straightforward to
generalize our full formalism to this case. We then focus on
the specific case of N ¼ 2 and show, within the Asimov
formalism, how the examples of the SHM and Sagittarius
Stream discussed above are modified in the presence of
daily modulation. Finally, we turn to a Monte Carlo
simulation of a realistic example and demonstrate how,
within a day, a resonant experiment could constrain the

direction of the solar velocity vector, v⊙, that controls the
SHM to subdegree accuracy.

A. A likelihood with daily modulation

So far in this work, we have envisioned a set of N
experiments collecting measurements of the signal-plus-
background frequency spectra for a duration of time T
while the detector separations were fixed with respect to the
boost velocity of the DM component under consideration.
However, this framework cannot be extended to the case of
daily modulation, as the signal prediction will fundamen-
tally be varying over a 24-hour period. In order to properly
account for this effect, the data must be collected in time
intervals of duration T ≪ 24 hours and analyzed with a
joint likelihood over all the collected intervals. In detail, if
we imagine that we collect M such time intervals, indexed
by r ¼ 0; 1;…;M − 1, then for each of these we will have a
dataset dr ¼ fdk;rg, where again k labels the Fourier mode.
For each dataset dr, we can compute the likelihood as in
(19), and the full joint likelihood is the product of these
over r. Explicitly, we have

LðdjM; θÞ ¼
YM−1

r¼0

LðdrjM; θÞ;

¼
YM−1

r¼0

YN−1

k¼0

exp ½− 1
2
dT
k;r · Σ−1

k;rðθÞ · dk;r�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ2N jΣk;rðθÞj

q : ð53Þ

Importantly, note that we have also attached an index r to
the signal prediction ΣðθÞ, as we need to account for the
variation of the detector separations xij throughout the day.

FIG. 5. Left: as in Fig. 3, but for the Sagittarius (SGR) stream rather than for the SHM. As before, the maximum precision for the
inferred value of θstr is achieved at mav0d ≈ 2, although the overall dependence is somewhat softened outside of the extremes at
mav0d ¼ 0 andmav0d ¼ 2π. The values of σθstr ×

ffiffiffiffiffiffiffiffi
TS0

p
are also considerably smaller than those found in the SHM example, indicating

that the angle θstr can be reconstructed with much greater precision for the SGR stream as compared to the SHM. Right: the Asimov TS
Θ̃ðθstrÞ for the SGR stream rescaled by the colocated detection significance TS0 as a function of θstr for a detector configuration where
the true stream direction is θtstr ¼ π=4 (dashed vertical line). We have fixedmav0d ¼ 2. The TS Θ̃ðθstrÞ is maximized at the true value of
θstr, but there is considerable nontrivial global structure with a large number of local minima and maxima in Θ̃.
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In a similar fashion the full formalism of Secs. III and IV
can be extended to include the varied detector orientation:
within a given subinterval we simply adjust xij as appro-
priate, and then we form joint quantities by combining
these as in the likelihood above. To provide just a single
illustrative example, the Fisher information computed in
(36) would become

IijðαÞ ¼ −
1

2

XM−1

r¼0

∂2ΘrðαÞ
∂αi∂αj ; ð54Þ

with other expressions similarly generalized.

B. Asimov examples with daily modulation

While the alteration to our formalism imposed by daily
modulation is minimal—as exhibited in (53)—the impact
on the results can be dramatic. We will demonstrate this
with several examples in this section, all within the Asimov
formalism. To begin with, we consider using N ¼ 2
detectors in order to determine the direction of v⊙ in
the SHM. This is the same problem we considered in
Sec. IV C, which produced the results shown in Fig. 4,
where there is a clear degeneracy associated with rotations
around x12. We will now see explicitly that daily modu-
lation helps lift this degeneracy. To do so, let us suppose
that the DM velocity distribution follows the SHM in (50),
with v0 ¼ 220 km=s and v⊙ ¼ 232 km=s. Our goal, as
previously, will be to infer the direction of v̂⊙. We consider
two detectors separated by d ¼ 2λc ¼ 2=ðmav0Þ, and for
definiteness we place one detector at a latitude 41.3° N and
longitude 72.9° W. In Fig. 6 we show results where a
second detector is placed a distance d to the east (left) or
north (right) of this detector with data stacked at two-hour
intervals over the 24-hour period.12 For the north-south
configuration, we see that the direction can be well
localized: a high significance axion detection in this case
would lead to a precise estimation of the direction of v⊙, as
we show explicitly in Sec. V C below. This configuration
clearly outperforms an east-west configuration, where there
remains a degeneracy that has not been fully lifted by the
daily modulation. Additionally, the maximum test statistic
realized in the north-south configuration would be approx-
imately 10% larger than one realized in an east-west
configuration for otherwise identical data collections.
Using the same experimental design, we can also revisit

the example of the Sagittarius Stream discussed in Sec. IV
B. In Fig. 7 we construct the analogue of Fig. 6, but now for
the much colder stream. Note that since v0 for the stream is

a factor of ∼20 smaller than for the SHM, the optimal
detector distance d ¼ 2λc is a factor of 20 larger than in
Fig. 6. Although in both configurations the TS is maxi-
mized at the expected location on the sphere, nontrivial
structure due to the presence of many local maxima are
apparent in both the north-south and east-west configura-
tions. We note that, as in the SHM example, there is only
one global maximum for the north-south configuration,
located at the true direction of the stream. However, there
remains a degeneracy in the east-west configuration.
The degeneracy represented in the Mollweide maps for

the SHM and the Sagittarius Stream in the east-west
configuration is exact. It has its origin in the dimensionality
of the space swept out by the detector separation vector x12

over the course of the day. As studied in Sec. IV, for data
taken at fixed x12, the test statistic Θ̃ðv̂Þ evaluated as a
function of the orientation of the boost velocity depends
only on the angle between v̂ and x12. As a result, Θ̃ðv̂tÞ ¼
Θ̃ðv̂0Þwhere v̂t is the true boost direction and v̂0 is a velocity
obtained by reflecting v̂t across any plane which contains
x12. For detectors in an east-west configuration, the Earth’s
rotation produces a daily modulation of x12 that is confined
to the plane orthogonal to the Earth’s rotational velocity
vector. As a result, the TS measured at each point in the day,
and therefore the sum of such TSs will be exactly preserved
under reflections of the boost velocity across that plane.
This means that accounting for daily modulation in the
east-west configuration the directional parameters can only
be determined up to a reflection across the plane
perpendicular to the Earth’s rotation axis. By contrast,
for detectors in the north-south configuration, the set of
detector separation vectors throughout the day will generi-
cally not be coplanar, and thus there is no analogous
degeneracy.13

C. Monte Carlo example with daily modulation

As a realistic demonstration of our ability to perform
parameter estimation using the daily modulation effect, we
generate a Monte Carlo realization of data in the north-
south SHM scenario (as depicted in the right panel of
Fig. 6) using A ¼ 38.25 and λB ¼ 1, both of which we take
to be dimensionless without loss of generality. The values
of A andma was chosen to generate a signal of expected 5σ
significance during a 100-second collection in a single
detector to mimic a realistic resonant scanning strategy in
which one of two independently operated detectors detects

12Note that since the Earth’s rotation is aligned with the east-
west direction, results obtained for the east-west configuration are
independent of the exact experimental locations, so long as the
detector separation is much smaller than the Earth’s radius of
curvature. For any other configuration, however, the result will
generically depend on latitude.

13An exception occurs if the two detectors have the same
longitude and equal and opposite latitudes (i.e., opposite sides of
the equator on the same line of longitude). An extreme example
would be having one detector at each pole. Then, x12 is parallel to
the rotation axis of the Earth and does not change direction
throughout the day. Consequently, daily modulation provides no
additional information, and the full degeneracy that was present
throughout Sec. IV returns.
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an excess and both are then used for a 24-hour observation
of the excess candidate. We constructed 24 hours of
Monte Carlo data for this signal, taking a detector sepa-
ration of d ¼ 2λc; with these parameters, the excess would
be expected to appear at TS0 ≈ 60,000 after 24 hours.
While large, this TS is consistent with the power of a
resonant strategy once the axion mass is known.
Usinguniformpriors onAbetween [33, 43], onv⊙ between

½212.5; 252.5� km=s, on v0 between ½200; 240� km=s, on λB
between [.999, 1.001] and a uniform prior on the sphere for
ðθ⊙;ϕ⊙Þ, we construct a Bayesian posterior distribution for

the model parameters. The results of an analysis performed
using MultiNest [69–72] with 2000 live points are shown in
Fig. 8. In particular, we see that the true location of the
stream has been located to degree precision. This precision
can be understood from (48), which gives the expectation
σθ⊙ ∼ 0.5°, consistent with what is shown in the figure. Let
us suppose that the Sagittarius Stream, as modeled in this
work, comprises 10% of the local DM. In the example
above, we would expect that after 24 hours the location of
the stream could be localized to ∼100; interestingly, this
represents greater accuracy for stream localization than

FIG. 7. As in Fig. 6, but for the Sagittarius Stream example. For a fixed axion mass, the physical detector separation d ¼ 2λc is a factor
of 20 larger than in Fig. 6 because of the larger coherence length of the stream. While there are many local maxima in both
configurations, the north-south orientation produces only a single global maximum, at the true detector localization, while the east-west
orientation leads to two degenerate global maxima (one at the true detector location and the other displaced). An animated version of
these figures, showing how the localization improves throughout the day as more orientations of x12 are sampled, can be found at github
.com/joshwfoster/DM_Interferometry.

FIG. 6. As in Fig. 4, we construct Mollweide projections of the Asimov test statistic Θ̃ðθ;ϕÞ for the SHM rescaled by the colocated
detection significance TS0. However, we now perform a joint likelihood over data collected over a 24-hour period so that the daily
modulation of the detector displacement vector produces a time-varying signal, which helps break degeneracies in the reconstructed
directional parameters. The Mollweide projection for a configuration in which the detectors are oriented along an east-west (north-south)
orientation is shown on the left (right). While the results obtained in an east-west configuration do not depend on the latitude of the
detectors, the north-south configuration results do, so for definiteness, we have taken the detectors to be located in New Haven, CT, the
site of the HAYSTAC detector. In both configurations, the SHM boost velocity direction can be localized effectively, although there
remains a nontrivial degeneracy in the east-west map between two points on the sphere.
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localization of the bulk SHM even though the stream is a
subdominant component of the DM.

VI. CONCLUSION

In this work we have demonstrated the power of DM
interferometry for wavelike DM. The spatial coherence of
the DM field imprints phase correlations on the signals
observed at spatially separated detectors, and these phase
correlations are sensitive to parameters in the full three-
dimensional velocity distribution fðvÞ, whereas a single
detector is blind to all effects beyond the speed distribution
fðvÞ. As a result, the advantages of DM interferometry go
beyond a simple coherent enhancement of the signal
strength as the number of detectors is increased. By taking
advantage of the fact that the correlation matrix of the
Fourier-transformed signals at multiple detectors depends
on modified speed distributions which contain modulated
forms of fðvÞ, we have demonstrated that parameters such
as the solar velocity vector may be reliably extracted from
two detectors separated by a distance d ∼ λc. Furthermore,
directional parameters of coherent substructure such as DM

streams may be estimated at even higher significance,
though in that case the optimal separation λc is parametri-
cally different from the DM de Broglie wavelength λdB.
Our formalism has immediate practical applications for

new and upcoming axion DM experiments. The sensitivity
to gaγγ for resonant-cavity axion experiments, which use
external magnetic fields like ADMX and HAYSTAC, is
typically BV1=2, where B is the peak magnetic field strength
and V is the magnetic field volume. In order to achieve
resonant enhancement, the volume of an individual cavity
is fixed to be of order 1=m3

a, so to achieve greater
sensitivity, one must either increase the B field or construct
a multiplexed readout with multiple cavities. Assuming the
latter strategy is chosen, our results motivate placing at least
one of the cavities at a distance λc: if a signal is detected, the
loss of coherent enhancement of the signal is more than
compensated by the ability to localize the boost direction of
the DM velocity distribution to within 1 degree with just
24 hours of data.
While there are many challenges to the construction of

additional instruments, we emphasize that all of the
important phenomenology is captured by a two-detector

FIG. 8. The posterior distribution for a model with daily modulation where the signal strength is at the threshold of an expected 5σ
detection for a 100 second observation with a single detector. Monte Carlo data are generated for 24 hours of data collection with two
detectors separated along the north-south direction by a distance with 2 × ðmav0Þ−1. The true parameters are indicated in blue, with the
1σ confidence intervals on the parameter estimations are indicated by the dashed black lines in the single-parameter posteriors. The two
parameter posteriors show the 1σ and 2σ contours. On the left, we display the posterior distributions for the overall signal strength, the
boost speed of the SHM, and the velocity dispersion of the SHM, all of which are parameters accessible in a single detector
configuration. On the right, we display the posterior distributions for the angles Δθ⊙ ¼ θ⊙ − θt⊙ and Δϕ⊙ ¼ ϕ⊙ − ϕt

⊙, which specify
the orientation of SHM boost velocity and are only accessible in a multiple-detector configuration. Both θ⊙ and ϕ⊙ are determined at
degree precision in this scenario.
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array. This smoking-gun signature of DM is invisible to a
multiplexed setup where all cavities lie inside a single
coherence length. A similar analysis applies to experiments
in the quasistatic regime like ABRACADABRA and DM-
Radio, where the physical volume of the experiment is
decoupled from ma. For both types of experiments, our
formalism may be applied to determine the optimal detector
orientation for localizing the solar velocity to the desired
precision (with north-south orientations generally being
preferred to east-west). The optimal detector separation
corresponds to physically reasonable distances for well-
motivated axion masses—Oð10Þ m for the 10−5 eV mass
range of ADMX and HAYSTAC and Oð1000Þ km for the
10−9 eV targeted by ABRACADABRA/DM-Radio—and
as such the coherence length and detector orientation can
form an important design parameter for future experiments,
in much the same way as L=E determines the design of
neutrino oscillation experiments.
The future of axion detection involves readout beyond the

standard quantum limit, using tools such as Josephson
parametric amplifiers and squeezed states. In this regime,
it is important to note that our variables Rk and Ik are
canonically conjugate, and thus cannot be simultaneously
measured to arbitrary precision. In future work, we plan to
investigate how our formalism must be modified for quan-
tum-limited readouts. As the number of new axion experi-
ments proliferates, this work motivates careful consideration
of the spatial configuration of multiplexed detectors.

ACKNOWLEDGMENTS

We thank members of the ABRACADABRA
Collaboration (Andrew Gavin, Reyco Henning, Jonathan
Ouellet, Kaliroë Pappas, Chiara Salemi, and Lindley
Winslow), as well as Kelly Backes, Karl Van Bibber,
Aaron Chou, and Andrei Derevianko, for enlightening
discussions. J. F. and B. R. S. were supported in part by
the DOE Early Career Grant No. DESC0019225. The work
of Y. K. is supported in part by US Department of Energy
Grant No. DE-SC0015655. R. N. is supported by an NSF
Graduate Fellowship. N. L. R. is supported by the Miller
Institute for Basic Research in Science at the University of
California, Berkeley. This work used computational resour-
ces and services providedbyAdvancedResearchComputing
at the University of Michigan, Ann Arbor, in addition to the
Lawrencium computational cluster resource provided by the
IT Division at the Lawrence Berkeley National Laboratory
supported by the Director, Office of Science, and Office of
Basic Energy Sciences, of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

APPENDIX A: COHERENCE LENGTH
AND TIME

In this Appendix we briefly review the concepts of the
coherence length and time, as relevant to wavelike DM.

We emphasize that in our work both concepts only arise
heuristically. Indeed, the coherence length and time are
only defined parametrically, and for all quantitative results
we instead rely on the likelihood formalism in [16], which
produces not only all parametric scalings but also the
required Oð1Þ factors.
Consider first the coherence length λc ∼ ðmDMv0Þ−1, the

scale over which wavelike DM remains coherent. In
discussions of ultralight DM, “coherence length” is often
used interchangeably with “de Broglie wavelength.”
Strictly speaking, though, the de Broglie wavelength λdB ¼
2π=ðmavÞ is a property of particles with fixed velocity v,
while the coherence length describes the dephasing of
various plane wave components with different velocities.
When v0 ∼ v, these two length scales are comparable,
but there are relevant situations where the two diverge,
such as for cold streams, and then the distinction between
the coherence and de Broglie wavelengths becomes
important.
The coherence time is then the timescale over which a

measured signal of ultralight DM will build up coherently.
In real space, this is the time it take for a new spatially
coherent packet of the DM wave, which has size λc, to
arrive at the instrument. If these packets travel with a mean
speed of v̄, then the timescale is τ ∼ λc=v̄ ∼ ðmDMv̄v0Þ−1.
The same result can be arrived at from a frequency space
consideration. The Fourier transform of an experimental
dataset collected over a time T will have a frequency
resolution of Δω ¼ 2π=T. If the entire signal fits within a
single frequency bin, the result is associated with a single
draw from an exponential distribution, as shown in [16].
Once we resolve the signal, however, we obtain multiple
draws which will combine incoherently, partially offsetting
the benefit of additional integration time. The coherence
time is therefore dictated by the width of the signal in
frequency space, and then as dω ¼ mDMvdv, we again
arrive at τ ∼ ðmDMv̄v0Þ−1.

APPENDIX B: DEMONSTRATING d ∼N ð0; ΣÞ
The goal of this Appendix is to demonstrate a fact that

was used without proof in the main body: the dataset d,
given in (15), is a random variable drawn from a multi-
variate normal distribution with zero mean and covariance
matrix Σ as given by (16). In order to show this we will start
from the known statistics of the axion field, as reviewed in
the main body, together with a Gaussian background,
and show that the mean and variances of the datasets
follow the expected normal distribution. We will further
confirm this result with a Monte Carlo realization of the
axion field. From here, rather than confirm that all higher
moments are also consistent with Gaussianity, we will
instead confirm numerically that the distribution is normal.
Indeed, the diagonal components of d, which govern the
statistics of individual detectors, must be Gaussian as
proven in [16].
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Let us begin by restating (6) in a simplified notation. We
introduce a single multi-index d ¼ abc, and a random
variable fd ¼ αd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðvdÞðΔvÞ3

p
, yielding

aðx; tÞ ¼
ffiffiffiffiffiffiffiffiffi
ρDM

p
ma

X
d

fd cos ðωdt −mavd · xþ ϕdÞ: ðB1Þ

We now envision collecting data sensitive to this axion
field at each of the N detectors, located at positions xi.
Specifically, we imagine collecting N measurements at a
frequency f ¼ 1=Δt at each experiment, so that we have at

our disposal N ×N data points fΦðiÞ
n g, with

ΦðiÞ
n ¼ ma

ffiffiffiffiffiffiffiffiffi
Ai

ρDM

s
anðxi; nΔtÞ þ xðiÞn : ðB2Þ

The second term in this expression captures the background
noise. We will assume the noise is Gaussian, which holds
for a wide range of sources as described in the main body,
and in detail that it satisfies

hxðiÞn i ¼ 0; hxðiÞn xðjÞm i ¼ δijδnm
λB;i
Δt

: ðB3Þ

In other words, we assume the noise has zero mean, is
uncorrelated between detectors, and has a variance that
increases with the measurement frequency f. The variance
is controlled by the mean power in the background, λB;i,
and if there are multiple background sources at a single
detector, their power can simply be combined.
From this dataset, we compute the discrete Fourier

transform fΦðiÞ
k g using (7), and then the associated real

and imaginary parts, RðiÞ
k and IðiÞk , from (8). These variables

are what combine to form the data vector d, and so the goal
is to study their statistics. Before proceeding, let us
introduce some further notation to keep expressions com-
pact. First, we encapsulate the axion phase into a single
term,

φðiÞ
d;n ¼ ωdnΔt −mavd · xi þ ϕd: ðB4Þ

To capture the trigonometric sums introduced by the
Fourier transforms, we write

cn;k ¼ cos

�
2πkn
N

�
¼ cos ðωnΔtÞ; ðB5Þ

and the equivalent expression for sine is denoted sn;k. Using
this, the real and imaginary parts of the dataset can be
written

RðiÞ
k ¼ Δtffiffiffiffi

T
p

XN−1

n¼0

� ffiffiffiffiffi
Ai

p X
d

fd cosφ
ðiÞ
d;n þ xðiÞn

�
cn;k;

IðiÞk ¼ −
Δtffiffiffiffi
T

p
XN−1

n¼0

� ffiffiffiffiffi
Ai

p X
d

fd cosφ
ðiÞ
d;n þ xðiÞn

�
sn;k: ðB6Þ

From these expressions, we can see immediately that

hRðiÞ
k i ¼ hIðiÞk i ¼ 0. That this holds for the background

follows from (B3), and for the axion signal contribution we
have

hfd cosφðiÞ
d;ni ¼ hfdihcosφðiÞ

d;ni ¼ 0: ðB7Þ

The first step follows as the value of αd (and hence fd) is

uncorrelated with ϕd (and hence φðiÞ
d;nÞ, whilst the second

utilizes the fact hcosφi ¼ 0 when the argument φ is a
random phase. This establishes that hdi ¼ 0.
Next we consider the covariances. In particular, we will

compute hRðiÞ
k RðjÞ

k i. The calculation where one or both of
the real components is replaced by an imaginary equivalent
proceeds similarly, and we will comment on the important
differences throughout. In detail, we will compute

hRðiÞ
k RðjÞ

k i¼ ðΔtÞ2
T


XN−1

n¼0

� ffiffiffiffiffi
Ai

p X
d

fd cosφ
ðiÞ
d;nþxðiÞn

�
cn;k

×
XN−1

m¼0

� ffiffiffiffiffi
Aj

p X
s

fs cosφ
ðjÞ
s;mþxðjÞm

�
cm;k

�
: ðB8Þ

Note the effect of sending RðjÞ
k → IðjÞk is simply to replace

cm;k → −sm;k, and similarly for RðiÞ
k . Continuing with the

calculation at hand, expanding out the final two lines, we
will have expressions involving only the signal, only the
background, and cross terms. As the background value is
uncorrelated with the signal, the cross terms will be zero via
an almost identical argument to the vanishing of the means.
Of the remaining terms, consider the background first.

ðΔtÞ2
T


 XN−1

n;m¼0

ðxðiÞn cn;kÞðxðjÞm cm;kÞ
�

¼ δijλB;i
N

XN−1

n¼0

ðcn;kÞ2 ¼
δijλB;i
2

; ðB9Þ

which holds except for k ¼ 0 (or k ¼ N=2 for N even).

Note if we were evaluating hIðiÞk IðjÞk i, we would have the
same expression but with cn;k → sn;k, and therefore the
background contribution would be identical. If we were

evaluating hRðiÞ
k IðjÞk i; however, the background contribution

would vanish as
P

cn;ksn;k ¼ 0. Taken together, these
results demonstrate the appearance of λB in (16).
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Now we turn to the signal contribution, for the moment
dropping the overall factor of

ffiffiffiffiffiffiffiffiffiffi
AiAj

p ðΔt=NÞ,

 XN−1

n;m¼0

X
d;s

fdfs cosφ
ðiÞ
d;n cosφ

ðjÞ
s;mcn;kcm;k

�

¼
XN−1

n;m¼0

cn;kcm;k

X
d;s

hfdfsihcosφðiÞ
d;n cosφ

ðjÞ
s;mi: ðB10Þ

Again we used the independence of the amplitude and
phase of the random walk that emerges in calculating the
axion field statistics. The second expectation value in this

expression will vanish unless the random phases in the
cosines are equal, effectively as

heiðϕd−ϕsÞi ¼ δsd: ðB11Þ

Further, as hα2di ¼ 2, we can also evaluate the result asX
d;s

hfdfsihcosφðiÞ
d;n cosφ

ðjÞ
s;mi

¼ 2
X
d

fðvdÞðΔvÞ3hcosφðiÞ
d;n cosφ

ðjÞ
d;mi; ðB12Þ

which we can simplify further as

hcosφðiÞ
d;n cosφ

ðjÞ
d;mi ¼

1

2
½cos ðωdðn −mÞΔt −mavd · xijÞ þ hcos ðωdðnþmÞΔt −mavd · ðxi þ xjÞ þ 2ϕdÞi�;

¼ 1

2
cos ðωdðn −mÞΔt −mavd · xijÞ;

¼ 1

2
cos

�
ωd

ω

2πkðn −mÞ
N

�
cos ðmavd · xijÞ þ

1

2
sin

�
ωd

ω

2πkðn −mÞ
N

�
sin ðmavd · xijÞ: ðB13Þ

In the final step we see the emergence of the k · x type phase factors that separate F c;s
ij ðvÞ defined in (18) from fðvÞ. We

have broken the calculation into a number of pieces at this stage, let us begin to put things back together. Combining the
different expressions above, we have

hRðiÞ
k RðjÞ

k i ¼ 1

2
δijλB;iðωÞ þ

ffiffiffiffiffiffiffiffiffiffi
AiAj

p Δt
N

X
d

fðvdÞðΔvÞ3
�
cos ðmavd · xijÞ

XN−1

n;m¼0

cn;kcm;k cos

�
ωd

ω

2πkðn −mÞ
N

�

þ sin ðmavd · xijÞ
XN−1

n;m¼0

cn;kcm;k sin

�
ωd

ω

2πkðn −mÞ
N

��
;

¼ 1

2
δijλB;iðωÞ þ

π
ffiffiffiffiffiffiffiffiffiffi
AiAj

p
2

X
d

ðΔvÞ3fðvdÞ cos ðmavd · xijÞδðωd − ωÞ;

¼ 1

2
δijλB;iðωÞ þ

π
ffiffiffiffiffiffiffiffiffiffi
AiAj

p
2mavω

Z
d3vfðvÞ cos ðmav · xijÞδðjvj − vωÞ;

¼ 1

2
½cijðωÞ þ δijλB;iðωÞ�: ðB14Þ

The final result is the claimed form of hRðiÞ
k RðjÞ

k i used in
the main body, but let us detail the steps in the calculation,
working backwards. In the last step we simply recalled
the definitions introduced in (18) and (17). The penultimate
step simply involved approximating the sum over all
velocity components d ¼ abc with an equivalent integral.
The only nontrivial manipulation occurred when we
evaluated the sums over n and m. These were performed
using a set of discrete Fourier transform double orthogon-
ality relations, which for convenience we have collected in
Appendix C. From those relations, we can see that as

hRðiÞ
k RðjÞ

k i involved cn;kcm;k, only the cosine of k · xij

survived. By analogy, if we were evaluating hIðiÞk IðjÞk i,

we would instead have sn;ksm;k in the sums, which
would again isolate the cosine. On the other hand, for

hRðiÞ
k IðjÞk i (where the background contribution vanishes as

described above), we have cn;ksm;k, which instead singles
out the sine, implying the above result would have

cijðωÞ → sijðωÞ. The same argument holds for hIðiÞk RðjÞ
k i,

up to a sign.
Taken together, the above arguments suffice to demon-

strate analytically that the variance of the dataset is as
claimed in the main body. We can also confirm this result
numerically. On the left of Fig. 9, we show that a direct
construction of the axion field as a sum overNa plane wave
components,
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aðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2ρDM

p
ma

ffiffiffiffiffiffi
Na

p
XNa

i¼1

cos ½ωit −mavi · xþ ϕi�; ðB15Þ

where vi is drawn from fðvÞ and ϕi is drawn uniformly
from ½0; 2πÞ, leads to the exact same results.14 The detailed
parameter choices are described in the figure caption, and
the curves represent the average over repeating this
procedure 4000 times. In all cases, there is excellent
agreement between this approach and the corresponding
theory curves.
On the right of Fig. 9 we confirm a point that we did not

demonstrate directly, namely that the individual real and
imaginary components are normally distributed. The dis-
tribution is shown amongst the 4000 simulated datasets for
the two components measured at two different detectors. In
all cases consistency is observed with the predicted
Gaussian distribution. We performed a chi-squared test
to determine the goodness of fit and found p values greater
than 0.05. In detail, the Rð1Þ, Ið1Þ, Rð2Þ, and Ið2Þ datasets
shown in Fig. 9, had corresponding p values of 0.06, 0.12,
0.97, and 0.27.

APPENDIX C: ORTHOGONALITY RELATIONS

In Appendix B we made use of several unstated
orthogonality relations. We collect these in the present
Appendix. First, the following expressions vanish for
any k

XN−1

n;m¼0

cn;ksm;k cos

�
ωd

ω

2πkðn −mÞ
N

�

¼
XN−1

n;m¼0

sn;kcm;k cos

�
ωd

ω

2πkðn −mÞ
N

�
;

¼
XN−1

n;m¼0

cn;kcm;k sin

�
ωd

ω

2πkðn −mÞ
N

�
;

¼
XN−1

n;m¼0

sn;ksm;k sin

�
ωd

ω

2πkðn −mÞ
N

�
;

¼ 0: ðC1Þ

However, there are four nonzero combinations. In detail,
for most values of k,

FIG. 9. Monte Carlo validation that the statistics of DM interferometry are as claimed in Appendix B. In the left figure we confirm that
the variances of the real and imaginary signal-only datasets, collected for theN ¼ 2 experiments, is as claimed in (16). This was proven
directly in the text, but in the plot we show that the average of 4000 Monte Carlo simulations provides a consistent prediction for the
variances as a function of frequency in the different cases. On the right figure, for the frequency where hRð1ÞRð1Þi achieves its maximum,
we show the distribution of values across the simulations. In detail, we see that the real and imaginary components are normally
distributed, and consistent with a mean-zero normal distribution, where the variance is given as on the left, here σ2 ≈ 25 Wb2=Hz. We
found that the distributions were consistent with the Gaussian expectation at the level of p > :05 using the D’Agostino and Pearson
omnibus normality test [73,74]. In both cases, each Monte Carlo simulation involves a direct construction of the axion field starting from
(B15) with Na ¼ 100,000, taking ma ¼ 2π Hz, and A ¼ 1 Wb2. Further, we take the velocity distribution to follow a variant of the
SHM in (50), but with v0 ¼ 0.07 and v⊙ ¼ ð0; 0.08; 0Þ, both in natural units. The (unphysically) large velocity helps simplify the
computation of the Fourier transform. The detector separation is x12 ¼ dð0; 1; 0Þ, with d ≈ 4.4λc.

14Binning the velocities leads to (6) in the main text, with a
Rayleigh-distributed amplitude in each bin.
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XN−1

n;m¼0

cn;kcm;k cos

�
ωd

ω

2πkðn −mÞ
N

�

¼
XN−1

n;m¼0

sn;ksm;k cos

�
ωd

ω

2πkðn −mÞ
N

�
;

¼
XN−1

n;m¼0

cn;ksm;k sin

�
ωd

ω

2πkðn −mÞ
N

�
;

¼
XN−1

n;m¼0

sn;kcm;k sin

�
ωd

ω

2πkðn −mÞ
N

�
;

¼
�
N
2

�
2 2π

T
δðωd − ωÞ: ðC2Þ

The exception to the above is if k ¼ 0, or k ¼ N=2 for N
even. For those values, only one of the above three sums is
nonzero, in detail

XN−1

n;m¼0

cn;kcm;k cos

�
ωd

ω

2πkðn −mÞ
N

�

¼ N2
2π

T
δðωd − ωÞ: ðC3Þ

However, recall that we usually exclude these exceptional k
values from our likelihood.
The nonzero results above were written in terms of Dirac

δ functions; however, this is an approximation. Recall that
all results are obtained through the discrete Fourier trans-
form, within which the frequency can be interpreted as
ω ¼ ð2π=TÞk, with k ¼ 0; 1;…; N − 1. In truth, if we
define kd ¼ bωdT=2πc, then what appears in the above
sums is the Kronecker-delta δkkd . However, in the spirit of
assuming our frequency resolution is sufficient enough to
approximate ω as a continuous variable, we take

δkkd ¼ δðkd − kÞ ¼ 2π

T
δðωd − ωÞ; ðC4Þ

which is the form it appears in (C2) and (C3).

APPENDIX D: DATA STACKING PROCEDURE

In practical situations it is usually neither feasible nor
necessary to save the entire time-series data to disk and then
construct the Fourier transform of the full dataset. The
frequency resolution of this complete Fourier transform
would be Δω ¼ 2π=T, and potentially much smaller than
the scale of any expected features induced by the signal due
to fðvÞ. As a specific example, the ABRACADABRA-
10 cm experiment [24,25] recorded the PSD data over short
time periods and then stacked the PSD data over the time
subintervals to construct the average PSD data. The
advantage of this averaging procedure is that it requires
less storage and is easier to deal with computationally, since

there are less frequencies involved than would be in the full
dataset without time sub-binning.
With this in mind, it is useful to understand how we may

stack the Fourier transform data over multiple experiments
in such a way that we preserve the full power of the
likelihood in (19) but that allows us to reduce the data
volume needed to be saved to disk. (An optimized
procedure for stacking the data from a single experiment
is presented in [16].) Let us imagine that we record time-
series data in NT equal time subintervals of time
ΔT ¼ T=NT , and that in each subinterval the frequency
spacing of the ΔN ¼ N=NT Fourier components is suffi-
cient to resolve the axion signal by multiple frequency bins,
i.e., we retain sufficient frequency resolution that our signal
remains well resolved. We then denote the full dataset by
d ¼ fdl

kg, indexed now by both k ¼ 1;…;ΔN − 1, denot-
ing the Fourier component, and l ¼ 1;…; NT , the data
subinterval. The appropriate likelihood is then simply the
product of the likelihood in (19), but now also over all
values of NT . However as NT × ΔN ¼ N, the number of
frequency bins in the Fourier transform of the full data, at
this stage we have not reduced the size or complexity of the
data or likelihood evaluations at all. In order to do so, we
can combine the data into the following average data
matrix, which can be computed prior to any evaluation
likelihood,

½d̄k�ij ¼
1

NT

XNT

l¼1

dik;ld
j
k;l: ðD1Þ

Here, the indices i and j run over the 2N entries of the
data vector in (15), k indexes the discrete Fourier trans-
form, and l specifies the appropriate subintervals. In
terms of the average data matrix, the likelihood can be
written as

LðdjM; θÞ ¼
YΔN−1

k¼1

exp ½− NT
2
Trðd̄k · Σ−1

k Þ�
½ð2πÞ2N jΣkj�NT=2

; ðD2Þ

where we have left the θ dependence of Σ implicit. We can
now compare how much data need to be stored for this
stacking procedure compared to the full dataset. Again, we
have NT subintervals, each with ΔN Fourier components,
and for each we have 2N components in our data vector. As
(D1) is a real symmetric matrix, we need N ð2N þ 1Þ
components to specify it for each k value. Thus in total,
we need to store N × ð2N þ 1Þ × ΔN entries to disk,
although if Σ−1

k has a number of zeros (associated with
experiments well within or outside the coherence length
λc), fewer points may be required. This number should be
contrasted with the 2N × N ¼ 2N × ΔN × NT values that
would be needed in the absence of a data-stacking
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procedure. Thus, as long as NT ≫ N , a significant reduc-
tion in the dataset can be achieved. For simplicity, in the
main body of the paper we assume that no data stacking has
been performed, though it is important to keep in mind that
all results we derive may also be applied to the stacked data
likelihood. An important caveat is that care should be taken
when accounting for daily modulation to make sure the data
are stacked with other data taken at a similar time of day,
otherwise the effect can be washed out.
Finally, we briefly demonstrate using the Asimov pro-

cedure that as long as the subintervals retain sufficient
frequency resolution that the signal remains well resolved,
the stacked and full likelihoods are equally sensitive. If the
signal prediction remains unchanged in each subinterval,

then the averaged dataset defined in (D1) has the following
expected value:

h½d̄k�iji ¼
1

NT

XNT

l¼1

hdik;ldjk;li ¼ Σt: ðD3Þ

It is straightforward to then evaluate the equivalent Asimov
Θ, and one finds a result enhanced byNT, but with T → ΔT
when replacing the sum over Fourier components with an
integral over speed. For instance, the equivalent of (29) has
T → NTΔT. Yet as NTΔT ¼ T, by definition, the test
statistic is identical, and therefore the stacking procedure is
optimal as claimed.
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