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Starting from the swampland distance conjecture, and using the species bound for a large number of
weakly coupled particles, we give a derivation of the recently proposed trans-Planckian censorship
conjecture. Our argument demonstrates how a quantum gravity principle requires that trans-Planckian
quantum fluctuations should never cross the Hubble horizon. We also comment on how logarithmic
corrections to the de Sitter conjecture arise naturally from such an approach when one relaxes the
requirement of traversing parametrically large distances on field space.
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I. INTRODUCTION

Recently, it has been argued that in any consistent
effective field theory (EFT), there should not be such an
amount of cosmic expansion that a trans-Planckian mode
crosses the Hubble horizon and, consequently, becomes
classical [1]. In other words, the trans-Planckian censorship
conjecture (TCC) states that, for an EFT to not be in the
swampland, trans-Planckian quantum fluctuations should
remain quantum and never cross the Hubble horizon [1].
This elevated the well-known “trans-Planckian problem” of
inflationary cosmology [2–9] to the level of a so-called
swampland conjecture—the general requirements for an
EFT to have a consistent UV completion [10–12].
In inflation [13–18], one traces back macroscopic

classical inhomogeneities as originating from quantum
vacuum fluctuations (see, for instance Ref. [19]) by trusting
the EFT on quasi–de Sitter (dS) spacetimes to early times.
However, if inflation lasts for a long time, then it is entirely
possible that even a trans-Planckian quantum fluctuation
would eventually cross the Hubble horizon and become
classical. Since the objective of the TCC is to prevent this
from happening, it puts an upper bound on the duration of
the inflationary era, such that [1]

eN < MPl=Hf ⇒
Z

tf

ti

Hdt < ln

�
MPl

Hf

�
; ð1Þ

where N is the number of e-folds of inflation and Hf
denotes the Hubble parameter at the end of inflation.

Assuming the TCC to be true, one can easily get an upper
bound on the energy scale of inflation ρ1=4inf < 3 × 10−10MPl

and, as a result, on the tensor-to-scalar ratio r < 10−30 [20].
As also emphasized in Ref. [20], these bounds hold quite
generally for all models of inflation unless one assumes a
different mechanism for the production of primordial
gravitational waves [21] or introduces drastic changes to
the cosmic history [22].1 In other words, unless one
introduces such radical modifications, the observation of
primordial tensor modes would rule out inflation, assuming
the TCC to be correct. Moreover, the TCC also leads to an
extreme fine-tuning problem for single-field models of
inflation [20].
In light of the fact that the TCC puts into question one

of our most successful paradigms of early Universe
cosmology—namely, inflation—and forces us to look at
other alternatives [34], it is certainly pertinent to ask why
one should trust the TCC. The fundamental argument for it,
as presented in Ref. [1], is that if trans-Planckian modes
were to cross the Hubble horizon and freeze out, then we
would have an observation of classical inhomogeneities
which originate from trans-Planckian quantum fluctua-
tions. This would imply that one can push inflation, as
an EFT, beyond Planck scales which is the same as
assuming that spacetime would remain a smooth con-
tinuum beyond such scales. Since it is well known that
imposing a naive UV cutoff to integrate out the trans-
Planckian modes, in order to systematically derive a low-
energy EFT, does not work for expanding backgrounds
[35], it makes sense to require that quantum fluctuations on
scales smaller than the Planck length should, at the very
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1For other cosmological implications of the TCC, see
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least, be “hidden” by the Hubble horizon in analogy with
Penrose’s “cosmic censorship hypothesis” [36,37].
In this work, we shall show that one can arrive at the

TCC (as appropriate for slow-roll scalar potentials) inde-
pendent of the above motivations from cosmology. The
swampland program has already established that many of
these conjectures which seem to be independent and
unrelated to each other at first sight, appear to be part of
a deeper, interconnected structure on closer examination
[38–47].2 A nice example of this would be Ref. [38], in
which it was shown that the (refined) dS conjecture
follows from the swampland distance conjecture (SDC)
[10,39,40,48–50] in parametrically controlled regimes of
string theory, assuming Bousso’s covariant entropy bound
[51,52] to hold. Although the dS conjecture [38,53–59] was
originally motivated by the difficulty of constructing dS
vacua in string theory, it was much more satisfying to get an
argument for it in terms of a more fundamental quantum
gravity consideration, namely, the entropy bound for quasi-
dS spacetimes in this case. (Other arguments for the dS
conjecture to arise from more fundamental aspects of
quantum gravity was given in Refs. [58,59].)
In a similar vein, we shall show that the TCC can be

derived starting from a well-explored aspect of quantum
gravity—the SDC—assuming some scaling for the cutoff
according to the species bound [60–63]. Since the SDC has
been tested extensively in concrete examples coming from
string theory (e.g., Refs. [48,49,64–68]), our derivation
makes the TCC much more robust, and consequently, its
implications for cosmology more unavoidable. As an aside,
it shall also demonstrate how the logarithmic corrections
[1,69] naturally arise in the dS conjecture, starting from the
SDC and using the species bound if one does not require
that the field excursion jΔφj → ∞. To the best of our
knowledge, this point has been overlooked in previous
derivations of the dS conjecture from similar arguments
such as in Ref. [70].
Since it is rather strange that an abstract quantum gravity

principle can give rise to the TCC, which is often
formulated as a statement about quantum fields on
quasi-dS spacetime, let us first give a brief overview of
our argument. As expressed in Eq. (1), the TCC is a
statement about the maximum number of e-folds one can
have during an accelerated phase of expansion. As men-
tioned above, this upper bound on the duration was
motivated in Refs. [1,20] by requiring that trans-
Planckian quantum modes never cross the Hubble horizon.
Starting from the SDC, and using the species bound, one
finds an upper bound on the UV cutoff of the weakly
coupled gravitational theory. This cutoff decreases expo-
nentially on field space if there is a field-dependent tower of

states descending from the UV (as is the case for the SDC).
Consequently, one gets an upper bound for the duration of
an accelerated phase by imposing that the Hubble para-
meter, at the end of this phase, is below the cutoff of the
theory. This, in short, forms the crux of our argument and
shows how this requires that trans-Planckian quantum
fluctuations should never cross the Hubble horizon based
on a completely different, and well-tested, string theory
argument. As shall be emphasized later, the crucial thing
for our reasoning to go through is that the exponent α from
the SDC and the one which appears for the TCC are both
Oð1Þ numbers.
We flesh out the details of our main argument in the next

section and then go on to show the consequences for the dS
conjecture in Sec. III before concluding in Sec. IV. From
now on, we shall set the (d-dimensional) Planck mass MPl
to one for the rest of the paper.

II. TCC AND SDC

Let us assume a single tower of light states with equal
spacing, say, for Kaluza-Klein (KK) modes. In this case the
mass of light states appearing in the infinite tower goes as
(some positive integer multiple of)

mðφÞ ∼ e−αjΔφj; ð2Þ

where α > 0 is some Oð1Þ number in general when
jΔφj ≫ 1, according to the SDC [10,39,40]. The refined
version of the SDC states that this relation holds not only
for moduli space but also for field space in an EFT with a
potential V ≠ 0. Our main takeaway from the SDC is that
the number of light states in the tower (even for something
as elementary as KK or winding modes) goes as

N�ðφÞ ∼ eαjΔφj; ð3Þ
where, once again, we assume a single massless tower.
We now introduce the second ingredient for our deri-

vation: when there is a large species of weakly interacting
particles, the UV cutoff of the effective gravitational theory
is given by [60]

Λd ≲ 1

N1=ðd−2Þ
�

; ð4Þ

where, from now on, we generalize to d dimensions. This
well-known result is the species scale conjecture which can
be applied to the light states appearing in the SDC tower, as
has been done in Refs. [64,70]. The number of light species
below the true UV cutoff Λd can be written as

N�ðφÞ ∼
Λd

mKK
¼ ΛdeαjΔφj: ð5Þ

From Eq. (5), and using Eq. (4), we get an expression for
the cutoff of the weakly coupled gravitational regime as

2These are a few examples where such connections have been
revealed; see, for instance, Ref. [11] and references therein for a
more complete list.
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Λd ≲ e−αjΔφj=ðd−1Þ: ð6Þ

For any EFT to be under perturbative control, we require
that the curvature scale set by the Hubble parameter,
corresponding to some energy density, be below this UV
cutoff scale, i.e.,

Hf < Λd ⇒ Hf < e−αjΔφj=ðd−1Þ: ð7Þ

This is similar to the bound that one finds for the TCC,
when specialized to scalar fields [1], for someOð1Þ number
α. At this point, it is pertinent to emphasize that the above
upper bound is for the value of the Hubble parameter, Hf,
after the field has traversed a large geodesic distance on
field space in order for the SDC to be valid. From hereon,
one can recover the TCC (1), as follows.
We begin by rewriting Eq. (7) as

αjΔφj
ðd − 1Þ < − lnðHfÞ: ð8Þ

From the d-dimensional Friedmann equation

ðd − 1Þðd − 2Þ
2

H2 ¼ 1

2
_φ2 þ V; ð9Þ

it is easy to show that, for V < 0,

Z
φf

φi

dφ

�
H
_φ

�
<

jΔφjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1Þðd − 2Þp < − lnðHfÞ; ð10Þ

where we use Eq. (8) to get the last inequality, which puts a
lower bound on the exponent appearing from the SDC
given by

α ≥
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

d − 2

r
: ð11Þ

But the left-hand side of Eq. (10) can be rewritten as

Z
tf

ti

Hdt < − lnðHfÞ; ð12Þ

which is exactly the same as Eq. (1) when MPl ¼ 1.
Naturally, the more interesting case is for V > 0 since

this is the one required for (quasi-)dS backgrounds. In this
case, we can use the equation for the rate of change of the
Hubble parameter

_H ¼ −
�

_φ2

d − 2

�
ð13Þ

to rewrite the number of e-folds as

Z
φf

φi

dφ

�
H
_φ

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiðd−2Þp

Z
φf

φi

dφ
1ffiffiffiffiffiffi
ϵH

p ≃
2

ðd−2Þ
Z

φf

φi

dφ
V
jV 0j;

ð14Þ

where ϵH ≔ − _H=H2 and we have used the slow-roll
approximation in the last equality. Next, using the lower
bound on the quantity jV 0j=V, as derived later in Eq. (21),
we get

Z
φf

φi

dφ

�
H
_φ

�
<

�
d − 1

d − 2

�
1

α
jΔφj: ð15Þ

Once again, using Eq. (8) and rewriting the number of
e-folds in a more familiar form, we see that

Z
tf

ti

Hdt < −
ðd − 1Þ2
ðd − 2Þα2 lnðHfÞ: ð16Þ

This is equivalent to the TCC if we impose a stronger lower
bound on the SDC exponent

α ≥
d − 1ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p : ð17Þ

At this point, let us reiterate our main assumptions in
deriving the TCC from the SDC and the species bound.
Most crucially, we have to assume jΔφj → ∞ when using
the lower bound (21). However, it is natural to assume this
in our case as this is the regime in which the SDC requires
the emergence of the light tower of states. But it is
important to emphasize that one cannot typically assume
the upper bound for the number of e-folds used above in a
regime where jΔφj ≪ 1. As has been emphasized right
from the beginning, our derivation of the TCC is only valid
for parametrically large distances on field space. We also
emphasize that we are not secretly assuming the dS
conjecture for our derivation to go through, which would
indeed have been an additional requirement. Rather, the
upper bound on jV 0j=V shall be derived in the next section,
without invoking the TCC, which is possible since one can
arrive at the dS conjecture from the SDC on asymptotic
regions of field space [38,70].
Our second assumption comes in the form of a derived

bound on the Oð1Þ constant in the exponent multiplying
jΔφj. We find that in order for the TCC to be valid, one
must have the relation (17). This is very similar to the lower
bound found in Ref. [1] by comparing the distance
conjecture and the TCC, up to Oð1Þ numerical factors.3

As already pointed out in Ref. [1], this opens up an

3Although small, this numerical factor can nevertheless play a
crucial role in cosmological model building, for instance, by
becoming the deciding factor in ruling out quintessence models,
compatible with the swampland, from observations [71–73].
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opportunity to test this lower bound on α from explicit
string theory constructions. Let us end this section with an
interesting alternate possibility. Indeed, one can choose that
α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1Þ=ðd − 2Þp

such that Eq. (8) acquires the same
form as it did in Ref. [1]. The advantage of this would be
that the lower bound on jV 0j=V > 2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1Þðd − 2Þp
[Eq. (21)] remains the same as the one from Ref. [1], as
we shall show in the next section. This value of α would, of
course, be unviable with our derived bound (17) above.
However, one can interpret this as an alternate (weaker)
version of the TCC, given by

Z
tf

ti

Hdt < −ðd − 1Þ lnðHfÞ; ð18Þ

which still puts a (weaker) upper bound on the duration
of the quasi-dS phase. Although this relation is quite similar
to the TCC from this point of view, it is rather different
if one takes the view that the fundamental property of
the TCC is to stop trans-Planckian modes from crossing
the Hubble radius. We just mention this to highlight the
generality of the argument that the SDC, and the species
bound, would always put an upper bound on the lifetime of
an accelerating phase, albeit the duration would depend
on α ∼Oð1Þ [Eq. (16)].

III. TCC, dS CONJECTURE AND SDC

Independently of the TCC, the dS conjecture also
follows from our assumptions of starting from the SDC
and using the species bound [70]. Let us quickly repeat the
main arguments of that derivation. Let us recall that
Hf < Λd. Moreover, since the potential must always satisfy

V < ðd−1Þðd−2Þ
2

H2 from the Friedmann equation (9), one
gets an upper bound

Vf < Ae−
2αjΔφj
ðd−1Þ ; ð19Þ

which is a generalization of the Dine-Seiberg argument
[74]. Here A ¼ ðd − 1Þðd − 2Þ=2 is a constant. If one now
chooses to take jΔφj → ∞, then we get the same con-
clusion as in Ref. [70], i.e., there cannot be any metastable
dS vacua. This is how one arrives at the dS conjecture
starting from the SDC.
With the benefit of hindsight (and the arguments given in

Ref. [1]), it can be seen that Eq. (7) is much more powerful
and one can get a bound for the smallest initial value of φ,
which then cannot start from arbitrary negative values to
end up at φf. This is precisely why one finds that there are
logarithmic corrections to the dS conjecture starting from
the TCC, for short-range field excursions, as has nicely
been explained in Ref. [1]. This helps to resolve a puzzle
which might arise from our derivation: how can the TCC
and the dS conjecture both follow from our assumptions
since the former allows for metastable dS vacua while the

latter does not? It is simply because our argument is only
valid for parametrically large distances on field space, in
which regime, the TCC agrees with the dS conjecture.
However, if we were then to assume that the TCC is valid

everywhere on field space, then we would get the con-
clusion that a metastable dS vacua is allowed. Moreover,
this also shows that under such an assumption, it would
have been possible to derive the log-dependent correction
factors one finds while deriving the dS conjecture from the
TCC. In other words, it would have been possible to derive
metastable dS vacua, along with a bound on their lifetimes
as was shown in Ref. [1] [using Eq. (12)], just by starting
from the SDC and assuming the species bound, had one
extended the findings to all of field space and not just
restricted oneself to the asymptotic regions.4 This can be
made explicit as follows [1]. Starting from Eq. (19), one can
write

�
−V 0

V

�
φf

φi

>
1

jΔφj ln
�
Vi

A

�
þ 2α

ðd − 1Þ ; ð20Þ

where the left-hand side denotes the average of ðV 0=VÞ over
the field range jΔφj. As is obvious, the logarithmic terms
disappear only for infinite field excursions to give us

�
−V 0

V

�
∞
>

2α

ðd − 1Þ : ð21Þ

Since we use this above bound to derive the TCC, it is
important to reiterate that we arrive at this version of the dS
conjecture from the SDC, without assuming the TCC at any
point. As a final remark, it is easy to see that this matches
the bound in Ref. [1] when α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd − 1Þ=ðd − 2Þp

, as
mentioned in the previous section.
Our derivation of the dS conjecture from the SDC plugs

in another loophole in the original argument for the dS
conjecture from entropy considerations on accelerating
backgrounds [38]. In that case, one gets that the entropy
of the light towers emerging due to the SDC, using the
Bousso bound [51,52], scales as

S ∝ eαφ: ð22Þ

Inverting the relation between the Gibbons-Hawking
entropy for dS space and the potential, one finds that

V ∝ e−αφ; ð23Þ

4It has been pointed out that there are some loopholes in the dS
conjecture when deriving it in this way using the species bound
and the SDC [70]. Our argument offers a possible resolution to
these loopholes in the sense that they perhaps only loosen the
conjecture so as to allow metastable vacua with a given bound on
their lifetimes.
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where we ignore additional φ dependences such as those
arising from the density of light towers. However, as was
pointed out in Ref. [75] (see also Ref. [76]), large flux
compactifications can admit several balanced terms in the
scalar potential even over parametrically large distances on
field space, therefore also admitting a minima once such
fluxes are turned on. An explicit counterexample given in
Ref. [75] shows that a potential of the form

V ∼ Ae−αφ þ Be−ðαþβÞφ þ Ce−ðαþγÞφ; ð24Þ

does admit a dS minima for A ∼Oð1Þ, B ∼ −OðeðβφÞÞ,
C ∼OðeðγφÞÞ, in the limit φ → ∞. In other words, with
flux-dependent coefficients of the right magnitude, one can
get a dS solution thus stabilizing the Dine-Seiberg runaway.
On the other hand, such a potential (24) still gives the same
form for the entropy as expressed in Eq. (22), near the
minima, thereby reproducing the same expression as
expected from the SDC. This, therefore, shows that by
entropy arguments alone one cannot derive the dS con-
jecture starting from the SDC.5 In our work, the upper
bound for the potential (19) comes from the SDC and the
species bound argument alone without resorting to proper-
ties of quasi-dS backgrounds. Moreover, the lower bound
on ½jV 0j=V�∞ is on the averaged value of jV 0j=V and not a
local one. Therefore, even if one is to somehow assume the
presence of some additional terms such that this upper
bound can be “stabilized” by some flux compactifications
[as in the B andC terms of Eq. (24)], the resulting bound on
½jV 0j=V�∞, as given in Eq. (20), is unaffected. This would
lead to the presence of some additional terms in Eq. (20);
nevertheless in the limit jΔφj → ∞, one recovers Eq. (21).

IV. CONCLUSION

There has been a lot of recent work aiming to see if
inflation can be made compatible with the TCC. If correct,
the TCC would imply a tectonic shift in our understan-
ding of early Universe cosmology since it seems to
highly disfavor models of inflation. Given its radical

consequences, it is natural to ask if the TCC can be
obtained from some other well-tested aspect of quantum
gravity.
In this work, we showed how by only assuming

the SDC, and a scaling of the UV cutoff for a large
species of particles, one can arrive at the TCC for para-
metrically large distances in field space. Both the TCC
and its predecessor—the “trans-Planckian” problem in
inflation—were only motivated by EFT arguments without
providing any quantum gravity support for them. In this
work, we showed how the TCC is not a new swampland
conjecture but rather a natural consequence of the well-
established SDC. This implies that a consistent UV theory
must secretly know that trans-Planckian modes should
never exit the Hubble horizon. As a result, the nice thing
about our logic is that we do not need to assume anything
about quantum fluctuations crossing the Hubble horizon for
our derivation. The price we pay is that our result is only
valid in the asymptotic limit of large jΔφj and we need to
conjecture that the TCC is valid more generally even for
small field excursions. Contrary to previous approaches of
assuming the TCC and examining its consequences, our
result puts the TCC on a much firmer footing and makes it
imperative to take its implications for inflationary cosmol-
ogy [20], among other things, more seriously. Interestingly,
this establishes the TCC as a general expectation from
consistent UV approaches, which has recently been further
strengthened by deriving it using entropy arguments [77] or
the weak gravity conjecture [78].6
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