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Machine-learning assisted jet substructure tagging techniques have the potential to significantly
improve searches for new particles and Standard Model measurements in hadronic final states.
Techniques with simple analytic forms are particularly useful for establishing robustness and gaining
physical insight. We introduce procedures to automate the construction of a large class of observables that
are chosen to completely specify M-body phase space. The procedures are validated on the task of
distinguishing H → bb̄ from g → bb̄, where M ¼ 3 and previous brute-force approaches to construct an
optimal product observable for the M-body phase space have established the baseline performance.
We then use the new methods to design tailored observables for the boosted Z0 search, where M ¼ 4 and
brute-force methods are intractable. The new classifiers outperform standard two-prong tagging
observables, illustrating the power of the new optimization method for improving searches and
measurement at the LHC and beyond.
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I. INTRODUCTION

Effective identification of hadronic decays of boosted
heavy particles like the top quark or W, Z and Higgs (H)
bosons is essential for analyses at the Large Hadron Collider
(LHC). Jet substructure observables that identify specific
discriminating information in the radiation pattern of jets
originating from different particles are now necessary, both
in the search for new physics and precision Standard Model
(SM) measurements. As a result, there is an extensive
literature developing observables and techniques for identi-
fying boosted topologies to increase the efficacy of LHC
analyses probing extreme regions of phase space [1,2].
Modern machine-learning (ML) methods have emerged

as useful tools for automating the creation of optimal
observables for classification. These methods are particu-
larly powerful for high-dimensional, low-level inputs such
as fixed-length sets of four-vectors [3], variable-length
sets of four-vectors [4], physics-inspired bases [5–9],
images [10–20], sequences [18,21–23], trees [24,25],
and graphs [26]. Some deep-learning-based tagging

schemes have already been demonstrated using collider
data as well as with full detector simulations for top quark
tagging [27,28], boson tagging [27,29], quark/gluon tag-
ging [30,31], and b-jet tagging [32–35]. In addition to
improving classification performance, ML techniques may
also be able to make jet tagging more independent from
simulation and robust to differences between simulation
and data as well as between sideband and signal regions
[36–43]. These and related techniques have also been
proposed as more model-agnostic approaches to new
particle searches [44–48].
One of the key challenges with ML taggers is to identify

what information the machine is using for classification.
Understanding the origin of discrimination can lead to
robustness when taggers are applied outside of the region
they were trained, can result in new theoretical insight for
other applications, and may produce new simple observ-
ables that capture most of the information. While there are
many proposals for ML metacognition [4,5,7,8,12,17,40],
one particularly powerful approach is to identify simple
product observables that capture most of the information
from a ML algorithm trained on the full phase space [8].
This approach results in analytically tractable observables
that can capture nearly all of the power of a more
complicated algorithm, but are also very robust and
insightful. One of the most challenging aspects of the
approach presented in Ref. [8] is the fitting process for
picking the optimal simple product observable.
In this paper, we describe two machine-learning proce-

dures for automating the feature extraction originally
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presented in Ref. [8]. One method attempts to learn a
parametrized generative model for estimating the proba-
bility densities for a product observable. A second, simpler
method uses linear regression on the logarithm of the
product observable. These methods are applied to derive an
optimal product observable for discriminating H → bb̄ vs
g → bb̄ and the outcome is compared to the result of
Ref. [8] which used a brute-force approach. Having
validated the methods, a new classifier is developed to
distinguish a Z0 from generic quark and gluon jets. The
phase space scan required in this later tagging task is too
big for the brute-force approach and therefore the auto-
mated methods are required to find the optimal tagger. The
resulting classifier has a simple form and is competitive
with a tagger using high-dimensional, low-level inputs. In
addition to Ref. [42], this is the only other study of the
dependence on the mass of the new boson, which is timely
given new searches for light boosted bosons [49–51].
This paper is organized as follows. The method for

constructing product observables is described in Sec. II and
the machine-learning approaches are detailed in Sec. III.
Results for both the Higgs and Z0 classification tasks are
presented in Sec. IV. The paper ends with conclusions and a
future outlook in Sec. V.

II. N-SUBJETTINESS PRODUCT OBSERVABLES

The information about the kinematic phase space of
M-subjets in a jet is resolved with a set of (3M − 4)
N-subjettiness [52–54] observables. By increasing M, one
can identify the number of subjets required to saturate
the classification performance based on the spanning set of
N-subjettiness observables [7]:

fτð0.5Þ1 ; τð1Þ1 ; τð2Þ1 ;…; τð0.5ÞM−2; τ
ð1Þ
M−2; τ

ð2Þ
M−2; τ

ð1Þ
M−1; τ

ð2Þ
M−1g;

where

τðβÞN ¼ 1
P

i∈jetpT;iRβ

X

i∈jet
pT;imin

axes j
ðΔRj;iÞβ; ð1Þ

for some choice of N axes within the jet; R is the jet
radius parameter, and ðΔRÞ2 ¼ ðΔϕÞ2 þ ðΔηÞ2. Given
the minimal M, one can posit an ansatz1 for a simple
product observable that captures most of the information
contained in a neural network trained on the entire
spanning set:

βML
M ¼ ðτð0.5Þ1 Þaðτð1Þ1 Þbðτð2Þ1 Þcðτð1Þ2 Þd � � � : ð2Þ

For distinguishing H → bb̄ vs g → bb̄ jets, the authors of
Ref. [8] showed that the useful information for classi-
fication is saturated by M ¼ 3 and βML

3 has nearly the
same tagging performance as the full 3-body phase space.
The parameters a, b, c, d, and e that specify βML

3 were
identified by randomly scanning the five-dimensional
phase space and exploiting minimal correlations between
some of the parameters. This becomes intractable when
the optimal M is bigger than 3.
In this paper, we explore methods to overcome the

difficulties of extending this procedure to higher dimen-
sions. In one approach, we replace the random sampling
segment of the procedure with a combination of neural
networks carrying out regression from the parameter
space to the distributions of the product observable for
individual jets. Off-the-shelf minimization routines can
then be used to optimize any metric of the classifier
performance. A complementary and simpler approach is
to directly use the form in Eq. (2) in the machine-learning
optimization, where the learnable parameters are the
exponents fa; b; c;…g. Further details are described in
the next sections.

III. MACHINE-LEARNING IMPLEMENTATION

A. Dataset

Proton-proton collisions with Z0 → hadrons, H → bb̄,
and generic quark and gluon jets (QCD) at

ffiffiffi
s

p ¼ 13 TeV
are generated using PYTHIA8.226 [55,56]. For the H → bb̄
case, the background is enriched in g → bb̄ as in Ref. [57]
by generating the gluon splitting matrix element in
MadGraph 5 v2.5.4 [57]. All detector-stable particles excluding
neutrinos and muons are clustered into jets using the anti-kt
algorithm [58] with R ¼ 0.8 as implemented in Fastjet [59].
Events are required to have at least one jet with pT >
500 GeV and mass >25 GeV, and the leading such jet is
considered for further analysis. There is no explicit require-
ment on the jet pseudorapidity, but due to the high pT
threshold, jets are mostly concentrated at central rapidities.
Jets are groomed by reclustering the constituents using
the Cambridge-Aachen algorithm [60,61] and applying
the soft drop algorithm [62] with β ¼ 0 and zcut ¼ 0.1
[equivalent to modified mass drop tagging (mMDT) [63]].
The N-subjettiness observables are computed using the

axes that minimize τðβÞN , using the exclusive kt algorithm
[64,65] with standard E-scheme recombination [66]. For
comparison with other state-of-the-art two-prong tagging

techniques, the D2 [67], N2 [68] observables, and τðβÞ21 with
winner-take-all (WTA) recombination [69–71], are also
computed from the jet constituents.

B. Construction of optimized product observables

Using the approach followed in Ref. [8], the point of
saturation of discrimination power is first identified using a

1The product form may not be flexible enough to capture the
full discrimination power. We find that it can capture a significant
portion of the classification performance, but Appendix E in-
dicates that further information can be useful.
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deep neural network (DNN) classifier. For Z0 vs QCD
and H → bb̄ vs g → bb̄ discrimination, we note
that discrimination power saturates at 4-body (eight-
dimensional) and 3-body phase space (five-dimensional),
respectively. Then it is simple to form the product
observable from the elements of the M-body basis
corresponding to saturation.
We examine two approaches for finding the optimal

product observable. A first method estimates the proba-
bility density functions (PDFs) of the product observables
for a given set of exponents fa; b; c;…g. These PDFs can
then be used to construct likelihood ratios and scan for the
optimal classifier. The second method makes use of the
observation that any monotonic transformation of a clas-
sifier has the same performance as the original classifier.
The logarithm of Eq. (2) is linear and so the optimal
exponents can be simply optimized using linear regression.
Linear regression has a unique solution and is easy to
implement. Therefore, this second method has a clear
advantage over the first method. However, linear regression
would not apply if a more complex function was chosen
instead of a simple product for Eq. (2). There may be
additional use-cases for the generative model as well.
Therefore, both methods are presented on equal footing
below, though for the product case studied in this paper, we
advocate for the linear regression in practice.
We begin by describing the generative model approach.

For each task, the product observable is calculated for
25,000 signal and background jets for different values of
the parameters [a − e] (H → bb̄) or [a − h] (Z0), in the
range ½−5; 5�. These distributions are then stored to gen-
erate training sets for the neural networks used to carry out
regression from the parameter space to the calculation of
βML
M with those exponents.
While there are multiple possibilities for learning the

probability distribution of βM given fa; b; c;…g, such as
generative adversarial networks [72] and variational
autoencoders [73,74], the method that we found works
well for the product observables is illustrated in Fig. 1. The
network takes as input five (Higgs) or eight (Z0) inputs and
outputs 25,000 numbers, which represent a dataset that is
the same size as the training data, but with the specified
parameter values fa; b; c;…g. From these 25,000 values,
the probability distribution of β is formed for signal and
background and the one-dimensional likelihood ratio is
constructed for optimizing the classifier performance.
Variations on this setup are possible, such as (significantly)
reducing the number of points needed to specify the
probability distributions, but this approach was found to
be robust to perturbations in initialization and network
architecture. For this paper, it was found that the network
did not work well with fewer than 25,000 example jets per
parameter point. For each network, 250,000 (450,000)
parameter points were used for training in the Z0 and
ungroomed Higgs (groomed Higgs) case. In only the

groomed Higgs case, a single network was trained for
signal and background with a 1=0 switch added to the
input. Separate networks were trained for signal and
background in the Z0 and ungroomed Higgs cases. To
reduce the effects of numerical instability on the training of
these networks, we train on samples after taking the natural
logarithm of the 25,000 measured values of the product
observables.
Aside from the use (or not) of the switch input, both the

H → bb̄ and Z0 tasks use simple fully connected neural
networks with two hidden layers. The input layer is
followed by a fully connected layer with either 250 or
500 nodes, then another fully connected layer with 100 or
250 nodes, followed by an output layer with 25,000 nodes
using a linear activation. The number of nodes in the hidden
layers were bigger for the Z0 case with grooming compared
with the Higgs case or the ungroomed Z0 case.
We use leaky rectified linear units (leaky ReLU) as the

activations for the hidden layers. The networks were
compiled with a mean squared error loss function [on
the penultimate layer shown in Fig. 1, not on pðβMÞ
directly], using Adam optimization [75]. The regression
networks were each trained for ∼400 epochs. All deep
learning tasks were carried out with the Keras [76] deep
learning libraries, using the TensorFlow [77] backend.
Given the set of 25,000 values of the βM observable for a

given set of parameters, it is straightforward to use these
networks in an optimality scan. For this purpose, we use
SciPy’s [78] basin-hopping [79] global minima finder using
the nonlinear, derivative-free constrained optimization by
linear approximation (COBYLA) [80] minimizer to scan
over local minima. In the optimization, the networks are
used to predict background and signal distributions for a
given set of parameters. The one-dimensional binned
likelihood distributions2 of the observable, constructed
from the network outputs, were then used to calculate
the area under the receiver operating characteristics (ROC)
curve, henceforth referred to as the AUC, to estimate the
discrimination power, where (1-AUC) was explicitly
chosen as the metric for the basin-hopping minimization.

FIG. 1. A schematic diagram of the network architecture used
to produce the probability distribution of βM for a given set of
input parameters fa; b; c;…g. In this case, N ¼ 25; 000.

2In principle, one can estimate the AUC without binning, but it
was found that there was not a significant sensitivity to the choice
of binning.
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Appendix A illustrates that the regression networks can be
used to accurately model the dependence of the AUC as a
function of the parameters. The observable selected using
this procedure will be denoted βML

3;H→bb̄
in the next sections.

We also note that the space of possible inputs is
degenerate since a monotonic function of an observable
has the same discrimination power as the original observ-
able. However, due to the finite binning required to
calculate the AUC’s from the likelihood distributions,
and statistical fluctuations in a given data sample, the
observables do not have precisely the same power as
monotonic functions of themselves. The issue of degener-
acies is not explicitly dealt with in the minimization
procedure, but if the networks are adequately trained over
the input space, it is sufficient to locate any one “global”
minimum among local minima of similar depth, using
basin-hopping or any other global minimizer.
The second approach to optimizing fa; b; c;…g directly

uses Eq. (2). The product form can be used directly as a
tunable function for predicting signal/background with
tunable parameters fa; b; c;…g. This is a more direct
way of identifying the optimal solution without explicitly
modeling the probability distributions. Optimizing a
generic function is possible with methods like stochastic
gradient decent, but the product observable is amenable to a
significant simplification.3 In particular, two classifiers that
are monotonic transformations of each other result in the
same classification performance. By taking the logarithm of
Eq. (2), one can transform the problem into linear regres-
sion4 where the inputs are logðτÞ and the coefficients are the
exponents:

logðβML
M Þ ¼ a logðτð0.5Þ1 Þ þ b logðτð1Þ1 Þ þ � � � : ð3Þ

This approach uses the mean squared error loss to
identify fa; b; c;…g. The observable selected using this
procedure will be denoted β̂ML

3;H→bb̄ in the next sections.

IV. RESULTS

In this section, we present the new observables obtained
for the different classification tasks for the ungroomed Z0
samples (the groomed case is in Appendix C). For closure,
we first demonstrate that this new procedure produces an
observable for ungroomedH → bb̄ discrimination with the
same performance as the β3 observable proposed in Ref. [8]
(the groomed case in Appendix B). Then we extend the
procedure to higher M-body phase space by applying it to
Z0 discrimination for three values of mZ0 , and propose new
observables for those classification tasks.

A. Ungroomed H → bb̄ vs g → bb̄ discrimination

Utilizing the result that discrimination power for ung-
roomed H → bb̄ vs g → bb̄ discrimination saturates at 3-
body phase space, we use the procedures proposed in the
previous section to find the optimal product observable.
The final values for the parameters fa;…; eg obtained
through the optimization are presented in Table I, along
with those obtained in the previous study. Note that any set
of exponents for which the observable is related by a
monotonic transformation should have equivalent loss and
thus are equally good from the point of view of minimi-
zation. This introduces some sensitivity to the stochastic
nature of network training. Interestingly, the exponents
with the ensemble method are nearly the same for a, b, d,
and e, but slightly different for c. For the regression
method, the exponents are nearly the same as the ensemble
method up to a constant factor (approximately −2) for c, d,
and e, but not for a and b. These results indicate the
presence of multiple observables with comparable perfor-
mance. While there is no obvious monotonic transforma-
tion between the two observables, a simple neural network
trained on their combination does no better than each
individually and thus they must be using the same infor-
mation. This is true for the networks presented in later
sections as well.
In Fig. 2(a), we plot the distributions of the new

observable computed for signal and background, along
with the prediction from the ensemble neural network. We
note that the network provides a good match to the true
distribution, where the latter is also calculated on ten times
more jets. Further, in Fig. 2(b) we plot the distributions of
the observable obtained via the ML regression method. We
then compare the ROC curves for the new observables to

Dð2Þ
2 [67], Nð2Þ

2 [68] observables, and τð2Þ21 in Fig. 2(c).
In addition, we also compare the new observables to β3

in Fig. 2(d) to demonstrate that the three observables have
essentially the same discrimination power as expected.
Then, this allows us to proceed to applying the procedure
on higher dimensional problems.

B. Ungroomed Z0 vs QCD

We first train neural network classifiers on the M-body
N-subjettiness bases, to identify the point of saturation of

TABLE I. Summary of parameters for the product observables
for ungroomed H → bb̄ discrimination as proposed in Ref. [8]
and as constructed via the procedures presented in this work
[Figs. 2(a) and 2(b)].

Observable a b c d e AUC

β3 2.0 0.0 0.0 0.5 −1.0 0.823

βML
3;H→bb̄

1.87 −0.02 −0.14 0.66 −0.98 0.823

β̂ML
3;H→bb̄

−0.11 −0.58 0.09 −0.25 0.51 0.824

3We thank Eric Metodiev for this insightful observation.
4Linear regression was proven to be sufficient for all

IRC safe observables in Ref. [5]; however our results need not
be IRC safe.
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(a) (b)

(c) (d)

FIG. 2. (a) Comparison of the probability density function of the new βML
3;H→bb̄

observables for ungroomed H → bb̄ discrimination,
using ∼500; 000 signal and background samples, and the distributions of the regression DNN prediction. The distributions are rescaled
by a constant for the sake of visual comparison. (b) Probability densities of β̂ML

3;H→bb̄ obtained via linear regression. (c) Comparison of

discrimination power of βML
3;H→bb̄

and β̂ML
3;H→bb̄ to standard observables. (d) Comparison of βML

3;H→bb̄
and β̂ML

3;H→bb̄ to β3 proposed in Ref. [8];
we note that three observables provide essentially the same discrimination power.

(a) (b)

FIG. 3. M-body discrimination results for ungroomed Z0 vs QCD jets. Discrimination power is effectively saturated at 4-body phase
space for each case.
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(a) (b) (c)

(d) (e) (f)

FIG. 5. Top panels [(a)–(c)]: Comparison of discrimination power of βML
4 observables to standard observables; the latter are calculated

with an angular exponent of 1, for which they were observed to perform best. Bottom panels [(d)–(f)]: Comparison of βML
4 to

discrimination power of neural networks trained on theM-body observable bases; the observables seem to capture increasing amounts of
the discrimination power of the 3- and 4-body neural networks with increasing mZ0.

(a) (b) (c)

(d) (e) (f)

FIG. 4. Top panels [(a)–(c)]: Comparison of the probability density function of the new βML
4 observables for ungroomed Z0

discrimination, calculated for ∼500; 000 signal and background samples, and the distributions of the regression DNN predictions of
25,000 observable values. The distributions are rescaled for the sake of visual comparison. Bottom panels [(d)–(f)]: Distributions of the
β̂ML
4 observables for ungroomed Z0 discrimination that were obtained via linear regression.
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discrimination power for each value ofmZ0 .5 The results are
presented in Fig. 3, showing that saturation occurs with the
4-body phase space for each case.
We then proceed to construct the βML

4;Z0 and β̂ML
4;Z0 product

observables with the elements of the eight-dimensional
4-body basis, run the procedure described in Sec. III and

construct the new observables optimized for Z0 discrimi-
nation at three different values of mZ0 .
We present the distributions of the new observables for

Z0 discrimination in Fig. 4 and then compare their dis-
crimination power to standard observables and DNNs
trained on the spanning N-subjettiness bases in Fig. 5.
The corresponding values of fa; b; c;…; hg and the AUCs
are in Tables II, III, and IV, respectively. The comparison of
the true and predicted distributions in Fig. 4 illustrates the
excellent quality of the regression network. The ROC
curves in Fig. 5 show that the learned βML and β̂ML

outperform the state-of-the-art single physics-motivated
observables (top row), though the product observables
do not fully saturate the performance of the DNN trained
on the full 4-body phase space (bottom row). This suggests
that a more flexible form (other than a simple product) is
required to build a simple observable to capture more of the
classification information. The product values obtained
from the ensemble and regression methods are not a simple
scaling of each other, though the fact that both have a
similar performance suggests that one is a monotonic
transformation of the other.
The optimized βML and β̂ML observables are not identical

for the different values of mZ0 (Tables II and III), but it
would be interesting to study to what extent the trends
are physical or are due to the existence of multiple
observables with similar performance. We leave this study
to future work. However, a first indication that the
observables contain similar physical information is
studied in Appendix D, where the optimized product for
one mass is applied to another mass. The ROC curves
are similar for all three product observables when applied
to the same mZ0 .

V. CONCLUSIONS

This paper has extended the growing literature of
machine-learning assisted jet substructure-based tagging
in two ways. First, we have developed procedures to
automatically identify the optimal product observables,
using the N-subjettiness features as an example. This is
an important innovation because observables with rela-
tively simple analytic forms are robust complements to
complex neural network classifiers and prior to this work,
there was no efficient way to identify the best coefficients in
the product. Second, we have used this automated frame-
work to identify the optimal product observables for
searching for boosted resonances like the Z boson, but
with beyond the Standard Model masses. Jet substructure
has proven to be a powerful toolset for such searches, but
until now, there have been few studies of the mass
dependence of the optimal observables.
Future extensions of the methods introduced in this

paper may be able to simplify the regression procedure, as
well as study the connections between different classifiers
with similar performance (including the ones connected by

TABLE II. Summary of parameters for βML
4 for ungroomed Z0

vs QCD discrimination at three mass points.

mZ0

(GeV) a b c d e f g h

50 2.72 −3.78 0.63 −2.77 1.54 0.20 2.36 −0.28
90 0.90 −2.87 0.18 −1.78 −0.72 1.79 2.48 −0.44
130 1.69 −2.98 0.75 −0.89 −0.38 0.77 1.37 0.30

TABLE III. Summary of parameters for β̂ML
4 for ungroomed Z0

vs QCD discrimination at three mass points.

mZ0

(GeV) a b c d e f g h

50 1.06 −1.11 0.25 −0.56 0.43 −0.07 0.22 −0.01
90 1.02 −1.06 0.22 −0.27 0.15 0.00 0.18 0.02
130 −1.09 −0.43 0.25 −0.97 0.37 0.12 0.60 0.19

TABLE IV. AUC, from Fig. 5, of the standard observables and
the βML

4 observables, optimized for the corresponding signal, for
ungroomed Z0 vs QCD discrimination at three mZ0 points. The
ROC curves are calculated using the full datasets, with ∼500; 000
events passing the mass cut for each value of mZ0 . The peak AUC
at 90 GeV is systematic and statistical; testing with additional
samples at 88 and 92 GeV indicates that the AUCs are ordered as
88 > 90 > 92.

mZ0 (GeV) β̂ML
4 βML

4 Nð1Þ
2 Dð1Þ

2 τð1Þ2;1

50 0.864 0.858 0.843 0.778 0.817
90 0.873 0.866 0.848 0.837 0.827
130 0.842 0.838 0.809 0.812 0.797

5A single neural network architecture, consisting of seven fully
connected (five hidden) layers, was utilized for all of the
classification tasks. The first four dense layers consisted of
1000, 1000, 750 and 500 nodes respectively, and were assigned
a dropout [81] regularization of 0.2, to prevent overfitting on
training data. The next two dense layers consisted of 250 nodes
with a dropout regularization 0.1, and 100 nodes without dropout.
The input layer and all hidden layers utilized the ReLU activation
function [82], while the output layer, consisting of a single node,
used a sigmoid activation. The network was compiled with the
binary cross-entropy loss minimization function, using the Adam
optimization [75]. Models were trained with Keras’s default
EarlyStopping callback, with appropriate patience thresholds, to
further negate possible overfitting.

AUTOMATING THE CONSTRUCTION OF JET OBSERVABLES … PHYS. REV. D 100, 095016 (2019)

095016-7



monotonic functions). The power of the method may also
be extended by considering other parametric forms besides
products. Classification problems demanding a higher M-
body phase space are a natural extension of the examples
presented here.
As machine-learning techniques are used more widely to

guide the optimal selection of classifiers, there will be a
growing need to simplify and interpret the guidance from
the machines. We have prepared an automated approach to
construct optimal observables with simple, analytic forms,
which can be used for further theoretical and experimental
studies. This technique will form the basis of multiple
extensions in the future to improve classification perfor-
mance and increase the robustness of searches and meas-
urement at the LHC and beyond.
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APPENDIX A: CROSS-CHECK FOR
PERFORMANCE OF THE REGRESSION

NETWORKS

Here we briefly demonstrate that the regression
DNNs do actually learn to approximate the mapping
from the input parameters of the product observables to

their densities, i.e., a mapping from R8 → R25;000. We
specifically choose the ungroomed 90 GeV case, while
choosing values of fa;…; hg for the optimal observable, as
listed in Table II.
We then select one of the parameters and vary it

between −7 and 7 with a step size of 0.1 while keeping
the other parameters fixed. This allows us to study how
the networks can be used to interpolate AUCs over a
range of values around the optimum we locate and, in
addition, by going beyond the training range of ½−5; 5�
we also demonstrate that the networks can be used to
extrapolate the aforementioned mapping to then still
calculate the AUC with a good level of accuracy. The
results for this study are shown in Fig. 6 and indicate
that the regression networks allow us to accurately track
the trajectories of the AUC in these one-dimensional
slices of the parameter space.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 6. Here we plot results for the calculation of the AUC from the distributions generated by the signal and background regression
DNNs for the ungroomedmZ0 ¼ 90 GeV case (blue dashed curve) along with the true AUC (red solid) computed on the same statistics.
These are seen to be in good agreement with each other. The results demonstrate the usefulness of the networks to accurately reproduce
the change in the signal and background PDFs, represented via the accurate reproduction of the AUCs calculated from them, as a
function of the variation of each individual input parameter fa;…; hg.

TABLE V. Summary of parameters for the product observables
for groomed H → bb̄ discrimination as proposed in Ref. [8]
and as constructed via the procedure presented in this work
[Fig. 7(a)].

Observable a b c d e AUC

βðgÞ3
−2.0 0.0 0.0 −2.0 2.0 0.745

βMLðgÞ
3;H→bb̄

0.67 −1.65 0.01 −1.90 2.07 0.744

β̂MLðgÞ
3;H→bb̄

−1.54 1.01 −0.17 −0.15 0.16 0.758
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APPENDIX B: GROOMED H → bb̄ vs g → bb̄
DISCRIMINATION

Utilizing the result that discrimination power for mMDT
groomed H → bb̄ vs g → bb̄ discrimination saturates at 3-
body phase space [8], we use the procedure proposed in
Sec. III to find the optimal product observable. The final
values for the parameters fa;…; eg obtained through the
optimization are presented in Table V, along with those
obtained in the previous study. Interestingly, the exponents

for βMLðgÞ
3;H→bb̄

are nearly the same for c, d, and e, but are quite

different for a and b. The factors d and e are also similar for

β̂MLðgÞ
3;H→bb̄

up to a multiplicative factor.
In Fig. 7(a), we plot the distributions of the new

observable computed for signal and background, along
with the prediction from the neural network. We note that
the network provides a good match to the true distribution,
where the latter is also calculated on ten times more jets. We
then compare the ROC curves for the new observable to
Dð2Þ

2 [67], Nð2Þ
2 [68] observables, and τð2Þ21 in Fig. 7(c).

In addition, we compare the new observable to β3 in
Fig. 7(d) to demonstrate that both observables have

(a) (b)

(c) (d)

FIG. 7. (a) Comparison of PDFs of βMLðgÞ
3;H→bb̄

for mMDT groomed H → bb̄ discrimination, using ∼250; 000 signal and background
samples, and the distributions of the regression DNN prediction. The distributions are rescaled by a constant for the sake of visual

comparison. (b) Probability density distributions of β̂MLðgÞ
3;H→bb̄

obtained via linear regression. (c) Comparison of discrimination power of

βMLðgÞ
3;H→bb̄

, β̂MLðgÞ
3;H→bb̄

and β̂MLðgÞ
4;H→bb̄

to standard observables, where the 4-body product observable is seen to perform best for groomed

H → bb̄ discrimination. (d) Comparison of β̂MLðgÞ
3;H→bb̄

and βMLðgÞ
3;H→bb̄

to βðgÞ3 proposed in [8]; we note that the latter two 3-body product
observables provide essentially the same discrimination power while the 3- and 4-body ones obtained with linear regression
outperform them.
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(a) (b) (c)

FIG. 8. M-body discrimination results of mMDT groomed Z0 vs QCD jets. Here, discrimination power is again seen to effectively
saturate at 4-body phase space for all considered values of mZ0 .

TABLE VI. Summary of parameters for βMLðgÞ
4 for mMDT

groomed Z0 vs QCD discrimination at three mass points.

mZ0

(GeV) a b c d e f g h

50 2.6 −0.41 −2.94 −2.79 0.20 0.93 −0.66 2.43
90 2.3 −1.35 −2.05 −1.64 −0.81 0.89 2.03 −0.44
130 0.80 −1.74 −0.28 −1.01 −0.38 0.56 0.82 0.69

TABLE VII. Summary of parameters for β̂MLðgÞ
4 for mMDT

groomed Z0 vs QCD discrimination at three mass points.

mZ0

(GeV) a b c d e f g h

50 −0.35 0.35 0.56 1.05 −0.17 −0.24 −0.34 0.51
90 0.26 −0.41 −0.39 −0.68 −0.15 0.11 0.25 0.42
130 1.28 0.54 0.35 1.09 0.09 −0.38 −1.06 −0.48

(a) (b) (c)

(d) (e) (f)

FIG. 9. Top panels [(a)–(c)]: Comparison of the probability density function of the new βMLðgÞ
4 observables for mMDT groomed Z0

discrimination, calculated for ∼300; 000 signal and background samples, and the distribution of the regression DNN predictions of
25,000 observable values. The distributions are rescaled for the sake of visual comparison. Bottom panels [(d)–(f)]: Distributions of the
β̂MLðgÞ
4 observables for ungroomed Z0 discrimination that were obtained via linear regression.
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essentially the same discrimination power as expected.
Then, this allows us to proceed to applying the procedure
on higher dimensional problems. Further, we plot the ROC
curve for the 4-body product observable from the linear
regression method, noting that it provides the best perfor-
mance of the observables that have been explored for this
problem.6

APPENDIX C: GROOMED Z0 vs QCD

In this section we carry out the same set of studies for
mMDT groomed Z0 discrimination as for the ungroomed
cases from Sec. IV B. As in the ungroomed case, Fig. 8
indicates that the saturation of discrimination power occurs
at 4-body phase space.
The results for the final observables for the three mZ0

points are presented in Tables VI and VII, and the
observable distributions are plotted in Fig. 9. The perfor-
mances of the new observables are compared to standard
ones and M-body DNNs in Fig. 10 and the corresponding
AUCs are shown in Table VIII for different mass points.

The conclusions from this section are qualitatively the same
as from Sec. IV B, with a slightly lower AUC from both the
product observable and the physics-motivated observables.
Importantly, the product observables for the groomed case
appear to saturate the bounds from theM-body phase space
better than in the ungroomed case.

APPENDIX D: MASS DEPENDENCE OF βML
M

Here, we briefly study the performance of the new
observables presented in Sec. IV B. They are tested on a
different combination of signal and background samples
from the ones they were optimized on; for example, we

(a) (b) (c)

(d) (e) (f)

FIG. 10. Top panels [(a)–(c)]: Comparison of discrimination power of βMLðgÞ
4 observables to standard observables; the latter are

computed with an angular exponent of 2, for which they were observed to perform best for mMDT groomed samples. Bottom panels

[(d)–(f)]: Comparison of βMLðgÞ
4 to discrimination power of neural networks trained on the M-body observable bases; the observables

capture almost all of the discrimination power of the 4-body neural networks.

TABLE VIII. AUC, from Fig. 10, of standard observables and
the βMLðgÞ

4 observables, optimized for the corresponding signal,
for mMDT groomed Z0 vs QCD discrimination at three mZ0

points. The ROC curves are calculated using the full datasets,
with ∼300; 000 events passing the mass cut for each value ofmZ0 .

mZ0 (GeV) β̂MLðgÞ
4 βMLðgÞ

4 Nð2Þ
2 Dð2Þ

2 τð2Þ2;1

50 0.830 0.826 0.796 0.803 0.780
90 0.822 0.821 0.780 0.796 0.763
130 0.814 0.811 0.769 0.791 0.751

6Explicitly, the optimal parameter values for β̂MLðgÞ
4;H→bb̄

are
as follows: fa;…; hg ¼ f−2.09; 1.46;−0.31;−0.49; 0.35; 0.03;
−0.18; 0.23g, and it leads to an AUC of 0.778 in Fig. 7(c).
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calculate the new observable for mZ0 ¼ 130 GeV on signal
samples for mZ0 ¼ 90 GeV, and background, that pass
the mass window on which the 90 GeV observable was
optimized. The results for this study are presented in Fig. 11,
and indicate that while these observables are optimized on
samples from a specific mass point, they can be applied to
other classification tasks and still provide better discrimi-
nation performance than standard observables. This also
suggests that the different parameter sets in Tables II and III
may represent observables with very similar physical infor-
mation even though the N-subjettiness variables are not
invariant under transverse boosts.

APPENDIX E: SATURATING THE
DISCRIMINATION POWER OF β̂ML

M

In this section we briefly study the flexibility of the
product form ansatz using the β̂ML

M observables obtained via
the linear regression procedure. For concreteness, we look
at the mZ0 ¼ 90 GeV case, and plot ROC curves for the
product observables up to M ¼ 8 in Fig. 12.
We observe that discrimination power gradually

increases up to the inclusion of 7- or 8-body phase space
variables. Compared to the ROC curve at the point of
saturation, from the 4-body DNN classifier, these results
suggest that while a DNN can adjust thresholds on the

M-body inputs such that there is effectively only redundant
discriminating information in higher M-body bases, as is
also expected from the physics study in Ref. [7], the

(a) (b) (c)

(d) (e) (f)

FIG. 11. Here we plot results for the new observables on Z0 samples with a different mass point to that which they were optimized on,
within the mass windows appropriate for the corresponding signal. We note that for all cases, all the new observables demonstrate very
similar discrimination power, and outperform standard observables.

FIG. 12. Here we compare the discrimination power of β̂ML
M;Z0

90
for

ungroomed Z0 discrimination for values ofM ¼ 3;…; 8. We note
that while discrimination power of the product form does increase
with higher M (until the inclusion of 7- or 8-body phase space
variables), it can only capture a limited amount of useful discrimi-
nating information from inclusion of variables from beyond the
basis of the point of saturation of a DNN classifier (dark gray).
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product observables do still benefit from including N-
subjettiness variables from beyond the point of saturation.
Depending on the classification task, the product observ-

ables may even come very close to matching the perfor-
mance of a saturated ML classifier (Fig. 10). However,

ultimately it cannot capture all available information, due to
the lack of further flexibility of the product form ansatz.
These observations will of course vary based on the objects
being studied. We leave further physics studies of the
product form or other equivalent ansatz to future work.
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