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Deep-learning tools are being used extensively in high energy physics and are becoming central in the
reconstruction of neutrino interactions in particle detectors. In this work, we report on the performance of a
graph neural network in assisting with particle set event reconstruction. The three-dimensional
reconstruction of particle tracks produced in neutrino interactions can be subject to ambiguities due to
high multiplicity signatures in the detector or leakage of signal between neighboring active detector
volumes. Graph neural networks potentially have the capability of identifying all these features to boost the
reconstruction performance. As an example case study, we tested a graph neural network, inspired by
the GraphSAGE algorithm, on a novel 3D-granular plastic-scintillator detector, that will be used to upgrade
the near detector of the T2K experiment. The developed neural network has been trained and tested on
diverse neutrino interaction samples, showing very promising results: the classification of particle track
voxels produced in the detector can be done with efficiencies and purities of 94%–96% per event and most
of the ambiguities can be identified and rejected, while being robust against systematic effects.

DOI: 10.1103/PhysRevD.103.032005

I. INTRODUCTION

Since 1999, a series of neutrino oscillation experiments
have provided deep insight into the nature of neutrinos
[1–8]. A number of these experiments are long-baseline
neutrino oscillation experiments that use two detectors to
characterize a beam of (anti)neutrinos: a near detector,
located a few hundred meters away from the target that
measures the original beam composition, and a far detector,
located several hundred kilometres away, that allows for the
determination of the beam composition after neutrino
flavor oscillations.
The energy of these beam neutrinos ranges from a few

hundred MeV up to several GeV. Charged particles can be
produced in neutrino interactions, and the energy that they

deposit as they traverse the detector can be used to
reconstruct the events. In general, the larger the energy
transferred from the neutrino to the nucleus, the larger the
number of particles and particle types produced in the final
state. Modeling nuclear interactions in the target nuclei is
highly complex, particularly for high energy transfers where
the hadronic component of the interaction ismore important.
As a result, current long-baseline neutrino oscillation experi-
ments mostly analyze interactions with low particle multi-
plicity. This situation, however, is expected to change in the
coming years. On one hand, the statistical and systematic
uncertainties of current experiments have decreased signifi-
cantly over recent years such that neutrino-nucleus model-
ing is becoming a dominant source of uncertainty [8,9]. On
the other hand, future experiments likeDUNE [10]will use a
broad-band energy neutrino beam, expecting a significant
fraction of the neutrino interactions to have a high energy
transfer to the nucleus.
As a result, in recent years, the neutrino physics

community has turned its attention to measuring neu-
trino-nucleus interaction cross-sections for different
ranges of energies and target materials [11] as a way to
constrain the oscillation uncertainties while providing new
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measurements to further develop the interaction models. In
parallel, a new generation of neutrino detectors are under
development that aim to resolve and reliably identify short
particle tracks even in very complex interactions. To
achieve this, two main detector technologies stand out:
one is based on Liquid Argon Time-Projection-Chambers
(LArTPCs) [12] and the other is based on finely segmented
plastic scintillators with three readout views [13] that will
form part of the near detectors for T2K [14] and, possibly,
DUNE [15].
For the latter, the detector response to a charged particle

is read out into three orthogonal 2D projections. When
reconstructing the 3D neutrino event, different types of hits
are rebuilt, introducing nonphysical entities that can hinder
the reconstruction process. Due to the spatial disposition of
such hits, an approach of utilizing graph neural networks
(GNNs) [16] is proposed to perform the classification of 3D
hits to provide clean tracks for event reconstruction.
The article proceeds in the following way: Sec. II

describes properly the motivation behind the methodology
given the details of the detector technology. Section II
introduces deep-learning techniques and explains the spe-
cific GNN algorithm used. The simulated data samples and
GNN training are discussed in Sec. IV. Results and a study
of systematic uncertainties are given in Secs. IV D and V,
respectively, followed by concluding remarks in Sec. VI.

II. MOTIVATION

A finely segmented scintillator detector consists of a 3D
matrix of plastic scintillator cubes. The scintillation light
produced by charged particles traversing the cubes is read
out by three orthogonal wavelength-shifting (WLS) fibers
that transport the scintillation light out of the detector where
silicon photomultipliers (SiPMs) convert it into a certain
number of photoelectrons (p.e.), as illustrated in Figs. 1
and 2.
Here, we consider the Super Fine-Grained Detector

(SuperFGD) [14], which will be used in T2K, as a specific
case study. The detector will have 2 million plastic
scintillator cubes, each 1 × 1 × 1 cm3 in size, and provides
three orthogonal 2D projections of particle tracks produced
by a neutrino interaction, as depicted in Fig. 4(a).
To reconstruct neutrino interactions in three dimensions,

the light yield measurements in the three 2D views are
matched together, as shown in Fig. 4(b). The 3D objects,
corresponding to the cubes where the energy deposition is
reconstructed, are referred to as voxels. In addition to the
cubes where a particle has passed and deposited energy,
light-leakage between neighboring cubes can create addi-
tional crosstalk signals [17,18], as depicted in Fig. 2.
Moreover, ambiguities in the matching process can give
rise to ghost voxels, shown in Fig. 3.
To accurately reconstruct neutrino interactions in these

detectors, it is crucial to be able to classify each voxel as
one of the three types:

FIG. 2. Sketch of the signal generation, fiber transport, and
signal detection processes highlighting the production of optical
crosstalk signals. The cubes are depicted in gray, the WLS fibers
in green, the dashed red line is a charged track and photons are
illustrated in yellow.

FIG. 1. Geometry of a single SuperFGD element. Each cube
(gray) is intersected by three WLS fibers (green). The whole
SuperFGD will be an array of 56 × 184 × 192 of these elements
(H × L ×W).

FIG. 3. Example of a ghost voxel arising from a 2D to 3D
matching ambiguity. A 2D hit from each of the three track or
crosstalk voxels (red) intersect generating a ghost voxel (yellow).
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(a) (b)

(c)

FIG. 4. Visualization of a neutrino interaction in a finely segmented 3D scintillator detector, demonstrating the relationship between
the observed 2D projections onto the three orthogonal 2D views [Fig. 4(a)], the reconstructed 3D voxels [Fig. 4(b)], and the true
classification of the voxels [Fig. 4(c)]. The energy of the incoming neutrino is 4.754 GeV. The axes are in cm. (a) Projections of the
observed neutrino interaction onto the three 2D detector views (XY, XZ, and YZ). (b) 3D view of the neutrino interaction after the 3D
matching of the three 2D views in Fig. 4(a). The 3D voxels are shown as dark points. Projections of the observed neutrino interaction
onto the three 2D detector views (XY, XZ, and YZ) are shown as shadow. (c) 3D view of the neutrino interaction after the 3D matching
of the three 2D views in Fig. 4(a). The 3D voxels labelled as track (red), crosstalk (blue), and ghost (yellow) according to the truth
information from the simulation. Projections of the observed neutrino interaction onto the three 2D detector views (XY, XZ, and YZ) are
shown as shadows.
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(i) Track: a voxel whose energy deposit comes, parti-
ally or totally, from scintillation light generated in
that same cube.

(ii) Crosstalk: a voxel whose energy deposit comes
exclusively from light-leakage from neighboring
cubes.

(iii) Ghost: a voxel with no physical energy deposit with
an apparent signal arising from ambiguities when
matching the three 2D views into 3D.

Figure 4(c) shows the three types of voxels using truth
information after 3D matching has been performed for an
example neutrino interaction. Once these voxels are prop-
erly labeled (by a classification algorithm), the ghost
voxels can be removed before the full event reconstruction
proceeds, while simultaneously cleaning the particle tracks
of crosstalk.
In this article, we represent the voxels as nodes in a graph

and classify the signals using a deep-learning technique
based on a GNN. The abstract data representation provided
by graphs makes this method very versatile and applicable
to any experiment where the output data from the detector
elements can be represented as a list of features with
arbitrary dimensionality.
In the case study presented here, focused on the

SuperFGD detector of the T2K experiment, this method
shows great potential to assist reconstruction by assigning a
probability to each voxel as being track, crosstalk or ghost.
Detector response simulations show that about half of the
reconstructed voxels in the SuperFGD will not be of track
type. For neutrino physics studies, both in terms of cross
sections and oscillation measurements, correct event top-
ology identification and kinematic reconstruction of out-
going tracks are paramount. Ghost and crosstalk voxels, if
not dealt with, will smear the track range estimations, and
hence the reconstructed momentum and angle. Similarly,
more densely populated events in term of voxels will merge
highly collinear tracks and will make it more difficult to
identify short tracks key for correct topology assignment.
The method presented here is therefore expected to benefit
future physics measurements in T2K and in any other
experiments with similar conceptual challenges as the ones
here described.

III. DEEP-LEARNING METHODS

A. Convolutional neural networks and data sparsity

Deep-learning techniques are now commonly applied
within the field of neutrino physics. In particular, convolu-
tional neural network (CNN) [19] algorithms that operate
on two-dimensional images of the neutrino interactions
have been very successful in a number of tasks, such as
event classification [10,20–25], hit-level identification of
track-like (linear) and shower-like (locally dense) energy
deposits [26,27], or energy reconstruction [28–30]. Despite
the success of CNNs in the neutrino world, images of

neutrino interactions are typically very sparse as only those
readout channels with a detected signal contribute nonzero
values to the images, and in the case of the detector
presented in Sec. II the average occupancy of the detector
for a neutrino interaction is less than 0.02%. Thus, much of
the computation time is spent unnecessarily applying
convolutions to empty regions of the images.
The goal of this work is to classify 3D voxels as one of

three categories (track, crosstalk or ghost), which is
natively a three dimensional problem. To apply a 3D
CNN-based algorithm to this detector would require two
million voxels to avoid any downsampling or cropping of
the input data, which is computationally prohibitive.
A popular approach to deal with the sparsity of neutrino
interactions is the submanifold sparse convolutional
network (SSCN) [31]. Standard “dense” CNNs are very
inefficient when applied on images of neutrino interactions,
whereas SSCNs require considerably less computation and
report almost identical (or even better) results in terms of
accuracy [32]. Some neutrino experiments have improved
their reconstruction deep-learning algorithms by moving
to SSCNs. For example, MicroBooNE recently updated
the implementation of their semantic segmentation CNN
[27] to an SSCN-based model [33], reporting improve-
ments at inference by a factor of 354 and 33 in memory
and wall-time, respectively. The NEXT collaboration are
also exploring the idea of using an SSCN for track
classification [34].

B. Graph neural networks

An alternative approach for handling with sparse data is
to represent hits (or voxels) as nodes in a graph. In
computer science, a graph G is a data structure that
represents a mathematical concept consisting of nodes V
and edges E:

G ¼ ðV; EÞ: ð1Þ

A graph can be directed, where each edge has a starting and
an ending node that define a direction, or undirected, where
the edge simply connects two nodes without inducing a
sense of direction. In our case, we use an undirected graph,
since we are only interested in the spatial connections
between nodes. Figure 5 shows a comparison of the 3D
CNN and graph data structures, as well as the radial search
method used for defining edges between nodes.
As mentioned above, each detector voxel cube is

represented as a node in a graph, and each node consists
of a list of input variables called features that describe the
physical properties of the detected signal (see Sec. IV and
Appendix B). The deep-learning algorithm that operates on
graphs is the graph neural network (GNN) [16,35]. GNNs
are used in many different fields [36,37] and can be
applied for graph classification [38,39] or node classifica-
tion [40–42]. In this article, a GNN inspired by the
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GraphSAGE algorithm [42] is used to classify individual
voxels in SuperFGD events. The application of GNNs to
data from neutrino experiments has been recently demon-
strated by the IceCube experiment in order to identify entire
events as atmospheric neutrino interactions, outperforming
a 3D CNN [43]. The work in Ref. [44] also shows an
application of GNNs for both node and edge classification
for a neutrino detector, where a GNN-based reconstruction
chain is used for clustering both electromagnetic showers
and particle interactions. Other GNN-based studies have
been performed for particle reconstruction in high energy
physics detectors [45–47]. The main drawback of GNNs
with respect to SSCNs is that the former needs to
preprocess the events to perform the neighborhood com-
putation (defining edges) while no preprocessing is needed
for the SSCN images. However, the advantage of GNNs in
this field is that they can use a strong node representation,
where a large number of features can define each node
without reducing the scalability of the model. To the best of
our knowledge, the approach we present in this paper is one
of the first attempts of using GNNs for node classification
in neutrino experiments.

C. GraphSAGE

GraphSAGE [42] is a technique that leverages the features
of graph nodes V—which can range from physical infor-
mation to text attributes—to generate efficient representa-
tions on previously unseen samples by learning aggregator
functions from training nodes. These aggregators can be
simple functions (e.g., mean or maximum) or more com-
plex ones, such as long short-term memory (LSTM) cells
[48], and must be functions that take an arbitrary number
of inputs without any given order. The model learns not
onlyK aggregator functions that combine information from
neighboring nodes but also a set of weight matrices

Wk; ∀ k ∈ f1;…; Kg, which are used to propagate infor-
mation through the K layers of the model and combines
local information of the node with the aggregator informa-
tion of its neighbors into an encoding vector (see
Algorithm 1). The number of aggregator functions is also
used to define the depth of the model, meaning that a
GraphSAGE model has a depth of K. In each layer of the
aggregator information, a new representation of the node v
is computed, denoted by hk

v (with h0
v being the initial node

features xv). Once trained, it can produce the embedding of
a new node given its input features and neighborhood, in
the form of the vector of the last layer hK

v ; this embedding is
then used as the input of a multilayer perceptron (MLP)
[49] that is responsible for predicting the label.

Since GraphSAGE learns from node features, it allows us to
decide which physical information to use for each voxel.
This means that the model can follow the particle set, i.e.,
by predicting the label for each voxel based on the physical
attributes of the target voxel as well as the features of its
neighbors.

IV. METHODOLOGY

A. Data sample generation

In order to generate data sets of neutrino interactions
with true labels that allow to train and benchmark the
classification algorithm, the steps below are followed. For
each neutrino interaction:

1. Initial particle types and initial kinematics are
specified for all final-state particles produced in
the interaction.

2. Initial particles are propagated through the detector
geometry producing further particles and leaving
signals in the form of energy deposits.

3. Using particle energy deposits, the detector response
is simulated.

FIG. 5. Data and computation size comparison between a 3D
image and a graph. The size of the 3D image on the left is fixed
(H × L ×W) regardless of the number of hits as CNNs require
fixed image sizes (in most cases). The connected graph shown on
the right is a much more efficient representation of the data. Each
hit is represented as a graph node and connections, called edges,
are made between neighboring hits within a sphere of radius r.

Algorithm 1. GraphSAGE embedding generation (i.e., forward
propagation) algorithm (from [42])

Input: Graph GðV; EÞ; input features fxv; ∀ v ∈ Vg; depth K;
weight matrices Wk;∀k∈f1;…;Kg; non-linearity σ;
differentiable aggregator functions AGGREGATEk,
∀ k∈f1;…;Kg; neighborhood function N ∶ v → 2V

Output: Vector representations zv for all v ∈ V
1 h0

v ← xv; ∀ v ∈ V;
2 for k ¼ 1…K do
3 j for v ∈ V do
4 j j hk

N ðvÞ ← AGGREGATEkðfhk−1
u ; ∀ u ∈ N ðvÞgÞ;

5 j j hk
v ← σðWk · CONCATðhk−1

v ;hk
N ðvÞÞÞ

6 j end
7 j hk

v ← hk
v=khk

vk2; ∀ v ∈ V
8 end
9 zv ← hK

v ; ∀ v ∈ V
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4. The information is stored as a list of voxels with a
unique integer known true label: track, crosstalk
or ghost.

1. Initial particle types and kinematics

The initial particle types and their associated kinematics
were simulated following two approaches. First, GENIE
datasets were created using GENIE-G18.10B neutrino
interaction software [50]. For a given neutrino flux1 and
target geometry specification, it generates a list of realistic
neutrino event interactions both in the number and type of
outgoing particles, often referred to as event topologies,
and in their individual initial kinematics. Secondly, Particle
bomb (P-Bomb) datasets have been constructed as a
complementary group of data not affected by the specific
tunings provided by a neutrino interaction generator, such
as GENIE. The motivation underlying this is to show in the
later sections that the reported algorithm performance is not
highly dependent on the neutrino interaction modelling.
Moreover, given that neutrino generators do not perfectly
model real interactions, these two datasets (GENIE and P-
Bomb) are also used in the following sections to discuss the
reliability of training in GENIE (or other generators) and
classifying real data. Hence the purpose of P-Bomb data-
sets is to provide events similar to those found in neutrino
interactions in terms of the outgoing particles but with no
realistic kinematic modeling and without considering any
kinematic correlations among the outgoing particles. To
achieve this the P-Bomb dataset is constructed adding equal
numbers of events with the following particle gun combi-
nations, each of which has random flat solid angle and
momentum [10–1000 MeV=c] distributions: 1 μ−; 1 μ− and
1 proton; 1 μ− and 1 π−; 1 μ− and 1 πþ; 1 μ− and 2 protons;
and 1 μ−, 1 πþ and 3 protons. An illustrative comparison
between GENIE and P-Bomb neutrino interaction model-
ling can be found in Appendix A. A summary regarding the
number of events and voxels in the two datasets, as well as
of the class distribution is presented in Table I.

2. Particle propagation simulation in the detector

The SuperFGD detector geometry was simulated as
described in Ref. [14]. The particle propagation and physics
simulation is done by means of GEANT v4-10.6.1 [52].
GEANT is a Monte Carlo based toolkit that provides
realistic propagation of particles through matter. It outputs
a list of energy deposits.
All energy deposits2 occurring in the same detector cube,

including the effect of Birks’ quenching [53], are summed
to form the list of track voxels. To simulate imperfect cube

light-tightness, the 3D voxelized energy is then shared with
the neighboring cubes, creating a new set of voxels that
originally had no energy deposits, the crosstalk voxels (see
Fig. 2). For the energy sharing, a fraction of the energy in
the original cube is leaked into each of its six neighbors.
The fraction that is shared is sampled from a Poisson
distribution, with μ ¼ 2.7%. Given that the probability for
the energy to leak twice is Oðμ2Þ, only leakage to
immediate neighbors is considered. The 3D voxelized
energy of both track and crosstalk voxels is projected onto
its three orthogonal planes where the detector 2D signals
are simulated, converting the continuous energy deposit
into discretized photons,3 weighted by distance-dependent
attenuation factors, which are detected with 35% proba-
bility. To mimic a minimum threshold detection sensitivity,
only 2D hits with three or more detected photons are kept.
SuperFGD thresholds at this level are expected to remove
virtually all dark rate hits [17], henceforth we have not
included noise hits in our simulation. Then, the 2D hits are
matched into 3D reconstructed voxels only if the same
XYZ coordinate combination can be made using two
different combinations of 2D planes. In this process, due
to ambiguities some extra voxels are created, the ghost
voxels (see Fig. 3). Finally, those track and crosstalk voxels
not reconstructed after the 3D matching are discarded
from the original lists. An example of the 2D to 3D
reconstruction is shown in Figs. 4(a) and 4(b).

3. Simulation output

The resulting output from the simulation is a list of
voxels and their associated energy deposits in the three
planes, each with one of the following three labels that we
want to classify, as described in Sec. II: track, crosstalk or

TABLE I. Descriptions of both GENIE and P-Bomb datasets,
displaying the number of events and number of voxels used for
training, validating and testing the models. Additionally the
fractions of the different classes of voxels are shown, which
are conserved through the training, validating, and testing sets.

Training Validation Testing

GENIE dataset Number of Events 6k 2k 11.5k
Number of Voxels 1.83M 606.7k 3.58M

Track Crosstalk Ghost
Fraction 43% 37% 20%

P-Bomb dataset Training Validation Testing
Number of Events 6k 2k 39.5k
Number of Voxels 1.84M 618k 12.3M

Track Crosstalk Ghost
Fraction 49% 38% 13%

1We used the T2K flux, which peaks at 600 MeV=c, see
Ref. [51].

2Only signals in the first 100 ns are considered. Further
delayed signals, such as decays, can be treated as independent
graphs.

3No waveform processing is simulated. A single conversion
factor is used from energy deposit to number of photons in the
WLS fiber, based on laboratory data [17].
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ghost voxel. Using the list of voxels of each event, further
features are computed for each voxel as described in
Appendix B. The correlation matrices of the features for
the GENIE and P-Bomb datasets are presented in Fig. 18 in
Appendix C. The graph’s adjacency matrix is built utilizing
the position of each voxel, as will be detailed below. Both
the new list of expanded voxel features plus the corre-
sponding adjacency matrix of the event are fed into the
GNN algorithm.

B. Network architecture

Each graph in GraphSAGE is constructed using the
proximity of two voxels in that graph. If both voxels are
spatially located within a radius of 1.75 cm,4 then we
consider them to be connected in the graph by an edge; we
repeat the same procedure for each pair of voxels.5

Additionally, we consider a neighborhood depth of three,
i.e., to produce the embedding of a voxel, we use the voxel
features together with its first neighbors’ features, the
features of the neighbors of its neighbors, i.e, second
neighbors’ features, and the features of the neighbors of
the neighbors of its neighbors, i.e., third neighbors’
features. The aggregator used to combine the feature of
the neighbors is the mean aggregator, which produces the
average of the neighbors’ values. This final embedding is
then passed to an MLP consisting of two fully connected
layers—each followed by a LeakyReLU activation
function—and a final output layer followed by a softmax

activation function. Figure 6 illustrates the GraphSAGE-based
approach used, while Tab. II shows the architectural param-
eters chosen. Categorical cross-entropy is chosen as the loss
function to minimize during training, as it is considered the
standard one for multiclass classification problems, where
each training example corresponds to a voxel:

J ¼ −
1

m

Xm

i¼1

Xc

j¼1

yðiÞj log ŷðiÞj ; ð2Þ

where:
(i) yðkÞ: true values corresponding to the kth training

example. yðkÞ is a vector with all components equal
to zero except for the class j, which is equal to one.

(ii) ŷðkÞ: predicted values corresponding to the kth
training example. ŷðkÞ is a vector with each compo-

nent ŷðkÞj denoting the score (continuous value from
0 to 1) of being of class j.

(iii) m: number of training examples, equal to the total
number of voxels in the training sample.

(iv) c: number of classes/neurons corresponding to the
output. In this case, the three classes are: track,
crosstalk, and ghost.

(a) (b) (c)

FIG. 6. Visual illustration of the GraphSAGE sample and aggregate approach with a depth of three [42]. (a) Sample neighborhood
(orange) for a depth K ¼ 3. The red node indicates the target node to be classied; orange nodes are nodes taken into account for the
classication given a depth of three; blue nodes are not taken into account. Each depth k represents a distance level from the target to the
corresponding neighbor set. (b) Aggregate feature information from neighbors. Each node has features f1;…; fN , with purple, blue, and
green nodes information being aggregated through aggregators 1, 2, and 3, respectively. (c) Use aggregated information as input for the
fully connected layers and predict the label.

TABLE II. Architectural parameters; for more information
about the meaning of the parameters, see Sec. III C.

Parameter Value

Encoding size 128
Depth 3
Aggregator mean
Fully Connected Layer 1 128 neurons
Fully Connected Layer 2 128 neurons
Fully Connected Layer 3 (output) 3 neurons

4To link only those voxels within the 3 × 3 × 3 cube of voxels
centred on the target voxel (the maximum diagonal distance from
the center of this cube is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ 12 þ 12

p
≈ 1.75).

5If a voxel has no neighbors, it is discarded from the graph and
cannot be classified; this happens for less than 0.6% of the total
number of voxels.
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The output layer of the model consists of three neurons,
one for each of the three classes, with values vi for i ¼ 1, 2,
3. The sum of neuron values is given by

P
3
i¼1 vi ¼ 1 such

that each neuron value gives a fractional score that can be
used to classify voxels. In other words, the model returns
scores for each voxel to be one of the three desired outputs,
which can be interpreted as the probability: tracklike,
crosstalklike, or ghostlike.

C. Training

The network was trained for 50 epochs6 using Python
3.6.9 and PyTorch 1.3.0 [54] as the deep-learning frame-
work, on an NVIDIA RTX 2080 Ti GPU. Adam [55] is
used as the optimizer, with a mini-batch size of 32, and an
initial learning rate of 0.001 (divided by 10 when the error
plateaus, as suggested in [56]). The model has a total of
105,347 parameters. As is standard in machine learning, the
dataset was split into three disjoint sets: the training set, to
optimize the model’s parameters; the validation set, to
avoid overfitting and perform model selection; the test set,
to verify the integrity of the model for new data. Figure 7
shows the validation results during the training process,
measured by the F1-score metric:

F1 ¼ 2
precision · recall
precisionþ recall

: ð3Þ

The precision and recall are defined as:

precision ¼ truepositives
truepositives þ falsepositives

; ð4Þ

recall ¼ truepositives
truepositives þ truenegatives

; ð5Þ

where the labels are compared as one class (denoted as
positive) vs all the others (denoted as negative). The model
used later for inference on new data is the one that
maximizes the F1-score for the validation set, as it has
the best generalization for unseen data.

D. Results

The GNN voxel-type predictions are compared against
the true labels to evaluate the network performance and
identify possible areas of improvement. Here, we choose
the output class with the highest score as the predicted
class of each voxel although, depending on the type of
analysis, different selection criteria could be applied in the
future.
The efficiencies and purities of these predictions are

calculated by two methods: per voxel and per event, the

former are given by the following formulas for each type of
voxels:

efficiencyi ¼
# voxels with labeltrue ¼ labelpred ¼ i

# voxels with labeltrue ¼ i
; ð6Þ

purityi ¼
# voxels with labeltrue ¼ labelpred ¼ i

# voxels with labelpred ¼ i
: ð7Þ

The efficiencies and purities per event are defined as the
mean of the efficiencies and purities of individual voxels
for each event. The results of both methods for four sets of
training/testing samples are shown in Table III, giving
nearly identical performance that is independent of the
dataset used to train and test the GNN.
As an example, Fig. 8 shows the voxel prediction results

from the GNN when applied to the event shown in Fig. 4, a
GENIE event that features a track almost completely
composed of ghost voxels. Figure 8(a) shows the class
predicted for each voxel, while Fig. 8(b) displays which
voxels were correctly/incorrectly classified.
A more in-depth analysis of the GNN performance can

be carried out by studying the effects of different event
properties on the efficiencies and purities of the predictions.
For these studies, the results of the GNN trained and tested
on the GENIE dataset are used.
One of the factors expected to affect these predictions is

the number of voxels in the event. Figure 9 shows the
relationship between the mean efficiency and purity per
event for each type of voxel as a function of the total
number of voxels in the event. The figure also shows the
mean number of events in each bin (in light blue). It is clear
that both the efficiencies and purities of the three types of
voxels decrease as the number of voxels in the event
increases. This decrease is coupled with an increase of the
fraction of ghost voxels as the total number of voxels
increases, which are the hardest for the GNN to classify.
The number of tracks in the event is an estimate of the

complexity of its topology. According to Fig. 10, the
classification efficiencies and purities drop as the number
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FIG. 7. Validation F1 results on GENIE and P-Bomb samples.

6Epoch: one forward pass and one backward pass of all the
training examples. In other words, an epoch is one pass over the
entire dataset.
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of tracks increases. This behavior is also correlated with the
increasing fraction of ghost voxels in the events.
The region around the interaction vertex is of particular

interest in the event. It is expected that a high spatial density
of voxels within a certain volume of the detector may pose a
challenge for the GNN to correctly identify the voxel type.
This can be observed by studying the efficiencies and
purities as a function of the distance to the interaction
vertex, as shown in Fig. 11. At the interaction vertex itself,
it is clear that there are only track voxels and the GNN can
identify them with over 96% efficiency and 100% purity.
The following 2 cm exhibit only a small fraction of ghost
voxels, mainly due to the high spatial density of voxels with
real signals in that volume, which is mainly occupied by
track and crosstalk voxels. As we go further from the
vertex, the spatial density of voxels decreases and the tracks
emerging from the vertex diverge allowing for easier voxel
classification. However, this trend is reversed around 10 cm
from the vertex where the protons emerging from the
CCQE (charged-current quasielastic) interaction vertex
would have reached their range and only the low-ionizing
muon tracks remain. The lower average voxel charge at
these distances complicates the process of classification as
most of the variables used as an input to the GNN are based
on charge, which can be observed in the dropping effi-
ciencies and purities.
As the main goal of this GNN is to identify ghost voxels

in order to eliminate them from the events, it is important to
make sure that true track and crosstalk voxels are not lost in
the process. According to the GENIE sample results, only
1.1% of all true track voxels and 3.3% of crosstalk voxels
are incorrectly classified as ghost voxels by the GNN. In
addition, it is important not to miss ghost voxels: the GNN
correctly identified 84.5% of all ghost voxels, where 72.1%
of those classified incorrectly were predicted as crosstalk.
Therefore, although not ideal, this issue is not critical as

crosstalk voxels have a smaller influence on future studies
than track voxels.
Lastly, we compare the results of the GNN against a

conventional method of voxel classification which relies on
a charge cut. As described in Appendix B, each voxel has
three charges that correspond to the signals from the three
fibers passing through it. Since other voxels along the same
fiber may have signals causing a larger amplitude to be
recorded, we consider the smallest of these three charges to
be the most accurate estimation of the true voxel charge.
Hence, this minimum charge is used for the purposes of this
charge cut. Since, by definition, we expect higher energy
deposition in track voxels compared to crosstalk and ghost
voxels, we set a lower limit for the minimum charge in a
voxel such that any voxels with a higher minimum charge
than the threshold are classified as track voxels. Figure 12
shows the distribution of the minimum voxel charge for
the three types of voxels. From this figure, it is clear that it
is not possible to separate ghost from crosstalk voxels.
Thus, this classification is only binary such that we
have two categories: track or other. We decide to place
this cut at 12 p.e., where the track and nontrack voxel
curves intersect.
To compare the results of this cut with those of our GNN,

we combine the predictions of the crosstalk and ghost
categories. Table IV shows the efficiency and purity of the
classifications for the two methods. It is evident that using
only a charge cut can still yield a comparable track voxel
classification efficiency to the GNN. However, it struggles
to correctly classify nontrack voxels which, in turn, reduces
the purity of the predicted track voxels.
Another advantage of the GNN over the charge cut is the

improved capability of reducing the number of “fake”
tracks, i.e., a cluster of ghost voxels that closely resembles
the structure of a real particle track. Since fake tracks are
usually produced by the shadowing of real tracks, the

TABLE III. Mean efficiencies and purities of voxel classification, calculated for the whole sample (per voxel) and as a mean of the
event-by-event efficiencies and purities (per event).

GENIE Training P-Bomb Training

GENIE Testing Per Voxel Track Crosstalk Ghost Track Crosstalk Ghost
Efficiency 93% 90% 84% Efficiency 93% 89% 80%
Purity 93% 87% 91% Purity 91% 86% 89%

Per Event Track Crosstalk Ghost Track Crosstalk Ghost
Efficiency 94% 94% 88% Efficiency 94% 93% 88%
Purity 96% 91% 92% Purity 95% 91% 91%

P-Bomb Testing Per Voxel Track Crosstalk Ghost Track Crosstalk Ghost
Efficiency 94% 93% 87% Efficiency 95% 93% 88%
Purity 95% 90% 92% Purity 95% 91% 92%

Per Event Track Crosstalk Ghost Track Crosstalk Ghost
Efficiency 94% 94% 87% Efficiency 95% 93% 88%
Purity 96% 90% 92% Purity 96% 91% 92%
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(a)

(b)

FIG. 8. Example GNN prediction results for the interaction shown in Fig. 4. The axes are in cm. (a) Prediction: voxels are colored
based on the GNN predictions. (b) Accuracy: voxels correctly classied by the GNN are shown in green.
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corresponding number of p.e. measured in the three readout
views is higher than 12 p.e., hence the charge cut cannot
reject them easily. The superiority of the GNN in reducing
ghost tracks is shown in Appendix D for a number of
neutrino interactions and compared to the charge cut
method.
Figure 13 shows the advantage of the three-fold classi-

fication of the GNN over the binary classification of the
charge cut when comparing the fraction of true total
deposited energy obtained using each method. In the case
of the GNN, the total deposited energy in an event is the
sum of the true energy deposited in all nonghost voxels. For
the charge cut, only the energy deposited in track voxels is
used. This causes an average energy loss of 5% per event
when using a method that also excludes the crosstalk
voxels, compared to less than 1% when using the GNN that
can isolate ghost voxels.

V. SYSTEMATIC UNCERTAINTY
CONSIDERATIONS

The results presented in Sec. IV D show that the GNN is
a very powerful technique for removing ghost voxels and
identifying optical crosstalk in 3D-reconstructed neutrino
interactions. In this section, we investigate potential sources
of systematic uncertainty and test the robustness of this
technique.
One of the main limitations in the measurement of the

neutrino oscillation parameters in long-baseline experi-
ments comes from uncertainties in the modeling of neutrino
interactions, not yet fully constrained by data and partially
incomplete for describing all the details of the interaction
final state. For example, the modeling of hadron multi-
plicity and kinematics may considerably change the image
of the neutrino interaction, particularly near the neutrino
vertex, or the total energy deposited by all the particles
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FIG. 9. Efficiency and purity as a function of the number of
voxels in the event for a sample trained and tested on GENIE
simulated data. (a) Efficiency. (b) Purity. (c) Mean fraction of
each type of voxel as a function of the number of voxels in the
event (blue = track, orange = crosstalk, green = ghost).
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FIG. 10. Efficiency and purity as a function of the number of
tracks in the event for a sample trained and tested on GENIE
simulated data. (a) Efficiency. (b) Purity. (c) Mean fraction of
each type of voxel as a function of the number of voxels in the
event (blue = track, orange = crosstalk, green = ghost).
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produced by the neutrino interaction. Hence, it is hard to
obtain a data-driven control sample to train a neural
network without making any prior assumptions. Since
the GNN is trained only on a subset of the parameter
space, the results could be biased if the detected neutrino
interactions belong to a region of the parameter space not
well covered by the MC generator. To account for a
potentially incomplete sampling of the parameter space,
different training samples (GENIE and P-Bomb) were
generated, as described in Sec. IV D. The difference in
terms of neutrino interaction modeling between these two
datasets, by construction, is expected to be much larger
than the difference between GENIE and real neutrino
interactions, see Appendix A. As presented in Table III
the performance is still very good even when the samples
used for training and testing were largely different in terms
of modeling, supporting the safeness of training using MC
events to classify real data.
The robustness of the GNN against model dependencies

can be verified by training different neural networks on
different event samples and applying them to the same set
of neutrino interactions. A difference in the observables
used in the physics measurement, such as particle
momenta, energy deposit, etc., obtained by the different
training can be assigned as a systematic uncertainty
introduced by the method.
A study was performed to evaluate the impact of the

method on the total true energy deposited in the detector.
The difference between the total energy deposit computed
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FIG. 11. Efficiency and purity as a function of the distance to
the neutrino interaction vertex for a sample trained and tested on
GENIE data. (a) Efficiency. (b) Purity. (c) Mean fraction of each
type of voxel as a function of the number of voxels in the event
(blue = track, orange = crosstalk, green = ghost).
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FIG. 12. The distribution of the minimum charge among the
three voxel charges for the GENIE sample.

TABLE IV. Mean efficiencies and purities of voxel classifica-
tion for the GNN and a simple charge cut.

GNN Charge cut

Track Other Track Other
Efficiency 94% 96% Efficiency 93% 80%
Purity 96% 95% Purity 80% 91%
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FIG. 13. The fraction of the true total deposited energy obtained
when using the GNN (trained on GENIE) or the charge cut as a
classification method.
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after rejecting the voxels classified as ghosts for both
network trainings was computed. Figure 14 shows the
distribution of the total true deposited energy before and
after discarding the voxels classified as ghosts. Both
GENIE- and P-Bomb- trained GNNs give very similar
results over the full range of total deposited energy. The
total true deposited energy computed with and without
ghost rejection differ on average by less than 1 MeV with a
standard deviation of approximately 5.5 MeV, mainly due
to a few outlier entries, and 68% of the events with a
difference better than 0.192 MeV, as shown in Fig. 15.
Hence, it is expected to be improved by increasing the
statistics of the training samples.

This corresponds to less than 2% of the mean total
deposited energy per event. In Fig. 16 the impact of the
different training sample is shown as a function of the total
deposited energy. The fractional standard deviation,
defined as the standard deviation of the difference between
deposited energy computed from different GNN trainings
and divided by the true deposited energy, shown in the
bottom panel, is less than 2% and almost constant as a
function of the deposited energy. This means that the
performance of the method is about the same irrespective of
the total deposited energy. This study confirms that GNN
can be used for classifying 3D voxels potentially with
limited systematic uncertainties in the deposited energy,
while drastically improving the tracking capability.
Another potential issue could be given by a mismodeling

of the amount of crosstalk. In addition to the nominal
optical crosstalk (2.7%), two further datasets were simu-
lated using 2% and 5% crosstalk and the voxel classifica-
tion was performed using the GNN trained with nominal
crosstalk. As shown in Table V, the efficiency and the purity
is relatively stable even in the case where the crosstalk
model is wrong, in particular for identifying track voxels.
While a drop in purity for track voxels is observed with 5%
crosstalk, such a large mismodeling is highly unlikely
given that crosstalk can be measured even with small
prototypes to subpercent precision [17]. Hence, crosstalk
mismodeling is not considered to be a source of additional
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FIG. 14. Distribution of the total true deposited energy after
rejecting the ghost voxels classified either with GENIE- (dashed
orange) or P-Bomb- (dotted green) trained GNNs and without
any ghost rejection (solid blue). The mean total deposited energy
per event is about 288 MeV.
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FIG. 15. Difference between the total true deposited energy
computed after rejecting the ghost voxels classified with GENIE-
and P-Bomb- trained GNNs. The mean is 0.78 MeV while the
standard deviation is 5.5 MeV. About 40% of events show no
difference between P-Bomb and GENIE, 68% have a difference
within �0.192 MeV, while only 5% of the events have a
difference outside the range �6.35 MeV.

FIG. 16. Top: difference between the total true deposited energy
computed after rejecting the ghost voxels classified with GENIE-
and P-Bomb- trained GNNs as a function of the total true
deposited energy. Bottom: fractional standard deviation of the
difference of the total true deposited energy computed after
rejecting the ghost voxels classified with GENIE- and P-Bomb-
trained GNNs as a function of the total true deposited energy.
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systematic uncertainty given that the GNNmethod is robust
to small crosstalk variations.

VI. CONCLUSIONS

A graph neural network inspired by GraphSAGE was
developed and tested on simulated neutrino interactions
in a 3D voxelized fine-granularity plastic-scintillator detec-
tor with three 2D readout views with the same geometry as
SuperFGD, a detector that will be installed in the near
detector (ND280) of T2K. The advantage of this neural
network is that the graph data structures provide a natural
representation of the neutrino interactions.
The neural network was able to identify ambiguities and

scintillation light leakage between neighboring active
scintillator detector volumes as well as real signatures left
by particles with efficiencies and purities in the range of
94–96% per event, with a clear improvement with respect
to less sophisticated methods. In particular, it can reduce
the number of fake tracks produced by the shadowing of
real tracks observed in the 2D readout views. The perfor-
mance was tested for neutrino events with different number
of voxels, number of tracks and voxels at different distances
from the vertex, variables that could hint to interaction
model dependencies of the method. Efficiencies and
purities were found to be relatively stable and the trends
were consistent with the expectation. The robustness
of the neural network against possible systematic uncer-
tainties introduced by the method was tested. The results
were obtained using neural networks trained on different
samples, produced either with the GENIE event generator
or by randomizing the number of final state particles and
relative momentum to obtain a more generic sample that
does not belong to any particular theoretical model. It was
found that the bias introduced on the total deposited
energy of the event by arbitrarily choosing a different
training sample is, on average, less than 1 MeV, or less
than 2% for true deposited energies in the range
0.0–1.0 GeV. The impact of potential mismodeling of

the light leakage between neighboring scintillator volumes
was tested. Results show that the performance of the neural
network is robust to expected changes in the crosstalk
modeling.
To conclude, we showed that a graph neural network has

great potential in assisting a 3D particle-set reconstruction
of neutrino interactions. Similar results may be expected for
other types of detectors that aim to a 3D reconstruction of
the neutrino event from 2D projections and that share
analogous features like ambiguities and leakage of signal
between detector voxels, such as the very similar detector
proposed as part of the DUNE near detector.
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APPENDIX A: COMPARISON OF GENIE
AND P-BOMB

Two different types of neutrino interactions have been
studied, as described in Sec. IVA. The neutrino modelling
differences can be easily visualized by comparing two of
the simplest subsets of data from each dataset. GENIE
charge current quasielastic interactions (CCQE) typically
produce an outgoing muon and proton in the final state. For
illustration, we compare this subsample of the GENIE
dataset with the μ− þ pþ sub-sample in the P-Bomb dataset
in Fig. 17.

APPENDIX B: INPUT VARIABLES

The list of variables used as features for the graph nodes
is given below. Each node is placed at XYZ coordinates
matching the center of a cube, however, these center

TABLE V. Mean efficiencies and purities of voxel classifica-
tion, per voxel, for different crosstalk values, i.e., 2.7% (nominal),
2%, and 5%. The GNN was trained with GENIE training samples
with nominal crosstalk and tested on the same GENIE sample
with different crosstalk values to study its robustness.

Nominal Track Crosstalk Ghost

Crosstalk Efficiency 93% 90% 84%
2.7% Purity 92% 87% 91%

Track Crosstalk Ghost
Crosstalk Efficiency 92% 89% 81%
2% Purity 94% 83% 89%

Track Crosstalk Ghost
Crosstalk Efficiency 94% 89% 88%
5% Purity 86% 91% 93%

7https://github.com/twjiang/graphSAGE-pytorch
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coordinates are not node variables by themselves since the
detector response is isotropic. The numbers in front of each
variable match those in Fig. 18.

(i) 0-2: peXY, peXZ, peYZ Number of photons
detected in the XY, XZ or YZ-fiber intersecting the
cube under consideration corrected by the expected
attenuation.

(ii) 3-5: mXY, mXZ, mYZ Number of active voxels
intersected by the fiber associated to peXY, peXZ
or peYZ

(iii) 6: pewav Average number of detected photons
peXY, peXZ, peYZ, each weighted by the fiber
multiplicity mXY, mXZ, mYZ.

pewav ¼
peXY
mXY þ peXZ

mXZ þ peYZ
mYZ

3

FIG. 17. Distributions of CCQE GENIE interactions compared
to μ− þ pþ interactions in P-Bomb. (a) Angular distribution of
muons. (b) Momentum distribution of muons. (c) Total energy
deposit.

(a)

(b)

FIG. 18. Correlation matrices for the input variables of the
GENIE and P-Bomb datasets used. Appendix B gives the
mapping between the numbers on the axes and the variable
names. (a) GENIE dataset correlation matrix. (b) P-Bomb dataset
correlation matrix.
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(iv) 7-9: pullX, pullY, pullZ Relative differ-
ence between the light measured in two different 2D
planes.

pullX ¼ peXY − peXZ
peXYþ peXZ

pullY ¼ peXY − peYZ
peXYþ peYZ

pullZ ¼ peXZ − peYZ
peXZþ peYZ

(v) 10: residual Similarity of the light yield mea-
sured in the three 2D planes, measured as the
squared distance from each peXY, peXZ, peYZ
to the average, weighted by the squared average.

μ ¼ peXYþ peXZþ peYZ
3

residual

¼ ðpeXY − μÞ2 þ ðpeXZ − μÞ2 þ ðpeYZ − μÞ2
μ2

(vi) 11: pullXYZ Similarity of the light yield mea-
sured in the three 2D planes, measured as a
combination of 2D pulls (a1, a2, a3) weighted by
pewav.

a1 ¼
peXY
mXY − peXZ

mXZ
peXY
mXY þ peXZ

mXZ

a2 ¼
peXY
mXY − peYZ

mYZ
peXY
mXY þ peYZ

mYZ

a3 ¼
peXZ
mXZ − peYZ

mYZ
peXZ
mXZ þ peYZ

mYZ

pullXYZ ¼ a1a2 þ a1a3 þ a2a3
pewav

(vii) 12: ratioMQ Ratio between the average voxel
multiplicity in the three fibers and pewav.

ratioMQ ¼
mXYþmXZþmYZ

3

pewav

(viii) 13-14: R1, R3 Number of active neighbor voxels
in a sphere of certain radius.
↪R1, r ¼ 1 cm.
↪R2, r ¼ 2 cm.
↪R3, r ¼ 5 cm. R2 was not used as a variable

due to the high correlation with R1, but is used to
compute RR.

(ix) 15-20: xþ, x−, yþ, y−, zþ, z− Boolean
variables representing the existence of immediate
neighbors in each of the 6 surrounding cubes

(x) 21: orthogonal_neighbor It is 1 if any of
xþ, x−, yþ, y−, zþ, z− is 1.

(xi) 22: RR Ratio between the number of close and far
voxels. The ϵ ¼ 10−7 prevents numerical problems
when R3 ¼ 0.

RR ¼ R2
R3þ ϵ

(xii) 23: ratioDQ Ratio between the average voxel
distance aveDist around the voxel and the
weighted average light yield pewav.

ratioDQ ¼ aveDist
pewav

(xiii) 24: aveDist Average distance from the voxel
center C to all fired voxel centers (Ci) within a
sphere of radius 2.5 cm.

aveDist ¼ 1
N

XN

i

EuclidianDistðC;CiÞ

A number of these variables are calculated from the same
underlying properties of the energy deposits. In theory, an
infinitely deep GNN trained on an infinite amount of
training data would be able to extract all of the information
required for classification from the few underlying proper-
ties. In practice, we use a larger number of derived variables
to guide the GNN to allow it to more easily extract
information from the data and to converge quickly in the
training process. Global position was intentionally not used
as a variable to avoid the GNN to learn neutrino modelling
specific behaviours.

APPENDIX C: COMPARISON OF GENIE AND
P-BOMB SIMULATED DATA SAMPLES

Figure 18 shows the correlations of the input variables
defined in Appendix B for the GENIE and P-Bomb data
samples. Differences between the two matrices arise from
the different topologies of interactions produced by the two
generator methods.

APPENDIX D: EVENT GALLERY

This section contains a number of visualizations to
show the classification performance of the GNN for a
number of neutrino interactions with different complexity
and topology. Displays are shown for different events in
Figs. 19–24: all voxels with their true classification, only
the true track voxels, the classified track voxels using the
charge cut method, and the classified track voxels using the
GNN. The interactions shown here are examples of
interactions containing many ghost voxels in order to
showcase the GNN performance.
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The track voxel classification ability of the charge
cut and GNN methods can be seen by comparing sub-
figures (c) and (d) with (b), respectively, for each inter-
action. The GNN is able to reject ghost voxels very well,
as shown in Figs. 20, 22, 23, and 24 where ghost tracks

remain using the charge cut method. In general, the
performance improvement from the GNN increases with
the complexity of the interactions. For simple interactions
with only a single muon in the final state both methods
perform similarly.

(a) (b)

(c) (d)

FIG. 19. 3D visualization of a neutrino interaction in a finely segmented 3D scintillator detector after the 3D matching of the three 2D
views. The GNN cut is able to almost entirely reject the fake track traveling on the XZ plane and stopping near to the vertex at X ∼ 160 cm
and Z ∼ 70 cm, while the charge cut cannot. The energy of the incoming neutrino is 4.754 GeV. The axes are in cm. (a) The 3D voxels
labelled as track (red), crosstalk (blue) and ghost (yellow) according to the truth information from the simulation are shown. (b)Only the 3D
voxels labelled as track according to the truth information from the simulation are shown. (c)The3Dvoxels labelled as track according to the
charge cut classification are shown. (d) The 3D voxels labelled as track according to the GNN classification are shown.
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(a) (b)

(c) (d)

FIG. 20. 3D visualization of a neutrino interaction in a finely segmented 3D scintillator detector after the 3D matching of the three 2D
views. The charge cut is not able to reject two fake tracks, one coming from a vertex a X < 50 cm Z < 50 cm traveling on the XZ plane
and stopping near to the vertex at X ∼ 160 cm and Z ∼ 70 cm. Moreover, the charge cut leave a bump of ghost voxels around the vertex
that could mimic the interaction of a few low-energy protons, an effect that could bias the reconstruction of the neutrino energy. The
energy of the incoming neutrino is 760 MeV. The axes are in cm. (a) The 3D voxels labelled as track (red), crosstalk (blue) and ghost
(yellow) according to the truth information from the simulation are shown. (b) Only the 3D voxels labelled as track according to the truth
information from the simulation are shown. (c) The 3D voxels labelled as track according to the charge cut classification are shown.
(d) The 3D voxels labelled as track according to the GNN classification are shown.
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(a) (b)

(c) (d)

FIG. 21. 3D visualization of a neutrino interaction in a finely segmented 3D scintillator detector after the 3D matching of the three 2D
views. In this even the performance of GNN and the charge cut is quite similar because the ghost voxels are mainly given by the overlap
of crosstalk hits in the 2D readout views. The energy of the incoming neutrino is 5.076 GeV. The axes are in cm. (a) The 3D voxels
labelled as track (red), crosstalk (blue) and ghost (yellow) according to the truth information from the simulation are shown. (b) Only the
3D voxels labelled as track according to the truth information from the simulation are shown. (c) The 3D voxels labelled as track
according to the charge cut classification are shown. (d) The 3D voxels labelled as track according to the GNN classification are shown.
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(a) (b)

(c) (d)

FIG. 22. 3D visualization of a neutrino interaction in a finely segmented 3D scintillator detector after the 3D matching of the three 2D
views. This neutrino event has a quite high multiplicity and tracks are quite close each other. This produce relatively big clusters of ghost
voxels that produce at least two fake tracks even after the charge cut. Instead GNN allows to classify ghosts more precisely and correctly
visualize the correct number of tracks. Moreover, the charge cut makes true tracks more fat making their separation harder and,
potentially, less precise the particle momentum reconstruction. The energy of the incoming neutrino is 1.064 GeV. The axes are in cm.
(a) The 3D voxels labelled as track (red), crosstalk (blue) and ghost (yellow) according to the truth information from the simulation are
shown. (b) Only the 3D voxels labelled as track according to the truth information from the simulation are shown. (c) The 3D voxels
labelled as track according to the charge cut classification are shown. (d) The 3D voxels labelled as track according to the GNN
classification are shown.

SAÚL ALONSO-MONSALVE et al. PHYS. REV. D 103, 032005 (2021)

032005-20



(a) (b)

(c) (d)

FIG. 23. 3D visualization of a neutrino interaction in a finely segmented 3D scintillator detector after the 3D matching of the three 2D
views. Although this is a relatively simple neutrino event, the charge cut is not able to reject a fake track stopping near the neutrino
interaction vertex while GNN can provide a much cleaner reconstruction. The energy of the incoming neutrino is 1.132 GeV. The axes
are in cm. (a) The 3D voxels labelled as track (red), crosstalk (blue) and ghost (yellow) according to the truth information from
the simulation are shown. (b) Only the 3D voxels labelled as track according to the truth information from the simulation are shown.
(c) The 3D voxels labelled as track according to the charge cut classification are shown. (d) The 3D voxels labelled as track according to
the GNN classification are shown.
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