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Using the fact that theories of gravity with asymptotically three-dimensional anti–de Sitter geometries
have dual descriptions as two-dimensional conformal field theories (CFTs), we present the first study in
field theory of the thermodynamic volume of various black hole solutions. We explain in general two-
dimensional CFT terms why the presence of a thermodynamic volume can render certain black hole
solutions “superentropic.” Superentropicity simply results from the fact that the Cardy formula, which
gives the gravitational Bekenstein-Hawking entropy, can overcount the CFT entropy. The examples of
charged Bañados, Teitelbiom, and Zanelli (BTZ) black holes and generalized exotic BTZ black holes are
described. These observations help explain why the specific heat at constant volume can signal the
instability of such solutions, as recently conjectured.
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I. INTRODUCTION

A decade ago, a new variable was introduced into black
hole thermodynamics, as part of an extended thermody-
namic framework [1]. It has the interpretation as the
thermodynamic volume, V, dual to the pressure p≡
−Λ=8π that is present if the cosmological constant Λ is
dynamical.1 The pair ðp; VÞ joins the variables of tradi-
tional gravitational thermodynamics [3–6],2 the entropy
S ¼ A=4 and temperature T ¼ κ=2π, associated to a black
hole horizon’s area A, and surface gravity κ. The black
hole’s mass M becomes identified with the enthalpy
H ¼ U þ pV, where U is the internal energy. (Here, we

are using geometrical units where G; c;ℏ; kB have been set
to unity.) The first law of thermodynamics for black holes
then becomes

dH ¼ TdSþ Vdp ð1Þ

(assuming for the moment that no other dynamical quan-
tities, like charge and angular momentum, are in play). The
volume is a derived quantity, calculated after the mass
[hence enthalpy HðS; pÞ] of the solution has been identi-
fied: V ≡ ∂H=∂pjS. In the simple case of static black holes
(with no additional nontrivial scalar sector) it has the
geometric interpretation as the naive spherical volume
occupied by the black hole, but in general it is nongeo-
metrical [8,9]. In such general settings, it becomes a truly
independent variable from the entropy, and the physics
associated with it becomes richer.
In the context of negative Λ, where the gravitational

physics can often be recast in terms of a dual (nongravita-
tional) field theory in one dimension fewer using the
correspondence between anti–de Sitter dynamics and
conformal field theory physics (the AdS=CFT correspon-
dence) [10–13], it is natural to ask whether V has a direct
interpretation in the field theory.3 In general, this question is
rather hard to explore, since the duality addresses the
strongly coupled field theory regime, which is not always
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1This paper will not be concerned with the origin of the
dynamics of Λ. It can be achieved in various ways if the gravity
sector is embedded within a larger framework. An example is
when there are also dynamical scalars φi with a potential VðφiÞ.
Fixed points of the potential, where the scalars take on fixed
values φc

i , give a nonzero constant Vðφc
i Þ, determining the value

of Λ in anti–de Sitter vacua of the theory. See e.g., the review in
Ref. [2].

2For a recent historical overview, see e.g., Ref. [7].

3See Refs. [1,14,15] for early ideas and remarks, and
Refs. [16,17] for some explorations.
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easily accessible in traditional field theory terms. Moreover
the finite T regime of the AdS=CFT duality is (in general)
rather less well robustly explored than the T ¼ 0 sector.
In the present work, we point out that progress can be

made in the case of three dimensional gravity (with Λ < 0),
since in that case the duality’s dictionary is rather stronger:
Asymptotically anti–de Sitter geometries in three dimen-
sions (AdS3) are dual to conformally invariant two dimen-
sional field theories, which are very tightly constrained in
their structure. Moreover, the finite temperature T is simply
the (inverse) period of a cycle in the two dimensional
Riemann surface the theory is defined on. We will be able
to write (in Secs. II and III) the thermodynamic volume V in
terms of quantities very familiar in the CFT. With that
achieved, it is then straightforward to translate any con-
ditions involving V into statements in the CFT.
For example, it is natural in thermodynamics to ask

questions about the fixed volume sector. However, in
general,4 this is somewhat mysterious from the black hole
thermodynamics perspective—fixed pressure is more natu-
ral there since that is simply fixed Λ—but with a micro-
scopic dual field theory identification such as the one
presented here, progress can be made in examining the
physics of the fixed volume sector. (This may be of use in
furthering recent work [18–20] that has uncovered novel
and potentially useful physics in the fixed volume sector of
black hole thermodynamics.)
We make such progress by arriving, in an important

example, at a microscopic connection between the thermo-
dynamics of the fixed volume sector and a phenomenon
called “superentropicity” identified for a class of black
holes [8]. These are black holes with volume V that have an
entropy S that exceeds the amount that a Schwarzschild
black hole with the same volume would have. It was
noticed in Ref. [20] that several solutions for which this is
the case have a negative specific heat at constant volume,
CV , signaling an instability. For one example, the charged
Bañados, Teitelbiom, and Zanelli (BTZ) solution, this
could be demonstrated analytically, and a connection
between the superentropicity and the negativity emerged
(reviewed below). This led to a more general conjecture
that superentropicity implies the CV < 0 instability.
While we do not prove the conjecture here, we find a

microscopic phenomenon that seems to explain (or at least
herald) the superentropicity on the gravity side, and it
emerges precisely as a result of our microscopic identi-
fication of the thermodynamic volume V and as a conse-
quence of working in the fixed V sector. It works as
follows: The standard (microscopic) CFTexpression for the
entropy, S, of the black holes which successfully

reproduces [21–24] the gravitational Bekenstein-Hawking
entropy, is usually the Cardy formula [25,26] in these
dualities, and it turns out to be built out of some of the
same quantities as the thermodynamic volume V. What we
show is that working at fixed, positive V places a condition
on the CFT sector meaning that the (naive) Cardy formula
overcounts the entropy in the CFT. This is the microscopic
herald of the fact that the gravity entropy (as counted by
Cardy) is, in a precise sense, “too much.” This is presented in
detail in Secs. III and IV.
As a simple first check of our microscopic formalism and

our assertion that superentropicity is connected to the
overcounting seen in the CFT, we study a rather large
family of examples in Sec. V. These “generalized exotic”
BTZ black holes [27–29] have a rich extended thermody-
namics [30] with CV ≠ 0 that can also be written in two
dimensional CFT terms. While there are sectors that have
negative specific heats (both Cp and CV can be negative for
some ranges of parameters, and positive for other ranges),
these examples, which are nonunitary in some cases, are
not superentropic.5 In the spirit of our methods, the
thermodynamic volume V can be written in terms of CFT
quantities. Doing so, we see that working at fixed V does not
result in the Cardy formula overcounting the CFT entropy.
This therefore fitswithour suggestion that superentropicity is
heralded by such an overcount at fixed V.
In Sec. VI we discuss the results further, including ideas

and prospects for extending this microscopic success to
higher dimensions.

II. CFT AND STANDARD BTZ

Two principal quantities in two dimensional conformal
field theory are the energy E and the spin J, which are given
in terms of the sum and difference of the eigenvalues, Δ; Δ̄,
of L0 and L̄0, the zeroth components of the right and left
Virasoro generators (which define the conformal algebra):

E ¼ Δþ Δ̄
l

; J ¼ Δ − Δ̄: ð2Þ

Here l is a length scale set by the cosmological constant of
the dual gravity theory via Λ ¼ −1=l2. The right and left
Virasoro algebras have central charges cR and cL, which are
proportional to l. Their precise values are example depen-
dent, as we shall see. The values of E and J are computed in
the dual gravity theory quite readily, and are the mass M

4For static black holes with no scalars, V and S are not
independent and so in those simple cases fixed V is simply the
fixed area. For most cases however, V is a nongeometrical
quantity independent of S.

5Here we disagree with the interpretation of Ref. [30]. They
use a definition of superentropic inherited from the geometrical
formula of Ref. [8] that focuses on area A, and not entropy, S.
They therefore conclude that there is a problem with the
conjecture connecting superentropicity to negative CV since they
can find regions with positive CV . However, we are (as is
Ref. [20]) using the entropy-focused interpretation of the term
superentropic as opposed to the (less physical) area-focused
usage. See Secs. IV and V for more discussion.
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and angular momentum J of the black hole spacetime. The
entropy on the gravitational side is computed using the
Bekenstein-Hawking formula, the quarter of the area of a
horizon. (Note that “area” here will mean the circum-
ference of a circle, since there are only two spatial
dimensions in the gravity theory. There may be contri-
butions from more than one horizon, as we shall see in
later examples.) On the field theory side, this entropy is
reproduced in the field theory using [21–24] the Cardy
formula for the asymptotic degeneracy of states with a
given conformal dimension:

S ¼ logðρðΔ; Δ̄ÞÞ ¼ 2π

ffiffiffiffiffiffiffiffiffi
cRΔ
6

r
þ 2π

ffiffiffiffiffiffiffiffiffi
cLΔ̄
6

s
: ð3Þ

Crucially, this formula’s validity depends upon the key
assumption that the lowest L0; L̄0 eigenvalues vanish [31].
We will revisit this issue shortly.
For the examples discussed in this paper, the spacetime

metric will be of the leading BTZ [32,33] form:

ds2 ¼ −fðrÞdt2 þ fðrÞ−1dr2 þ r2
�
dφ −

4j
r2

dt

�
2

;

with fðrÞ ¼ −8mþ r2

l2
þ 16j2

r2
þ � � � ð4Þ

(with one exception we will discuss separately). The black
hole has an outer and inner horizon, at radii denoted r�,
which are the larger and smaller roots of fðrÞ ¼ 0.
Depending upon the parent gravity theory in question
(examples below), the parameters m and j determine the
black hole massM and angular momentum J either directly
or in linear combination. The classic BTZ example has fðrÞ
as written (no extra terms) and M ¼ m and J ¼ j, and
together with S they are

M ¼ r2þ þ r2−
8l2

; J ¼ rþr−
4l

; S ¼ πrþ
2

: ð5Þ

Comparing the first two quantities to those in Eq. (2) gives,
after a little algebra:

Δ ¼ ðrþ þ r−Þ2
16l

; Δ̄ ¼ ðrþ − r−Þ2
16l

: ð6Þ

Using these in Eq. (3) with cR ¼ cL ¼ 3l=2 yields the
gravity entropy in Eq. (5).
In extended thermodynamics, the pressure is given by

p ¼ 1=8πl2, and the mass M is the enthalpy

HðS; pÞ ¼ 4πp

�
S
π

�
2

þ π2J2

2S2
: ð7Þ

We will work at fixed J henceforth, treating it as a
parameter. The first law remains as in Eq. (1). Hence,

the thermodynamic volume and temperature turn out
to be

V ≡ ∂H
∂p

����
S
¼ πr2þ; T ≡ ∂H

∂S
����
p
¼ r2þ − r2−

2πl2rþ
; ð8Þ

the latter agreeing with either a surface gravity computa-
tion or the requirement of regularity of the Euclidean
section [34].
We can go a step further. The CFT/gravity relations (6)

can be inverted to give r� in terms of Δ and Δ̄, and so we
can write V in terms of CFT quantities as

V ¼ 8π

3

� ffiffiffiffiffiffiffiffiffi
cRΔ

p
þ

ffiffiffiffiffiffiffiffiffi
cLΔ̄

q �2

: ð9Þ

We propose that this relationship should be read in an
analogous manner to how the Cardy formula in Eq. (3) is
read. States can be constructed in the CFT in the usual
manner, acting on the vacuum with the left and right
(negatively moded) Virasoro generators as creation oper-
ators. Then L0 and L̄0 measure Δ and Δ̄. For given values
of these quantities, Eq. (9) defines a quantity V that has the
interpretation as the thermodynamic value in the gravity
theory. Since it is made from (the square of) the same
combination of CFT quantities that S is built from, there is
not much more to learn from this example. Questions about
V are equivalent to questions about S, as they are not
independent quantities.

III. CHARGED BTZ BLACK HOLES

Our first example where something new arises is the
charged BTZ black hole with no angular momentum, a
solution of Einstein-Maxwell in three dimensions [35].
Now, we have J ¼ 0 and the metric function to use in

Eq. (4) is instead fðrÞ ¼ −8M þ Q2

2
log ðr=lÞ þ r2=l2,

where Q is the Uð1Þ charge of the solution and M is the
mass. There is also a gauge field At ¼ Q log ðr=lÞ. From
the point of view of the two dimensional CFT,Q is merely a
deformation parameter, a global charge, which will be kept
fixed here. The extended thermodynamics gives [36]

H ¼ 4pS2

π
−
Q2

32
log

�
32pS2

π

�
; S ¼ π

2
rþ;

T ¼ 8pS
π

−
Q2

16S
; and V ¼ 4S2

π
−

Q2

32p
; ð10Þ

and the first law is again Eq. (1). The internal energy
of the system is given by U ≡H − pV ¼ ðQ2=32Þ×
½1 − logð32pS2=πÞ�.
Note that the presence of the charge Q introduces a

logðr=lÞ term in the metric function fðrÞ. Consequently,
the asymptotic symmetry group of the geometry is
deformed, hiding the action [37] of the Virasoro algebra.
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Crucially, we regard Virasoro as hidden, but not absent. We
propose that the conformal field theory will still have the
structure that we saw in the previous example, and below
we will find strong evidence in support of this.
To make Virasoro explicit requires a different approach.

The boundary conditions on the metric and gauge field can
be modified by enclosing the entire black hole system
inside some radius r0 and introducing a renormalized mass

according to Mðr0Þ ¼ M þ Q2

16
log ðr0=lÞ, such that the

manifest asymptotic Virasoro symmetry is restored [38].
This alternative scheme rearranges the thermodynamic
quantities (both traditional and extended). In the resulting
extended thermodynamics (which requires promoting the
scale r0 to a dynamical variable in order to have a consistent
first law [36]) the thermodynamic volume V loses its Q
dependence, becoming the geometric volume πr2þ, and
since S ¼ πrþ=2, we have CV ¼ 0. Hence, we will not
study this renormalized scheme and instead focus our
attention on the thermodynamic quantities as presented
in Eq. (10), which yield an interesting case study. We will
revisit the issue of the renormalized scheme in a later
discussion.
Notice that V and S in Eq. (10) are now independent. The

requirement that the temperature be positive results in the
restrictionQ2≤4η, where η¼32pS2=π. Since V ¼ TS=2p,
this also translates into positivity of the volume V. The
parameter η also appears in the internal energy U, and
requiring that U > 0 gives η ≤ 1. So, just from the gravity
side, we get the bound Q2 ≤ 4.
Turning to the CFT quantities, cL ¼ cR ¼ 3l=2 ¼ c as

before, and since J ¼ 0 we have Δ ¼ Δ̄. The Cardy
formula gives the entropy as before: S ¼ 4π

ffiffiffiffiffiffiffiffiffiffiffi
cΔ=6

p
, but

now the thermodynamic volume V, written in terms of CFT
quantities, is

V ¼ 32πc
3

�
Δ −

Q2c
96

�
: ð11Þ

Positivity of V (following from positivity of T) translates
into a nontrivial statement: The lowest Δ can be is
Δ0 ¼ Q2c=96. Recall that an assumption underlying the
Cardy formula (3) is that Δ0 ¼ 0. In fact, when Δ0 ≠ 0, the
correct formula to use for the (logarithm of the) asymptotic
density of states replaces c by ceff ≡ c − 24Δ0, resulting in
(for positive Δ0) a reduction of the entropy count [31]. For
us, ceff ¼ cð1 −Q2=4Þ, and we recover two interesting
pieces of information. The first is that the gravity entropy,
which corresponds to the naive Cardy formula, overcounts
the number of degrees of freedom of the theory. The second
is that there is a unitarity bound of Q2 ≤ 4, the same bound
we obtained by independent gravity requirements that T
and U are positive.
That we have recovered precisely the same condition on

Q using two very different considerations (gravity and

CFT) is strong support for our proposal for writing a
microscopic/CFT formula for V. It also strongly suggests
that we were correct to use the AdS3=CFT2 map for this
charged black hole despite the fact that the asymptotic
algebra is deformed by the presence of Q.
The overcounting of the entropy discovered here sug-

gests that something is wrong with the equilibrium thermo-
dynamics suggested by the variables in Eq. (10). We
propose that it is in fact a herald of the phenomenon called
“superentropicity,” discussed next.

IV. SUPERENTROPICITY AND INSTABILITY

The charged BTZ solution is the simplest example of a
superentropic black hole [36]. Generally, a superentropic
d-dimensional black hole is defined as a solution which
violates the reverse isoperimetric inequality [8]:

R≡
�ðd − 1ÞV

ωd−2

� 1
d−1
�
ωd−2

4S

� 1
d−2

≥ 1; ð12Þ

where V is the thermodynamic volume, and S is the
gravitational entropy. Also, the quantity ωn ¼ 2πðnþ1Þ=2=
Γ½ðnþ 1Þ=2� is the standard volume of the round unit
sphere. The inequality (12) is saturated by Schwarzschild-
AdS black holes (BTZ in d ¼ 3), with R ¼ 1. Black holes
where R > 1 are said to be subentropic, such as Kerr-AdS
[8] and STU black holes [39]. Systems withR < 1, such as
the ultraspinning limit of Kerr-AdS black holes [40,41], are
superentropic. In d ¼ 3, the rotating BTZ black hole has
R ¼ 1, while the charged BTZ hole has R < 1.
Notice that the inequality (12) is written here with R

defined in terms of the entropy S instead of the horizon area
A, as it is written in Ref. [8]. This is because, in our view,
superentropicity is a statement about the thermodynamic
quantity entropy (as the title suggests) and not about the
outer horizon area.6 Moreover, more general theories of
gravity have an entropy that is not proportional to the outer
horizon area, but may include contributions from the inner
horizon.7 The next section will have such examples, and as
we will see, our definition (12) will lead to a different
interpretation of their entropic character than the one
proposed in the recent literature [30].
It was recently observed [20] that several superentropic

black holes are thermodynamically unstable, signified by a
negative heat capacity CV. It was conjectured there that
superentropicity may generally imply that CV < 0, follow-
ing from the fact that for a charged BTZ black hole this can

6A similar modification to the reverse isoperimetric inequality
was made in Ref. [42] for black hole solutions of Horndeski
theories of gravity.

7In fact, sometimes even in ordinary gravity, the entropy
receives contributions from other objects. See the Taub-NUT and
Taub-Bolt examples in Refs. [43–45].
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be verified analytically: The temperature T and CV take the
form

T ¼ πV
16S

Q2

ð4S2 − πVÞ ;

CV ¼ −S
�
4S2 − πV
12S2 − πV

�
: ð13Þ

The temperature is positive when 4S2 > πV, which is
equivalent to the d ¼ 3 superentropicity condition
R < 1. Moreover, this is precisely when the charged
BTZ solution has CV < 0, i.e., it is thermodynamically
unstable. (Showing that CV < 0 when R < 1 was also
verified numerically in Ref. [20] for a class of ultraspinning
Kerr-AdS black holes in various higher dimensions.
Analytic counterparts to the above d ¼ 3 demonstration
were not obtained however.)
Positivity of T ensuring a connection between super-

entropicity and instability is strongly reminiscent of what
we saw in the previous section, when making connections
to the CFT. When the dual CFT is unitary, we may translate
ceff > 0 into 4S2CFT > πV, where SCFT¼4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ceffΔ=6

p
. Then,

since S > SCFT, we have 4S2 > πV. Therefore, superen-
tropicity reflects that the gravitational entropy overcounts
the number of degrees of freedom of the underlying
microscopic theory.
The overcounting is also accompanied by the negativity

of CV , which itself suggests an instability, a movement in
solution space to some new set of thermodynamic quan-
tities for which CV is no longer negative. It is tempting to
speculate that the extended thermodynamics yielded [36]
by studying the renormalized scheme of Ref. [38]
[reviewed briefly below Eq. (10)] is the endpoint of the
instability. One suggestion of our observations here is that
there is another framework [different from the renormal-
ization scheme recalled below Eq. (10)] in which the
asymptotic Virasoro algebra is restored, but in which the
central charge is modified to our effective central charge
ceff ¼ cð1 −Q2=4Þ. It would be interesting to find such a
framework, and to see whether the resulting thermody-
namic quantities produce a super- or subentropic system.

V. GENERALIZED EXOTIC BTZ BLACK HOLES

As a final example we consider the family of “gener-
alized exotic BTZ” black holes [27–29]. The relevant
gravity theory is a linear combination of the Einstein-
Hilbert action and the gravitating Chern-Simons action,
I ¼ αIEM þ γIGCS, where γ ¼ 1 − α. The metric is again
given in Eq. (4), with no extra terms for fðrÞ, but this time
the mass and angular momentum mix the parametersm and
j: M ¼ αmþ γj=l, J ¼ αjþ γlm. The case of α ¼ 1 is
the standard BTZ black hole, while γ ¼ 1 is the exotic BTZ
black hole. General 0 ≤ α ≤ 1 interpolates between these
two extremes. The thermodynamic variables are given by

M ¼ αðr2þ þ r2−Þ
8l2

þ γrþr−
4l2

;

J ¼ αrþr−
4l

þ γðr2þ þ r2−Þ
8l

;

T ¼ r2þ − r2−
2πl2rþ

; Ω ¼ r−
rþl

;

S ¼ π

2
ðαrþ þ γr−Þ;

V ¼ απr2þ þ γπr2−

�
3rþ
2r−

−
r−
2rþ

�
; ð14Þ

where Ω is the angular velocity.
Recently it was shown that generalized exotic BTZ

solutions can have CV both positive and negative [30].
Specifically, for α < 1=2, CV is positive for large enough
rþ. In the regions where CV > 0, however, the heat
capacity at constant pressureCp will be negative, indicating
that they are generally unstable. Notice that for the inequal-
ity (12), we have

R ¼ 1

2ðαþ γxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4αþ 6γx − 2γx3

q
; ð15Þ

where x≡ r−=rþ ranges between 0 and 1. For the defined
range of nonzero α, we find R > 1, and thus these
generalized exotic BTZ black holes form a class of
subentropic black holes. Had we instead used the form
of R first written in [8], we would have found R < 1 and
concluded that these solutions are superentropic, as
Ref. [30] does.8 However, as we have already stated, we
are using the entropy-focused interpretation of the term
superentropic as opposed to the (less physical) area-focused
usage. In this sense, in the spirit of Ref. [20]’s conjecture
and what we have seen in the previous two sections, there is
no superentropicity and hence CV does not need to become
negative, since the solution does not need to somehow shed
the extra entropy.
Turning to the dual conformal field theory, some algebra

shows that variables M, J, and S fit the CFT form given in
Eqs. (2) and (3) (with factors αþ γ ¼ 1 for right-moving
quantities and α − γ ¼ 2α − 1 for left-moving):

Δ ¼ 1

16l
ðr2þ þ r2−Þ; Δ̄ ¼ 2α − 1

16l
ðr2þ − r2−Þ;

cR ¼ 3l
2
; cL ¼ 3l

2
ð2α − 1Þ: ð16Þ

We may recast the thermodynamic volume V (14) in terms
of these CFT parameters. The resulting expression is

8We thank W. Cong and R. B. Mann for helpful communi-
cations about this matter.
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3V
4πcR

¼
�
1þ 1

ϵ

�� ffiffiffiffi
Δ

p
þ

ffiffiffiffiffiffi
ϵΔ̄

p �
2

þ
�
1 −

1

ϵ

�� ffiffiffiffi
Δ

p
−

ffiffiffiffiffiffi
ϵΔ̄

p
ffiffiffiffi
Δ

p þ
ffiffiffiffiffiffi
ϵΔ̄

p
�h

Δþ ϵΔ̄þ 4
ffiffiffiffiffiffiffiffiffiffi
ϵΔΔ̄

p i
;

ð17Þ

where ϵ≡ cR=cL. Note that cR ¼ cL when α ¼ 1, γ ¼ 0,
i.e., we have the usual BTZ solution of Sec. II, and our
expression (17) reduces to the thermodynamic volume
given in Eq. (9).
The key observation from (17) is that, unlike the charged

BTZ case, requiring positivity of V does not lead to a shift
away from zero for the lowest value of Δ or Δ̄. As such, the
gravitational entropy (as given by the Cardy formula) does
not overcount the number of microscopic degrees of
freedom. This fits with the observation above that there
is no superentropicity in these examples [using the entropy-
focused definition of R in Eq. (12)].

VI. CONCLUSION

In conclusion, we have shown how to microscopically
interpret (using AdS3=CFT2 duality) the thermodynamic
volume of extended black hole thermodynamics, by writing
formulas for it in terms of CFT quantities. For simple black
holes where V and S are not independent, such a formula is
no more useful than the Cardy formula for S. However,
deploying the interpretation in the charged BTZ example
where V is independent of S, we uncovered that the naive
Cardy formula overcounts the entropy of the theory. We
interpret this as a microscopic herald of the superentro-
picity phenomenon associated to some solutions in
extended thermodynamics.
Independent conditions derived from gravity and CFT

gave precisely the same bound onQ, the black hole charge:
Q2 ≤ 4, suggesting internal consistency of our methods.
These methods included using the CFT dual of the charged
black hole solution even though the presence of Q deforms
the asymptotic symmetry (Virasoro) algebra. This might
suggest that there is another framework [different from the
renormalization scheme recalled below Eq. (10)] in which
the asymptotic Virasoro algebra is restored, but in which
the central charge is modified to our effective central charge
ceff ¼ cð1 −Q2=4Þ. It would be interesting to find such a

framework, and to see whether the resulting thermody-
namic quantities produce a super- or subentropic system.
It would also be interesting to find a similar microscopic

understanding of superentropicity of ultraspinning black
holes [40,41]. These solutions exist for d ≥ 4, where we
can no longer use AdS3=CFT2 duality. Instead, however,
we could consider Kerr/CFT duality [46], along the lines of
Ref. [47], and see if constraints imposed by the gravita-
tional thermodynamics lead to any requirements on the dual
CFT. We leave this for future work.
Another line of investigation could be to develop further

a characterization of how superentropicity may result in the
CV < 0 instability for other black holes, and in other
dimensions. As conjectured in Ref. [20], a consequence
of superentropicity is negativity of CV . (Note again that this
is not the same as saying that negativity of CV implies
superentropicity.) For the charged BTZ case this was shown
directly in Eq. (13), where the form and sign of CV depends
solely on the ability to write the temperature as
T ¼ F ðS; V;QÞ=ð1 −RÞ, where F is a function we wish
to characterize further, and the R in the denominator is
given in Eq. (12). Not every black hole solution will have a
temperature that can be written in this form, as we see in the
cases of the uncharged and exotic BTZ black holes.
Moreover, we know of subentropic solutions whose tem-
perature does take this form, e.g., the d ¼ 4Kerr-AdS black
hole [48]. Nonetheless, we might attempt to learn some-
thing about a subclass of superentropic black hole solutions
by demanding the temperature take the form given above. If
they have negative CV , it implies conditions on F . Our
special form of T together with the fact that T ¼ f0ðrþÞ=4π
for a gravity solution with metric function fðrÞ might
characterize enough about the properties of fðrÞ to use it as
a diagnostic tool for a wide variety of solutions. We leave
this for future work.
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