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Dark matter can capture in neutron stars from scattering off ultrarelativistic electrons. We present a
method to calculate the capture rate on degenerate targets with ultrarelativistic momenta in a compact
astronomical object. Our treatment accounts for the target momentum and the Fermi degeneracy of the
system. We derive scaling relations for scattering with relativistic targets and confirm consistency with the
nonrelativistic limit and Lorentz invariance. The potential observation of kinetic heating of neutron stars
has a larger discovery reach for dark matter–lepton interactions than conventional terrestrial direct detection
experiments. We map this reach onto a set of bosonic and fermionic effective contact interactions between
dark matter and leptons as well as nucleons. We show the results for the contact operators up to dimension-
six for spin-0 and spin-1=2 dark matter interactions with relativistic as well as nonrelativistic Standard
Model fermions. Highlights of this program in the case of vector mediated interactions are presented in a
companion article [Joglekar et al., Phys. Lett. B 809, 135767 (2020)]. Our method is generalizable to dark
matter scattering in any degenerate medium where the Pauli exclusion principle leads to relativistic targets
with a constrained phase space for scattering.
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I. INTRODUCTION

Astronomical data unambiguously establishes the exist-
ence of dark matter. Interactions between dark matter and
visible matter are predicted by many models to set the
cosmological abundance of dark matter. This motivates
experimental search strategies such as direct detection,
which looks for the recoils of ordinary matter particles
scattered by dark matter. To date, however, terrestrial
experiments have only set limits on the strength of dark
matter–visible matter interactions.
An innovative extension of this program is the proposal

that neutron stars can be used as dark matter laboratories in
space. Dark matter falls into a neutron star’s steep gravi-
tational potential at semirelativistic speeds and scatters
with visible matter. The recoil energy of stellar constituents
heats the neutron star. A sufficiently old neutron star is
expected to be cold enough that this kinetic heating is an

observable signature of dark matter scattering on ordinary
matter [1,2]. If radio telescopes such as FAST [3], SKA [4],
and CHIME [5] detect the radio pulses of a Oð109 yearÞ-old
pulsar, then upcoming infrared telescopes such as the JWST

[6], TMT [7], and ELT [8] would be able to detect kinetic
heating with Oð104 sÞ integration time. The discovery
reach of such an observation is favorable compared to
terrestrial direct detection experiments [1,2].
Recent efforts in this program focus on dark matter

that interacts primarily with leptons [9]. Early work on this
subject assumes scattering with nonrelativistic targets that
are at rest in the neutron star frame [10,11]. However, this
treatment fails for the electron targets. The matter in a
neutron star is degenerate. The Pauli exclusion principle
forces the neutron star constituents to have nonzero
momenta and restricts the phase space for scattering by
blocking degenerate final states. Neutrons, protons, and
muons in a neutron star have a Fermi energy well below
their mass and thus remain nonrelativistic. Electrons in a
neutron star, on the other hand, are ultrarelativistic, except
in the outermost layers of the crust. In a companion paper,
we showed that this can change capture kinematics sig-
nificantly, causing the nonrelativistic approximation to
underestimate the capture rate in some parametric regions
by 5 orders of magnitude [9].
The present paper extends that analysis to a complete set

of contact operators up to dimension-six between spin-0
or spin-1=2 dark matter and nucleonic or leptonic targets.
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We give a physical interpretation for the features of
relativistic capture that cause the nonrelativistic approxi-
mation to grossly underestimate the capture rate in some
regions. We derive how the phase space for this process
scales as a function of the target Fermi momentum, target
mass, and dark matter mass. Our results are consistent with
both the nonrelativistic limit and the Lorentz invariance.
This study opens a new frontier for the capture of dark
matter on neutron stars, a subject that began 30 years ago in
studies of black hole formation [12,13]. It is part of a larger
multimessenger frontier to study the potential to understand
dark matter from its capture in compact stars [1,2,14–45].
The organizational structure of this paper is manifest in

the table of contents. Sections II and III are a self-contained
introduction to standard formalism of kinetic heating.
Sections IV and V introduce our revised formalism for
ultrarelativistic targets and summarizes the qualitative
physical properties. The discovery reach with respect to
contact operators is presented in the figures of Sec. VI.
We list and estimate sources of uncertainty in Sec. VII.
The Appendixes include detailed derivations of key results.
Some of these are known results that may not be obvious,
and others are technical calculations that confirm the
qualitative discussions in the paper.

II. NEUTRON STAR MODEL AND CONVENTIONS

We use a simple model of the neutron star that assumes
neutrons, protons, electrons, and muons are the sole stellar
constituents in the core. We relate the volume-averaged
abundance of a target species YT to its average number
density hnTi,

hnTi ¼ YT
M⋆
mn

�
4

3
πR3⋆

�
−1
; ð2:1Þ

where we use the following benchmark values for the
neutron star mass, radius, and ambient dark matter
density [46]:

M⋆ ¼ 1.5 M⊙; R⋆ ¼ 12.6 km; ρχ ¼ 0.4 GeV=cm3:

ð2:2Þ

We assume that the neutron star is effectively at rest
relative to the dark matter halo. In the stellar core, we have
used a volume-averaged target number per nucleon, YT,
and a volume-averaged target Fermi momentum, pF, as
computed in [11] using the BSk24 unified equation of
state [47] at M⋆ ¼ 1.5 M⊙ and R⋆ ¼ 12.6 km. The target
particles in the neutron star are degenerate: their chemical
potentials, μT ∼Oð100 MeVÞ, are all much greater than the
neutron star temperature, T⋆ ∼OðeVÞ. We thus assume that
the energy levels for each target are filled to its Fermi
energy, EF. These properties are summarized in Table I.

We also neglect the effects of interactions among neutron
star constituents.
The relativistic treatment of capture requires relating

kinematic quantities that are naturally defined in different
frames. In order to simplify notation, we assume that
quantities are defined in the neutron star frame unless
otherwise identified with a subscript; e.g., ðdσÞCM is a cross
section in the center-of-momentum frame. We explain
additional conventions in Appendix A; these are mostly
for the technical work in the Appendixes.

III. REVIEW OF DARK KINETIC HEATING

We summarize the relevant background material for
the kinetic heating of neutron stars from dark matter
capture [1].

A. Acceleration of dark matter

A dark matter particle χ in the halo is gravitationally
accelerated toward a neutron star. At the star’s surface, χ
has an effectively radially inward trajectory with total
energy, boost, and velocity

γescmχ ¼ mχ þ
2GM⋆mχ

R⋆
; γesc ¼ 1.24; vesc ¼ 0.6;

ð3:1Þ

wheremχ is the dark matter mass. In this estimate we ignore
the dark matter’s velocity in the halo, which is a negligible
contribution to its energy at the star’s surface. We use the
fact that the escape velocity in a Schwarzschild background
is identical to the Newtonian escape velocity; this accounts
for the factor of 2 in the gravitational potential term of
γescmχ [[48], ex. 9.1]. We depict these velocities and our
conventions for the initial scattering state in Fig. 1.

B. Kinetic heating

The flux of dark matter onto the neutron star depends on
the maximum impact parameter for incident dark matter to
intersect the star [12],

TABLE I. Components of a neutron star core for the star mass of
M⋆ ¼ 1.5 M⊙ as computed in Ref. [11] with the Brussels-
Montreal unified equation of state BSk24 [47]. For each compo-
nent, we list the volume-averaged abundance YT normalized to
the nucleon abundance, average number density hnTi, volume-
averaged Fermi three-momentum pF, and Fermi energy EF.

Component YT hnTi½cm−3� pF [MeV] EF [MeV]

e− 0.06 1.27 × 1037 146 146
μ− 0.02 4.23 × 1036 50 118
pþ 0.07 1.48 × 1037 160 951
n 0.93 1.97 × 1038 373 1011
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bmax ¼
R⋆
vhalo

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2GM⋆
R⋆

s �
1 −

2GM⋆
R⋆

�
−1=2

¼ R⋆
vesc
vhalo

γesc;

ð3:2Þ

where vhalo ¼ 8 × 10−4 is the dark matter velocity in the
halo, asymptotically far from the star. The expression for
bmax follows from the conservation of energy and angular
momentum in a Schwarschild metric; see Appendix B 1.
The total dark matter mass passing through the neutron star
per unit time is then

_Mχ ¼ πb2maxvescρχ ≈ 3.1 × 1025
GeV
s

≈ 55
g
s
: ð3:3Þ

Over the age of the universe, this accreted dark matter
density is negligible compared to the visible matter species
in a neutron star. However, this dark matter deposits a
constant flux of kinetic energy onto the neutron star that is
converted into heat:

_K ¼ ðγesc − 1Þ _Mf ≈ 6.5 × 1024 fGeV s−1; ð3:4Þ

where f is the dark matter capture efficiency. The central
result of this paper is to calculate f for dark matter
scattering on degenerate, relativistic targets. The energy
deposited in the neutron star is converted into a kinetic
heating of the apparent blackbody temperature

Tkin ¼ 1600 f1=4 K: ð3:5Þ

A Oð109 yearÞ-old neutron star is expected to cool to
Oð100 KÞ [49,50]. The measurement of kinetic heating
above the expected neutron star luminosity by an infrared
telescope is a smoking gun signature for dark matter–
visible matter interactions.

C. Dark matter capture

The possibility that dark matter may capture on celestial
objects has long been an opportunity for the indirect
detection of dark matter’s annihilation products [51,52];
see, e.g., [53] for a detailed treatment. In contrast, our
treatment of kinetic heating is an extension of the direct
detection process intrinsic to dark matter capture. In this
paper, we focus only on heating from dark matter that
is captured in the neutron star. With this assumption, all
of the dark matter’s kinetic energy is converted into heat.
This simplification is conservative: some dark matter may
deposit energy by scattering but not capture in the star.
Further, it is possible that captured dark matter may
subsequently annihilate within the neutron star, converting
its mass energy into additional heating [1,2,37]. This effect
enhances the proposed kinetic heating signal.
There are two conditions for dark matter to capture in a

celestial object such as a neutron star:
(1) The dark matter–target scattering cross section is

large enough for a transiting dark matter particle to
interact with the target particles. This means that
over the transit time Δt across the star, there are a
sufficient number of interactions, dσvrelhnTiΔt.

(2) The dark matter particle loses enough energy from
scattering that it is unable to escape the gravita-
tional potential of the capturing object. This means
that by the time it exits the star, the dark matter
has lost its asymptotic initial kinetic energy.
Effectively this requires that its radial velocity is
less than the star’s escape velocity at some point of
its transit.

In the nonrelativistic treatment of dark matter capture in
neutron stars, the first condition is diagnosed by comparing
the dark matter–target cross section to a threshold (satu-
ration) cross section. Increasing the cross section beyond
this threshold value does not increase the probability of
capture. The second condition is determined by the

FIG. 1. Graphical definition of the kinematic quantities in this paper. The dark matter velocity asymptotically far from the star, vhalo,
and at the point of impact, vesc, are defined in the neutron star frame. Frame dependent quantities with no subscripts are assumed to be in
the neutron star frame, whereas center-of-momentum frame quantities are labeled with a subscript CM.
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fixed-target kinematics wherein gravitationally accelerated
dark matter hits a stationary target in the neutron star
rest frame.
These conditions are more nuanced for relativistic, degen-

erate targets such as electrons in a neutron star. Because the
targets are relativistic, they are not at rest in the neutron star
frame where energy loss is calculated. Instead, the dark
matter–target scattering events have an ensemble of center-
of-momentum kinematic configurations against which the
differential cross section must be integrated.
The Pauli exclusion principle introduces an additional

condition on the energy transfer: the outgoing target particle
must scatter into phase space that is not already filled by
Fermi-degenerate states. In other words, chunks of phase
space are Pauli blocked; see Fig. 2. Pauli blocking occurs for
nonrelativistic targets as well; for example, neutrons in the
neutron star are degenerate but have a Fermi momentum
below their mass. However, relativistic targets have the
additional nuance that the final state kinematics in the center-
of-momentum frame are not sufficient to determine if the
given scattering is Pauli blocked since there is a nontrivial
boost to the neutron star frame.

D. Nonrelativistic targets: Threshold cross section

For nonrelativistic targets, the threshold cross section is
simply the geometric cross section of the neutron star, πR2⋆,
divided by the total number of target particles ≈M⋆=mT:

σthres ¼
geometric cross section

number of targets
¼ πR2⋆

mT

M⋆
;

GeV≲mχ ≲ 106 GeV: ð3:6Þ

This expression is valid in a range of dark matter masses
between the target Fermi energy and a maximum mass
above which multiple scatters per transit are required for
successful capture.
Pauli blocking limits the available phase space for dark

matter masses below OðGeVÞ: the incident low-mass dark

matter does not have enough kinetic energy to scatter a
target particle out of its degenerate Fermi surface. In this
case only a fraction of the targets near a “skin” of the Fermi
surface are accessible for scattering. This fraction is δp=pF
where δp ≈ ðγχ − 1Þmχvχ is the maximum kinetic energy
of the incident dark matter. Thus for this case

σPaulithres ¼
1

3

δp
pF

σthres ≈
GeV
mχ

σthres; mχ ≲ GeV: ð3:7Þ

Conversely, for very heavy dark matter, the amount of
energy transferred ΔE saturates to a fixed value indepen-
dent of its mass; see Appendix B 2. On the other hand,
the dark matter’s asymptotic kinetic energy, 1

2
mv2halo, scales

linearly with its mass. Thus in the heavy dark matter limit, a
single scatter is insufficient to transfer the dark matter’s
total kinetic energy to a target. In this case, one requires
multiple scatters to capture dark matter. The scaling yields

σmulti
thres ≈

mχ

106 GeV
σthres; mχ ≳ 106 GeV: ð3:8Þ

In this paper, we examine the “phase space” of dark
matter capture on neutron stars from relativistic targets as a
function of the dark matter mass. We demonstrate the
principles that lead to analogous low mass, intermediate
mass, and high-mass scaling regimes. Relativistic targets,
however, require a completely different formalism. For
nonrelativistic targets one may simply compare the total
dark matter–target cross section to a threshold cross
section; this is a notion that is well-defined because the
targets are all at rest relative to the neutron star. This
assumption breaks down for the case of relativistic targets.

IV. FORMALISM FOR RELATIVISTIC TARGETS

We systematically develop the relativistic formula
for dark matter capture on a compact object with de-
generate targets. Our expression is general and matches

FIG. 2. The Pauli exclusion principle blocks the available final state phase space for degenerate targets. We sketch this effect for
nonrelativistic (left) and relativistic (right) targets in momentum space. Dark matter is assumed to enter along the positive z direction
with some kinetic energy. The purple regions represent targets that are allowed to scatter because the final state will be outside the Fermi
surface. Orange regions, on the other hand, are Pauli blocked and are forbidden from scattering.
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nonrelativistic results in that limit. All quantities are
assumed to be in the neutron star frame unless explicitly
otherwise indicated by a subscript.

A. Breakdown of the nonrelativistic treatment

The concept of a threshold cross section in Sec. III D
breaks down when the neutron star targets are relativistic.
For example, the electron Fermi energy in a neutron star is
much greater than its mass. The target particles are thus
typically traveling near the speed of light. The amount of
energy transferred from the dark matter particle to the target
depends on this initial state kinetic energy. Thus the capture
rate depends on the relative orientation of the target and
dark matter three-momenta.
Further, it is not possible to define a total cross section σ

that one may compare to any meaningful threshold, as is
standard for nonrelativistic targets; cf. Sec. III D. Instead,
one must calculate the differential cross section dσ with
respect to the “initial state phase space” of targets. What is
more, the center-of-momentum scattering cross section
must be boosted into the neutron star frame. This boost
is not collinear with the collision axis so that the cross
section is nontrivially length contracted. This can be a
significant effect given the potential magnitude of the boost
between these frames.
One of the limitations of the nonrelativistic approxima-

tion is seen in the expression for the number of captured
dark matter particles, which depends on a ratio of cross
sections. This is not Lorentz invariant as required. Our main
result in this section is a careful derivation of a fully
relativistic capture efficiency. In Ref. [9] we showed that
the fully relativistic capture efficiency is many orders of
magnitude larger than the nonrelativistic approximation.

B. Capture probability

Given some infinitesimal piece of the initial state and
final state phase space, the differential capture efficiency
for an incident dark matter particle, df, is the total number
scatters dν with the neutron star targets divided by the total
number of incident dark matter particles dNχ subject to the
kinematic conditions that the scatter leads to capture:

df ¼ dν
dNχ

����
capture

: ð4:1Þ

This capture efficiency replaces the threshold cross section in
Sec. III D. The integrated capture efficiency is an expected
number of scatters satisfying the capture conditions. When
this number is less than one, it can be interpreted as a capture
probability per dark matter particle. Each of the quantities
df, dν, and dNχ are Lorentz invariant.
The number of scatters dν of dark matter with density

dnχ on targets with density dnT and relative velocity vrel is

dν ¼ dσvreldnTdnχΔVΔt: ð4:2Þ

Here Δt ≈ 2R⋆ is the approximate transit time of a dark
matter particle through the star. The neutron star volume is
ΔV and relates the dark matter number density to the total
number of dark matter particles available to scatter in the
star, dNχ ¼ dnχΔV. We thus write the differential capture
efficiency (4.1) as

df ¼ dσvreldnTΔtjcapture: ð4:3Þ

The capture conditions are restrictions on phase space
based on the energy transfer,ΔE. We explicitly define these
conditions in Sec. IV D.

C. Connecting factors in different frames

While df in (4.3) is Lorentz invariant and can be
computed in any frame, its covariant factors are most
naturally defined in different frames. Specifically, capture
conditions and the target number density are most simply
stated in the neutron star frame where the Fermi surface is
spherical and the densities are uniform. In contrast, the
cross section dσ is typically calculated in the center-of-
momentum frame. The large boost between these frames is
the origin of the dramatic results of our fully relativistic
treatment of dark matter capture on relativistic targets
compared to a nonrelativistic approximation.
We calculate the right-hand side of (4.3) in the neutron

star frame. The quantity dσvrel in this frame is readily
expressed with respect to the differential cross section in
the center-of-momentum frame. The Möller velocity, vMøl,
relates the cross section in any frame dσ to the cross section
in the center-of-momentum frame, dσCM:

dσvrel ¼ dσCMvMøl; vMøl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp · kÞ2 −m2

Tm
2
χ

q
EpEk

: ð4:4Þ

This result is well known from the calculation of dark
matter annihilation [54]; for completeness we derive it in
Appendix B 3. Thus we write df in the neutron star frame
with respect to the center-of-momentum cross section
dσCM,

df ¼ dσCMvMøldnTΔtjcapture: ð4:5Þ

To integrate df, one requires explicit factors enforcing the
energy transfer conditions for capture.

D. Energy transfer conditions

The explicit factors in (4.5) determine the probability of
scattering. The contribution of these factors are subject to
the condition that the scattering dark matter is captured by
the neutron star. The differential capture efficiency, df,
should be nonzero only if the energy transferred ΔE from
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the dark matter to the target (i) overcomes the Fermi
degeneracy (Pauli blocking) of outgoing target states and
(ii) depletes the dark matter’s asymptotic kinetic energy so
that it cannot escape the star’s gravitational potential. These
conditions are applied as step functions in the capture
efficiency:

ΘðxÞ ¼
�
1 if x > 0

0 otherwise
: ð4:6Þ

1. Degenerate targets

Because of the Fermi degeneracy of the neutron star,
the outgoing target particle must have momentum greater
than the Fermi momentum, pF, or else the Pauli exclusion
principle blocks the interaction. This restricts the phase
space to have a minimum energy transfer from the dark
matter to the target, ΔE, in the neutron star frame where the
Fermi surface is spherically symmetric:

ΔEþ Ep − EF > 0; df ∼ ΘðΔEþ Ep − EFÞjKE;
ð4:7Þ

where Ep is the energy of the initial state target particle and
EF is the Fermi momentum for the target species. Figure 2
demonstrates why this treatment is necessary compared to
the nonrelativistic limit. The subscript KE is a reminder that
one must still impose the second capture condition on the
dark matter’s kinetic energy.

2. Depleting the kinetic energy: Single scatter case

The second capture condition is that the dark matter must
transfer enough of its kinetic energy in the scattering event.
This is a matter of whether the outgoing dark matter particle
has less than its escape velocity at the point of scattering.
This amounts to losing the kinetic energy it had asymp-
totically far from the star:

ΔE − ΔEmin > 0; ΔEmin ¼ Ehalo ¼
1

2
mχv2halo: ð4:8Þ

We assume that dark matter–target scattering is elastic.
Restricting to the case where dark matter scatters only once
in the neutron star, this tells us that the single-scatter
capture efficiency is

df1 ¼ dσCMvMøldnTΔt ΘðΔE − ΔEminÞjPauli; ð4:9Þ

where the subscript “Pauli” is a reminder that one must
still impose the second capture condition on the target
final state.

3. Multiple scattering

The energy transfer condition (4.8) is modified when the
transiting dark matter particle can scatter more than once in
the target volume of the neutron star. In that case it is
sufficient for dark matter to lose its asymptotic kinetic
energy ΔEmin ¼ Ehalo over multiple interactions over the
course of its entire transit through the star. The generali-
zation of the condition (4.8) for Nhit scatters is

hΔEi − ΔEmin

Nhit
> 0; ð4:10Þ

where hΔEi is the average energy transfer over all of the
dark matter scatters. For a dark matter particle that requires
Nhit scatters to capture, each scatter must occur in a fraction
of the total transit time,

ΔtNhit
¼ Δt

Nhit
: ð4:11Þ

We assume that the dark matter takes a straight line path
through the star with no significant deflection.
A full treatment of the capture including multiple scatters

is computationally demanding. In order to impose (4.10)
one must keep track of the transiting dark matter particle’s
scattering history. Further, one must take an appropriately
weighted sum over the possible number of scatters Nhit.
To make the problem tractable, we make a conservative
simplification and replace (4.10) with the stronger con-
dition that each scatter must have at least the minimum
average energy to capture:

ΔE −
ΔEmin

Nhit
> 0: ð4:12Þ

One may then sum over the number of hits required to
scatter:

df ¼
X
Nhit

dσCMvMøldnT
Δt
Nhit

Θ
�
ΔE −

ΔEmin

Nhit

�

× Θ
�

ΔEmin

Nhit − 1
− ΔE

�����
Pauli

: ð4:13Þ

A phase space region that captures after N hits is only
counted in the term of the sum where Nhit ¼ N; this is
imposed by the two step functions. See Appendix B 4 for a
detailed discussion.

E. Capture probability formula

The full expression for the differential capture rate
combines the base expression for df (4.3) that enforces
Pauli blocking (4.7) and the sum and over multiple
scatters (4.13):
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df ¼
X
Nhit

dσCMvMøldnT
Δt
Nhit

Θ
�
ΔE −

Ehalo

Nhit

�

× Θ
�
ΔEhalo

Nhit − 1
− ΔE

�
ΘðΔEþ Ep − EFÞ: ð4:14Þ

It is convenient to explicitly write the center-of-momentum
cross section with respect to the kinematics in that frame

dσCM ¼ dσCM
dΩCM

dΩCM; dΩCM ¼ dα dðcosψÞ; ð4:15Þ

where ψ and α are the polar and azimuthal angles of
scattering, respectively, in the center-of-momentum frame;
see Fig. 3. The differential volume in the target momentum
space with respect to its Fermi sphere is

dnT ¼ hnTi
p2dpΩF

VF
; VF ¼ 4

3
πp3

F; dΩF ¼ dφ dðcos θÞ;

ð4:16Þ

where hnTi is the average target density in (2.1) and we
write p ¼ jpj to be the magnitude of the target three-
momentum. This is integrated up to pF, the Fermi
three-momentum. The dφ integral is trivial. The final
expression is

f ¼
X
Nhit

hnTiΔt
Nhit

Z
dΩF

Z
pF

0

p2dp
VF

×
Z

dΩCM
dσCM
dΩCM

vMølΘ3ðΔEÞ; ð4:17Þ

where we use the shorthand notation Θ3ðΔEÞ to indicate the
step functions from Pauli blocking and multiple scatters,

Θ3ðΔEÞ≡ Θ
�
ΔE −

Ehalo

Nhit

�
Θ
�

ΔEhalo

Nhit − 1
− ΔE

�
× ΘðΔEþ Ep − EFÞ: ð4:18Þ

The capture efficiency, f, is defined to be the weighted
number of scatters for a dark matter particle that captures.
When this number is greater than one, we may assume that
the dark matter particle is captured. When the number is
less than one, then the probability for a given dark matter
particle to capture is f. In other words, the capture
probability of a given dark matter particle in some initial
phase space volume dnχ is Pcapture ¼ min ðf; 1Þ.

F. Nonrelativistic target limit

We confirm our primary result (4.17) by verifying that it
reduces to earlier results in the limit of stationary (non-
relativistic) target particles [1,2,11]. In this limit, the initial
target three-momentum is zero p ¼ 0, which trivializes the
integration over initial target momenta. This means that
the step functions in (4.7) and (4.10) no longer impose
kinematic constraints on the phase space integrals and may
be factored out and treated following the discussion of the
nonrelativistic case in Sec. III D. This approximation
was previously applied to neutron star dark kinetic heating
from interactions with muons in Ref. [10] and leptophilic
interactions in Ref. [11].
Define df̂ ¼ dν=dNχ to be the differential capture

efficiency without capture conditions imposed. To show
consistency with the nonrelativistic limit, it is sufficient to
show that f̂ ¼ σ=σthres, where the threshold cross section
σthres is simply the geometric cross section of a target in the
neutron star. In the p → 0 limit, the Møller velocity reduces
to the dark matter velocity in the neutron star frame,
vMøl → k=Ek ¼ vesc. The capture efficiency reduces to

f̂ ¼ veschnTiΔt
Z

p2dpdΩF

VF

Z
dσ: ð4:19Þ

Observe that
R
dσ ¼ σ is the total dark matter–target cross

section, a quantity that we argued is not well-defined for
an ensemble of relativistic, degenerate targets. The d3p
integral over initial momenta is also trivially equal to unity.
One may technically write this by imposing a δð3ÞðpÞ

FIG. 3. Variables and angles. Left: target momentum space. Center: center-of-momentum kinematic variables between the target, T,
and dark matter, χ. Right: center-of-momentum frame scattered dark matter direction; k̂0

CM with respect to a coordinate system of the
initial dark matter direction; k̂0

CM, the component of the boost between the two frames perpendicular to the initial direction, β̂⊥; and the
orthogonal direction.
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distribution forcing the targets to be stationary, or alter-
natively by taking pF → 0. Finally, we observe that

f̂ ¼ vescΔthnTiσ ¼ σ

σthres

¼ number of dark matter-target scatters; ð4:20Þ

so that this indeed recovers the standard nonrelativistic
treatment in Sec. III D.

G. Numerical methodology

The results in this paper are based on numerically
integrating (4.17). We use PYTHON 3 on a personal
computer with the NumPy numerical methods module
and the Vegas module for Monte Carlo integration.
The estimated run time for evaluating f at a given dark
matter mass depends on the kinematic regimes in Sec. VA.
On a single 2.3 GHz core: a point in the light dark matter
regime is evaluated in OðminuteÞ. For heavy and very
heavy dark matter, it takes OðsecondÞ and OðhourÞ,
respectively. Together, it takes a few hours to produce a
scan over dark matter masses from 10 eV to 10 PeV for a
given target and interaction operator.

V. SCALING OF SCATTERING

We present the general behavior of dark matter capture
on relativistic targets. The kinematics of dark matter
scattering off relativistic targets depends on the dark matter
mass relative to the other mass scales in the system: the
target mass, mT, and the Fermi momentum, pF. For
relativistic targets, mT ≪ pF so that the Fermi energy
and Fermi momentum are effectively equal, EF ≈ pF.
Figure 4 shows the regimes of qualitatively different
kinematics and sketches the discovery reach with respect

to these regimes. This behavior is in contrast to the
qualitative behavior of nonrelativistic kinematics reviewed
in Sec. III D. This section explains the origin of this general
behavior with respect to the dark matter mass.

A. Kinematic regimes

A new result in this paper is a classification of the
kinematic regimes for dark matter capture in compact
objects according to the target and dark matter masses
relative to the target Fermi momentum. We divide the
“phase space” of kinematic regimes according to
(1) Whether the target is relativistic or nonrelativistic.

If the target mass mT is lighter than its Fermi
momentum, pF, it is relativistic. Otherwise, it is
nonrelativistic. Muons, for which, mT ≈ pF are
marginal.

(2) Whether the dark matter is heavy or light.
If the dark matter is heavier than both mT and pF,

then it is heavy. Otherwise, it is light. For relativistic
targets, light means mχ ≪ pF, whereas for non-
relativistic targets this means mχ ≪ mT. In fact,
there are cases for additional subdivision:
(i) Very heavy dark matter requires multiple

scatters to capture. For relativistic targets the
threshold for this is mχ ≫ pF=v2halo, whereas
for nonrelativistic targets the threshold is
mχ ≫ mT=v2halo.

(ii) For relativistic targets, one must also distin-
guish very light dark matter from light dark
matter:

Very light dark matter is lighter than m2
T=pF. The

scattering cross section and phase space scales
differently in this regime, as seen in (5.3) and
Appendix D 5.

Light dark matter can be further divided into lightish
dark matter (heavier than mT but lighter than pF) and
medium light dark matter (heavier than m2

T=pF but
lighter than mT). These follow the same kinematics,
but their squared amplitudes scale differently. These
distinctions are explored further in Appendix D 8 and
are not discussed further in the main text.

These phases are sketched in Fig. 4.
The distinction between light versus heavy dark matter

is manifest in the scattering kinematics. In particular,
capture on relativistic targets with light dark matter prefers
relatively modest momentum transfer. This is because
there is a region of scattering kinematics where an
energetic target transfers energy to the dark matter rather
than vice versa. In this case, the center-of-momentum
frame scattering angle is rather small and corresponds to a
very forward scattering. Note that these forward scatters
map onto Oð1Þ scattering angles in the neutron star frame.
This behavior is lost in the nonrelativistic treatment of
relativistic targets.

FIG. 4. The phase space of scattering kinematics for neutron
star kinetic heating. The target mass relative to its Fermi
momentum determines whether it is relativistic or nonrelativistic.
The dark matter mass relative to the target mass and Fermi
momentum determines whether it is heavy or light. The sub-
divisions of relativistic dark matter are described in the main text.
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B. Cross section scaling

Contact operators parametrize the strength of short-
distance interactions between pairs of dark matter particles
and pairs of visible matter particles by a cutoff scale, Λ.
Larger values of Λ correspond to smaller scattering
amplitudes. Most of the contact operators that we consider
in the next section, produce squared amplitudes that
scale as

jMj2 ∝ m2
χE2

p

Λ4
;�

dσ
dΩ

�
CM

∝
jMj2
s

≈
m2

χE2
p

sΛ4
≈
m2

χm2
T

sΛ4

�
1þ p2

F

m2
T

�
: ð5:1Þ

We use this scaling relation to establish the baseline
behavior of the capture efficiency in different dark matter
mass regimes. Appendix D 8 motivates this behavior
and classifies the exceptional cases. In the nonrelativistic
target limit, p2

F=m
2
T ≪ 1 and s ¼ ðmχ þmTÞ2, the above

expression reduces to a standard expression familiar from
dark matter direct detection:

�
dσ
dΩ

�
CM

∝
m2

χm2
T

ðmχ þmTÞ2Λ4
: ð5:2Þ

The squared center-of-momentum energy, s ¼ E2
CM,

depends on the ratios of the dimensionful quantities in
this expression:

s ¼ m2
χ þm2

T þ 2γescmχEp

�
1 −

pvesc
Ep

cos θ

�
;

s ≈

8>><
>>:

m2
T mχ ≪ m2

T=EF

mχEp m2
T=EF ≪ mχ ≪ EF

m2
χ EF ≪ mχ

: ð5:3Þ

C. Characteristic features

Figures 5 and 6 depict the scaling of the capture
efficiency f with the dark matter mass mχ and the origin
of the scaling in each phase space regime. These features
are realized in the numerical results in Sec. VI. To under-
stand this behavior, we identify which factors in the capture
efficiency, Eq. (4.17), scale with mχ :

f ∼
1

Nhit

Z
1

cosψmax

d cosψ
Z

pF

pmin

p2dp
p3
F

jMj2
s

: ð5:4Þ

The scaling factors come from (i) a factor accounting
for multiple scattering, N−1

hit , (ii) the phase space integrals
d cosψp2dp, and (iii) the differential cross section
dσ=dΩCM.
The Møller velocity, Eq. (4.4), reduces to vesc in the

nonrelativistic target limit and to ð1 − vesc cos θÞ in the
relativistic target limit. In either case it does not contribute
to the mχ scaling of f. The phase space factors in (5.4)

FIG. 5. Sketch of the reach of kinetic heating observations for
dark matter scattering on relativistic (blue line) or nonrelativistic
(red line) targets through contact operators with a characteristic
cutoff scale Λ. The scaling with the dark matter mass, mχ ,
corresponds to the phases in Fig. 4.

FIG. 6. Chart showing the origin of the mχ scaling for each of the regions in Fig. 4. The “plateau” behavior in Fig. 5 is demonstrated
for both relativistic (blue areas) and nonrelativistic (red areas) targets.
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neglect the target initial angle θ and the azimuthal scatter-
ing angle α. We show in Appendix D that these play a role
in understanding the total phase space scaling with mχ , but
their phase space volumes do not themselves scale withmχ .
The Pauli blocking step functions in (4.17) are converted
into limits for the phase space integrations. The expression
for the cross section depends on the details of the
interaction between dark matter and the target. In the
present study, we use the scaling behavior in (5.1) which
describes most of the contact operators.
In this analysis and the extended phase space analysis in

Appendix D, we make the simplifying assumption that all
of themχ-dependent factors are independent of one another.
Thus we treat each phase space integral as having a trivial
integrand so that they are purely unweighted volume
integrals. In actuality, jMj2 depends on both the center-
of-momentum polar angle ψ and target three-momentum p,
but our analysis is sufficient to understand the scaling of the
capture efficiency with mχ . In summary, for each regime
the scaling of the capture efficiency f with the dark matter
mass mχ is determined by following three questions
corresponding to the factors in (5.4):
(1) How does the differential cross section scale

with mχ?
(2) Is the phase space suppressed with mχ?
(3) Does capture require multiple scatters?

1. Heavy dark matter regimes

The heavy dark matter regimes are characterized by large
momentum transfer so that Pauli blocking is negligible.
Heavy, but not very heavy, dark matter. This corre-

sponds to pF ≪ mχ ≪ pF=v2halo for relativistic targets and
mT ≪ mχ ≪ mT=v2halo for nonrelativistic targets. In this
limit, the cross section is independent of mχ , the phase
space is unsuppressed, and dark matter captures after a
single scatter. Thus, f is independent of mχ .
Heavy dark matter transfers enough kinetic energy to

capture in a neutron star. This is true even for relativistic
targets, where the transferred energy to the targets is
enough to overwhelm Pauli blocking. The full expression
for the energy transferred from the dark matter to the target,
ΔE, is presented in Appendix C 4. Because the gravita-
tional acceleration from the neutron star is proportional to
the dark matter mass, heavier dark matter has a larger three
momentum upon scattering, k. With the heavy dark matter
scaling s ∼m2

χ in (5.3), the cross section dσ=dΩ in (5.2)
is independent of mχ . Thus in this regime the capture
efficiency is independent of the dark matter mass, as shown
by the plateau feature in Fig. 4.
Observe that the ðpF=mTÞ2 term in the fully relativistic

cross section (5.1) is not present in the nonrelativistic
limit. While this is negligible for nonrelativistic targets,
this factor is on the order of 105 for ultrarelativistic targets
such as electrons. Thus this is a gross underestimation

when using the nonrelativistic formulation for relativistic
targets.
Very heavy dark matter. This corresponds to mχ ≫

pF=v2halo for relativistic targets and mχ ≫ mT=v2halo for
nonrelativistic targets. This behaves as heavy dark matter,
except multiple scatters are required to capture. We find
that f scales as m−1

χ .
The heavy dark matter behavior above breaks down for

dark matter masses in the very heavy regime. In this case
the energy transfer ΔE as a function of dark matter mass
saturates. However, the required kinetic energy loss scales
linearly with the dark matter mass. In Appendix D 7 we
confirm that the maximum energy transfer from a single
scatter in the heavy dark matter regime is approximately
the target energy, ΔEmax ≈ Ep, which is independent of
the dark matter mass. The very heavy dark matter threshold
is when this maximum energy transfer is smaller than the
minimum required energy transfer for capture ΔEmin ¼
mχv2halo=2, Eq. (4.8). Since v

2
halo ∼ 10−6, the threshold mass

above which multiple scatters is required is

very heavy :mχ ≫

8<
:

pF
v2halo

≈106pF relativistic

mT
v2halo

≈106mT nonrelativistic
: ð5:5Þ

The number of scatters required to transfer a total energy
of ΔEmin thus scales as the dark matter mass, Nhit ∼mχ .
Section IV D 3 shows that the capture efficiency, f, goes as
N−1

hit and hence in the very heavy regime f ∼m−1
χ . In this

regime heavier dark matter is a less effective kinetic heat
source, as shown by the falling feature to the right of Fig. 4.
Observe that the onset of the characteristic behavior

differs for relativistic versus nonrelativistic targets because
the thresholds to the very heavy regime are different,
Eq. (5.5). The Fermi energy of electrons is roughly an
order of magnitude lower than the mass of nucleons,
pe
F ≈ 10−1mN . Indeed, the downward slope on the reach

plots begins at ∼105 GeV for electrons versus ∼106 GeV
for neutrons and protons.

2. Light dark matter regimes

Light dark matter does not always transfer enough
energy to excite the target to an unoccupied momentum
state. The Fermi exclusion principle prevents the scattering
from occurring and the phase space is Pauli blocked. This is
depicted on the right-hand side of Fig. 2. Though the
blocked volume is not strictly spherical, it is sufficient to
treat it as such to determine the scaling with mχ .
The momentum space volume of available targets is

approximately the volume enclosed by the Fermi sphere.
However, only a fraction of these targets can scatter to
an allowed state outside the Fermi sphere. The precise
shape of these allowed targets, sketched in Fig. 2, is not
necessary to track how this volume scales the dark matter
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mass. The fraction of the targets that are not blocked
scales as

Z
pF

pmin

p2dp
1
3
p3
F

¼ p3
F − p3

min

p3
F

≈
3ðpF − pminÞ

pF
≈
3Δp
pF

∼
3EFΔEmax

p2
F

; ð5:6Þ

where in the last approximation we replace the energy
transfer ΔE with its maximum value in order to make the
mχ scaling manifest. The full expression for the energy
transfer is derived in Appendix C 4. The relevant limits of
ΔEmax are shown in Appendix D 7. For all of the cases with
light dark matter, including very light dark matter, the key
result is that

light dark matter : ΔEmax ∼mχ : ð5:7Þ

This factor leads to a reduced (blocked) phase space for
lighter dark matter in this regime. As shown in Fig. 6, the
specific light dark matter scenarios each carry different
factors of mχ , but they all combine to give f ∼m3

χ .
Nonrelativistic target, light dark matter. This corre-

sponds to mχ ≪ mT. In this limit, the cross section scales
as m2

χ , the phase space is Pauli blocked (factor of mχ), and
the dark matter captures after a single scatter. Thus, f scales
as m3

χ .
In this regime dark matter is light and the Fermi energy is

negligible; thus s ≈m2
T and is independent of mχ . The

benchmark cross section (5.2) thus scales asm2
χ . Combined

with the Pauli blocking factor, this gives f ∼m3
χ .

Relativistic target; light dark matter. This corresponds to
m2

T=pF ≪ mχ ≪ pF. In this limit, the cross section scales
as mχ , the phase space is both Pauli blocked (factor of mχ)
and has constrained cosψ space (factor of mχ), and dark
matter captures after a single scatter. Thus, f scales as m3

χ .
For relativistic targets, the Fermi energy and the target

mass combine to introduce a scale that separates light and
very light dark matter. In the light dark matter regime
s ∼mχpF, Eq. (5.3). The benchmark cross section (5.2)
thus scales as mχ . In addition to the Pauli blocking factor
of mχ , this regime’s phase space is also suppressed in the
cosψ integration. This phenomenon is detailed in
Appendix D 5, where we show that

Z
1

cosψmax

d cosψ ¼ 1 − cosψmax

<
v2esc sin2θ cos2α
ð1 − vesc cos θÞ2

�
m2

T

p2
þmχ

p
ð� � �Þ

þO
�
m2

χ

p2
;
m2

Tmχ

p3

��
; ð5:8Þ

where ð� � �Þ are terms independent of mχ and mT; see
(D20). In the light-but-not-too-light dark matter regime, the
Oðmχ=pÞ term dominates the bound and the phase space
is suppressed proportionally to the dark matter mass. The
combination of the scaling factors gives f ∼m3

χ .
Relativistic target; very light dark matter. This corre-

sponds to mχ ≪ m2
T=pF. In this limit, the cross section

scales as m2
χ , the phase space is Pauli blocked (factor

of mχ), and dark matter captures after a single scatter.
Thus, f scales as m3

χ .
This regime follows the behavior of a nonrelativistic

target, light dark matter scenario. In both cases the dark
matter is lighter than any other scale in the problem. There
is no suppression of the ψ phase space in (5.8) because the
upper limit is dominated by the Oðm2

T=p
2Þ term that is

independent of the dark matter mass.

VI. DISCOVERY REACH FOR EFFECTIVE
CONTACT OPERATORS

We present the discovery reach for spin-0 and spin-1
dark matter interacting with Standard Model fermions
through an effective contact operator. Our primary focus
is the reach for kinetic heating from ultrarelativistic
electrons in a neutron star; we compare this to terrestrial
bounds on dark matter–electron scattering, the nonrelativ-
istic approximation for kinetic heating off electrons, and the
analogous reach for muons and nucleons.

A. Effective theory

Effective contact operators are model-independent para-
metrizations of dark matter–visible matter interactions
in the limit of small momentum transfer compared to the
mass scale of the dynamics that generate interaction. The
coupling of these operators are an inverse power of a cutoff
scale, Λ, that is approximately the scale at which the
effective description breaks down. In the simplest ultra-
violet completion, the cutoff scale is a combination of
heavy mediator masses and couplings.
Table II presents our basis of contact operators and the

squared amplitudes from each operator. We write our
effective operators in the form OχOξ where each Oχ is a
bilinear of fermionic or scalar dark matter and ξ is a
Standard Model fermion with a bilinear Oξ. The effective
coupling isΛ4−N whereN is the dimension of the combined
operator. Most of the operators are dimension-six and
carry a coupling Λ−2, while OS

1;2 are dimension-five with
coupling Λ−1.
One must account for additional factors when comparing

the contact operators in Table II to a full theory. The
operators with spin-0 or spin-2 Standard Model
bilinears—OF

1−4, O
F
9−10, and OS

1−2—connect fermions of
different chirality. Gauge invariance requires that the ultra-
violet physics that generates the operator must include an
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order parameter for electroweak symmetry breaking.
Furthermore, these operators may introduce tightly con-
strained flavor violating observables at loop level. As such,
one may complete operators with gauge-invariant contact
operators consistent with minimal flavor violation [55]. The
simplest choice is to use the Higgs vacuum expectation
value as the order parameter for chiral symmetry breaking
and the Standard Model Yukawa couplings as flavor
spurions:

1

ΛN−4OχOξ ≡ 1

Λ̃N−3 y
ξ
IJOχhHi ·OIJ

ξ ; ð6:1Þ

whereH ·Oξ is a Standard Model gauge singlet and yξIJO
IJ
ξ

is a flavor singlet. In this way the kinetic heating discovery
reach in Λ may be mapped onto a bound on the corre-
sponding cutoff Λ̃ of a gauge-invariant, minimal flavor
violating contact operator. The completion above is con-
sistent with what one would expect from a heavy scalar
mediator mixing with the Standard Model Higgs.
Methodology.—We assume that dark matter–visible

matter interactions are dominated by a single contact
operator with a single target species. We numerically
integrate (4.17) to determine the projected reach on the

cutoff Λ as a function of the dark matter mass mχ . We plot
the discovery reach for a range of dark matter masses,

10 eVðevaporationÞ < mχ < 10 PeV ðno new featuresÞ:
ð6:2Þ

The lower limit corresponds to the mass at which one must
account for the evaporation of dark matter from the neutron
star [33]. The upper limit is the scale beyond which there are
no new features; the capture efficiency scales as f ∼m−1

χ

from the requirement of multiple scattering; see Sec. VA.
Limits of the effective contact operator description.—If

the contact operators are generated by a heavy mediator
with Oð1Þ couplings, then one may roughly interpret Λ to
be the mediator mass. The dark matter–target interactions
for kinetic heating are then t-channel interactions. In this
case, the contact description breaks down when the
Mandelstam t-variable dominates in the mediator propa-
gator, where −t is the square of the transferred four-
momentum. For our purposes, the characteristic scale
momentum transfer is determined by the kinematics of
kinetic heating. This, in turn, defines the condition at which
the effective theory may be replaced by its UV completion:

q2 ∼
�
p2
F ⇒ breakdown whenΛ ≪ pF ðheavy dark matterÞ

m2
χ ⇒ breakdown whenΛ ≪ mχ ðlight dark matterÞ : ð6:3Þ

TABLE II. Effective contact operators and their squared tree-level scattering amplitudes for pairwise interactions
of dark matter, χ, with Standard Model fermionic targets, ξ. Squared amplitudes are written with respect to the
Mandelstam s and t variables and are rescaled by a power of the cutoff Λ4 for brevity. Operators with superscript
F (S) correspond to fermionic (scalar) dark matter.

Name Operator Λ4jMj2 (m2
χE2

p term dominates when present)

OF
1 ðχ̄χÞðξ̄ξÞ ð4m2

χ − tÞð4m2
T − tÞ

OF
2 ðχ̄iγ5χÞðξ̄ξÞ tðt − 4m2

TÞ
OF

3 ðχ̄χÞðξ̄iγ5ξÞ tðt − 4m2
χÞ

OF
4 ðχ̄iγ5χÞðξ̄iγ5ξÞ t2

OF
5 ðχ̄γμχÞðξ̄γμξÞ 4ðm2

T þm2
χÞ2 − 8sðm2

T þm2
χÞ þ 4s2 þ 4stþ 2t2

OF
6 ðχ̄γμγ5χÞðξ̄γμξÞ 4ðm2

T −m2
χÞ2 − 8sðm2

T þm2
χÞ − 8tm2

χ þ 4s2 þ 4stþ 2t2

OF
7 ðχ̄γμχÞðξ̄γμγ5ξÞ 4ðm2

T −m2
χÞ2 − 8sðm2

T þm2
χÞ − 8tm2

T þ 4s2 þ 4stþ 2t2

OF
8 ðχ̄γμγ5χÞðξ̄γμγ5ξÞ 4ðm4

T þ 10m2
Tm

2
χ þm4

χÞ − 8ðsþ tÞðm2
T þm2

χÞ þ 4s2 þ 4stþ 2t2

OF
9 ðχ̄σμνχÞðξ̄σμνξÞ 8½4ðm4

T þ 4m2
Tm

2
χ þm4

χÞ − 2ð4sþ tÞðm2
T þm2

χÞ þ ð2sþ tÞ2�
OF

10 ðχ̄σμνiγ5χÞðξ̄σμνξÞ 8½4ðm2
T þm2

χÞ2 − 2ð4sþ tÞðm2
T þm2

χÞ þ ð2sþ tÞ2�
OS

1 ðχ†χÞðξ̄ξÞΛ Λ2ð4m2
T − tÞ

OS
2 ðχ†χÞðξ̄iγ5ξÞΛ Λ2ð−tÞ

OS
3 ðχ†i∂μχÞðξ̄γμξÞ 4½ðm2

T þm2
χÞ2 − 2sðm2

T þm2
χÞ þ s2 þ st −m2

Tt�
OS

4 ðχ†i∂μχÞðξ̄γμγ5ξÞ 4½ðm2
T −m2

χÞ2 − 2sðm2
T þm2

χÞ þ s2 þ st�
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AssumingOð1Þ couplings, this condition is relevant for the
fermionic OF

2−4 operators so that one should use caution
when interpreting these plots with respect to the domain of
validity. The scaling of t that leads to (6.3) is presented in
Table IV of Appendix D 8.

B. Results

Figures 7–10 present the results for each of the operators
in Table II. The numerical results follow the general
behavior of relativistic and nonrelativistic targets explained
in Sec. V. We find that muons are semirelativistic targets

FIG. 7. Projected kinetic heating discovery reach for fermionic dark matter interacting through the spin-0 contact operators
OF

1−4 in Table II for different targets: electrons (cyan), muons (yellow), nucleons (gray). The corresponding shaded regions are
accessible for the benchmark scenario of a neutron star temperature T⋆ ¼ 1600 K (f ¼ 1). The dotted blue line shows the
approximation of nonrelativistic electrons and is contrasted with the full relativistic calculation undertaken in this work (solid blue
line). Dashed blue lines with the corresponding shaded region show the reach of electron recoil direct detection searches [56–59].
Note that for OF

2−4, the validity of the effective theory may break down when the ultraviolet theory is a heavy mediator with Oð1Þ
couplings; see (6.3).
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whose capture efficiency is accurately represented in the
nonrelativistic approximation. The muon reach typically
tracks that of the nucleons. Note that this reflects the
nonrelativistic kinematics only; the dynamics generating
the nucleon and lepton couplings are assumed to be
completely independent.
To highlight the importance of relativistic effects, we

also plot the approximation where electron targets are
treated nonrelativistically. For light dark matter, the non-
relativistic target approximation greatly overestimates the

sensitivity of kinetic heating. This is because it is harder to
transfer momentum to energetic ultrarelativistic targets
rather than stationary targets. In the heavy dark matter
regime, the nonrelativistic target approximation signifi-
cantly underestimates the kinetic heating reach.
Our results are particularly significant for models of

leptophilic dark matter [60–63] for which the induced
nucleon interactions are loop suppressed. Earlier work
compared the kinetic heating reach of tree-level leptophilic
interactions to the loop-induced nucleon interactions in the

FIG. 8. Projected kinetic heating discovery reach for fermionic dark matter interacting through the spin-1 contact operators OF
5−8 in

Table II for different targets: electrons (cyan), muons (yellow), nucleons (gray). Other features follow the caption for Fig. 7.
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limit of nonrelativistic leptons [11]. The result is that the
loop-level coupling to nucleons is a weaker probe of
leptophilic interactions than the tree-level coupling to
nonrelativistic muons. Our fully relativistic treatment
revises these results and shows that electron scattering
can be the dominant heating channel in these scenarios. In
particular, we confirm that muons are accurately described
by the nonrelativistic target limit and show that the reach
from relativistic electron scattering is generically stronger
or comparable to that of nonrelativistic muons.
The rightmost column of Table II shows how the squared

amplitude of each contact operator depends on the masses
and kinematics of the scattering. Most of the operators
contain a term proportional to m2

χE2
p; this term dominates

when it is present. Section V C describes the scaling
behavior of the capture efficiency f with respect to mχ

assuming this m2
χE2

p term as a benchmark. The exceptional
cases are tabulated in Table Vof Appendix D 8. For capture
efficiencies that scale as f ∝ mn

χ , the corresponding reach

scales as Λ ∝ mn=4
χ . From the scaling arguments summa-

rized in Fig. 6, the benchmark scenario gives

Λ ∼

8>><
>>:

m3=4
χ light and very light dark matter

m0
χ heavyðintermediate massÞdark matter

m−1=4
χ very heavy dark matter

;

ð6:4Þ

where the dark matter mass regimes are defined in Fig. 4 for
relativistic and nonrelativistic targets. Figures 8–10 show

that OF
5−10 and OS

3;4 follow this trend. One may deduce the
scaling for operators with exceptional squared amplitudes
following the analogous scaling arguments in Figs. 14
and 15 in Appendix D 8.

C. Comparison to existing bounds

Our reach plots also show current and projected direct
detection sensitivities to show how kinetic heating comple-
ments and may supersede these traditional searches. We
also comment on collider and black hole bounds that we do
not depict on these plots.
Direct Detection. We estimate the reach from direct

detection experiments that probe nonrelativistic dark matter
scattering from nondegenerate targets [56–59]. We recast
these direct detection bounds using the nonrelativistic limit
of the squared amplitudes in Table II,

s →

�
1

2
mχv2halo þmT

�
2

;

−t →
�
α2m2

e ðelectron recoilÞ
2μ2Tχv

2
halo ðnuclear recoilÞ ; ð6:5Þ

where α is the electromagnetic fine structure constant and t
is estimated with the characteristic transfer momentum
averaged over all scattering angles. For electron recoil, we
set this characteristic momentum to the typical atomic
ionization energy [64]. We further assume that the electron
recoil form factor is unity and a uniform dark matter

FIG. 9. Projected kinetic heating discovery reach for fermionic dark matter interacting through the spin-2 contact operators OF
9;10 in

Table II for different targets: electrons (cyan), muons (yellow), nucleons (gray). Other features follow the caption for Fig. 7.
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velocity vhalo ∼ 10−3. Observe that the OF
2;5 operators

highlight the powerful complementarity of kinetic heating
to direct detection. Scattering through these operators is
suppressed by the transfer momentum in the nonrelativistic
limit relevant for direct detection. When dark matter
scatters in a neutron star, on the other hand, this suppression
is lifted since the transfer momentum can be large.
Comparison to collider bounds. We do not show bounds

from collider searches for dark matter [65,66]. While
monojet and monophoton searches are sensitive to dark

matter lighter than Oð100 GeVÞ, the contact operator
description may break down when the mediator mass is
smaller than the center-of-momentum energy. Since dark
matter capture is a t-channel process, there are regimes
where the effective theory is valid for kinetic heating but
not collider searches based on missing energy.
Black holes. Certain scenarios of dark matter capture in

neutron stars are constrained simply from the existence of
neutron stars [17,67]. The accumulation of nonannihilating
dark matter in the interior of the neutron star may produce a

FIG. 10. Projected kinetic heating discovery reach for scalar dark matter interacting through the contact operators OF
1−4 in Table II for

different targets: electrons (cyan), muons (yellow), nucleons (gray). Other features follow the caption for Fig. 7.
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long-lived black hole. This process is subject to ongoing
uncertainties about the stability of the neutron star core
against collapse [68] and whether the scalar self-inter-
actions generically prevent black hole formation [26]. Our
search is agnostic to whether dark matter annihilates, and
we do not include black hole bounds on our plots.
Neutrino experiments. For cross sections much greater

than electroweak cross sections, a small flux of dark matter
at sub-GeV masses can scatter off cosmic rays, gain large
kinetic energies, and trigger direct detection and neutrino
detectors [69–73]. Estimating the resultant operator-
dependent constraints is beyond our scope and focus,
and would constitute an interesting future study.

D. Dependence on energy scales

Table III shows the baseline scaling of the discovery
reach, Λ, with respect to all relevant energy scales. This
matches the mχ scaling in (6.4) and the behavior of the
OF

5−10 and OS
3;4 operators in Figs. 8–10. Appendix D 11

derives the scaling of the discovery reach with respect to all
relevant energy scales with the exceptional cases tabulated
in Table VIII. The neutron star radius enters through the
calculation of the kinetic heating effect in Sec. III B. It is
notable that the target mass mT , the target Fermi momen-
tum pF, the dark matter mass mχ , the cutoff/coupling scale
Λ, and the neutron star radius R⋆ saturate all relevant scales
in the theory. The neutron star mass M⋆ is related to R⋆
and pF.
The equilibrium densities in the BSk24 model of the

neutron star core lead to Fermi momenta pF that are within
a Oð1Þ factor of each other for different targets. This
explains why the low-mass behavior of discovery reach
plots appears as nearby parallel lines: in addition to the
nonrelativistic and relativistic targets having the same
power-law scaling in mχ , the overall prefactor difference
is quite small. This is a consequence of the equilibrium
conditions between β decay and the Urca processes in the
neutron star core. Chemical equilibrium ties together the
number densities, n, of the degenerate species, which in
turn sets their Fermi momenta, pF ∼ n1=3. As a result, the
electron Fermi momentum is approximately only a factor of

10 smaller than the nucleon mass. The closeness of these
scales accounts for the closeness of the relativistic and
nonrelativistic target reach in light and very light dark
matter regime that is sketched in Fig. 5 and appears
numerically in our plots. The OF

1;2 and OS
1 operators

contradict the baseline scaling in the lightish dark matter
regime: the difference in themχ scaling between relativistic
and nonrelativistic targets leads to a pronounced suppres-
sion in the reach for electron targets relative to the non-
relativistic targets in the light dark matter regimes.

VII. SOURCES OF UNCERTAINTIES

We conservatively underestimate the heating rate
since we do not include the effect of scatters that transfer
energy but do not capture. Our multiscatter bounds are
conservative as well, as explained in Sec. IV D 3. The
cooling of the neutron star due to the transfer of energy to
the incident dark matter is prevented by the Pauli degen-
eracy of relativistic targets.
Our estimate of the Λ reach shown in Figs. 7–10 uses the

volume-averaged target abundance and Fermi momentum
for a benchmark functional BSk24 with a specific mass-
radius configuration of M⋆ ¼ 1.5 M⊙ and R⋆ ¼ 12.6 km,
consistent with BSk24 functional. Choosing another func-
tional such as BSk22, BSk25, or BSk26 or choosing a
different mass-radius configuration for a given functional
alters the radial profiles of stellar constituents and asso-
ciated quantities such as target abundance and Fermi
momentum. These choices in turn affect the Pauli blocking,
and subsequently the Λ reaches shown in Figs. 7–10. The
effect of the nucleon density radial profile and correspond-
ing radial variation in the chemical potential on the dark
matter capture rate is studied in [33].
To estimate the maximum deviation due to the change of

the functional as well as radial variation in density for a
given functional, we follow the method outlined in [9].
A detailed analysis for individual functionals and radial
density profiles is beyond the scope of this work. Here we
consider the maximum range of baryon densities from
0.05 fm−3 to 0.95 fm−3 as allowed by viable mass-radius
configurations corresponding to the functionals BSk22,
Bsk24, Bsk25, and Bsk26 [11,47]. We take the values of
target abundance and Fermi momentum corresponding to
these extreme density values for estimation of respective
kinetic heating cutoff reaches. The band defined by these
extreme value estimates will contain all deviations in the
kinetic heating reach due to functional change or radial
density variation for a given functional.
For operatorsOF

1 ,O
F
3 ,O

F
5 −OF

10,O
S
3 , andO

S
4 , we obtain

that the reach can at most be a factor of 2 greater compared
to the benchmark values shown in Figs. 7–10 for neutron,
proton, and muon targets. For electron targets it can at most
be a factor of 3 higher. For neutron and electron targets it
can at most be a factor of 1.5 lower, while for muon targets

TABLE III. Experimental reach on ΛR−1=4⋆ as a function of the
target mass mT , dark matter mass mχ , and the Fermi momentum
pF in the different regimes defined in Fig. 4. The baseline case
corresponds to the behavior of the OF

5−10 and OS
3;4 operators in

Table VIII. These follow the benchmark jMj2 ∼mχE2
p relation

in (5.1). The full set of scalings including the exceptional
operators is presented in Table VIII.

mT Nonrelativistic Relativistic

mχ Heavy Light Heavy Lightish
Med.
light

Very
light

Baseline p1=4
F mT p1=2

F m3=4
χ p5=4

F p1=2
F m3=4

χ p1=2
F m3=4

χ p1=2
F m3=4

χ
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it can be lower by a large factor, if the central baryon
density falls below 0.12 fm−3 due to muon abundance
disappearing for very low baryon densities [47]. For the
remaining four operators, the maximum deviation factors
are the same as the above for nonelectron targets. In the
case of electron targets, for light dark matter capture, we see
negligible deviation from the benchmark values shown in
Figs. 7 and 10. This occurs due to the fact that lowering of
the target density is compensated by lesser Pauli blocking.
For heavy dark matter capture by electrons, the reach could
be higher up to a factor of 4.5 or lower up to a factor of 4 for
operators OF

2 and OF
4 . These factors are 9 and 7, respec-

tively, in case of operators OS
1 and OS

2 .
The relative shifts in the Λ reaches due to the change of

nucleon density, among different targets for the same
operator, are found to be qualitatively similar to those
noted for OF

5 in [9]. This is true for all the operators with a
few exceptions. In the light dark matter regime, there is a
great overlap between the bands. The reach for all targets
shifts while generally maintaining the relative ordering
between them as shown in Figs. 7–10. In the case of muons,
for the configurations with central baryon density below
0.12 fm−3, the muon reach rapidly falls and the electron
reach can dominate over the muon reach even in the light
dark matter regime for all operators, as found for the case of
OF

5 in [9]. Exceptional behavior of electron reach domi-
nating over neutron reach is possible for OF

2 , O
F
4 , O

S
1 , and

OS
2 , where lowering of the baryon density does not have

much effect on electron reach as noted above, but the
neutron reach is sufficiently lowered.
In the heavy dark matter regime, the electron band moves

closer to the nucleon band for higher baryon densities, as
noted in [9]. This is because the higher pF=mT ratio for
electrons compared to neutrons increases the capture of
heavy dark matter much more than the corresponding
increase in capture by neutrons. For the same reason,
electron dominance over muons in this regime is enhanced
even for higher baryon densities.
We assume that all dark matter transits are diametric

across the star, meaning the transit time is assumed to be
Δt ¼ 2R⋆. This introduces another uncertainty in the
capture rate by an Oð1Þ factor. When translated to an
uncertainty in the bound on cutoff for effective interactions,
it gets diminished, since the cutoff goes as the fourth root of
the capture rate. For example, in the case of a constant
density sphere, according to special relativity, the transit
time along the diameter is ∼3.2R⋆ for a falling object, with
initial speed of vhalo far away from the star and relativistic
speeds at the surface of the star. Even the paths through
shorter chords have Δt > 2R⋆. The number of dark matter
particles following these paths are an Oð1Þ fraction of the
total flux through the star. This Oð1Þ factor uncertainty in
the capture rate, when suppressed by a fourth root,
generates a deviation of Oð10%Þ at most in the Λ reach.
Thus, the cutoff scale bounds derived by assuming

Δt ¼ 2R⋆ remain fairly robust to variations in transit time
of different dark matter particles.
We also neglect corrections due to the Schwarzschild

metric in the stellar interior. Every dot product in the
derivation of the capture rate is expected to carry a
corresponding Oð10%Þ correction. This correction also
appears in the relative velocity and the expressions for
jMj2 in Table II. Oð1Þ factor variations due to a change of
the functional are dominant compared to Oð10%Þ correc-
tions. Thus, an overall variation in the benchmark reach
remains a small Oð1Þ factor except when zero abundance
of muons at low baryon densities leads to a significant
reduction in the sensitivity for muons. Finally, we note that
we have neglected exotic phases of matter that may occupy
the core of a neutron star. In particular, a color-flavor-
locked phase may have no electrons and may suppress dark
matter scattering with nucleons [23].

VIII. CONCLUSIONS

Neutron star kinetic heating is a novel way to discover
dark matter–visible matter interactions. We present a new
framework to calculate the kinetic heating from a dark
matter incident on Fermi-degenerate, ultrarelativistic tar-
gets in a neutron star, such as electrons. Our formalism
accounts for the boost between the center-of-momentum
frame where scattering kinematics are manifest and the
neutron star frame where heating and Pauli blocking
effects are defined.
We classify the kinematics of dark matter capture in a

neutron star according to the dark matter mass and whether
the target is relativistic. Figure 4 summarizes this classi-
fication. We apply our framework to determine the dis-
covery reach of a kinetic heating observation for scalar and
fermionic dark matter that interacts with visible matter
through contact interactions. This extends the existing
literature on kinetic heating to a complete set of effective
interactions with a Standard Model fermion up to
dimension-six. Figures 7–10 present our numerical results.
In large regions of parameter space, neutron star heating
from electron scattering is a powerful and complementary
technique to search for dark matter compared to terrestrial
searches. This is especially true for leptophilic dark matter
models where electron scattering is the primary discovery
channel and for operators whose scattering is proportional
to the transferred momentum.
The neutron star kinetic heating program is especially

exciting given the road map of upcoming radio (FAST [3],
SKA [4], and CHIME [5]) and infrared telescopes (JWST [6],
TMT [7], and ELT [8]). The detection of a single star
sufficiently old and sufficiently nearby neutron stars may
be sufficient to either discover dark matter through
kinetic heating or otherwise play an important role in
model discrimination in concert with other experimental
programs.
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APPENDIX A: CONVENTION FOR
FRAME-DEPENDENT QUANTITIES

The formalism in this paper involves quantities that are
naturally defined in different frames. This can lead to
ambiguous or cluttered notation. This Appendix summa-
rizes the conventions we use for labeling frame-dependent
quantities.
Frames are specified by subscripts on individual quan-

tities. When there is ambiguity, the outermost subscript is
the frame. Thus dσCM is the differential cross section in
the center-of-momentum frame, and ðdσvreldnTdnχÞT is a
product calculated in the target frame. Quantities that are
Lorentz invariant do not have frames specified. Most of the
calculations in this study are in the neutron star frame. For
simplicity, we drop the neutron star frame subscript when
there is no ambiguity. Thus quantities that are Lorentz
covariant and carry no specified frame are understood to be
calculated in the neutron star frame.
Four-momenta and three-momenta: pμ ¼ ðEp;pÞ and

kμ ¼ ðEk;kÞ represent the four-momenta of the target and
the dark matter, respectively. Without additional labeling,
they are assumed to be in the neutron star frame.
Contractions are written with dots: p · k ¼ pμkμ ¼ p0k0 −
p · k. An italicized four-momentum with no indices is
understood to be the magnitude of the three-vector: p ¼ jpj
and k ¼ jkj. This introduces no ambiguity with the norm of
the four-vector since, for example, pμpμ ¼ m2

T; in other
words, we never write p2 to mean the Minkowski norm
of a four-momentum. This slightly unconventional choice
simplifies the visual interpretation of the expressions in
these Appendixes.
We use natural units throughout this document. Physical

velocities of particles are written as v; for example, vhalo is
the asymptotic velocity of dark matter in the halo as
measured in the neutron star frame. The boost factor to
the dark matter rest frame is γhalo ¼ ð1 − v2haloÞ−1=2.

APPENDIX B: SOME USEFUL DERIVATIONS

1. Maximum impact parameter

Figure 11 is a schematic diagram showing bmax. We
derive bmax in (3.2). Reference [1] attributes this result to
Ref. [12], which in turn references a general relativity
textbook. Our treatment is based on the textbook by Hartle
[48]. In the vicinity of the neutron star the space is
described by the Schwarzschild metric, which in spherical
coordinates is

ds2 ¼
�
1 −

2GM
r

�
dt2 −

�
1 −

2GM
r

�
−1
dr2 − r2dΩ2:

ðB1Þ
This space has two constants of motion coming from
invariance along translations in time and the polar direction:

ε ¼
�
1 −

2GM
r

�
dt
dτ

; l ¼ r2sin2θ
dϕ
dτ

; ðB2Þ

where τ is the proper time of a test particle. These are
simply energy per unit mass and angular momentum per unit
mass. The normalization of a test particle‘s four-velocity,
uαuβgαβ gives

ε

l2
¼ 1

l2

dr
dτ

þ ð1 − 2GM
r Þ

r2
þ ð1 − 2GM

r Þ
l2

: ðB3Þ

The maximum impact parameter bmax corresponds to the
distance at which a dark matter particle approaching with
some initial velocity vhalo has a trajectory that is tangent to
the neutron star: At the point of tangency, dr=dτ ¼ 0 and
r ¼ R. Thus (B3) gives

l ¼ R

ffiffiffiffiffiffiffiffiffiffiffi
2GM
R

r �
1 −

2GM
R

�
−1=2

: ðB4Þ

However, since l is a constant of motion, we may set it
to its initial value asymptotically far from the neutron star:
l ¼ bmaxvhalo, from which we derive the expression
for bmax.

2. Energy transfer for a nonrelativistic target

To assist in contrasting the relativistic and nonrelativistic
cases, we derive the energy transfer to a nonrelativistic
target that is stationary in the neutron star frame, Eq. (5) in
Ref. [1]. In the neutron star frame, the incident dark matter
has four-momentum kμ ¼ ðEk;kÞ such that

k2 ¼ E2
k −m2

χ ¼ ðγesc − 1Þm2
χ ¼

v2esc
1 − v2esc

m2
χ ;

γ2esc ¼
1

1 − v2esc
; ðB5Þ
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where vesc is the escape velocity at the surface of the
neutron star. Similarly, let pμ ¼ ðmT; 0Þ be the nonrelativ-
istic target four-momentum in the neutron star frame.
Define β and γ2 ¼ ð1 − β2Þ to be the boost parameter to
the center-of-momentum frame. The center-of-momentum
frame momenta are

kμCM ¼
�

γ −γβ
−γβ γ

��
Ek

k

�
;

pμ
CM ¼

�
γ −γβ

−γβ γ

��
mT

0

�
: ðB6Þ

The total three-momentum vanishes in the center-of-
momentum frame so that

pCM þ kCM ¼ 0; which gives β ¼ k
Eesc þmT

:

ðB7Þ

The transferred four-momentum is qμCM ¼ kμCM − k0μCM ¼
ð0;qCMÞT . In the neutron star frame, the energy transfer is

ΔE ¼ q0 ¼ γβ · qCM ¼ γk · qCM

Ek þmT
¼ γ2mTk2ð1 − cosψÞ

ðEk þmTÞ2
;

ðB8Þ

where ψ is the angle between the dark matter incoming
and outgoing three-momenta in the center-of-momentum
frame. We simplify this using

γ2

Eesc þmT
¼ Eesc þmT

m2
χ þm2

T þ 2γescmχmT
: ðB9Þ

The energy transfer to a nonrelativistic target in the neutron
star frame is

ΔE ¼ mTm2
χ

m2
χ þm2

T þ 2γescmχmT

v2esc
1 − v2esc

ð1 − cosψÞ; ðB10Þ

where vesc is the escape velocity so that in the v2esc ≪ 1 limit
the second factor reduces to v2esc.

3. Flux density and the Møller velocity

The Møller velocity, vMøl, appears in the kinematics of
noncollinear particle scattering such as dark matter anni-
hilation [54]. For colliding particles T and χ with respective
four-momenta pμ ¼ ðEp;pÞ and kμ ¼ ðEk;kÞ, a conven-
ient expression is

vMøl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp · kÞ2 −m2

Tm
2
χ

q
EpEk

; ðB11Þ

which is precisely the factor that shows up in the flux density
of the dark matter–target scattering rate: nTnχvMøl. The
following discussion is a summary of the review by Cannoni
[74], which in turn is based on The Classical Theory of
Fields by Landau, Lifschitz, and Hamermesh [75].
The relative velocity vrel between the target and dark

matter is a Lorentz invariant [76]. This can be seen, for
example, by starting in the target frame where vrel is simply
the dark matter velocity. One may subsequently write vrel in
terms of Lorentz invariants:

vrel ¼
k
Ek

����
T
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k −m2

χ

q
Ek

������
T

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp · kÞ2 −m2

Tm
2
χ

q
p · k

: ðB12Þ

For a given scattering process, the invariant rate density is

R ¼ dν
ΔVΔt

¼ ðdσvreldnTdnχÞT; ðB13Þ

where on the right-hand side we write the expression in
the frame of the target particle because here the cross
section dσ and relative velocity vrel ¼ vχ jT are unambig-
uously defined. By comparison, we do not simply plug
in our expression for dν from (4.2) because of the challenge
of defining dσ in an arbitrary frame due to Lorentz
contraction.
In order to write the rate density in a general frame, F, we

note that it must be proportional to the target and dark
matter densities,

R ¼ ðAdnTdnχÞF ¼
�
A
ETEχ

mTmχ

�
F

dn̂Tdn̂χ ; ðB14Þ

where A is a proportionality factor and we factor out the
target density in the target frame dn̂T ¼ ðdnTÞT and the
dark matter density in the dark matter frame dn̂χ ¼ ðdnχÞχ .
These densities are the zeroth components of four-currents
so that boosting from their respective rest frames to a
general frame rescales them by γ ¼ E=m.
Because R and dn̂Tdn̂χ=mTmχ are invariant, the combi-

nation AETEχ must also be invariant. Comparing the right-
hand sides of (B13) and (B14) gives the proportionality
factor,

FIG. 11. Schematic diagram showing bmax.
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A ¼ p · k
ETEχ

ðdσvrelÞT; ðB15Þ

where the cross section dσ is calculated in the target frame.1

Using the invariance of vrel in (B12) and the invariance of
dσT along the collision axis, we have dσT ¼ dσCM so that
the invariant rate density is conveniently expressed as

R ¼ dσCM

�
p · k
ETEχ

vrel

�
dnTdnχ ¼ dσCMvMøldnTdnχ :

ðB16Þ

Comparing this to the rate in (B13), we have a convenient
transformation of dσvrel into any frame:

ðdσvrelÞF ¼ dσCMðvMølÞF: ðB17Þ

The relative velocity vrel is invariant [74], but the Møller
velocity, vMøl, is not. The above relation is a simple way to
connect the cross section in a general frame to the center-of-
momentum frame where it is most conveniently calculated.
This proves (4.4).

4. Capture from multiple scattering

We discuss the treatment of multiple scattering, expand-
ing on the presentation in Sec. IV D 3. For convenience,
let us define a differential capture efficiency without any
kinematic conditions imposed:

df̂ ≡ dν
dNχ

¼ dσCMvMøldnTΔt; ðB18Þ

this differs from df in (4.5) in that capture conditions
are not imposed. The discussion of multiple scatters is
unaffected by Pauli blocking, so for the purposes of this
Appendix we may assume that the targets are not
degenerate.
Dark matter is captured if it loses its asymptotic kinetic

energy ΔEmin ¼ Ehalo over its transit through the star. The
capture efficiency df̂ is a measure of the total number of
scatters that a transiting dark matter particle undergoes. We
can restrict to cases where dark matter captures after only
one capture (Nhit ¼ 1) by multiplying df̂ by a step function
enforcing that any scatter must transfer ΔE ≥ ΔEmin:

df̂Nhit¼1 ¼ df̂ΘðΔE − EhaloÞ≡ df̂jΔE>Ehalo
: ðB19Þ

ΔE is fixed for a given initial and final state kinematic
configuration. The Θ function enforces that only scatters

that satisfy the capture condition are counted when inte-
grating (B19). When df̂Nhit¼1 ≥ 1, we assume that transit-
ing dark matter scatters at least once and always captures.
Otherwise, the probability for a given dark matter particle
to capture is simply the capture efficiency, df̂Nhit¼1.
We extend this to the case where dark matter

that captures from Nhit ¼ 2 scatters. In this case it is
sufficient for each scatter to transfer energy ΔE > ΔE=2
but it must do so over each half of its total transit through
the star. Thus

df̂Nhit¼2 ¼
1

2
df̂

����
ΔE>ΔEmin=2

: ðB20Þ

This is clearly a conservative estimate as it undercounts
configurations where the average energy loss is larger than
ΔEmin=2 but one scatter has ΔE < ΔEmin=2.
When combining these results, one must be careful not to

double count the configurations. IfΔE permits capture after
one scatter, it should not be counted in the piece for two
scatters. Thus, counting only the captures that require up to
Nhit ¼ 2 scatters, we get

df̂Nhit¼1 or 2¼df̂jΔE>ΔEmin
þ1

2
df̂

����
ΔEmin>ΔE>ΔEmin=2

: ðB21Þ

The generalization to larger Nhit is straightforward.
To analytically understand the dependence of capture

efficiency f onmχ , we make a further conservative estimate
and assume that the expected number of capturing scatters
df̂ is dominated by a single value of Nhit,

f ≈
1

N̂hit

Z
df̂

����
ΔE>ΔEmin=N̂hit

; ðB22Þ

where N̂hit is the value of Nhit that maximizes the integrand.
Note that we also drop the upper limit on ΔE on the right-
hand side, since this approximation would not overcount
those scatters. For the purpose of numerical results pre-
sented in Figs. 7–10, we use (B21) generalized to a very
large Nhit.

APPENDIX C: KINEMATICS

We present the expressions for the Mandelstam s and t
parameters and the dark matter momentum in the center-of-
momentum frame. The boost from the neutron star frame to
the center-of-momentum frame is

β ¼ pþ k
Ep þ Ek

; γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p ¼ E
ECM

: ðC1Þ

The dilation factor γ is simply the ratio of the total energy in
the neutron star frame, E ¼ Ep þ Ek, to the total energy in
the center-of-momentum frame, ECM ¼ ðEpÞCM þ ðEkÞCM.

1Here one could equivalently replace the target frame with the
dark matter frame. Indeed, this is necessary if the target is
formally massless. The cross section is invariant with respect to
boosts along the collision axis so that dσT ¼ dσχ .
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This is readily seen by boosting the total energy in the
center-of-momentum frame to the neutron star frame2 so
that E ¼ γECM. The center-of-momentum frame energies
with respect to neutron star frame momenta are

ðEpÞCM¼ γðEp−β ·pÞ; ðEkÞCM¼ γðEk−β ·kÞ: ðC2Þ

1. Expression for s

The Mandelstam s parameter is

s ¼ ðpþ kÞ2 ¼ m2
T þm2

χ þ 2ðEpEk − p · kÞ ¼ E2
CM:

ðC3Þ

2. Expression for t

In the center-of-momentum frame, the energy and
magnitude of the three-momentum is conserved:

ðEkÞCM ¼ ðEk0 ÞCM; jkCMj ¼ jk0
CMj≡ kCM: ðC4Þ

The Mandelstam t parameter encodes the momentum
transfer. It may be expressed with respect to the center-
of-momentum frame polar angle, ψ between kCM and k0

CM,

−t ¼ ðkCM − k0CMÞ2 ¼ 2k2CMð1 − cosψÞ ¼ 4k2CMsin
2
ψ

2
:

ðC5Þ

3. Dark matter three-momentum

In (C5) and in the Appendixes below, we require an
expression for the dark matter momentum in the center-of-
momentum frame, kCM, in terms of the neutron star frame
kinematics. kCM is related to its neutron star frame
counterpart k by a boost. This boost only transforms the
components of the three-momentum that are parallel to β
in (C1). We thus separate the three-momenta into pieces
that are parallel, k, and perpendicular, ⊥, to β:

kCM ¼ ðk⊥ÞCM þ ðkkÞCM ¼ ðk⊥ÞCM þ γkk − γβEk:

ðC6Þ

One may then write the parallel and perpendicular projec-
tions with respect to the neutron star frame dark matter
momentum projected onto the boost direction, k · β:

kCM ¼ kþ ðγ − 1Þ ðk · βÞβ
β2

− γβEk: ðC7Þ

Wemay express (C7) in terms of the kinematic quantities in
the neutron star frame:

ECMkCM ¼ ECMkþ
�
ðE − ECMÞ

ðk · βÞ
β2

− EEk

�
β: ðC8Þ

Use (C1) to simplify the term in brackets. This gives

1 − β2 ¼ E2
CM

E2
;

1

β2
¼ E2

ðEþ ECMÞðE − ECMÞ
; ðC9Þ

which in turn yields

ECMkCM ¼ ECMkþ
�
k · ðpþ kÞ
Eþ ECM

− Ek

�
ðpþ kÞ: ðC10Þ

To further simplify this expression, it is useful to separate a
term ðEpk − EkpÞ,

ECMkCM ≡ ðEpk − EkpÞ þ Apþ Bk; ðC11Þ

where the coefficients are, using E ¼ Ek þ Ep,

A ¼ k · ðpþ kÞ
Eþ ECM

;

B ¼ Aþ ðECM − EÞ ¼ A −
ðpþ kÞ2
Eþ ECM

¼ −
p · ðpþ kÞ
Eþ ECM

;

ðC12Þ

where we simplified B using (C1) and (C9). We may thus
combine the A and B terms in (C11):

ECMkCM ≡ ðEpk − EkpÞ þ
ðpþ kÞ × ðp × kÞ

Eþ ECM
: ðC13Þ

We ultimately would like the norm of kCM. A useful
intermediate step is to write the cross products in terms of
the angle θ between the neutron star frame momenta:

k · ½p × ðpþ kÞ� ¼ −p · ½k × ðpþ kÞ�
¼ −ðp × kÞ2 ¼ p2k2sin2 θ: ðC14Þ

We thus find that k2CM ¼ jkCMj2 is

E2
CMk

2
CM ¼ E2

pk2 þ E2
kp

2 − 2EpEkðp · kÞ − p2k2sin2 θ:

ðC15Þ

Note that θ is the same angle defined in (4.16).

2This is the inverse transformation of (C1), but the γ factors
are the same. Since the total four-momentum in the center-of-
momentum frame has no three-momentum component, the β term
does not contribute.
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4. Energy transfer in the neutron star frame

We derive ΔE, the energy transferred to the target by a
dark matter scatter in the neutron star frame. It is convenient
to relate this to quantities in the center-of-momentum
frame:

ΔE ¼ Ek − Ek0 ¼ γ½ðEkÞCM − ðEkÞCM� þ γβ · ðkCM − k0
CMÞ

¼ γβ · qCM: ðC16Þ

Here qCM¼kCM−k0
CM is the transferred three-momentum

in the center-of-momentum frame. Note that this is the
inverse transformation of (C1), for which the boost
parameter is −β rather than β.
We may write the scattered dark matter three-momentum,

k0
CM, with respect to the polar and azimuthal angles

in the center-of-momentum frame. The polar angle ψ is
measured with respect to the kCM direction. The azimuthal
angle α is further measured with respect to the component
of β that is perpendicular to kCM, which we call β⊥.
In the center-of-momentum frame the length of the three-
momentum is conserved, so that

k0
CM ¼ kCM sinψ cosα β̂⊥ þ sinψ sin αðkCM × β̂⊥Þ

þ cosψkCM; ðC17Þ

where β̂⊥ is a unit vector in the direction of β⊥. Plugging
(C17) into (C16) and using the orthogonality of β and
ðkCM × β̂⊥Þ, we have

ΔE ¼ γβ · ½kCMð1 − cosψÞ − kCM sinψ cosαβ̂⊥� ðC18Þ

¼ γðβ · kCMÞð1 − cosψÞ
− γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2k2

CM − ðβ · kCMÞ2
q

sinψ cosα: ðC19Þ

In Appendix D we reduce this expression to special
cases that illuminate the qualitative features of relativistic
capture.

APPENDIX D: SCALING RELATIONS

This Appendix first shows how kinematic conditions
on ΔE conditions impose constraints on the phase space
variables cos θ, cosψ , α, and p as a function of the dark
matter mass mχ . We use the energy transfer expression
(C19) to develop a qualitative understanding of the
capture rate as a function of dark matter mass. We
establish a set of necessary conditions to diagnose the
size of the phase space accessible to capture. The main
result of this Appendix is Fig. 12, which systematically
determines the mχ scaling of the capture efficiency, f.
It extends and clarifies Fig. 6 according to the detailed
treatment in this Appendix.

1. Energy transfer and cos δ

The center-of-momentum frame momentum, from (C1)
and (C13), is

ECMkCM ¼ ðEpk − EkpÞ þ
Eβ × ðp × kÞ
Eþ ECM

; ðD1Þ

where the second term is orthogonal to the boost from
the neutron star to the center-of-momentum frame, β. We
define the angle cos δ between the boost parameter from the
neutron star frame to the center-of-momentum frame, β,
and the dark matter three-momentum in the center-of-
momentum frame kCM:

β · kCM ≡ βkCM cos δ ¼ Epk2 − Ekp2 þ ðEp − EkÞp · k

EECM
:

ðD2Þ

With respect to this variable, the energy transfer expression
(C19) is

ΔE
γβkCM

¼ cos δð1 − cosψÞ − j sin δj cos α sinψ ; ðD3Þ

FIG. 12. Flow chart showing the mχ suppression of the capture efficiency, f, for target and dark matter cases defined in Fig. 4. These
scalings follow from the ΔE conditions defined in this Appendix. The cos δ > 0 diagnoses the easy condition, whereas the Δp=pF
factors come from the hard condition. We assume the baseline scaling of jMj2 in (5.1). Exceptional scalings are shown in Appendix D 8.
This figure extends Fig. 6 according to the detailed analysis in this Appendix.
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where we identify
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2 δ

p
¼ j sin δj. The quantity

cos δ is proportional to the projection of the total three-
momentum in the neutron star frame, pþ k, onto the dark
matter three-momentum in the center-of-momentum frame,
kCM. It plays a key role in determining the scaling of the
phase space volume.

2. Rules of thumb for phase space scaling

We establish a set of heuristics to diagnose the volume of
phase space.
Rules of Thumb 1. (Independent integration

assumption). We assume that the phase space integrals
are independent of one another. For simplicity, we ignore
the dependence on phase space integrals in the differential
cross section, dσ=dΩCM. This is sufficient to understand the
scaling behavior with respect to the dark matter mass.
Rules of Thumb 2. (Positive energy transfer condi-

tion). A necessary—but not sufficient—condition for dark
matter to capture is that the dark matter transfers energy to
the target, ΔE > 0.
Corollary of Thumb 1. (Easy condition). A sufficient

condition for ΔE > 0 (Rule 2) is that cos δ > 0 for an
unsuppressed volume of phase space.
Proof.—This follows from the positivity of the right-

hand side of (D3). Over the range of the polar angle
0 ≤ ψ ≤ π the first term is non-negative. The second term is
non-negative for cos α < 0 which is available for half of the
scattering phase space and so it is unsuppressed. ▪
The easy condition is a simpler diagnostic than the

positive energy transfer condition. One only needs to check
the latter condition when the former fails. The following
heuristic accounts for the possibility of positive energy
transfer subject to Pauli blocking:
Rule of Thumb 3. (Hard condition). The phase space

for the initial target momentum must be large enough that
after scattering, the outgoing target has momentum larger
than its Fermi momentum. The necessary condition to
diagnose this is based on the maximum kinematically
allowed energy transfer, ΔEmax:

pþ ΔEmax > pF: ðD4Þ

We use the independent integration assumption (Rule 1)
to determine the mχ scaling of phase space based on the
easy and the hard conditions. We use the easy condition to
determine the scaling of the angular phase space variables
and the hard condition to determine the scaling of the radial
phase space variable. We proceed as follows:
(1) Check if the easy condition holds; use this to

determine the mχ suppression of the angular phase
space variables. Below we show that passing the
easy condition gives no mχ suppression. Failing the
easy condition requires one to check the positive

energy transfer condition; this imposes mχ suppres-
sion through the cosψ integration.

(2) Check the conditions for which the hard condition
holds; use this to determine the mχ suppression
from the integration of the target three-momentum
magnitude.

This process is shown in the flow chart in Fig. 12. Though
these heuristic arguments are approximations, they accu-
rately capture the scaling behavior of our numerical results.

3. cos δ and the easy condition

Factoring out overall positive factors in (D2), we find
that the condition for cos δ > 0 is

Epðk2 þ p · kÞ > Ekðp2 þ p · kÞ: ðD5Þ

We square both sides and use the kinematic relations (the
energy and momentum of dark matter at the point of
impact),

E2
p ¼ m2

T þ p2; E2
k ¼ γ2escm2

χ ; k2 ¼ γ2escv2escm2
χ ;

ðD6Þ

to distill Corollary 1 to the following: the phase space is
unsuppressed when

ðm2
T þ p2Þðγ2escv2escm2

χ þ pγescvescmχ cos θÞ2
> γ2escm2

χðp2 þ pγescvescmχ cos θÞ2: ðD7Þ

When this condition is not satisfied, we diagnose the phase
space effects in more detail. We examine (D7) in each of the
regimes in Fig. 4.

4. cos θ Volume

The expression (D7) for the easy condition, Corollary 1,
is an inequality that must be satisfied by cos θ. When this
range overlaps with the constraint j cos θj ≤ 1, we assume
that cos θ is unconstrained.
We show that relativistic targets with light and very

light dark matter do not simultaneously satisfy (D7) and
j cos θj ≤ 1. This implies that the easy condition is not
satisfied in that case and cos δ < 0. This constraint, in turn,
feeds into the cosψ conditions required to satisfy the positive
energy transfer condition when cos δ < 0. All other cases are
unconstrained. These results are visualized in Fig. 13.

a. Nonrelativistic target, heavy dark matter

In this regime, mT > pF and mχ ≫ mT. The easy
condition, (D7), reduces to

− ðγ2escp2m2
χÞcos2θ þ ð2γescvescpm2

TmχÞ cos θ
þ γ2escv2escm2

Tm
2
χ > 0: ðD8Þ

JOGLEKAR, RAJ, TANEDO, and YU PHYS. REV. D 102, 123002 (2020)

123002-24



Solving for the critical points of the inequality in this
limit gives

−
mTvesc

p
≲ cos θ ≲mTvesc

p
: ðD9Þ

For the nonrelativistic targets we consider, mTvesc ≳ pF,
so that the easy condition implies that the entire range
−1 ≤ cos θ ≤ 1 admits scattering with ΔE > 0. Thus there
is no suppression in the cos θ volume that admits capture.

b. Nonrelativistic target, light dark matter

In this regime, mT > pF and mχ ≪ mT. The easy
condition, (D7), reduces to

ðv2escp2m2
TÞ cos2 θ þ ð2γescv3escpm2

TmχÞ cos θ − p4 > 0:

ðD10Þ
Solving for the critical points of the inequality in this limit
gives

cos θ ≲ −
p

vescmT
−
γescvescmχ

p
or

cos θ ≳ p
vescmT

−
γescvescmχ

p
ðD11Þ

For light dark matter with nonrelativistic targets, the mχ=p
term is negligible compared to p=mT. This means that the
easy condition (Corollary 1) implies that almost the entire
range−1 ≤ cos θ ≤ 1 admits scattering withΔE > 0. Thus,

there is almost no suppression in the cos θ volume that
admits capture due to vescmT=p being a small Oð1Þ factor.

c. Relativistic target, heavy dark matter

In this regime, mT < pF and mχ ≫ pF. The easy con-
dition, (D7), reduces to

− ðγ3escvescp2m2
χÞ cos2 θ − ð2p3mχÞ cos θ

− γ3escv3escp2m2
χ > 0: ðD12Þ

Solving for the critical points of the inequality in this limit,
neglecting the powers of p=mχ , gives

−vesc ≲ cos θ ≲ vesc: ðD13Þ

Because vesc < 1, the ΔE > 0 condition shrinks the allowed
range of cos θ. However, the neutron star’s gravitational
acceleration is so large that this is only a modest suppression
of the cos θ volume by a factor of v−1esc ∼ 1.7. For the
purposes of understanding the mass scaling of the capture
phase space, this suppression is negligible.

d. Relativistic target, light or very light dark matter

In this regime, mT < pF and mχ ≪ mT. The easy
condition, (D7), reduces to

ðγescv4escp4Þcos2θ−ð2vescp3mχÞcosθ−γescp4>0: ðD14Þ

FIG. 13. The easy condition (D7) applied to the cases in Fig. 4. Parabolas correspond to (D14), (D12), (D10), and (D8) as appropriate.
Shaded regions are allowed by the condition, and thick black lines contained in these regions indicate the allowed range subject to
cos θ ∈ ½−1; 1�. The case of a relativistic target with light dark matter (lower left) is seen to be incompatible with the easy condition.
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Solving for the critical points of the inequality in this
limit gives

cos θ < −
1

vesc
or

1

vesc
< cos θ; ðD15Þ

where we have used p ≈ pF to neglect powers of mχ=p.
This is qualitatively different from the above cases.
Because v−1esc > 1, there is no value of cos θ that satisfies
cos δ > 0. For positive energy transfer in this case, Eq. (D3)
requires a configuration with cos δ < 0. Diagnosing the
phase space suppression requires further diagnostics to
understand the allowed phase space for capture. Below we
show that this maps onto a bound on the cosψ volume.

5. cosψ Volume

a. Cases satisfying easy condition

The cases in Appendix D 4 for which the easy condition
(cos δ > 0) is compatible with −1 ≤ cos θ ≤ 1 have no
additional suppression from the integration over center-of-
momentum scattering angle, cosψ . This is clear from
examining (D3) and recalling that ψ is a polar angle with
range 0 ≤ ψ ≤ π. Observe that every term on the right-hand
side is positive when cos δ > 0 and cos α < 1. Thus there is
at least an Oð1Þ part of phase space that remains unsup-
pressed by the easy condition.

b. Relativistic target, light or very light dark matter

For relativistic targets with dark matter lighter than the
Fermi momentum, on the other hand, Appendix D 4 shows
that cos δ must be negative. The positive energy transfer
condition is not obviously satisfied and may impose further
phase space suppression through (D3). Applying trigono-
metric half-angle formulas, requiring ΔE > 0 imposes

cos δ sin2
ψ

2
> j sin δj cos α cosψ

2
sin

ψ

2
: ðD16Þ

This can be written—minding the sign of cos δ—as a
condition on tanψ=2:

tan
ψ

2
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2 δ

p

cos δ
cos α: ðD17Þ

Note that cos ψ
2
≥ 0, because 0 ≤ ψ ≤ π by virtue of being a

polar angle.
In this way the center-of-momentum polar angle ψ is

constrained by cos δ ¼ β · kCM=βkCM, the projection of
the neutron star-to-center of momentum boost β, and the
center-of-momentum dark matter momentum kCM. Note
that both cos α and cos δ are negative so that the right-hand
side is positive.
We may directly relate this to a bound on the phase space

integral over cosψ. We make the simplifying approxima-
tion that the cross section dσ=dΩCM does not introduce

additional cosψ dependence, as per Rule of Thumb 1. The
cosψ phase space integral is thus

Z
1

cosψmax

d cosψ ¼ 1 − cosψmax ≈ 2 tan2
ψmax

2
; ðD18Þ

where we use the assumption that ψ is small from (D17)
so that ð1 − cosψÞ ¼ 2 sin2ψ=2 ≈ 2 tan2ψ=2. Combining
(D17) and (D18) gives a constraint on the volume of
d cosψ phase space:

tan2
ψ

2
<

1 − cos2 δ
cos2 δ

cos2 α: ðD19Þ

This expression evaluates to

tan2
ψ

2
<

v2esc sin2θ cos2α
ð1 − vesc cos θÞ2

�
m2

T

p2
þmχ

p

�
2
m2

T

p2
X

þ 2γescð1 − vesc cos θÞ
�
þO

�
m2

χ

p2

��
: ðD20Þ

The key here is that the upper bound on tan2 ψ=2 scales
either independently of mχ or linearly with mχ depending
on which term in the square brackets dominates. This, in
turn, defines two subregimes:

(i) Very light dark matter: When mχ ≲m2
T=pF, the

Oðm0
χÞ term sets the bound in (D20). In this case

the phase space suppression is independent of mχ .
(ii) Light dark matter: When m2

T=pF ≲mχ ≲ pF, the
Oðm1

χÞ term sets the bound in (D20). In this case the
volume of the cosψ phase space scales with mχ .

In the above, we have made use of the fact that p ≈ pF
for light and very light dark matter due to Pauli blocking.
The remainder of this subsection derives (D20).
Proof.—We evaluate the right-hand side of (D19). As an

intermediate step, write cos δ in terms of a ratio using (D2):

cos δ ¼ Epk2 − Ekp2 þ ðEp − EkÞp · k

EβECMkCM
≡ B

A
: ðD21Þ

Then the right-hand side of (D19) is

1 − cos2 δ
cos2 δ

¼ A2 − B2

B2
: ðD22Þ

A2 is written using the expression for E2
CMk

2
CM from (C15)

and E2β2 ¼ ðpþ kÞ2 from (C1). The numerator of (D22)
greatly simplifies to

A2 − B2 ¼ k2p2E2
CM sin2 θ; ðD23Þ

where E2
CM is simply the Mandelstam s parameter, Eq. (C3).

The full expression for the upper bound in (D22) is
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tan2
ψ

2
<

k2p2sin2 θðm2
T þm2

χ þ 2EpEk − 2pk cos θÞ
½Epk2 − Ekp2 þ ðEp − EkÞpk cos θ�2

cos2α:

ðD24Þ

Assuming that the characteristic target momentum is
the Fermi momentum, p ∼ pF, the denominator can be
expanded with respect to the mχ ≪ pF regime:

B ¼ −γescmχ ½ðp2 − Eppvesc cos θÞ
− γescvescmχðEpvesc − p cos θÞ� ðD25Þ

¼ −γescmχp2

��
1 −

Epvesc
p

cos θ
�
−
mχ

p
X
�
; ðD26Þ

where the X term is higher order in mχ=p. Plugging in the
quantities (D6), using Ep ≈ p as the target is relativistic,
and expanding to Oðmχ=pÞ gives (D20). ▪

6. α Volume

The center-of-momentum frame azimuthal angle, α, does
not affect the mχ scaling of the capture efficiency.

a. Cases satisfying easy condition

The cases in Appendix D 4 that pass the easy condition
(cos δ > 0) carry no additional suppression from the center-
of-momentum frame azimuthal angle phase space, α. This
is clear from (D3) where every term on the right-hand side
is positive when cos α < 1. Thus there is at least a half of
the α phase space that remains unsuppressed by the easy
condition, Rule 2.

b. Relativistic target, light or very light dark matter

Relativistic targets with light or very light dark matter do
not satisfy the easy condition. This leads to a bound on the
cosψ phase space (D20) that depends on cos2 α. However,
because the dependence is an overall prefactor that is
independent of the dark matter mass, there is no additional
mχ-dependent suppression in the α phase space.

7. p Volume and maximum energy transfer

For the initial momentum phase space we invoke
Rule (D4) and account for the Pauli blocking. The phase
space volume is

Z
pF

pmin

p2dp
1
3
p3
F

¼ p3
F − p3

min

p3
F

≈
3Δp
pF

∼
3EFΔE
p2
F

≈

8>><
>>:

3ΔE
pF

	
1þ m2

T
2p2

F



mT ≪ pF

3mTΔE
p2
F

	
1þ p2

F
2m2

T



mT ≫ pF

: ðD27Þ

Thus, the scaling of this allowed phase space volume is
determined by the scaling of the maximum allowed ΔE.
The results are shown in the relevant column of Fig. 12.
One may carry over intuition from nonrelativistic scattering
where the kinematics depends on the reduced mass. In the
relativistic case, one may replace the target mass with its
characteristic Fermi momentum.
We maximize ΔE with respect to the center-of-

momentum frame scattering polar angle ψ and azimuthal
angle α. For simplicity we define a positive rescaling of ΔE
that shares the same extrema,

ΔE ¼ ΔE
γβkCM

: ðD28Þ

The expression for ΔE in (D3) is thus

ΔE ¼ cos δð1 − cosψÞ − j sin δj cos α sinψ : ðD29Þ

Because j sin δj sinψ ≥ 0, the term in ΔE that depends on α
is maximized when cos α is as negative as possible. Thus it
is clear that the maximum of ΔE occurs for cos α ¼ −1.
Using ∂ΔE=∂ψ ¼ 0, the critical point for ΔE with respect
to ψ is

tanψ ¼ j sin δj
cos δ

cos α ¼ −
j sin δj
cos δ

: ðD30Þ

This is a maximum because ΔE is written as a linear
combination of eigenfunctions of ∂2=∂ψ2 with nonpositive
eigenvalues (constants and trigonometric functions). Thus
we are guaranteed to have ∂2ΔE=∂ψ2 ≤ 0.
We may succinctly write the conditions for the maximum

energy transfer as

cos α ¼ −1; cosψ ¼ − cos δ;

sinψ ¼ j sin δj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos2 δ

p
; ðD31Þ

where we have used the range 0 ≤ ψ ≤ π to assign the
negative sign to cosψ . With this result, the maximum
energy transfer, ΔEmax, is

ΔEmax

γβkCM
¼ cos δð1þ cos δÞ þ sin2 δ ¼ cos δþ 1: ðD32Þ

The expression for cos δ is presented in (D21). We present
approximations for this expression for the limiting cases of
interest.

a. Nonrelativistic targets, heavy dark matter

We assume mT ≫ p and mχ ≫ mT. In this limit,
Eq. (D32) gives
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ΔEmax ≈
4γ2escðmTvesc − p cos θÞ2 þ p2 sin2 θ

2ðmT −
p
vesc

cos θÞ : ðD33Þ

By substituting this into (D4), one can solve for the
minimum allowed target momentum by the Pauli exclusion
principle. This, in turn, gives the maximum fraction of
the p volume that is not Pauli blocked. This process is
independent of mχ because ΔEmax is independent of mχ .
As a check, in the nonrelativistic limit, p → 0 and

Ep → mT, this expression reduces to the well-known
result (B10), maximized over ψ, ΔEmax → 2mTγ

2
escv2esc.

b. Nonrelativistic targets, light dark matter

We assume mT ≫ p and mχ ≪ mT. In this limit,
Eq. (D32) gives

ΔEmax ≈
pγescmχ

m2
T

�
ðmTvesc − pÞð1þ cos θÞ

þ p2 sin2 θ
2γ2escðmTvesc − p cos θÞ

�
: ðD34Þ

Maximizing over the target orientation θ gives

ΔEmax ≈
2pvesc
mT

�
1 −

p
mTvesc

�
γescmχ : ðD35Þ

We thus have ΔEmax ∝ mχ .

c. Relativistic targets, heavy dark matter

We assume mT ≪ pF and mχ ≫ pF. In this limit,
Eq. (D32) gives

ΔEmax ≈ pγ2escvescð1 − vesc cos θÞðvesc þ 1Þ: ðD36Þ

Thus, ΔEmax is independent of mχ .

d. Relativistic targets, light dark matter

We assume that the target is light: pF ≫ mχ ≫ m2
T=pF.

In this limit, Eq. (D32) gives

ΔEmax ≈
v2esc sin2 θ

2
·

γescmχ

1 − vesc cos θ
: ðD37Þ

We thus have ΔEmax ∝ mχ for p near the Fermi surface.

e. Relativistic targets, very light dark matter

We assume a very light target, pF≫mT≫m2
T=pF≫mχ ,

which implies mχ=pF ≪ m2
T=p

2
F. Since in this case all

of the interactions occur very close to the Fermi surface,
EF ∼ pF is still true, but the leading order difference
between EF and pF is Oðm2

T=p
2
FÞ, which is significant

with respect to mχ=pF. Taylor expanding (D32) with
respect to both mχ=pF and m2

T=p
2
F gives

ΔEmax ≈
v2esc sin2 θ

2
·

γescmχ

1 − vesc cos θ
: ðD38Þ

We thus have ΔEmax ∝ mχ for p near the Fermi surface.

8. Dominant terms in contact operators

This Appendix derives the scaling of the squared
amplitude, jMj2 for the operators in Table II. We derive
the benchmark scaling (5.1) followed by most of the
operators as well as the scaling for the exceptional
operators. For the latter, we show how the flow chart in
Fig. 12 is modified according to the dynamics of each case.
We tabulate the mχ and Ep scalings of Mandelstam

variables s and t in Table IV. Use the limiting behavior of
the Mandelstam s variable in (5.3). The scalings of t with
respect to mχ can be derived from (C5) in conjunction
with (C15) and the results of Appendix D 5, which derive
the scaling of ð1 − cosψÞ with mχ=pF.
The t scaling for the very light dark matter case requires

special attention. In this regime, mχ=pF ≪ m2
T=p

2
F. One

may then Taylor expand the right-hand side of (C15) in
both mχ=p and m2

T=p
2 for targets close to the Fermi

surface. The leading order term is proportional to m2
χm2

T,
using s ∼m2

T as per (5.3). This gives −t ∝ m2
χ .

9. Fermionic dark matter operators

The operators OF
5−10 follow the same benchmark

behavior. One may use (C3) to show

ðm2
T þm2

χÞ2 − 2sðm2
T þm2

χÞ þ s2

¼ 4γ2escm2
χE2

p

�
1 −

p
Ep

vesc cos θ
�

2

: ðD39Þ

Substituting this identity and the results of Table IV into the
expressions for jMj2 in Table II shows that the m2

χE2
p term

dominates for each of the OF
5−10 operators, deriving the

baseline behavior in (5.1).
The OF

1−4 operators deviate from (5.1) for certain dark
matter masses. Table V shows the scaling of jMj2 with

TABLE IV. Mandelstam variable s and t scalings with respect
to mχ , pF, and mT. The scaling corresponds to each kinematic
regime defined in Sec. VA.

mT Nonrelativistic Relativistic

mχ Heavy Light Heavy Lightish Med. light Very light

s m2
χ m2

T m2
χ mχpF mχpF m2

T

−t m2
T m2

χ p2
F m2

χ m2
χ m2

χ
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respect to mχ for these fermionic operators. These are
derived from the standard results for jMj2 in Table II using
the behavior of s and t in various dark matter regimes as
tabulated in Table IV. This scaling can then be complete
flow charts for the mχ scaling of the capture efficiency, f,
which we present in Figs. 14 and 15.

10. Scalar dark matter operators

Following the same analysis that we use for the fer-
mionic dark matter operators, one observes that the scalar
dark matter operators OS

3;4 follow the benchmark scaling
jMj2 ∼m2

χE2
p for all dark matter masses.

TheOS
1;2 scalar operators, on the other hand, demonstrate

exceptional scaling. These are tabulated in Table VI and

produce a flow chart of capture efficiency scaling shown
in Fig. 16.

11. Capture efficiency scalings with energy scales

In order to determine the relative reach of scattering from
different targets, we derive scaling of the capture efficiency
with respect to all independent energy scales involved in
dark matter capture by a neutron star: mχ , mT, pF, and R−1⋆ .
This Appendix extends the discussion in Sec. VI D.
The formula for the capture efficiency, f, is (5.4).

Following the discussion in Sec. V C, we highlight the
dependence of f on the key energy scales of the system:

f ∝
M⋆YT

mnR2⋆
jMj2

Z
pF

pmin

p2dp
p3
F

�
1

s

Z
1

cosψ0

d cosψ

�
; ðD40Þ

where YT is the abundance and pF is the Fermi momentum
of a target species T. We may relate the total number of
target particles N to the Fermi momentum pT and the
neutron star volume V by

pF ∝
�
N
V

�
1=3

⇒ N ∝ p3
FR

3⋆; ðD41Þ

where the volume of the neutron star is V ¼ 4
3
πR3⋆. From

the definition of YT, the total number of targets is
N ¼ M⋆YT=mn. This implies

FIG. 14. Extends Fig. 12 to account for the exceptional mχ scaling of O1;2
F .

FIG. 15. Extends Fig. 12 to account for the exceptional mχ scaling of O3;4
F .

TABLE V. Fermionic operators with exceptional scaling in
Λ4jMj2 compared to the baseline case Λ4jMj2 ∝ m2

χE2
p,

Eq. (5.1). The scaling corresponds to each kinematic regime
defined in Sec. VA. Blank entries correspond to the baseline
scaling, m2

χE2
p.

mT Nonrelativistic Relativistic

mχ Heavy Light Heavy Lightish Med. light Very light

OF
1 m4

χ

OF
2 m4

T p4
F m4

χ

OF
3 m4

χ m4
χ m4

χ m4
χ

OF
4 m4

T m4
χ p4

F m4
χ m4

χ m4
χ
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YT ∝
p3
FR

3⋆mn

M⋆
: ðD42Þ

Observe that this highlights that M⋆ is not an independent
dimensionful parameter in the system. Substituting (D42)
into (D40) gives

f ∝ p3
FR⋆jMj2

Z
pF

pmin

p2dp
p3
F

�
1

s

Z
1

cosψ0

d cosψ

�
: ðD43Þ

We make the approximation where the integrals may be
performed independently with a trivial integrand; this
captures the dominant scaling. The p integral is then
proportional to Δp=pF, as shown in (D27), and its scaling
with respect to the energy scales can be evaluated in various
phases of scattering kinematics of Fig. 4 using the results of
Appendix D 7. Similarly, Eq. (D20) gives the scaling of the
dψ integral. We take the approximation that Ep ∼mT in the
nonrelativistic limit and Ep ∼ pF in the relativistic limit and
tabulate the results in Table VII.

FIG. 16. Extends Fig. 12 to account for the exceptional mχ scaling of O1;2
S .

TABLE VI. Bosonic operators with exceptional scaling in
Λ4jMj2 compared to the baseline case Λ4jMj2 ∝ m2

χE2
p,

Eq. (5.1). The scaling corresponds to each kinematic regime
defined in Sec. VA.

mT Nonrelativistic Relativistic

mχ Heavy Light Heavy Lightish Med. light Very light

OS
1 m2

TΛ2 m2
TΛ2 p2

FΛ2 m2
χΛ2 m2

TΛ2 m2
TΛ2

OS
2 m2

TΛ2 m2
χΛ2 p2

FΛ2 m2
χΛ2 m2

χΛ2 m2
χΛ2

TABLE VIII. Experimental reach on Λ as a function of the target mass mT, dark matter mass mχ , and the Fermi
momentum pF in the different regimes defined in Fig. 4. The baseline case corresponds to the behavior of theO5−10

F

and O3;4
S operators in Table VIII. Powers of the neutron star radius R⋆ account for the additional dimensional

dependence so that for dimension-six operators the scaling applies to ΛR−1=4⋆ while for dimension-five operators the
scaling applies to ΛR−1=2⋆ . Blank entries correspond to the baseline scaling behavior.

mT Nonrelativistic Relativistic

mχ Heavy Light Heavy Lightish Med. light Very light

Baseline p1=4
F mT p1=2

F m3=4
χ p5=4

F p1=2
F m3=4

χ p1=2
F m3=4

χ p1=2
F m3=4

χ

OF
1 m5=4

χ

OF
2 p1=4

F m−1=2
χ m3=2

T p7=4
F m−1=2

χ m5=4
χ

OF
3 p1=2

F m5=4
χ m−1=2

T m5=4
χ m5=4

χ m5=4
χ

OF
4 p1=4

F m−1=2
χ m3=2

T p1=2
F m5=4

χ m−1=2
T p7=4

F m−1=2
χ m5=4

χ m5=4
χ m5=4

χ

OS
1 p1=2

F m−1
χ m2

T pFm
1=2
χ p5=2

F m−1
χ m3=2

χ m1=2
χ mT m1=2

χ mT

OS
2 p1=2

F m−1
χ m2

T pFm
3=2
χ m−1

T p5=2
F m−1

χ m3=2
χ m3=2

χ m3=2
χ

TABLE VII. Scalings of phase space pieces of (D43) with
respect to microscopic energy scales.

mT Nonrelativistic Relativistic

mχ Heavy Light Heavy Lightish
Med.
light

Very
light

Δp=pF m2
T=p

2
F mχ=pF 1 mχ=pF mχ=pF mχ=pF

1
s ð1 − cosψ0Þ m−2

χ m−2
T m−2

χ p−2
F p−2

F p−2
F

JOGLEKAR, RAJ, TANEDO, and YU PHYS. REV. D 102, 123002 (2020)

123002-30



The scaling of the discovery reach on the cutoff Λ follows from (D43):

Λmax ∝ ðp3
FT
R⋆Þ1=4ðΛ4jMj2Þ1=4

�Z
pF

pmin

p2dp
p3
FT

�
1=4

�
1

s

Z
1

cosψ0

d cosψ

�
1=4

; ðD44Þ

where the factor Λ4jMj2 is independent of Λ. Table VIII collects the discovery reach scaling for the baseline behavior of
Λ4jMj2 ∼m2

χE2
p and the exceptional behaviors of Tables V and VI.
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