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We compute supersymmetric indices to test mirror symmetry of three-dimensional (3D) N = 4 gauge
theories and dualities of half-Bogomol’ny Prasad Sommerfield enriched boundary conditions and
interfaces in four-dimensional N' =4 super Yang-Mills theory. We find the matching of indices as
strong evidences for various dualities of the 3D interfaces conjectured by Gaiotto and Witten under the

action of S-duality in Type IIB string theory.
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I. INTRODUCTION AND CONCLUSIONS

Three-dimensional (3D) N = 4 supersymmetric gauge
theories have a moduli space of supersymmetric vacua
consisting of a Higgs branch My and a Coulomb branch
M which are hyperkéhler manifolds. The theories have an
intriguing duality, known as mirror symmetry, which
relates theories with completely different UV descriptions
where the Higgs branch and the Coulomb branch are
exchanged and fayet iliopoulos parameters and mass
parameters are exchanged [1]. This mapping is very non-
trivial. The Higgs branch is a hyperkihler quotient realized
as a zero locus of the D-term constraints divided by the
gauge group. On the Higgs branch, the gauge symmetry is
broken completely and the Higgs branch is not affected by
the quantum correction. On the Coulomb branch, the gauge
group is generically broken to its maximal torus. Unlike the
Higgs branch, the Coulomb branch receives perturbative
and nonperturbative quantum corrections.

The quantum Coulomb branch is studied in terms of
Hilbert series in [2]. The Hilbert series is a generating
function that counts chiral operators on the branches My ¢
of vacua, graded by their dimensions and quantum numbers
under global symmetry. It encodes the quantum numbers of
generators and relations of the chiral ring C[ My ] of the
corresponding branches My ¢ of vacua. Subsequently, the
quantum Coulomb branch has been described in [3] in
terms of the Abelianization map that translates the vev of a
monopole operator into a linear combination of Abelian
monopole operator vevs in the low-energy effective theory.
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Furthermore, the quantum Coulomb branch has been
mathematically defined in [4-6].

Three-dimensional N = 4 gauge theories can be realized
in Type IIB string theory using the brane configuration [7].
Mirror symmetry can be viewed as arising from S-duality of
Type IIB string theory. Type IIB brane construction is
extended to further study of half-Bogomol’ny Prasad
Sommerfield boundary conditions and interfaces for four-
dimensional N = 4 super Yang-Mills (SYM) theory [8-10],
quarter-BPS corner configuration for four-dimensional
N =4 SYM theory [11,12], half-BPS boundary conditions
for three-dimensional " = 4 gauge theory [13], and two-
dimensional A = (0,4) supersymmetric gauge theories
[14]. S-duality turns out to give a physical underpinning
to geometric Langlands program [11,15-17] and symplectic
duality [18,19].

In this paper, we compute supersymmetric full- and half-
indices to test mirror symmetry of 3D N = 4 gauge theories
and to extend the analysis in [ 12] for the dualities of half-BPS
boundary conditions and interfaces in 4D N =4 SYM
theory." These dualities were originally conjectured by
Gaiotto and Witten [10]. There have been plenty of works
on the subject of 3D N =4 full superconformal indices
[21-27]; however, general tests of mirror symmetry for 3D
N = 4 gauge theories have not appeared in the literature
except for the simplest Abelian mirror symmetry [28], in
contrast to 3D N = 2 gauge theories [29-31]. Additionally,
one drawback of the 3D full-indices is that they are
insensitive to the boundary conditions for 4D N/ = 4 gauge
theory, which involves singular boundary conditions speci-
fied by the Nahm poles [8]. In order to address these open
issues, we evaluate supersymmetric 4D half-indices and 3D
full-indices which count local operators both in four and
three dimensions and present many identities of indices by

ISee [20] for further dualities of N = (0,4) half-BPS boun-
daries for 3D V' = 4 gauge theories and quarter-BPS corners for
4D N = 4 gauge theories.
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checking several terms of series expansion. As discussed in
[28], after the special limits, the full-indices of 3D N = 4
gauge theories reduce to the Hilbert series. As a result, the
identities of indices provide promotions of identities of
Hilbert series discussed in [2,28]. Furthermore, the full-
indices of 3D N/ = 4 gauge theories can be used to general-
ize the analysis in [12] of the half-BPS boundary conditions
and interfaces for 4D N =4 SYM theory. We present
general half-indices for enriched half-BPS boundary con-
ditions and interfaces in 4D A/ = 4 gauge theory and check
precise matching of the indices for dual pairs.

The organization of this paper is straightforward. In
Sec. 1I, we briefly review the supersymmetric indices
introduced in [12] and present formulae and some proper-
ties of half-indices for 4D N = 4 gauge theories and full-
indices for 3D N =4 gauge theories. In Sec. III, we
evaluate full-indices for 3D N = 4 Abelian gauge theories
and check mirror symmetry. In Sec. IV, we further examine
mirror symmetry by computing full-indices for 3D N = 4
non-Abelian gauge theories. We also briefly check in
Sec. V Seiberg-like duality for 3D N = 4 gauge theories
proposed in [10] between ugly theory and good theory in
terms of full-indices. In Sec. VI, we discuss the half-BPS
enriched boundary conditions for 4D N' = 4 SYM theory
which involve 3D N/ = 4 gauge theories. We present strong
evidence for dualities between them conjectured from
string theory by calculating half-indices, which contain
nonregular Nahm pole b.c. Finally, in Sec. VII, we study
the half-BPS interfaces in 4D N' =4 U(1) gauge theory
including 3D N =4 Abelian gauge theories. We test
dualities between the interfaces by computing half-indices.
In the Appendix A, we show the g-expansions of indices
generated by Mathematica as well as the confirmed orders
which the indices agree up to.

I1. INDICES

We begin with a definition of the quarter-index introduced
in [12].Itis a generalization of superconformal index in that it
can count local operators living in different dimensions, i.e.,
in 4D bulk, 3D boundary, and 2D junction. When the
configuration has a trivial junction, it becomes the half-
index that counts boundary local operators, while for the
trivial interface, it becomes the full-index that counts bulk
local operators. The quarter-index can be defined as the trace
over the cohomology of the preserved supercharges

IV(1, x; q) = Trop(=1)F g+ 551Cx/ . (2.1)
Here F is the Fermion number, J is the generator of the U(1),,
rotational symmetry in the space-time on which local
operators are supported. H and C stands for the Cartan
generators of the SU(2), and SU(2) R-symmetry groups,
respectively. f is the Cartan generator of the global sym-
metry. The choice of fugacity in the index (2.1) is fixed in

such a way that the power of g is always strictly positive fora
nontrivial local operator by a unitarity bound. This ensures
the convergence of the index. Consequently, the index can be
a formal power series in ¢ whose coefficients are Laurent
polynomials in the other fugacities.

In this paper, we focus on the configurations of 3D
N =4 gauge theories which may couple to 4D N =4
gauge theories so that the indices (2.1) reduce to the full-
indices T of 3D N =4 gauge theories and/or the half-
indices I of 4D N = 4 gauge theories. One may compute
the indices for appropriate configurations by a localization
procedure. However, we will not pursue that direction in
this paper, instead we will count local operators seriously
from physical consideration.

In the description of indices, we use the following
notation by defining g-shifted factorial:

=
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where a and ¢ are complex variables with |¢| < 1.

We compute the indices to test the 3D dualities and
dualities of the half-BPS boundary conditions/interfaces
which are conjectured from string theory [10]. We consider
five types of branes in Type IIB string theory whose world-
volumes span the following directions:

(i) D3-branes extended along x0x1x2x6,

(2.2)

(i) NS5-branes extended along x X2 xtxd,
(iii) D5-branes extended along x° x x2 Tx8x2,
(iv) NS5'-branes extended along x 6x7x8x9,

(v) D5'-branes extended along x%x XX
In other words, the brane conﬁguratlon is summarized as

0123 456 7289

D3 o 0o 0o — — — o — — —

NS5 o o o o o o — — — —
(2.3)

D5 o o o — — — — o o o

NSSI 6 o — = - — 0 ] o o

DY o o — o o o o — — -—

The 3D N = 4 gauge theories are realized by considering
D3-branes which are finite segments in the x° direction
between NS5-branes and may intersect with D5-branes [7].
The half-BPS boundaries and interfaces in 4D N =4
gauge theories are realized by considering D3-branes
which are (semi-)infinite D3-branes which end on or pass
through a sequence of NS5- and D5-branes [8].
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Such brane setup is a nice tool for finding mirror pairs of
3D N =4 gauge theories and dual pairs of half-BPS
boundary conditions and interfaces in 4D N =4 SYM
theory by studying the action of S-duality [10].

A. Indices of 4D N =4 Sym Theory

1. Full-indices

Four-dimensional A =4 SYM theory has SU(4)g
R-symmetry. It contains the adjoint scalar fields transforming
as 6 under the SU(4)g. Let X and Y be the scalar fields
transforming as (1,3) and (3,1) under the SU(2). x
SU(2),; € SU(4)g. In the brane construction (2.3), the
scalar fields X and Y describe the positions of D3-branes
along the (x’, x8, x°) directions and (x*, x*, x°) directions,
respectively. The theory also has the 4D gauginos A trans-
forming as (2,2) under the SU(2), x SU(2)y.

The local operators in 4D N = 4 gauge theory of gauge
group G which contribute to index have charges

"X oY ) an/_l
“ Adj Adj Adj Adj
u(l), n n n+l ontd
U(I)H 2 0 + +
fugacity PRt e _grtlge gt
(2.4)

From (2.4), one can express the index for 4D N =4
U(N) gauge theory as

1 ()
NY(g?q)Y (g2t 2#1)

TS o

H4DU( )(t q)

(61 )
qzt—Z f!

251. ’q)

(2.5)

q2t

Here the denominator comes from the scalar fields X and Y,
while the numerator captures the 4D gauginos. The integra-
tion contour for gauge fugacities s; is taken as a unit torus TV,

2. Half-indices

Four-dimensional A" = 4 SYM theory admits half-BPS
boundary conditions which preserve three-dimensional
N =4 supersymmetry with the R-symmetry group
SU(4)g broken down to SU(2)- x SU(2)y. In the brane
setup (2.3), they arise when parallel D3-branes end on a
single five-brane. There are two types of three-dimensional
boundaries/interfaces at x> = 0 realized by NS5'- and D5'-
branes and those at x® = 0 realized by NS5- and D5-branes.

Let us consider the half-BPS boundary conditions for 4D
N =4 U(1) gauge theory. When a single D3-brane ends

on the NS5-brane and D5-brane, one finds the Neumann
b.c. N and Dirichlet b.c. D at x® =0 for U(1) gauge
theory, respectively,

N: F6”|0:0, 8/4X|0:0’ 86Y|8:0

v=0,1,2.
D: Fﬂl/|9:0’ 86X|8:07 5‘”Y|9:0

(2.6)

On the other hand, when the NS5’-brane and D5’-brane end
on a single D3-brane, one obtains the Neumann b.c. N’
and Dirichlet b.c. D' at x> =0 for U(1) gauge theory,
respectively,

N/: F2/4|9:0’ 82X|9:0, auY|a:0

D Fol,=0. 9.X|,=0. d,y|, =0 HMY=OLC
. /w|6 ’ " |8 ’ 2 |9

(2.7)

The half-indices of the Neumann b.c. A/ and Dirichlet
b.c. D' for 4D N =4 U(1) gauge theory take the form

(9) oo

(17 q) o

w1 q)

4D U(1
=10, ( )(t;q) =

(2.8)

The denominator is associated to the scalar fields Y charged
under U(1)., while the numerator correspond to a half of
the 4D gauginos. Likewise, the half-indices of Neumann
b.c. N’ and Dirichlet b.c. D are

(9) oo _
(1 9)s

my " (1;q) =

my Ve q) = (2.9)

The denominator captures the scalar fields X charged under
U(1),, whereas the numerator is associated to a half of the
4D gauginos.

The half-BPS boundary conditions corresponding to N
D3-branes ending on a single NS5-brane (or NS5) are also
Neumann b.c. for the U(N) gauge theory. We can denote
them as N and N as in the Abelian case. By contrast,
when N multiple D3-branes end on a single D5-brane, one
finds a singular boundary condition associated to a regular
Nahm pole [8,32]. A single D5-brane or D5’-brane on
which N D3-branes end give rise to the Nahm or Nahm’
pole boundary conditions,

Nahm: F, |y =0, DX +X x X|, =0
DY, =0 uuv=01,2
Nahm': F,|, =0, D,X[;=0

DY +YxY|;=0 uv=01,6, (2.10)
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where we denote the scalar fields by X and Y as they are the
SU(2)y triplet and the SU(2). triplet, respectively. The
Nahm equations for the scalar fields X and Y have singular
solutions

(2.11)

where t = (t;,1,,t3) is a triplet of elements of the Lie
algebra ¢ = u(N) obeying the commutation relation
[t;,t,] =t3 and cyclic permutation thereof. The choice

of T specifies a homomorphism of Lie algebras p: 3u(2) —»
g which maps the fundamental representation of U(N) to
the dimension N irreducible representation of 811(2). When
N D3-branes end on multiple D5-branes, one finds other
Nahm poles, including the Dirichlet b.c. as the trivial Nahm
pole corresponding to the case with N D5-branes.

The half-index of Neumann b.c. N for4D N =4 U(N)
gauge theory takes the form

(5a)_

%H ds,
2ms q?t‘z Sg ,(])

(2.12)

()
! q%t‘z

U (.
N (’ ) N

Again the integration contour for gauge fugacities s; is a
unit torus TV. The half-index of Dirichlet b.c. D for 4D
N =4 U(N) gauge theory is given by

(@) 10 (95:9)
(@ @) iy (P Sq)
“J (o]

ADUN
Iy ( )(ﬁ 2i5q) =

o i)

where z; is the fugacities associated to the boundary U(N)
global symmetry. The half-index for Nahm pole boundary
conditions in 4D N =4 U(N) gauge theory is

Sy
PV (1 ) — I—NI (g7 2N )
Nahm ’ -

- = 2.14
k=1 (‘Iélz}% oo ( )

As discussed in [12], the duality between the Neumann b.c.
and the regular Nahm pole b.c. implies equality between the
half-indices (2.12) and (2.14). In Sec. VI, we discuss more
general dual descriptions of the half-indices, including half-
index (2.13) for Dirichlet b.c.

We can get similar expressions for the mirror boundary
conditions, i.e., N/, 7/, and Nahm’ by setting 1 — ¢!,

B. Indices of 3D N =4 gauge theory
The 3D N =4 hypermultiplet consists of a pair of
complex scalars H, [ forming a doublet of SU(2),, and a

pair of complex fermions w!!, wf'ﬂ forming a doublet of
SU(2). The charges of 3D N = 4 hypermultiplet is

B
Uhe | 0 0 — — 1+ + (215
ul)y | + + 0 0 0 0

The 3D N = 4 Abelian vector multiplet consists of a 3D
U(1) gauge field A;P, three scalars, which we denote by
real and complex scalars o, ¢ forming the SU(2) triplet,
and two complex fermions (AP, #3P). The charges of 3D
N = 4 vector multiplet is

AP o g AP IP P 7P
Ul 0 0 2 + - + - (2.16)
U(l)y o o0 + - - +

The 3D N = 4 superalgebra has an outer automorphism
that interchanges SU(2) and SU(2) . This automorphism
makes the ordinary supermultiplets into twisted super-
multiplets. The twisted hyper and vector multiplets can
be obtained by exchanging the U(1), and U(1). charges
of the hypermultiplet and vector multiplet, respectively.

In three dimensions, a photon is electric magnetic dual to
a scalar field, which we call dual photon. The dual photon is
periodic when the gauge group is compact and the shift
symmetry of the dual photon is a classical topological
symmetry whose conserved current is *F where * is the
Hodge star. The conservation of *F follows from the
Bianchi identity dF = 0.

1. Matter multiplets

The index of a 3D N = 2 chiral multiplet of charge +1
under a U(1), flavor symmetry with fugacity x is

_ (@ 19)y

]ISD CM
( o a)e

X;q) (2.17)

Its denominator counts complex scalar and its 0 derivatives,
while its numerator counts fermions and its O derivatives
included in the 3D A = 2 chiral multiplet.

The 3D N = 4 hypermultiplet has the following oper-
ators which contribute to index:

OH  O'H o ot
om, |+ - n =
U(l), n n n+3 n+3
U(1), 0 0 + +
Ul + + 0 0

Fugacity | ¢""ix ¢"fix! | —grtirlx —grtir il
(2.18)

The index for 3D N = 4 hypermultiplet is
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(@17'%:9) (G175 q) o

(4153 9) (41571 0)
=PM (qhx) x 3P M <q%tx_1> . (2.19)

H3D HM(

tx q) =

It can be expanded as

(o] n

Z 2 )i (gt

=0 = (@)1(@) -k

)n k X 2k

HSD HM [ x; q q4tn

(2.20)

The free 3D N =4 hypermultiplet has no Coulomb
branch local operators surviving in the H-twist. Therefore,
in the H-twist limit r — qi, the indices (2.19) and (2.20)
become trivial,

]I3D HM(

t= qi,x;q) =1. (2.21)

On the other hand, in the C-twist limit t — q‘%, the indices
reduce to

N S
(1=x)(1=x7")’

This counts two bosonic generators in the algebra of Higgs
branch local operators.

The operators in 3D N =4 twisted hypermultiplet
which contribute to index are as follows:

PP HEM(; — g5 x;q) = (2.22)

T ot gt ol
OF T = T =
Uu(l), n n +1 n+i
(1), 4 4 0 0
u(l), 0 0 + 4
Fugacity | ¢""irlx ¢"tirlx ! | —g"tine —g" i

(2.23)

The index for 3D A = 4 twisted hypermultiplet can be
obtained from the index (2.19) by setting t — 7!,

(41x:9) o (G1x713q) o,

PBDHM (f y- ) —
) ) (7 0)
=DM (girx) . PPM(gir1x~1).  (2.24)
Again, it has an expansion
PP HM (7 . ) ZZ ‘Pl2 )o@ @) =g,
=0 k=0 Di(Dn-r
(2.25)

2. Gauge multiplets

While in four-dimensional case, the index only involves
integration over the gauge group [33,34], and in three-
dimensional case the index would have nonperturbative
contributions of monopole operators and contain the sum
over the magnetic fluxes of monopole operators for all
backgrounds [21,29].

Let us first consider the perturbative contributions to the
index. The charges of operators in 3D A =4 vector
multiplet contributing to the index are

D"(c+ip) D"¢ | D"2*® D"ii?P
G Adj Adj Adj  Adj
u(l), n n n—+ % n-+ %
U(1)e 0 2 - -
U(l)y 0 0 - +
Fugacity q"s® G | —gls — g
(2.26)

The perturbative index contributed from the local oper-
ators in (2.26) of 3D N = 4 U(1) vector multiplet takes the
form

]I3D pert U(1 (t q)

(¢° 9)e f{ ds

(g _;—2,q)00 2xis’

where the integration contour of gauge fugacity s is
a unit circle. Similarly, the perturbative index for 3D
N =4 U(N) vector multiplet takes the form

(2.27)

[3D pert U(N)(t; q)

12
1 (¢l ?{ﬂ Si H( ﬁ) (q*3)
N! q2l_2 1 Zﬂlsl i) (q°t‘2 S ) s

(2.28)

where the integration contour of gauge fugacities s; is a unit
torus TV,

Likewise, charges of operators in 3D N =4 twisted
vector multiplet are

D'5+ip) D'y | D DP
G Ad; Ad; Ad; Adj
Uu(l), n n n+i n+i
Ul)e 0 0 + +
u(l), 0 2 + -
Fugacity q"s, qg"its, | —q's, —q" s,
(2.29)
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We can obtain the index for 3D N =4 twisted vector
multiplet by setting ¢ — ¢~ for the index of 3D N =4
vector multiplet.

As3D N = 4 U(1) gauge theory appears from 4D N =
4 U(1) gauge theory on a segment with Neumann b.c. A/ at
each end, we have a schematic relation

o2 v

4D U(1)
3D pert U(1) — N x II

N
woa - (230)

When a4D N = 4 U(1) gauge theory is put on a slab with
Neumann b.c. N and Dirichlet b.c. D at each end, we have

Hzmu 4DU()

l=—p e (2.31)

This indicates that the resulting 3D theory is a trivial theory.

For a4D N = 4 U(1) gauge theory on a segment obeying
Dirichlet b.c. at both ends, we find that
~ U0 D U
3D pert U(1) _ —N' N
3P pert U(1) — 001 . (2.32)

This reflects the fact that the resulting 3D theory is mirror to

3D N = 4 twisted U(1) gauge theory appearing from a 4D
theory on a segment with Neumann b.c. A/’ at both ends.
Now consider the nonperturbative contributions to indi-
ces from monopole operators. Classically, monopole
operators are charged under the topological symmetry.
In addition, quantum mechanically they can acquire non-
trivial quantum numbers. Let us consider the canonical U(1)
R-charge as 1 (C — H) so that the complex scalar H in the
hypermultiplet carries charge —1/2 and the adjoint complex
scalar ¢ in the vector multiplet have charge +1. Then the
R-charge of a BPS bare monopole operator of magnetic
charge m in the IR conformal field theory is given by

ZZM (m)| = > la(m)

i=1 1;€R; acA

(2.33)

This formula was firstly proposed in [10] and later verified
in [35,36]. The first term in (2.33) is the contribution from
N hypermultiplets labeled by i =1, ..., N, transforming
as representations {R;},_, w, under the gauge group. The

sum is taken over the weights 4; of R;. The second term is
the contribution from vector multiplet. The sum is taken
over the positive roots @ € A .

The R-charge (2.33) of bare monopole can specify its
energy or equivalently conformal dimension since the bare
monopole is a BPS state. If all BPS monopole operators
carry A(m) > 4, the theory is called good. If all BPS
monopole operators have A(m) > % and some saturate the

unitarity bound A(m) =31, the theory is called ugly.
Otherwise, the theory is called bad. In this paper, we
focus on the good or ugly theories in which A(m) is

identified with the conformal dimension and the quantum

numbers J +2+€ of a bare monopole operator with

A(m)

magnetic charge m is fixed to =

field theory.

Taking into account the above, we can write the full-
index of 3D A/ = 4 gauge theory with gauge group G and
N hypermultiplets which takes the form

in the IR superconformal

PP G (1, x;, 213 )

rank(G

L (gerig)s
 [Weyl(G)] (g4r2 q)rdnk((;) > }{ H

mecochar(G acroots(G

|m-al

d 1_ ma
s (1- g% (g™

. It|mal
s (g ),
—1 E4; .

% H H (¢ 2 st )y am

T q:*
i=1 R, (¢*

5% q) o

\ml\

. t—ZA(m) m

:H’X;t, q)

(2.34)

Here the second line is the contribution from vector
multiplet of gauge group G. The third line is the contri-
bution from N hypermultiplets transforming as represen-
tation {R;};_; v, of gauge group G. The fugacities x are
associated to the flavor symmetry that rotates N, hyper-
multiplets. For nonzero magnetic flux m, the expression is
shifted from the index (2.19) for 3D hypermultiplet. This
reflects the fact that in the presence of magnetic flux, the
electrically charged states get an effective quantum num-
bers. The third line is the contribution from bare monopole
operators. The fugacities z are associated to the topological
symmetry.

In order to check mirror symmetry and dual boundary
conditions, one also needs to evaluate the mirror version of
the full-index for 3D N = 4 gauge theory. The mirror index
of 3D N =4 gauge theory con31st1ng of twisted vector
multiplet of gauge group G and N ¢ twisted hypermultiplets
transforming as representation {R;},_, N, is given by

0 G ) =PPO(r ! 2 xi5q),  (2.35)

where the fugacities z; and x; are associated to the flavor
symmetry and the topological symmetry in the twisted 3D
N = 4 theories as they are exchanged under mirror sym-
metry. In the following sections, we show various identities
between indices (2.34) and (2.35) for mirror pairs.

1, X, 2i59

III. ABELIAN MIRROR SYMMETRY

In this section, we consider the 3D N/ = 4 Abelian gauge
theory and its mirror. The mirror of 3D A" = 4 U(1) gauge
theory with N, hypermultiplets is a twisted U(1)Vr~!
quiver gauge theory with N, twisted hypermultiplets
[37]. The quiver diagram and the corresponding brane
configuration are depicted in Fig. 1. We check that two
indices for mirror pairs coincide with each other.
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(a) A

1,1

0 = |
(b) 1 ! - ;}MNSF

NS5 B NS5 1

N, Ds

FIG. 1. (a) The quiver diagrams of SQEDy and its mirror
U(1)Ns=! quiver gauge theory. (b) The brane configurations of
SQEDy, and its mirror U(1)"s~" quiver gauge theory.

A. SQED,

We begin with a 3D A/ = 4 Abelian gauge theory with a
single charged hypermultiplet, which we call SQED,. The
3D N =4 SQED, is mirror to a 3D N =4 twisted
hypermultiplet [37]. The flavor symmetry of the twisted
hypermultiplet is mapped to the topological symmetry in
SQED,. This is the simplest 3D N = 4 Abelian mirror
symmetry and index computation has been already com-
puted in [28]. We further extract a Higgsing interpretation
of the indices by picking up residues at poles in the indices.

The full index of SQED; is given by

13D SQED: (1, x: )

qzt 9o 7{
q2t ’q o0 meZ 2xis

~—+—t—1 . +‘”’t ~1.
x(q4 21715q) o (g T s ,Q)wqw

- o “lmlxm o (3.1)
(G5 15:9) o (6515713 9) o0

where m is the magnetic monopole charge and the fugacity
x is associated to a U(1), topological symmetry. The factors

q% 7l x™ are associated to contributions from bare
monopole operators with the R-charge A(m) = |m‘ The
remaining factors in the integrand involve shifts of quantum
numbers due to the background magnetic flux. The index
for SQED; already appeared in [28,30], and the index (3.1)
coincides with the index (2.24) of a 3D N = 4 twisted
hypermultiplet.

As discussed in [12], poles in the integrand and their
residues may have a physical interpretation. When fayet

iliopoulos-like parameters are turned on, elementary fields
with gauge charges get nontrivial vevs, which leads to a
Higgsing the gauge group. Consequently, the index is
written as a sum over residues which are associated to
the index of the Higgsed theory. In the brane setup, this
corresponds to a certain deformation of the brane configu-
ration. In order to extract a Higgsing interpretation by
expanding the index (3.1), it is enough to consider the
perturbative SQED, index corresponding to m = 0 that
takes the form

]I3D pert SQED, ([; q)

_ (q%tz;q)oojg ds (qit7'51q9) (@575 q) g
(172%9) ) 27mis  (gits;q)(gits™1q) s

~
3D pert U(1) 3P HM(S)

(3.2)

This can be evaluated by considering the residues at poles
of charged hypermultiplet s = q%mt as

1+m.

1
):(qztz;q)?m"o (@™ @)% aom

]I3D pert SQED, (t; q gzt
(Q)go m=0 (q%+mt2’ ('I)z

(3.3)

As the residue sum begins with 1, the Higgsed theory is a
trivial theory. This would imply that the expansion (3.3) is
associated to a Higgsing process which splits a D3-brane
along the D5-brane and separates one of the NS5-branes in
the x”%? directions (see Fig. 2).

(a) 1

—

NS5 D5 NS5

e
—_

X789 NS5

(b) !

¥

NS5 D5 NS5 NS5 NS5

x5

D5

FIG. 2. (a) The Higgsing procedure of 3D AN =4 SQED,
splitting a D3-brane along the D5-brane and separating one of the
NS5-brane in the x7%? directions. (b) The Higgsing procedure of
3D N =4 SQED, separating the D5-brane from the stretched
D3-brane between the NS5-branes.
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Correspondingly, we get the mirror index by selecting out the zero-charge sector from the index (2.24) of 3D N = 4
twisted hypermultiplet

}{ dx 30 HM (7 x: ) _7{ dx  (¢'1x;9)e (g5 q)e (3.4)
2wix ’ 2wix (q%[_lx; q)oo(qfltt_lx_l; q)oo
]I3D1HM<X)

The indices (3.3) and (3.4) can be shown to be equal. To see the equivalence, we can firstly calculate the index (3.4) by
taking the sum over residues at poles of bifundamental twisted hypermultiplet x = q4l+mt‘1

dx (q%ﬂ q q2t_2 © 1+m
H3D tHM 1, X; — 00 00 5p2m 3.5

On the other hand, we can expand the index (3.2) of SQED) in terms of the expansion (2.20) of the hypermultiplet index as

7

3D pert SQEDl(t;q) q 32, ') oo j{Z ZZ q2t q)i( ‘) §f1)n—k sn=2kghpn
s

2.
Q°f ') o n=0 k=0 )i

1+m

(qzt 9o qzt 21q) o om.
(9) Z 2+mt—2 2% 2 g1 (3.6)

This agrees with the expression (3.5). Also we observe that the expansion in the sum (3.6) starts from the perturbative index
PP pert U) of 3D N =4 U(1) vector multiplet. This would be associated to the Higgsing process of separating the D5-
brane from the stretched D3-brane between the NS5-branes (see Fig. 2).

Introducing a Wilson line operator W, of charge n, we obtain the index

Il I LI
3D SQED; (1, x;q) = q2t2 j{ ds CI4+” $19)e (@ Tt 57 ) an"j_‘t_\m\xm (3.7)
W" o (qvt‘z,q )oo ez ) 27is qﬂd’:‘ts q)oo(qﬁ‘nz ts7q)
As shown in Appendix A 1a, we have checked that this agrees with
3l 3, bl
(g2t q)oo(qﬁtx‘l; Do Ll
P "™ (r.x1q) = g, (3.8)

(¢ 71x; 9) o (¢ 31 x5 g)

We see that the index (3.8) has the contributions from bare monopole operator associated with flavor symmetry and that the
quantum numbers of twisted hypermultiplets are affected by the flux.

B. T[SU(2)]
The next example is a 3D N = 4 Abelian gauge theory with two charged hypermultiplets, which we call T[SU(2)]. The
vl 5. (1 x2—1%) =2, and the dimension of the Coulomb branch is

dimg MCSU =2-1=2. This is self-mirror with two global symmetries, a SU(2) s flavor symmetry on My, and

enhanced SU(2), topological symmetry on M which are exchanged under mirror symmetry.
The index of T[SU(2)] reads

dimension of the Higgs branch is dimg My,

12, 3 lml +. +\m\ 1
15 ) s ds (g3 stxt q), (G5 s xE1q)y
7SV (1, x,. 2,1 q) = (15 d)e ]{ ( 3w ( 710 J

. 7 1—2""|z§"zg”’, (3.9)
(@1 Q) ez ) 2705 (¢ 51555 q) e (¢ 155053 0)

where the fugacities x, are associated to the SU(2) flavor symmetry with x;x, = 1 and z, are the fugacities for the
topological symmetry.

The index (3.9) of T[SU(2)] coincides with the index of T[Sva(Z)] which is obtained from T[SU(2)] by replacing their
supermultiplets with the twisted counterparts,
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1TV (1, x,, 2, q) =

|m|
+ +
<q4 ERN Z2’q> MZm m.—m
g 2y,

1
(1% q) o 1oz

Here the role of fugacities x,, and z, is exchanged.

1 _ |m
(172 9) oo ]{ ds (¢%1s 2t q)

2zis (G5 st ot g) o (¢ st 2E )

(3.10)

m]

We can draw a lesson from the expansion of the index. To get a Higgsing procedure, we simply look at the sector with

zero flavor charge of the perturbative index of T[SU(2)],

jg d)fl dx; 72 13D pert T[SU(2 ](t;q)
2rmixy 2wix,

This can be evaluated as

qztz,q ?{ ds, jg dx, % dx, q4t UsExE5 @) o (q%t‘lsix%[;q)oo (3.11)
qzt‘z, q 27ZiS1 2m'x1 2mx2 q4ts xl ) q)oo (qzlttsixit; q)oo '
H%DpcrlU ]I3D HM(S)CI) HSDHM(S)Q)
12, 3 e 1+n. 2 1+m.
t E 7 9 k] ntm
(221 @)ee (1 93 (g q);o(q Doo _ 5m 2rm) (3.12)

7{ d)fl d)fz Pert TSV (1; ¢) =
2rixy 2mwix,

9%

oo (@)% (2 g)2

Again the expansion (3.12) has a Higgsing interpretation. As its first term is identified with the index I°P Pert U(D) of 3D
N =4 U(1) vector multiplet. It is associated to a Higgsing manipulation of separation of two D5-branes from a suspended

D3-brane between two NS5-branes.

C. SQEDy,

Now we would like to discuss the generalization of full-indices for 3D N =

4 Abelian gauge theories. Consider a 3D

N =4 Abelian gauge theory with N charged hypermultiplets, which we call SQEDy -

For SQEDy , the R-charge of a bare monopole is A(m) =

q2t 9o

]I3D SQEDNf (
(qzt > q ) mEZ

Z, Xos Zas q) -

where x,, are the fugacities for the SU(N ) flavor symmetry

with Hgi 1 X, =1, and z, are the fugacities for the
topological symmetry.

As discussed in [28], one can obtain the Hilbert series for
branches of vacua in the special fugacity limit of the
indices. We briefly check this in our notation as follows.
The Coulomb branch of SQED ’ is the Ay -1 singularity

/2y,
keeping 2 = gir~! constant and setting z = z,2;", the
index (3.13) reduces to

3D SQEDy, ~ 1 Nl
HCoulomb Y (t’ Z) - m Zt 2z
mez
1 -tV
= ¥ ¥ . (3.14)
z N N
(1-H(1-tzz)(1 -tz

[1]. Taking the Coulomb limit ¢ — 0 while

This is identified with the refined Hilbert series of the
Coulomb branch of SQEDy, [2]. The factors 1/(1 -1),

1/(1 - foz), and 1/(1 — foz_l) would correspond to the
scalar field ¢, the monopole operator V. of magnetic flux

Nf Ll , and the index takes the form

m]

f + m
q4 2y xOl > q) qu‘ ‘l‘ N/|m‘zm —m
2ms i ’

(3.13)

|
=1 q4+2[S xa’q)

—l—l, and the monopole operator V_ of magnetic flux —1,
respectively. They obey the relation V_ V_ =" at
dimension N, and topological charge O [38] which is
encoded by the numerator.

In fact, by setting z =1 in (3.14), we get the Hilbert
series of the Ay _; singularity C*/Zy, [39],

3D SQEDy . ~ f .
HCoulomb ! (t’ 7= 1) = ~—~Nf)2 — Hllb[Cz/ZNf]

(3.15)

The mirror of SQEDy , which we denote by [1]—

(lj’w‘1 —[1], has a gauge group U(1)N7/U(1) and the
twisted hypermultiplets that are associated to the links
of the extended Dynkin diagram of Ay -1 The twisted

hypers carry charges (+,—,0,...,0),(0,+,—,...,0),- -,
(=,0,...,0,+) under the U(1)"s. For [1] — (1)N=1 = 1]
theory, the magnetic fluxes are labeled by Ny — 1 integers
(my,...,my ;) corresponding to (N; — 1) U(1) topologi-
cal symmetries.
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The conformal dimension of bare monopole is A(m)

N2
= g (fmy| + Jmy, o+ 3227 Imy

; —m;_1|). Then the index of the

mirror quiver gauge theory [1] — (1)¥/=! — [1] reads
PP -0 07 . 21 )
(qzt‘z,q) %N’ 1 ds;
T i S 7
5 (q?‘**%STZT;Q) .Nf_z (¢ tsEsT e (¢ 15t 751 0)
I =

|
(¢ F st q) ot (g

N

- f

AR e/ 7\’"i-m+1\ Np=2 X Ma (Xp,\ Mitmy i

UK +— E =1 ! \ml|+|me—1\+§ 2y Imimmig | | | a f U
a=1

Here the fugacities z, are used for the flavor symmetry,
while the fugacities x, are associated to the topological
symmetry. The index (3.16) would be equal to the index
(3.13) of SQEDy . As shown in Appendix A 1 b, we have
confirmed that they agree with each otherfor N =1, 2,3, 4
up to order ¢°.

The Coulomb branch of [1]— (1)V=!'—[1] is the
reduced moduli space of one instanton of SU(Nj).
Taking the Higgs limit ¢ — 0 while keeping t = git
constant, setting z, = xax;il and my = m N, = 0, the index
(3.16) becomes

3D [1]-()M~'=[1
Hngés] (1) ( ](t, z)
1 | :
— i Iml i+ | m;
(1 t)N,—1m Z 12 0 1 H z
Toeees me—]
= Hilb® -0"" {1, 7)), (3.17)

where we have removed decoupled U(1) by gauge fixing to
setm; +my | = 0. This is the refined Hilbert series of the

Coulomb branch of [1] — (1)N=1 —1].

IM=BNI(2, X4 245 q)

_ (%)

s @) (got—

—q sis?)(fl :

| 1

t_lsjj\://—lzz 9Q)
-1
(3.16)

xa+l X1

IV. NON-ABELIAN MIRROR SYMMETRY

In this section, we test 3D N = 4 mirror symmetry for
non-Abelian gauge theories by computing 3D full-indices.
We confirm that two indices nicely agree to each other.

A. (N)-[2N]
Let us argue for the balanced U(N) gauge theory with 2N
hypers which we denote by (N)— [2N]. The magnetic

charges for U(N) gauge theory are given by N-tuples of
integers (m, ..., my). The dimension of Coulomb branch is

dlmCM =2N, (4.1)
while the dimension of Higgs branch is
dimeMWNTPY 0 (N x 2N = N?) =22 (4.2)
The R-charge of bare monopole is
NZ|m,|—Z|m —mjl. (4.3)

l<j

Here the first terms are contributed from the 2N funda-
mental hypers, while the second terms are the contributions
from the U(N) vector multiplet.

The index of (N) — [2N] takes the form

|mj—m;| 1t-|mj—m|

2k F.
t°sistiq)

N! (q2t_2’ q)oo my,..., mNGZ% H 2””’ i<j

N 2N L
(

i
T D 45 -3 f‘. —2NZ7lm,»+2Z,-<jmf—mjl.(2_1)2”""

=1 a=1 (q‘*Jr 2 lSixét, 9) oo

]Hml m]\

t_z 1 ] ’q)oo

22

066031-10



MIRROR SYMMETRY OF 3D N = 4 GAUGE ...

PHYS. REV. D 100, 066031 (2019)

where x, are the fugacities for the SU(2N) flavor symmetry
with lei'l x, =1, and z, are the fugacities for the
topological symmetry.
The mirror of (N)— [2N] is the quiver gauge theory
()= @)= =(N) == )= (1)
| . The dimension of
2]
the Coulomb branch is

As predicted by mirror symmetry, the dimensions (4.5) and
(4.6) agree with the dimensions (4.2) and (4.1), respectively.

Classically, there is a U(1)M topological symmetry
and we label the magnetic fluxes by N sets of k-tuple
« with k=1,...,N and (N-1)
sets of (2N — k)-tuple of integers {m }l .

k=N+1,...,2N — 1, which are in total N2 1ntegers. The
conformal dimension of bare monopole is

of integers {m }l !

.....

(1) -(2)- —(N)- -(2)-(1) |22 e
+
| Am) = Z B |
. 2
dime M- 2 IR
ot +Z|m§ ”—ZZlm )
=2 (22 k+ N) =2N2, (4.5) =1 p iy
=1
) ] . . The first terms are the contributions from the bifundamental
and the dimension of Higgs branch is twisted hypermultiplets. The sum over i runs from 1 to & for
k < N and from 1 to 2N — k for N < k, while the sum over
1 —(2)— _’]\7_ —(2)—(1 jruns from 1to k+ 1 for k <N —1 and from 1 to 2N —
(1)-@) (V) 2)-) k —1for N — 1 < k. The second terms are the contributions
| from the two twisted hypermultiplets transforming as
dime M 2] fundamental representation under the U(N) gauge sym-
e My metry, and the third terms are the contributions from the
N-l N-1 ) ) twisted vector multiplets.
=2 (ZX k(k 2xN 22" N > =2N. Then the index of the quiver gauge theory
k=1 k=1 vy
v =@ =M= - =)
(4.6) | reads
| 2]
(1) - (2)- —-(N)- -(2) - (1)
3D |
I 2] (t, Xa» 23 )
_ ﬂ 1 (g% q)k 3 j{ ﬁ ds}"
o k! (q%fZW)]éo m® ey =1 Zﬂis,(k)
W .m!
\mgk>—m(,k)\ Iﬂmgk)—m(k)\
(1 - qusi k£ 51{ ]F> (q 2 t‘zsl(k)isﬁk);; q)oo
x 11 )
i<j (q — l‘zsgk)iS;k)$; q)
N-1 1 2. \N—k N+k
1 17,
. T 'S 74
k=1 (N_ k)‘ (qzt ;‘I)oo (N+k N+k i—1 27TlS
‘mEN+k)_m(vN+k)‘ l+\m(N+k) m(N+k)‘
(1 _ q+S§N+k)i §N+k) )(qf/ 2 (N+k) §N+k)¢;q>w
X

(N+k) _

(N+k)‘

l+\m
J

°s

N+k)+ (N+k
2§+) s§_+)¢;q)oo

3 (k) (DT, L (MNE
2N-2 <q4 2 tsi K 6]) N (6]4 7 1S z C])
| | | | | | J ’ . HH i a s o
x . : \m“) —m<k+])\ " 1 \m(N)\ (N)
e (q%+ 7 t—ls,(»k)is(k“”;q) == (qZ+ s zai;CJ)oo
o0
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OF

\m(k)—m_

= | i
2 Z7lmz D
x IZL? 20 2 =2 T 12 3 S -

2N-1 k (k) IN-1 (N1
Xk i=1 M XoN +Z 1
[T (- : , 4.8
) ( ) (xl ) (48)

=1 \Xk+1

\m —m(
J

where z,, are the fugacities for the flavor symmetry and x,, are the fugacities for the topological symmetry. We expect that
the index (4.4) coincides with the index (4.8).

For example, consider 3D N =4 U(2) gauge theory with four fundamental hypermultiplets, which we denote by
(2) — [4]. This is the simplest balanced non-Abelian gauge theory. The quiver diagram and the brane construction are shown
in Fig. 3.

The index of (2) — [4] is

2.
PP @1 (1, .25 q) = 3 Do riq ]{ o s,
’q oo my,myEZ

2 qzt—2 2mis) 2wis,

[my mﬂ |my ’”2‘ 1+|my—mo| I|my—my|
=g - M T g (Y ),
14|my—my| s 1+|my—mj| _

(¢ = %) (¢ > 235q9)

4 3 Ll
it -
X | | | | q t S xa’Q) q\ml\+\m2|_"”12—”’2‘t—4\m1|_4\m2|+2\m1_m2\zr1n1+mzzgml—m2, (49)

paly i 614+ 2 tsix(f, D

where x, are the fugacities for the SU(4) flavor symmetry with []%_, x, = 1 and z, are the fugacities for the topological
symmetry.

In the Coulomb limit, where one keeps B= cﬁt‘1 constant and sends ¢ — 0 and # — oo, the index (4.9) reduces to

-1
£ (=4 f oy S

Coulomb

Is. d 1 — sE5F) .
ml o eZ 7is, 2ms2 (I —tsysy)

where we have defined z = z,z;'. Let A(m;) be a partition of 2 which is associated to the magnetic flux m; obeying
2 A;(m;) =2 and 4;(m;) > Aj;1(m;). Making use of the formula

(@) (2)— 4 - 2

""""" D5' ——— NS%

2 1

1 1 1 1

(b) R 5  Ns§ 5  Ns§
I T B | E— - — — — = '
2 2122 2 — 2 NS W 2 D
R 2 NS5 2 D5
P —— NS5 ———  NS%

NS5 D5 D5D5 D5 NS5 2 1
“““““ D5' NS5

FIG.3. (a) The quiver diagrams of (2) — [4] and its mirror quiver gauge theory. (b) The brane configurations of (2) — [4] and its mirror
quiver gauge theory.

066031-12



MIRROR SYMMETRY OF 3D N = 4 GAUGE ... PHYS. REV. D 100, 066031 (2019)

j{H 2ms

Si

:Hl (4.11)
=1

Sj

we get
Lo (£2) = > Pmb2mlsimmml gmtmepy o (8o, (4.12)
e
Here
. 2 1
Pyt m;) = EW (4.13)

is the factor which counts the number of Casimir where A (m;) is the length of the kth row of the transposed Young tableau
AT (m;). The expression (4.12) is identified with the refined Hilbert series for the Coulomb branch of (2) — [4] which can be
further written as [2]

1_"{5—1’
(1=1)(1 =8 (1 =718

2
]I [4]( i, ) HlleD( —[4] t Z — H

Coulomb

(4.14)

The factors 1/(1 — 1) with i = 1, 2 correspond to the two generators Trg’ where ¢ is the adjoint scalar field. The factors
1/(1 = z8) and 1/(1 — z7'£~%) with i = 1, 2 describe the monopole operators V__ with magnetic flux (+,0) and V_ with
magnetic flux (—,0) dressed by the adjoint complex scalar field.

(1) (2) = (1)
The index of the mirror quiver gauge theory | reads
2]
(M-2)-)
3D |
I [2] t Xas Zas Q)

(qu 2,61 ]{ds] . (¢~ ’q°o Z fdsz ds3
(q2t2 oo mez 271'lS1 q7l‘2 oo momREZ 271'iS2 271'iS3

1+[my—m3|

|myp— m3\‘ |my—ms| _ 1+[my—m3| _
S ) e S C 22q) (g 173q)
Lt{my—m3| 'Hmz m3|
(@ = PEa) (@ £
(qzt 2,41 % dS4
(q2t2 oo myeZ 272'iS4
\/"1 —m;| 3 3+I i *"4\
q4+ ts1 ; ,q q4+2 stz q tst s4 9w
x H ol sEsTs HH Ll H ylimal 4
i=2 (g 575q) e i=2a1(qiT 2t sza,q)oo, sEsTiq),

[my=my|+imy—m3| | |my| | \"13\ lmy—my|+{m3—mg| _|my—m3|
7 P55 7 7

% t|m|—m2|+\m|—m3 [-£2|mo | 42| m3 |+ my —my |+ |m3—my | =2|my—my

e
X2 X3 X4 X1

where x, are the fugacities for the topological symmetry, while z, are the fugacities for the flavor symmetry. As expected,
we find that the indices (4.9) and (4.15) coincide with each other up to order ¢* (see Appendix A I c).
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B. T[SU(N)]

Consider the quiver gauge theory (1)—(2)—---—
(N —1) = [N], which we call T[SU(N)]. For example,
for T[SU(3)] theory, the quiver diagram and the brane
construction are illustrated in Fig. 4.

The dimension of the Coulomb branch of T[SU(N)] is

dime MY — 2N k= NN =1),  (4.16)

and the dimension of the Higgs branch of T[SU(N)] is

N—-1 N—-1
2[Zk(k+ 1) - Z/&] =N(N-1).
k=1 k=1

(4.17)

dime M SYW

The quiver gauge theory T[SU(N)] is a self-mirror theory
whose Coulomb branch and Higgs branch are identical as
the dimensions (4.16) and (4.17) are equal.

From brane construction, a D3-brane ending on the NS5-
brane can be viewed as a magnetic monopole. Hence, the
Coulomb branch or Higgs branch of T[SU(N)]| is inter-
preted as the moduli space of SU(N) monopoles which are

formed by one with magnetic charge (+,—,0, ...,0), two
with magnetic charge (0,4,—,...,0),...,(N —1) with
|
| N=2 k kel
=522 > Im’
k=1 i=1 j=1

(k+1) N&E
—m; |+§Z i
=1

NS5
NS5’
NS5’

o
o 0@ fF - ©
1
2
3

1
i
1
(b) 2] 3!
1
1
i
NS5 NS5 NS5 DS

FIG. 4. (a) The quiver diagrams of T[SU(3)]. (b) The brane
configurations of T[SU(3)].

magnetic charge (0,0,...,+,—) together with N fixed
Dirac monopoles with magnetic charge (0,0, ...,0,+).
The magnetic fluxes for T[SU(N)] is labeled by

. . N(N-1)
N —1 sets of k-tuple of integers, that is ———

{m }z ..k with k=1,....N—1. The
R-charge of bare monopole is

integers

canonical

I—ZZIm

k=1 i<j

(4.18)

where the first terms are the contributions from the bifundamental hypers, the second terms are those from the
N fundamental hypers, and the third terms are those from the vector multiplets.

The index of T[S U(N)] takes the form

]([ Xar Zas q )
—1

I [punts v

k=1

k
74, 12ms

(k) _,, (k) (k) _,,(k
q\mi zml_ ‘S<k)is(k):|:) (qlﬂmi ml_ ) X

l+\m —m

( M
XH ( 0,0

i<j —2 (k)£ (k
i<j gt 2S1( ) s§ )F
(k)_, (k+1)
|m>™ —m, |
N=2 k k+l (q%+ — t‘lsgk)isﬁ-k)?
x H B, D), e W
k=1 i=1 j=1 1y @ k)£ (k)F.
(q4 S CHE
N-2 N k+] k+1 N
X qZ k=1 ZLai=1 |+ Z
N-2 N A+] k) k+l
Xt Lk=1 Lai=1 - NZ

N-1 k)
Z i1 M
X | | <—k > .
k=l \Zk+1

N 1), 1 N-1 (k) (k)
= k=1 Zi<j Im; —m; |

(N-1) (k)
U2 3T D )

(1) N=1 (N-1)
Zy \"™ +Z[:l mn
21

: (4.19)
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where x, are the fugacities for the SU(N) flavor symmetry with [[Y_, x, = 1, and z,, are the fugacities for the topological
symmetry.

We expect that the index (4.19) is equal to the index of T[SU(N)],

U0 (1, ,,243.)
1

-n {1 (4% )k, 5 y{H ds;"
1 LK (giq)k, o mPez =l 2ﬂi55k>
1m®) _m®)| 1m0,
(1 —q — sg )+ Ek) ) q%t_zsgk)isﬁ-k)q:;q)
X H e ) m]
i<j (qf!tzsgk):tsﬁk)q:; q) )

N-2 1<+]

1 - k (k+1) NNV (N=1)) 1 NTW-1 k) _ (k)
X gt ket Laiz ‘m M HTZ:’:I ;™13 ) Ziq“m[ -m;|

N-2 N\ k1 (k+1) (N-1) *)_ (k)
X fh—k=1 i=1 \m - HNZ \m ‘ 22 Zt<j M Tm; |

— k (k) (1) N-1 (N-1)
Nl Xk o1 M XN my+ -1 M

<] (2 , (4.20)
kel \Xk+1 X

with z, being the fugacities for the flavor symmetry satisfying [[Y_, z, = 1, and x, being the fuga01tles for the topological
symmetry. In fact, we have checked that the indices (4.19) and (4.20) agree up to order ¢> (see Appendix A I c).

1
0 D0 . 2
1 2 1 1
—————————— D5' e '
1 1 NS5
1 1o 1 —1 NS5 e 1_____ D5
by | 4| 2 2____ NS
11 (21212101 <= 2 NS5' my 5 D5
1 1 1 1 NSS' __________ DS'
1 [ 1 2 2
: Vo A | DS ) NS5'
NS5 D5 NS5D5D5NS5 D5 NS5 i NS5 ----- 1_____ Ds'
---------- Ds' ——— Ns§'

FIG. 5. (a) The quiver diagrams of the self-mirror U(1) x U(2) x U(1) quiver gauge theory. (b) The brane configurations of the self-
mirror U(1) x U(2) x U(1) quiver gauge theory.
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The dimension of the Coulomb branch is

dimem U o g4241)=8, (421)

and the dimension of the Higgs branch is

n - @ -
| | |
dime 2 (x4 1x242%x242x 1+ 1x1-12=2_12) =8 (422)
H - @ -
Let us label the magnetic fluxes for | | | by four integers m,, m,, msz, my. The R-charge of bare
1] 2] [1]

monopole operator is given by

[my — my| + [my —my|  [my|
2 2

A(m) = lmy| | [my —mo| + [my — mj

5 5 + [my| + [ms] +

The terms @ + @ are contributed from the charged hypers under the U(1) gauge factors, while the terms |m,| 4 |ms| are
the contributions from the fundamental hypers of U(2) gauge symmetry. The terms [;_; [m; — m;| are the contributions
from the bifundamental hypers. The terms —|m, — mj| are the contributions from the U(2) vector multiplet.

n -2 - 0
The index of | | | is evaluated as
1] 2] 1]
- @ - @O
D | | |
iy 2] (] (7, %0 20 )

_ (P9)y ds,

(q2t %.q) oom]ezfzﬂisl

NULETIES O ds; (1-¢"FsisT) (g T PstsTia),
2 (g2 q) 2o mimez ) 2misy 2miss (qmt_z £F )

§28354
(qzt q f dS4
(qzt‘z,q )= 27isy
Iyl _ 3 my -] 3 3 mil
(g th 'SEXT 0 H (¢ Sl 573 @)e H(qmt Lsixg q)e
|m [y —m;|
(g tsl Q) =2 (g7 T 1sTSTiq)s H2a2 (q4+2 tsix(f,q)

066031-16



MIRROR SYMMETRY OF 3D N = 4 GAUGE ... PHYS. REV. D 100, 066031 (2019)

[m;— m4\ 3, Imyl
+ 1+ F. 3plmal g+,
% rs; s4’q)oo'(q4 2l s4x4 9
[mj—my]| |y
. e+ T +—=-
Iz:Iz (i) (¢ i)

[my| | [my=my|+|my=m3| | [my|+[m3|  |my=my|+|m3—myg| |mg| |my—m3|
31 7 T 7 Ly 2

X f\mlHml—mszl—m3\—2\’”2\—2\’”3\—\mz—m4\—\m3—m4\—\m4\+2\m2—m3

m my+ms m my+m
@ETEG)T 42
Ve) 23 24 71

where x, are the fugacities for the flavor symmetry, and z, are the fugacities for the topological symmetry.

1 - @2 -

As expected, we have confirmed that the index (4.24) coincides with the index of | | | which consists

[1] 2] 1]

of twisted supermultiplets,

3D | | |
] 2] U (£, %00 243 9)
(qzt z,q % ds;
(q2t29 q)oo meZ 277,'iS1
l(qzt 2,61 j{ ds, ds; (1-¢q s s353)(q S 17257575 0) 0
X l+\m m3|
2 (g4 9)% iy ) 2mis; 2mis; (g 7 s5siiq)y
qzt ,q (@17 4) Z f dS4
q2t2 )eo = 2risy
” m _”‘1‘ [m; |
<q4+ 2 IS1 Zl ) ﬁ q4+ 1 l‘S1 S; ’Q)oo ﬁﬁ q4+ ’ tsiZEzt’Q)
(g 1s1izi 2 (g ""‘t‘ls?S?;CJ)mizz w2 (g sz )

Imj— ’"4\

(g rsis g fI) (q“+ P15t 0)
X H 1+\mz my| _1 + ’

stsTiq)e (g rsiztiq).,

\ml\ , \MI—mzH\MI—ms\ Imoltims| | Jmo—my|+m3—my| | |mg| _|mo—m3]|
71 7 T 2 T 7 L) 2

x glmillmy—ma 4 [my—ms|+2[mo [+ 2]ms | +[my—my | +|ma—my |+ |my | =2 my—ms3

m my—+ms3 my my—+my
@) ETEET 429
X7 X3 X4 X1

where z, are the fugacities for the flavor symmetry, and x, are the fugacities for the topological symmetry (see
Appendix A 1c).
1 - @ - @

As a next example, let us consider a quiver gauge theory | |

2l [1]

diagram and the brane construction are drawn in Fig. 6. The dimension of the Coulomb branch is

. This is not self-mirror and the quiver

dimeM,. 12 o g4241)=8 (4.26)

while the dimension of the Higgs branch is
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o OO0 . |

2 1 3

—————————— D5’ aaasaaEg D5

| h D5
1 1 1 1 NSS 1 Ezzv

(b) R | RS 2 e
1 20202l 111 | = 2 NS>y 2 D5

1 ) NS5 T 2' -~~~ DS

1 1 L
) : Dy  TTTTTTTTTT D5’
NS5 D5 NS5D5D5NS5 D5 NS5 1 2

---------- D5’ —— Ns§

FIG. 6. (a) The quiver diagrams of the U(1) x U(2) x U(1) quiver gauge theory with two fundamental hypers for the centered U(2)
gauge node and one charged hyper for the end of the U(1) node and its mirror theory. (b) The corresponding brane configurations.

dime M, 2 W ix242x242x1+1x1-12222_12) =6 (4.27)

Again the magnetic fluxes are labeled by integers m, m,, ms, my. The canonical R-charge of bare monopole is given by

m; —my| + |m; —m my — my| + |mz —m m
| 1 2|2| 1 3|+|m2|+|m3|+| 2 4| | 3 4|+M

A(m) = 5 >

- |m2 - m3|, (428)

which is obtained by eliminating the contribution |m“

H -2 - @O
gauge theory | | | .

of the charged hyper from the R-charge (4.23) for self-mirror quiver

1] 2] [1]
n - @ -
We can evaluate the index of | | as
2] 1]
m - @ -
3D | |
I 2] Ut %203 9)
B qzt 9) oo % ds;
(gfr%g)e iz ) 2mis)
xl (q”z f ds, ds; (1-q"ssT)a¢ T PsisTia)g
2(qt 2,q Voo my ez ) 27isy 27iss (qlﬂm2 mﬂt‘zsfsf,q)

(qzt 9 j[ dsy
(qzt_z, q oo my€Z 277.'iS4

066031-18



MIRROR SYMMETRY OF 3D N = 4 GAUGE ... PHYS. REV. D 100, 066031 (2019)

Iy~ m,\

+

— 2
t]i:F +

ey Sle Y

15757 3q) =2 q4*2tsiﬁ,61)

i

i=2 q4+

xH q4+‘mrwt Si54"])oo (‘Iﬁmf‘t ST ) g
i=2 C]ﬁlml mufs 5539w <q4+‘2‘t54 X33 9) g

lmy—ma| | |my=—m3| | |mo|+im3| | |my—my| | |Im3—my]|  |my| |my—m3]|
T 4 2z T 3 't 3 '3

X = mi—ma|={my—ms|=2|my|=2|ms| = |my—my|=|m3—my|=[my|+2|my—m;
2 my 2 my+ms 23 my 73 my+my

X [ — —= — — , (4.29)
22 23 21 24

where the fugacities x, are associated to the flavor symmetry, while the fugacities z,, are associated to the topological
symmetry.

The mirror of | | is the quiver gauge theory | | whose quiver diagram and brane

construction are illustrated in Fig. 6.
The dimension of the Coulomb branch is

2 -
| |
dimet P! W s 241y =6 (4.30)
and the dimension of the Higgs branch is
@ - M
| |
dimCMFP] [1] =2-2x342x1+1x1-2>-1%)=8. (4.31)

The magnetic fluxes are labeled by three integers m;, m,, ms. We have the bare monopole operator with dimension

\1 m3| |m2—m3| |m3|

A
(m) = |m1| +5 |m2| + ) 5 5

Here the first two terms are contributed from three fundamental twisted hypers for U(2) gauge symmetry, the next two terms
are the contributions from bifundamental twisted hypers, the second from the last is contributed from charged twisted hyper
for U(1) gauge symmetry, and the last comes from the U(2) twisted vector multiplet.
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is given by

W (1% 2029)

_ (g% q)l f ds)

19, 2 : . 1[my—my|
2 (P95 mmez ) 2mis) 27is, (g = s755:9)

|m; 2 3, Imi—m3|
' (¢ 7 157573 9)

[my—my| Ltfmy—mp| 1 _
ds, (1—q = sisi)g = t25753:0) (@175 4)s f{ ds3
1
(q2t2;Q)oo mz€eZ

27iss

3 Im3|
(¢ 7155253 9) o,

2 3 apll o4
<111 (¢ 2157203 @) 11
|m;| S Imj=m3|

Tl (g7 7 lsFzE q) il (gt

§;i 8354

3 3 my=ma| | mp—m3| | m3| _|my—my|
X q4\m1|+4|m2\ L S L 2

x 13l 43]ma | my —m3 |+ my—ms |+ |ms | =2[my —m,

X my+my X5 my X3 my+my+ms3
X | — — — .
Xo X3 X1

_ Tl
lst5350) (@7 17s53215q)

(4.33)

As predicted from mirror symmetry, the associated global symmetry of fugacities x, and z,, are swapped and the indices

(4.29) and (4.33) coincide with each other (see Appendix A 1 c).

D. (1)-(2)- 4]

Consider the 3D A =4 quiver gauge theory (1) —(2) — [4]. The quiver diagram and the brane construction are

illustrated in Fig. 7.
The dimension of the Coulomb branch is

dime MU 0 (1 4 2) =6,

and the dimension of the Higgs branch is

o OOE o

(4.34)

1
2
NS5’
1
> NS5
__________ D5
2
NSS'
2
---------- D5'
2
---------- D5'
1
NS5’

1 NS5’
— 5 NS5
Lo NS5'
(b) P 3
12413211, 4= ., NS5'
1 1 1 1
1 1 1 A DS'
Lo 5
NS5NS5NS5 DS D5 D5 D5 ~°°°° 1———-- D5'
__________ D5'
FIG. 7. (a) The quiver diagrams of the (1) — (2) — [4] quiver gauge theory and its mirror theory. (b) The corresponding brane
configurations.
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dimeMW @ o (1x24+2x4-12-22) = 10. (4.35)

For (1) — (2) — [4], we can label the magnetic fluxes in terms of three integers m;, m,, ms. The R-charge of bare
monopole operator is expressed as

m; —m m; —m
Ay = I ) 2y = s = ), (4.36)
where the first two terms are the contributions from bifundamental hypers, the next two terms are those from four

fundamental hypers for the U(2) gauge node, and the last is contributed from the U(2) vector multiplet.
The index of (1) — (2) — [4] is

]I3D(1)—(2)—[4](t,xa,za§61)
:M Z ?{ s,
(q%t‘z;q)oo me) s

jmg 1+ iy =3
5. £ T\ (sl o o+ T
xl (CPI ]{ dsy dsy (1—q = sys3)(q = s557:q)
1+ [my —m3|
?q oom2 mz€Z 27[[5‘2 2]”53 (q a t_2S2 S35 q)

\m 1 *’",\

XH - mj‘lsl 57310) f[ﬁ q4+zt—s X5 9) e

=2 (g 7 tstsTiq)y  i=2asl q4+2ts X3 q) e

my— ’"z\ \’"1—"12\ b |+ ms) \mz m3|

x ¢ lmi—ma|={my—ms|=4|my|=4{m; |+ 2|my—m;|

m my~+ms3 my+my+m
e )
21 I%) 23

where x, and z, are the fugacities for flavor symmetry and topological symmetry, respectively.

@ - @ -0
The mirror of (1) — (2) — [4] is the quiver gauge theory | | . The corresponding quiver diagram and
2] 1]
brane configuration are shown in Fig. 7.
The dimension of the Coulomb branch is
@ - @ -0
| |
dimeM 2 [1] —2.(24241) = 10, (4.38)
and the dimension of the Higgs branch is
@ - @ -0
| |
dimc./\/lly] [1] =2-2x24+2x24+2x1+2x1-22-22-12)=6. (4.39)
The dimension of monopole operator is
ShS |ml |m;\ Flma| O mi—ms| |my—mo|  ms —my]
Am) = i+ Imo] + 303 Ty s M i I EI (440)
i=1 j=3 i=3

where the first line includes the contributions from the twisted hyper multiplets, while the second line describes the
contributions from two U(2) twisted vector multiplets.
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As shown in Appendix A 1 c, we have checked that the index (4.37) beautifully coincides with the index of the mirror
quiver gauge theory,

3D | |
2] [1] (1. Xgr 203 q)
1<qzr2,q ;5 ds, ds, (1-q 7 stsT) (g T st sTiq)
2 (q2t2 oo my,myEZ 2mis 2mis, (qwtzszisf’q)
[my—m5| my—my|
(gt q)k ]{ dsy dsy (1-q"7*sis7)(a 55 rsis]:0)a
2 (¢iiq), ey ] 2misy2nmisy (¢ P55 0)
(qzr 2,q }{ dss
(qz[z oo ms€Z 27[iS5
" L
Xﬁﬁ q4+2ts za,q) ﬁﬁ (C]4+ 2 i;':’q)
N g ]
st (g s e e 1S (7T sEsTig)
|mj—ms|
4 (qz+ 51s s$1q)y

« H 6I4+TIlSiZ§E;CI) _ H
|m;| _ |m,—ms\ _
3 (g ST q) . =3 (g T isEsTig)

\’"|\+\M2\+§: ZA mi— "’/‘ \'"3\+\n14\ 24 \mi-ms\ \"11-"12\ Im3—my|
X g 2

« tz\ml [+20ma|+> 7| Zj:3 [mi=m |+ s |+ |+ 3 |mi=ms|=2[my —my|=2|ms—m,

N (ﬁ) my+ny (E) m3-+ny (ﬁ) ms (E) m1+m2+m5’ (441)
X X3 Xyq X1

|
where the fugacities z, and x,, are associated to the flavorand ~ branch is shown in [28]. Here we would like to check the
topological symmetries of the mirror theory, respectively. equalities of 3D full-indices.
We conjecture the identity of indices,

V. SEIBERG-LIKE DUALITY
The 3D N =4 U(N) gauge theory with (2N —1) PPN (1, x4, 245 q)

hypermultiplets is expected to be equivalent in the IR to 3D (N-1)-[2N~1 N

a U(N —1) gauge theory with (2N — 1) hypermultiplets =1 BN, X0 245 q) X PP (LZ_;CI),
times a free twisted hypermultiplet [10]. This is interpreted :

as Seiberg-like duality between the ugly and good theories. (5.1)

The equality of the Hilbert series for the Coulomb branch is
shown in [2] and that for the Hilbert series for the Higgs ~ where
|

]I3D Nf](t xav Za? q)

Jmj=m;| Ll

_1 (g**:q)Y Z ]{H ds; H (1-q> sis;F)(q s ;q)oo
- 1 ; [mj—m
NU@r2q) % w1 27081535 (q1+ L2 FsTia),
T s g

10 Cnrs -

i=1 a=1 q4+2ts xaaq

B A [T S ity N 4230,y (2 Dol
X gt b=t T s 2 [ 2im i (5.2)

%)
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is the index for 3D N/ =4 U(N) gauge theory with N [
fundamental hypermultiplets. In fact, we have checked that
(5.1) holds for N = 2, 3 up to order ¢° (see Appendix A 1d
for the g-expansions).

VI. DUALITIES OF BOUNDARY CONDITIONS

Making use of the results in Secs. III and IV, we
construct the dual half-BPS boundary conditions for 4D
N =4 gauge theories by including 3D N =4 gauge
theories. In order to check the dualities conjectured from
the action of S-duality in string theory, we compute the
half-indices which encode the half-BPS boundary condi-
tions for 4D A =4 gauge theories, as well as the full-
indices for 3D A/ = 4 gauge theories. The indices for some
half-BPS interfaces in 4D AN =4 gauge theory were
studied in [12,40]. The analysis in this section and in
Sec. VII provides more general examples which realize
4D-3D dualities.

A. 4D U(N)|3D U(M)

Now let us consider the enriched Neumann b.c. A/
for 4D N' = 4 U(N) gauge theory which is coupled to 3D
N =4 U(M) vector multiplet by the 3D bifundamental
hypermultiplet. We denote this boundary condition by
4D U(N)|3D U(M). It can be realized in the brane
construction as in Fig. 8. There are finite M D3-branes
stretched between the NS5-branes and semi-infinite N
D3-branes extending along the one side of the NS5-brane
in the x% direction. The computation of the half-indices
|

4D U
w2 VI 2 g

(5 9)

a

M

-------- D5’
M
(b) N M - . DS
NS5 NS5 N
FIG. 8. (a) The quiver diagrams of the enriched Neumann b.c.

4D U(N)|3D U(M) and its mirror. (b) The corresponding brane
constructions. While the enriched Neumann b.c. 4D U(N)|3D
U(M) involves 4D gauge and 3D gauge symmetries, its mirror
b.c. breaks 4D gauge symmetry.

for the enriched b.c. 4D U(N)|3D U(M) involves two
sets of contour integral corresponding to the 4D gauge and
3D gauge symmetries. On the other hand, the mirror
boundary condition is rather simple as it has no gauge
symmetry.

We can compute the half-index for the boundary con-
dition 4D U(N)|3D U(M) as

1l @s 7{ H o
qzt‘z 2ms, ph qzt_zs,

]]]I4DU N)

8 1 (qZZ‘ q % N+M
M <q2t_2’ Q)co my,....my€Z i=N+1 l<_/

.....

N N+M (qﬁ‘m/ v

FlstsTig)
x ]:[ H Imj —N\ =
i

=1 j=N+1 (q4+ ts i :'F’q>oo

M
M N\m\ [mj=m | M .om;
) S S N2 Y e <Z_> 2

The contributions in the second line and third line are the half-
index for 4D U(N) gauge theory satisfying Neumann b.c. A/
and full-index for 3D U(M) gauge theory, respectively. The
contributions in the fourth line count the 3D bifundamental
hypermultiplet. The last line involves the contribution from
the monopole operator whose canonical R-charge is

‘”’i—N‘”’j Nl Ltlmi—y=mj-n|
+ . F ——L— 2 + . F.
2 i s] )(q 2 tsi Sj’q)oo
1+ |mj_n— mij— Nl
— 2 £ F.
g 2 sisiq)

5 (6.1)

[

= lmy=m].

i<j

(6.2)

M
_ N|m;

We assume the condition N > 2M — 1, which guarantees that
all monopole operators are above the unitarity bound so that
the half-indices are convergent.
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The S-dual boundary condition 4D U(N)|[M]| is asso-  requires the singular boundary specified by the Nahm pole
ciated with two D5'-branes. The D5'-brane defect would  of rank M. There would be M different types of contribu-
break the 4D gauge group U(N) down to U(M) block-  tions to half-index from broken gauge theory characterized
diagonal subgroup. This may lead to the singular boundary by the Nahm pole of rank (N — M), as discussed in [12].
condition specified by the Nahm pole of rank (N — M). The The half-index for the boundary condition 4D U(N)|[M]|
another D5'-brane on which M D3-branes terminate  takes the form

ket 1 I+ - N 2M 141 _
D WM _Nl—][" LT ﬁ g 1207 mﬁ AL ) PN
aq) = k —2k. -2, N N-aM L (N-2M)-21 £ : )
e (gt =1 q2t =1 2 225 1 0) e
P v(v-M) P v
Nahm/ Nahm’

We expect that the half-index (6.1) for the enriched Neumann boundary condition 4D U(N)|3D U(M) is equal to the half-
index (6.3) for its dual boundary condition 4D U(N)|[M]|. As shown in Appendix A 2 a, we have checked that they coincide
for (N, M) = (1,1), (2,1), (3,1), (3,2), (4,2), and (5,2) up to certain orders of q.

B. 4D U(N)[3D UN-1)x---x U(1)

Now we present the half-index of the enriched Neumann boundary condition 4D U(N)|3D U(N —1) x --- x U(1),
which is the Neumann b.c. N for 4D N =4 U(N) gauge theory coupled to 3D N =4 U(N—-1)x U(N —=2) x - - - X
U(1) quiver gauge theory through the 3D hypermultiplet transforming as (N,N—1) @ (N,N — 1) under the U(N) x
U(N — 1) gauge group. This is expected to be dual to the Dirichlet boundary condition D’ for4D N = 4 U(N) SYM theory
[8] (see Fig. 9).

One can compute the half-index of the enriched Neumann boundary condition 4D U(N)[3D U(N — 1) x --- x U(1) as

' U<N)\<N—l>—<zv—z>—-.._<1>(

N 1,243 q)

Sl .
q;t—z’ Q)N 2ms, iy qzt‘z f’ : q)

4D U(N)

T

q2t ®
J (o9
), im(®) 1), (B (ke1)
m; _ 3 i j _ + +1)F
Nel( i 1 4 (N-D)F N=2 k K+l [ git——= 1l
(g7 1 's7s; ) o I q rosis )

(k) _,, k),

[m:™ —m

)0
NN\ -1 \m H‘ -2 k k+170 J _N\ W=t Z i J
X q4 i=1 k 1 i=1 j=1 4 k=1 i<j 2

N-1| (N-1) N-2 N k+1 o k+l (k)
X t_NZi:I ™= i=1 -m |+22 Zr<] |m —m;”|

m-0

N-1 ko) ) N-1
Z i=1 M Z myitt) i M
<[] <—k ) ( N) . (6.4)
k=1 <

Th+1

The half-index (6.4) would agree with the half-index of Dirichlet boundary D’ for 4D N =4 U(N) gauge theory
(g%:9)_
- q)

I M) 2 g) = (9)e I

(6.5)
(g1 q) i (g2

In fact, we have checked that they coincide with each other for N = 1, 2 up to certain orders of ¢ by using Mathematica (see
Appendix A 2 a).
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(1)
(2
© D OO0~ @
N
N-1
v
1
———————— D5’
2
-------- D5’
(b) N [N-1|N-2 2|1 -
________ D'
NS5 NS5 NS5 NS5 NS5 N-2
———————— D5’
N-1
———————— D5'
N
FIG. 9. (a) The quiver diagrams of the enriched Neumann b.c.

4ADU(N)|3D U(N — 1) x U(N —2) x --- x U(1) and its mirror,
that is Dirichlet b.c. D' for 4D U(N) gauge theory. (b) The
corresponding brane constructions.

C.4D U(N)|3D (M) - 2M|

Let us consider the enriched Neumann b.c. N/ for 4D
N =4 U(N) gauge theory coupled to balanced 3D N = 4
U(M) gauge theory with 2M hypermultiplets. We represent
this boundary condition by 4D U(N)|3D (M) — [2M]. The
corresponding quiver diagram and brane construction are
shown in Fig. 10. In contrast to the enriched boundary
conditions in Sec. VI A, the dual boundary conditions can
admit both 4D and 3D gauge symmetries. The dualities of
boundary conditions produce a generalization of mirror
symmetry for (N) — [2N] discussed in Sec. IVA.

The enriched Neumann b.c. 4D U(N)|3D (M) — [2M]
consists of the Neumann b.c. N for 4D N = 4 U(N) gauge
|

(a)

D @ e W
M-1
L 1 NSS'
A L s
N | M v : '
® L =
L NS5'
Py - M---Ds
NS5 ‘———' NS5 M NSs'
2M D5 NS5'
M
———————— D5’
N
FIG. 10. (a) The quiver diagrams of the enriched Neumann b.c.

4D U(N)|3D (M) —
brane constructions.

[2M] and its mirror. (b) The corresponding

theory coupled to 3D N = 4 U(M) balanced gauge theory
with 2M fundamental hypermultiplets via 3D boundary
hypermultiplets transforming as (N, M) @ (N, M) under
the U(N) x U(M) gauge symmetry. Here we assume that
N2>M.

The half-index for the enriched Neumann b.c. 4D
U(N)|3D (M) — [2M] reads

D U(N
]]]I4 ](t Xa» Zas q
1 f{ G a)_
q2[ sq oot 1 27lel i# qz[_2 ;l ’q)
]]]I4DUN
N M \mi—mj\ + F l+\m,~—mj\ 4+ F.
1 (¢34 ?{ (1_‘1 Tosis) ) (g2 Psis) i)
_ 1 |mi=m;|
M' (qzt % q)co my,...,my€Z i=N+1 Zﬂlsl i#j (q%t_z li ;F,q)
‘ml N 2 \m, |
AL e f e s
+\m, Nl :E . ( %+‘I7II£N‘[ + 4. )
i=1 j=N+1 (q4 1s j ’q)oo i=N+la=1 (g S; Xa 54
[mj—m | M i
X qN+,M M |m1‘ Zl</ : . t_(N+2M) Zf‘il ‘m[‘+221</‘mi_mj‘ . <Z_l> Z‘:l " (66)
22
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The second and third lines describe the half-index of
Neumann b.c. N for 4D U(N) gauge theory and the
full-index of 3D U(M) vector multiplet, respectively. The
fourth line counts the boundary bifundamental hypermul-
tiplet and the fundamental hypermultiplet in (M) — [2M].
The last line counts the monopole operator with the
canonical R-charge

A(m) =

N+2M {
5 (6.7)

Z Im;| = Z|m: - mj|-
i=1

i<j
This is generalized from the formula (4.3) by including the
additional contributions from the boundary bifundamental
hypermultiplet coupled to 4D U(N) SYM theory.
The S-dual boundary condition can be read off from the
brane configuration in Fig. 10. The 4D gauge symmetry

must break down to U(M) due to the presence of the
|

We expect that the half-index (6.6) agrees with

(M) (M)
4D U(N)—-U(M)) |

1
ol e

IL,,

S,‘ .

(M —1)

D5’-brane interface. When N = M, there is a defect 3D
twisted hypermultiplet at the D5’-brane interface trans-
forming under fundamental representation under the U(N)
gauge group. For N > M, there is no fundamental twisted
hypermultiplet at the defect; however, there are contribu-
tions to the half-index from the broken U(N) gauge theory
associated with the Nahm pole of rank (N — M) [12].

The surviving 4D U(M) gauge theory should obey the
Neumann b.c. N/ due to the NS5'-brane. It further couples
to 3D twisted quiver gauge theory through the 3D bifun-
damental twisted hypermultiplet. The 3D twisted quiver
gauge theory has UMM x UM —1) x UM —2) x
U(1) gauge symmetry and a single U(1) flavor node
for the Mth U(M) gauge node, which we denote by
(MM = (M) = (M = 1) = (M -2) - (1)

(M =2)
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S Y, Y 2 3

2M—k (k)
< Xk > : Mi
Xk+1

N, M (k) 2M—1

5 )Ck i1 M
<[T(= >
k=l \Vh k=M1

The second line includes the half-index of Nahm’ boundary
condition for 4D U(N — M) gauge theory corresponding to
the defect of D5’-brane and the half-index of Neumann b.c.
N for 4D U(N) gauge theory corresponding to the NS5'-
brane on which semi-infinite N D3-branes terminate. The
contributions from third to sixth line are the full-index of 3D
twisted vector multiplets. The first factors in the seventh line
describe the defect twisted hypermultiplet for N = M and the
local operators appearing from the broken U(N) gauge theory
for N > M. The remaining contributions are the 3D twisted
hypers and monopole operator with conformal dimension

Z \m(k)—m(k)\
i<j i J

M (1) (2M-1)
Xom i m +my
X1 '
[

where the first terms are the contributions from the bifunda-
mental twisted hyper coupled to 4D U(M) and 3D U((M)
gauge symmetries, the second and third are the contributions
from the bifundamental twisted hyper in the 3D quiver gauge
theory, and the last terms are the contributions from the 3D
twisted vector multiplets.

As shown in Appendix A 2 a, we have checked that the
indices (6.6) and (6.8) agree with each others for
(N, M) = (1,1), (2,1), (2,2), and (3,2) up to certain orders
of g.

(6.8)

D. 4D U(N)|T[SU(M)]

A(m) = 32 |m§1)| Let us study the enriched Neumann b.c. 4D
i=1 U(N)|T[SU(M)] for 4D U(N) SYM theory. The corre-
2M=2 |m(_k) m(k+1)| 1M ” sponding quiver diagram and brane configuration are

+ Z ZZ ' ! +—Z |m§ )| depicted in Fig. 11. We have already examined
—t Lt L 2 2 £ . .
k=1 i i=1 the case with M =2 in Sec. VIC. Although T[SU(N)]
2M-1 is self-mirror, the enriched boundary condition 4D
- Z Z |ml(-k) - mgk)|, (6.9)  U(N)|T[SU(M)]| is not self-mirror. We further check the
k=1 i<j dualities for M = 3 and propose the generalization.
M-2
DO @ e W
! NS5’
NS5'
N M2
(b) N{L[2|| M1 e M-1
0~ - = = = == o= D5'
L0 M-1
1 1 1 o e e e e —————— D5'
NS5NSSNSSNS5 D5 ps - ps bs DS’
NS5'
1
-------- D5'

FIG. 11. (a) The quiver diagrams of the enriched Neumann b.c. 4D U(N)|T[SU(M)] and its mirror. (b) The corresponding brane

constructions.
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The enriched Neumann boundary condition 4D U(N)|T[SU(M)] is constructed from the brane setup in Fig. 11, which is
the Neumann b.c. N/ for 4D U(N) SYM theory coupled to T[SU(M)] via the boundary 3D hypermultiplet transforming as
(N,—) & (N, +) under the 4D U(N) gauge and 3D U(1) gauge symmetries.

We can write the half-index as

1111}‘\? vITISU(M >1(z Xos Za3 q)

- qzt‘z,q ]{Hzﬂ'ls

4D U(N)

(Ga)
Priig)

I,

M-1

X |:
(k) (k)l

‘mf,k)fm(,k)\ )
(1—q72’ s,(k)is“”) (4= sl07) ]
[o)

%Hds

i—1 27t1s

\m<k) —m(k)\

(M-1)
DD D

M-1) M-1, (k 3
\mf [+2 Zk:] |m§ )—m; )\

A+l m® kD M
Xq ‘+4Z i= m; _mj |+TZ

1 M-2 "k k1 )
X t_N"n(l>‘_Zk:1 i=1 . | Gy | MZ

M-1 k (k) (1 M—1 (M-1)
Tk i=1 M Zy \™ T2l M
L) (2 -
k=1 \Zk+1 21

[
The terms appearing from the second to fourth line describe (N, -)

(6.10)

@ (N, +) under the 4D U(N) gauge and 3D U(1)

the half-index of Neumann b.c. N for 4D N =4 U(N)
SYM theory and the full-index for 3D U(1) x U(2) x

- x U(M — 1) vector multiplet. The associated magnetic
fluxes are labeled by ( U integers {m },:1 _____
k=1,. — 1. The contnbutlons in the fifth and sixth
lines describe 3D N = 4 hypermultiplets. The other terms
count the bare monopole with the R-charge

M2kk+1

ZZZ|m k+1

=1 i=1 j=

2Z|mM 1) |—ZZ|’" _m(k)

=1 i<j

A(m)= |m1

(6.11)

This formula is generalized from (4.18) by the addi-
tional contributions appearing in the first terms. They
come from the boundary hypermultiplet transforming as

gauge symmetries.

The dual quiver diagram and the corresponding brane
setup are illustrated in Fig. 11. It is identified with the
boundary condition for 4D U(N) gauge theory including
the Nahm' pole of rank (N — 1) that breaks the 4D gauge
symmetry down to U(1). While for N = 1, one finds a
defect twisted hypermultiplet arising from D3-D5’ string;
for N > 1, the half-index receives contributions from
broken gauge theory as discussed in [12].

In addition, the surviving U(1) gauge theory should
satisfy the enriched Neumann b.c. N corresponding to
NS5'-brane with a coupling to 3D twisted quiver gauge

(M=1)= (M=2) == (1)
theory through the 3D
(M —1]
boundary twisted hypermultiplet.
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We find the half-index

(1)

(1. X0: 243 9)

M-1) - M-2) -
4D U(N)-U(1)| |

(M —1]
m,,
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(¢°%9) ) 27ist 17 (grq),
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7\A
~.

]Hmi .
(q T tzsl(k)iSE-k):F;C])

[m I
3. 7 (M-1)+ _4 3 (k)£ (k+1)F.
M-1M-1 (5]4 1S, Z‘“q)oo M=-2 k+1 (q4 2 ts; Sj 3 q -
. v ' H ) 1),
=1 a=1 = - k=1 i=1 j=1 1, i J —1 (k)£ (k+1
() | (e
(s
2(K)_,, (k+1) (k) _, (k)
™ —m | |m;" =m" |
(M~-1) k+l . M—1
|m |+Z i= ’ 4] T L k=1 ij : 2 :
M- k Ky (k) (k1) M-1 k) (k)
Xt i=1 |m |+ A 1 i=1 j=1 Im; -m; -2 k=1 Zi</"mi -m; |
M—1 ko (k) (1 M= (M-1)
X i X m, +Zi:1 m;
<11 (_> . <_ (6.12)
el \ Nkl X1

The contributions in the second line are the half-index of
Nahm' b.c. for 4D U(N — 1) gauge theory and the half-
index of Neumann b.c. for 4D U(1) gauge theory. The next
two lines are the full-index of 3D UM — 1) x U(M —2) x

- x U(1) twisted vector multiplet. The first terms in the
fifth line correspond to the defect hypermultiplet for N = 1
or the extra fields appearing from the broken gauge theory
[12]. The remaining terms count 3D A/ = 4 twisted hypers
and monopole operator of dimension

Y3 >

i=1 i=1

M-
ZZ|m(k) _
=i

We conjecture that the half-indices (6.10) and (6.12)
give the same result. In fact, we have found that for

i M-2 (k)

k=1

k+1 | _ m(k+1)|

m;

j=1

.

(6.13)

[
(N,M) = (1,3) and (2,3), they agree with each other up
to certain orders of g (see Appendix A2 a).

VII. DUALITIES OF INTERFACES

In this section, we would like to study the dualities of
interfaces for a pair of 4D A/ = 4 gauge theories including
additional 3D AN = 4 gauge theories.

A. 4D U(N)|3D U(N)*-14D U(N)

We study the interface for a pair of two 4D N =4
U(N) gauge theories which involves 3D N = 4 U(N)!
quiver gauge theory. We denote this by 4D U(N)|3D
U(N)*'4D U(N). The corresponding quiver diagram
and brane configuration are given in Fig. 12. It is realized
by N D3-branes intersecting with k NS5-branes. The dual
configuration is realized by N D3-branes intersecting
with k D5-branes. According to the presence of D5
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(b) N|N|N|N|N
&—v—l
k NS5
FIG. 12.
configurations.

interface, the 4D U(N)*' gauge symmetry is broken
down to a diagonal U(N) so that four-dimensional U(N')
gauge fields couple to 3D N = 4 twisted hypermultiplets.
The analysis for k =1 where the interface has no 3D
gauge theory is already given in [12]. We present more
general results and check that the half-indices for the dual

(a) The quiver diagrams of the 4D U(N)[3D U(N)*'|4D U(N) interface and its mirror. (b) The corresponding brane

The interface 4D U(N)|3D U(N)*~'|4D U(N) has a pair
of 4D U(N) SYM theories obeying Neumann b.c. AN/
corresponding to the NS5-branes. Both of them are coupled
to 3D U(N)*! vector multiplet at the interface through
the 3D bifundamental hypermultiplets. Let us label the
magnetic fluxes by k—1 sets of N-tuple of integers,

interfaces agree with each other. | i.e., N(k— 1) integers {mﬁ”},- Loy with I =1, k—1.
The half-index takes the form
D U(N 4D U
]]]I4 N (N )(t za;q)
N' (qz[‘z 27”5 2‘;—;;q>
il
{1 (q%ﬂ;q)é’o]k_lk_' 3 fﬂ ds;”
N! (CI%I—2 ‘1)2]0 =10 07 0=l Zﬂisgl)
1o N
|m —m;\ (l):l: (I)ZF H»\ml,m;/) 5 ([)j: (l):F

(I—g 7 7s; sy " )g 7 rsi s 5q)

X
le(l)—m( )\
25 (l)is51)¢;q)w
?{ G a)_
qzt‘z,q)N i N+127”S F (@ g)
MA\DU(])
3 \Inﬁl)\ (l)¥ 3 \mgl)—mil+])‘ <I)i (Z+])

NN (g st s ) iy (T s s T )
x HH | \m(.l)\ (1> HH ‘mU) (H’])‘

LD (gt S; ) THENA (q%"' 7 tsl(l)isﬁ-[+l) ) o
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The terms appearing from the second to fifth line are the
two half-indices of Neumann b.c. N for 4D N' =4 U(N)
SYM theory and the full-index of 3D N =4 U(N)*!
vector multiplet. The terms in the sixth and seventh lines
are the contributions from 3D A/ = 4 hypermultiplets. The
remaining terms describe the monopole contributions
whose canonical R-charge is

Za+1

I+ ]k 1)
KR PK (7.1)

|
where the first and third terms are contributed from
bifundamental hypers coupled to 4D and 3D gauge
theories, the second terms are the contributions from 3D
bifundamental hypers between gauge nodes in 3D quiver
gauge theory, and the last terms are contributed from 3D
U(N)*" vector multiplet.

Under S-duality, we find the dual interface which is
identified with a 4D N =4 U(N) SYM theory with k

N N mfl k2 NN m; o _ (l+1)| defects corresponding to k D5’-branes, which couple the
= Z 5 T Z Z 4D U(N) gauge theory to k 3D N = 4 fundamental twisted
=1 =1 =1 j=1 hypermultiplets.
N N| (k—l) k=1 The half-index for the dual interface should be com-
+ Z |m (7.2)  puted as
i=1 =1 i<j
D U(N)+k thypers 1 dSz ﬁ;q)oo(qs—;,q)oo S (‘]%fsiZf;CI)
]]]I4 ‘‘‘‘‘ +types(t,za;q):ﬁ — =3 H2 e o HH Y
Hersg qzt misi qzt Fia) (@7 5a) e (@ 0
4D UN) P [HM(SiZa)

We expect that the half-index (7.1) is equal to (7.3). In fact, we
have confirmed that they agree up to certain orders of ¢ for
(N, k) = (1,2), (1,3), (2,2), and (2,3) (see Appendix A 2 b).

B.4D U(L)|3D U(M)|4D U(N)

We consider the interface 4D U(L)|3D U(M)|4D U(N),
which involves a pair of 4D N =4 U(L) and U(N) gauge
theories with Neumann b.c. A/ and 3D U(M) vector
multiplet where L, M, and N are not all equal. The
corresponding quiver diagram and brane setup are depicted
in Fig. 13. According to unequal numbers of D3-branes, the
dual interface can involve singular boundary conditions
specified by Nahm poles corresponding to the D5’-branes.
We compute the half-indices for a pair of dual interfaces
and check the matching. We find that the half-indices have
additional contributions when one of 4D gauge symmetries
is smaller than 3D gauge symmetry.

The interface has a pair of 4D AN/ =4 U(L) and U(N)
gauge theories which obey Neumann b.c. A at the 3D

(7.3)

|
boundary. Each of them couples to 3D N = 4 U(M) vector
multiplet through the 3D boundary bifundamental hyper-
multiplets. We label magnetic fluxes for 3D U(M) gauge

(@ L A :H N =
N
(b) L |\ M | N T by
- M
"""""" D5’
NS5 NS5 L
FIG. 13. (a) The quiver diagrams of the 4D U(L)|3D U(M)|4D

U(N) interface and its mirror. (b) The corresponding brane
configurations.
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theory by M integers my, ..., my,. The interface includes
bare monopole whose canonical R-charge is given by

ZL+N|ml| Z| —m|.

i=1 i<j

(7.4)

P UW)|(M)14D U(N)

VA (1,245 9)

_ fH (3a),,
qz[ ) C] 271'lS qzt‘z sl‘ ) q)

]]]I4D U(L)

To ensure that all monopole operators are above the unitarity

bound, we assume that L +N >2M — 1. In fact, for

L+ N < 2M — 1, the half-indices may not be convergent.

Without loss of generality, we further assume that L < N.
The half-index takes the form

Ui —mj_p |

|mj_p — mj_ |
v L (C{%fz;q)ii f{ “M (1 —q 7 stsP)a T sisTia)
1 9. 1+|mj_p —m |
M! (q2[ 2’ Q)Z my,...,my€Z i=L+1 Zﬂ'lS (q#l‘2 li ;F,q)
T o o,
1 _ ; —
NU@r?q) T i 27081 (gt 2f "1)
M‘t\D U(N)
It i
L+M (it ~ Sis : L+M  L+M+N (3+7EL t—lsis
XH H (q* - b ) o (q* ! ) o
+ j—L j: F. 4 L 4_,'_ mtzL l‘ )
=1 i (gt T ts $Tiq) e i=L41 j=LiM+1 (g STST3q) e

M
M (L+N)|m;| [mj—m]| M .m;
X q el t_§ LN il 427 |mi=my]| (Zl)zfl g

The terms from the second to fourth line describe the half-
indices of Neumann b.c. N for4D N' =4 U(L) and U(N)
gauge theories and full-index for 3D N' =4 U(M) vector
multiplet. The first and second terms in the fifth line count
3D N = 4 bifundamental hypermultiplets which couple to
4D U(L) and 3D U(M) gauge theories and those which
couple to 4D U(N) and 3D U(M) gauge theories, respec-
tively. The remaining terms count bare monopole operator
of dimension (7.4).

Now consider the dual interface. The corresponding
quiver and brane configuration are illustrated in Fig. 13.
|

)| [M]]4D U( 1 (q)%oM

4D U(L
]]]ID’

M1, 24:9) =

. (7.5)

|
When M < L, the 4D U(L) x U(M) x U(N) gauge sym-
metry is broken down to U(M) and the whole 4D U(M)
gauge theory remains. For the two defects corresponding to
two D5'-branes, we would have two Nahm’' boundary
conditions of rank L — M and rank N — M. In addition,
there are extra contributions to the half-index which come
from the broken U(L) and U(N) gauge theories.

The half-index (7.5) for the dual interface with M < L
will be computed as

M! (g1 q)¥ (g1 q)

8
\S\
=
3|
Nh =
—

4D U(M)
L— M k1 2(k—1 N-M ; L _o(_1).
LT >q)oo. (g2 g)q
2. [y
k=1 qu =1 (@775 q)
D U(L-M) D U(N-M)
Nahm/ Nahm/
L-M M 3. N-M {1 _(N—
(@5 MsEat ) T (a5 Vs ERE g)

XH lJFM——LM

>S- )y

' E (g 1= (=)
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57213 @)oo

066031-32



MIRROR SYMMETRY OF 3D N = 4 GAUGE ...

PHYS. REV. D 100, 066031 (2019)

The terms in the second and third lines are the full-index for
4D U(M) gauge theory and half-indices for Nahm'
boundary conditions of rank (L — M) and rank (N — M).
The terms in the last line describe the extra contributions
from broken gauge theories.

We conjecture that the half-indices (7.5) and (7.6) give
the same answer for M < L. In fact, we have found that
they match up to certain order of g for (L, M, N) = (2,1, 1)
and (2,1,3) (see Appendix A 2Db).

For L < M, the gauge symmetry U(L) x U(M) x U(N)
is broken to U(L) and the U(L) gauge symmetry is kept in
the whole 4D theory. For L < M, the defect of D5'-brane

Thus, the half-index will be evaluated as

which has L and M D3-branes in their sides may give rise
to the Nahm' b.c. of rank L — M and the associated extra
degrees of freedom (d.o.f.) at the interface which couple to
the surviving 4D U(L) gauge theory. For L = M, it couples
3D fundamental twisted hypermultiplet to the 4D U(L)
gauge theory. On the other defect of D5'-brane which has
M and N D3-branes in their its sides would lead to the
Nahm' b.c. of rank N — M and the associated extra d.o.f. at
the interface. These extra operators would couple to the
surviving U(L) gauge theory; however, further d.o.f. which
do not couple to the surviving U(L) gauge theory would
appear in contrast to the case with M < L.

]]]I4DU M)|4D U(N )(tz'q)—i (q)% %ﬁ ds; H ( q) (QS,Q)
s La - 1 1 _ 1 1 _
LY @r;q)& (gt )% J i 2misiy (q2t2—',q) (g2 %5 q)
D U(L)
T %, 0 g), N (2001,
[ Z
k=1 P q) o =1 (‘Pt 9w
P V-L) P VV-M)
Nahm” Nahm/
H q4+M4Lt1 (M- L)s. zf;q)oo ﬁ w%@tl—(N—M)siiz?;q)oo
X . _
(¢ 510Dzt g) i (g -Vt g)

( qﬁ% fA=(N-M)

TRIEL

( qﬁ%t—l—(N—M)

The terms in the second and third lines are the full-index for
4D U(L) gauge theory and half-indices for Nahm' boun-
dary conditions of rank (M — L) and rank (N — M). The
terms in the fourth line are the extra contributions from
broken gauge theories which couple to the surviving gauge
theory. The terms in the last line are those which are neutral
under the surviving gauge symmetry.

For L < M, the half-index (7.5) will be equal to the
half-indices (7.7). As shown in Appendix A 2b, we have
checked that they match up to certain orders of ¢ for
(L,M,N) = (1,1,2), (1,2,2), (2,2,3), (1,2,3), (1,2,4),
(1,2,5), and (2,3,3).

C. 4D U(1)[3D SQEDy [4D U(1)

Let us turn to the interfaces which include 3D N = 4
gauge theories with flavors. We consider the interface which
has a pair of 4D N = 4 U(1) gauge theories with Neumann
b.c. N coupled to 3D N =4 SQEDy, through the 3D
bifundamental hypermultiplets. We denote this interface by
4D U(1)[3D SQEDy, [4D U(1). The corresponding quiver
diagram and brane configuration are illustrated in Fig. 14.

i (7.7)
SRS ,(])oo

|
Itisrealized by a single D3-brane intersecting with two NS5-
branes and N D5-branes. On the other hand, the S-dual

configuration contains a single D3-brane interacting with

“ | Nf'l
[N} [N} 1 '
Wl TTTT==T-T~= D5
T T ,
1 L M NS3
o 1
NS5 | NS5 1 ,
NS Tt T D5

FIG. 14. (a) The quiver diagrams of the interface 4D U(1)|3D
SQEDy f|4D U(1) and its mirror. (b) The corresponding brane

configurations.
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Ny NS5'-branes and two D5’-branes. For the corresponding
dual interface involves 3D Abelian quiver gauge theories as
for the Abelian mirror symmetry, however, the topological
symmetry in the original interface is mapped to the flavor
symmetry for the twisted hypers living at defects in the bulk
4D theory which are decoupled from the 3D quiver gauge
theories. We compute the half-indices to check the dualities
of the interfaces.

|

4D U(1)|SQEDy, 4D U(1)

For the interface 4D U(1)[3D SQEDy, 4D U(1), we
have a pair of 4D N =4 U(1) gauge theories living in
half-spaces obeying Neumann b.c. V. The interface has 3D
N =4 SQEDy, coupled to the 4D theories in either

sides.
The half-index of the 4D U(1)[3D SQEDy, [4D U(1)

() oo 7{ dsy (¢°% 9)e 7{ dsy
(@217:1)s ] 27081 (@217:1q) o0 ez ) 27052 (g

interface is
% dS3
) 27is,

4D U(1)

NN ' <t7xa’ Za;Q) =
Mwuu)
[m|
(g7 'sEsT )
]
(Q“ 157555 q) oo
(Nf+2 )|m|
X q 3

where x,, are the fugacities for the SU(N ) flavor symmetry
of 3D SQEDy, with Hgi | X, = 1 and z,, are the fugacities
for the topological symmetries of the 3D SQEDy . The
terms in the second line are the two half-indices of
Neumann b.c. N for 4D N =4 U(1) gauge theory and
the full-index for 3D N =4 U(1) vector multiplet. The
terms in the next line describe the 3D N =4 hyper-
multiplets. The terms in the last line count monopole

operator of dimension A(m) = (N%Z)"’"

The half-index for the dual interface should take the form

MN
N Im| |m]
} F (gt Szxf’(]) ,<‘14+” 155575 @)oo
] m
a=1 (q‘l+ 2 ZSZ as Q) (q4+ 2 ts2 S3 ’ q)

(7.8)

The dual interface involves a pair of 4D N =4 U(1)
gauge theories living in a half-space obeying Neumann
b.c. N. Unlike the original interface, each of 4D theories
has a defect that couples a 3D A =4 fundamental
twisted hypermultiplet to the associated 4D U(1) gauge
theories. In addition, the interface has a 3D AN =4
U(1)N=! twisted vector multiplet coupled to both 4D
gauge theories through the 3D A =4 bifundamental
twisted hypermultiplets.

i
Mil/)/]\(,/// Y+thyper| (1)~ |l4D U(1 )+thyper<t xa,Za;Q)
- e [ 0 (e g ng i@ f dsy,
- 1 . N—1 . 1 N
(@7:9) 0 ) 27051 (221 9)d " my. ez i 2risi (2175 q) J 27isw,
o2 v m v
N N
\mN -1l
: 3 Iml Ny=2 3 Imimmiggl 3 .
L distaig)e (g2 istsT i) ]f_[ (¢ 5 st T i) (@ N8 D (@085,3330)
1 _ . Iy |mj— m, | [ | 1 .
@Sy (s T ) 1 @ ST ) (g g 5T ca) O )
HSD‘HM(slm) PD[HM(MZl)
my|+|m + },v/_z mi—m; — Ny=1 .
qu 1y -1 24:,:1 m; '”‘,t\mlH\mN‘,_lHZfZ zlmi—mm\. lf_[ < x; )m,. <xﬂ)m,+m,vf_l’ (7'9)
i=1 Xit1 X1

where z, is the fugacities for the flavor symmetry of defect 3D twisted hypermultiplets, and x,, is the fugacities for the
topological symmetry of the 3D U(1)"s~! twisted vector multiplet. The contributions in the second line are the square of half-
index of Neumann b.c. N/’ for 4D U(1) gauge theory and the full-index for 3D U(1)s~! twisted vector multiplet. The terms in
the third and fourth lines correspond to the contributions of 3D N = 4 twisted hypermultiplets. The terms in the last line count

N2
3 (Imy| + lmy, | + 322 Im

monopole operator of dimension A(m) = i—mig|).
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It is expected that the half-indices (7.8) and (7.9) agree
with each other. We have confirmed the matching for
Ny =1,2,3up to certain orders of g (see Appendix A 2 b).

D. 4D U(N)|3D SQEDNf|4D UM)

We next tumn to the interface 4D U(N)[3D SQEDy, [4D
U(M) where N, M > 1. The corresponding quiver diagram
and brane construction are drawn in Fig. 15. Unlike the
interface discussed in Sec. VIIC, the dual interface may
include singular boundary conditions for4D U(N) and U(M)
gauge theories which are characterized by the Nahm poles of
rank (N — 1) and rank (M — 1). We calculate the half-indices
for a pair of dual interfaces and find the matching.

The interface involves a pair of 4D N =4 U(N) and
U(M) SYM theories satisfying Neumann b.c. /' corre-
sponding to the NS5-branes. Both of 4D theories couple to
3D N =4 SQEDy : through 3D bifundamental hyper-
multiplets. The magnetic fluxes for 3D SQEDy , can be

labeled by an integer m.
The half-index of the 4D U(N)[3D SQEDy, 4D U(M)
interface is

4D U(N)|SQEDy 4D U(M)
% (1. X2 245 q)

S .
(@)X dsl Gia, (¢ 9)

L

BP0 OE

5

(b) N 1 M -

AL
NS5 NS5
N, D5

<

FIG. 15. (a) The quiver diagrams of the interface 4D U(N)|3D
SQEDy, [4D U(M) and its mirror. (b) The corresponding brane

configurations.

dsyy1
qét‘z,q % HZ’”S iy qzt‘zf’.,Q) (qzt‘z,qwmez% 2misy 4

MADU
si . b bl
(0)4 7{“’”“ <s ) ﬁwm 551 @)oo ﬂ(qm 5% e
T o \M -2 5 Im]
qzt Z’q i=N+2 Zﬂls’ i# t ZS ’q) i=1 (q4+2 tsisl:'\;+l;q) a=1 (q4 ZtsNJrlx(l;q)oo
M?U(M)

NAMA1 ¢ ayll .

( 27 SN+1S, ,Q) wl_(N'FM*_Nf)lm‘Z'InZEm (7.10)

i=N+2 (‘I“ 2tsN+lsi T )

where the fugacities x, with Hgi | X, = 1 are associated
with the SU(Ny) flavor symmetry of SQEDy , while the
fugacities z,, are associated with the topological symmetry
of SQEDNf. The terms from the second to fourth line
describe gauge multiplets in the interface, including the
half-indices of Neumann b.c. N for 4D N =4 U(N) and
U(M) gauge theories and the full-index for 3D N =4
U(1) vector multiplet. The terms in the fifth line corre-
spond to the 3D N = 4 hypermultiplets. The terms in the
last line describe monopole operator with the R-charge
A(m) = (N+M42er ]

Under the action of S-duality, one finds the dual inter-
face which also has a pair of 4D AN = 4 gauge theories.

|
The D5’-brane intersecting with N D3-brane breaks U(N) x
U(1) gauge symmetry down to U(1), while the other D5’-
brane intersecting with M D3-branes breaks U(M) x U(1)
gauge symmetry down to U(1). The reductions of 4D gauge
symmetries are described by the boundary conditions speci-
fied by the two Nahm poles of rank (N — 1) and rank (M — 1).
Correspondingly, extra contributions would appear at the
defects from the broken gauge theories [12].

According to the presence of NS5'-branes, the surviving
4D N =4 U(1) gauge theories further satisfy Neumann

b.c. V. They are couple to 3D N =4 U(Iﬁf_1 quiver
gauge theory via 3D AN =4 bifundamental twisted
hypermultiplets.

066031-35



TADASHI OKAZAKI

PHYS. REV. D 100, 066031 (2019)

The half-index should take the form

D UN)-U)|()N 4D UM
Mj\f’/\/’( )=UM)(D) (t Xy 200 q )
1, kel o 1, Bl _o(—
(4)e 7{ ds .h(q 2070 g)y, (g2 g)e ]{H dsl T cﬁt 2070 q)
1 - _ N—1 _
(@21 q) ] 2751 (qu 2k"]) (61 2q)s m me €7 2”” i = q2t 2 q) e
mrm 4ADU(N-1) D U(M-1)
N Nahm/ Nahm/
ENS 3 mil Ny~ , 3 M .

- (@)e 7{ dsy1 (¢t~ sirtig) e (@ astsTig)e Y (¢ 15757115 9) oo

1 : 1 N1 [my| [m;— m[ |

(q2t2;q)oo 2mst+1 (‘1“+ N 141 ’Q)oo (q4+ S 51 si‘]) (q4+ = lsi 1+I’Q>

MAD u(1)
el ¥ LML (M-1) & . Np-2

(q4 tSNfst+1’q) (Q“ vl SNf+1Z2 ’q>oo ‘mlmef_]HZi:' iz \m1\+|me—1\+ZjV:f172 [mi=m;y
x iy il ( D (e ) q 4 t

(gt SN, SN-134) q N+1%234)

Ny-1

Xy \Ma fo mytmy -

X S — , 7.11

H (x > (xl ( )

a+1

a=1

(a) =)
1
1
1 MNSS'
1
o o o ] Lo D5'
T T I 1 -
PR T Y 1
) - nin L L e LS
HEHRE — |
TUwss O Nss o] L. DS’
ND5  N,Ds  MDs 1 g
1
1 L N NS5
1
: ]
FIG. 16. (a) The quiver diagrams of the interface 4D U(1) + N

hypers|3D SQEDy, [4D U(1) + M hypers and its mirror. (b) The
corresponding brane configurations.

066031

where 7z, 7, are associated with the extra local operators
at the two defects and x, are associated with the
topological symmetry for 3D U(1)"=! quiver gauge
theory. The terms from the second to third line includes
the square of half-indices of Neumann b.c. N’ for 4D
N =4 U(1) gauge theory, the two half-indices of Nahm'
b.c. of rank (N — 1) and rank (M — 1), and the full-index
for 3D V' =4 U(1) vector multiplet. The terms from the
fourth to fifth line describe 3D N =4 twisted hyper-
multiplets. The contributions in the last line count bare
monolz)ole of dimension A(m)=1(|m;|+ Imy 1|+
S g = my).

We expect that the half-indices (7.10) and (7.11) agree
with each other. We have shown the matching of indices for
(N.M,N;) = (2,3.1), (2,3,2), and (2,3,3) up to certain
orders of ¢ in Appendix A2b.

E. 4D U(1) +N hypers|3D SQEDNf|4D Ul)+M
hypers

We investigate the interface with a pair of 4D N = 4
U(1) gauge theories where one of them has N D5-brane
defects and the other has M D5-brane defects and the both
4D theories obey the Neumann b.c. A/ with a coupling to
3D N =4 SQEDNf.2 We denote this interface by 4D
U(1) + N hypers|3D SQEDy [4D U(1) + M hypers. The
corresponding quiver diagram and brane construction are
shown in Fig. 16. The N and M D5-branes introduce N and
M fundamental hypermultiplets living at the defects.

2Although we have restricted to the Abelian interface in this
section, the generalization to the non-Abelian interface is
straightforward by using the results so far.
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In this case, there are a 4D N =4 U(1) gauge theory
with N defects which couple the 4D theory to the N
fundamental 3D hypermultiplets and another 4D AN = 4
U(1) gauge theory with M defects which couple the 4D
theory to the M fundamental 3D hypermultiplets. A pair of
4D gauge theories obeys Neumann b.c. A/ and interacts
with 3D A/ = 4 SQEDy , through a coupling given by 3D

|

4D U(1)+N hypers\SQEDNfMD U(1)+M hypers

N = 4 bifundamental hypermultiplets. The interface has
4D U(1) x U(1) gauge symmetry and 3D U(1) gauge
symmetry. We can label the magnetic fluxes for 3D U(1)
gauge theory by an integer m.

Then the half-index for the interface 4D U(1) + N
hypers|[3D SQEDy [4D U(1) + M hypers takes the form

NN (t’xa’za;Q)

(@ ]{ s, (q%:q) Z]{ ds;  (q)u ]{ ds;
(17%q)s ) 27is1 (qi172q), 2 ) 2misy (¢r2q),, J 27iss
MADU(]) MADU(])

m] N+N m|
lsixﬁ,Q) (qﬁ” 51533 4) e / (qﬁ” 'S3X5 3 q) oo

N q4t
gtz

|m|

(@S e (15757 10) amiht (¢ T 1STE )
S e’
N+N+M 3
F. s I R,
(qf*ZI szs%’Q) . (q4t 53xa’Q)m
Im| 1ot
(g 15553300 a=NAN,+1 (4153 %53q)
]I3DHM(S3)C0,)
(NN p+M)|m]| m
X ¢ - /4+_ (NN g+M)m (Z_l) , (712)
22

where we have used {x,},_; y for the fugacities of the
SU(N) flavor symmetries of the defect hypermultiplets,
{Xa}a=n1....n4n, Tor the fugacities of the SU(Ny) flavor
symmetry of iD SQEDy,, {Xa}a- NAN 1, N+N +M
for the fugacities of the SU( ) flavor symmetries of
the defect hypermultiplets. The fugacities z, are asso-
ciated to the topological symmetry of 3D SQEDy,.

The contributions in the second line are the two half—
indices of Neumann b.c. N for 4D U(1) gauge theory
and the full-index for 3D U(1) vector multiplet. The
terms appearing in the next two lines are the contri-

last hne count bare monopole of dimension A(m)

(N+N+M m\

Fr(%m the S-dual configuration of the brane setup in
Fig. 16, we can read off the dual interface. It has a
pair of 4D N =4 U(1) gauge theories which satisfy
Neumann b.c. N and couple to 3D quiver gauge theory

W = () = O - ) = ()
| |
[1] [1]
through the 3D bifundamental twisted hypermultiplets. We
can label the magnetic fluxes for the 3D quiver gauge theory

butions from the 3D hypermultiplets. The terms in the =~ by N + N, + M — 1 integers my, ..., My n, 1 m-1-
|
The half-index for the dual configuration is given by
o=t -1 - %t -1 - (¥
4D U(1)| | | 14D U(1)
1 1
Wy p : . (£, X 23 9)
ds q2t 2. )N+N,+M 1 N+Nf+M

1

2 j{ N+N M1 7{

qzt q) 2ms1 (q2 t2 I _— mN v u€Z ) 2ms
]]]IADU

N
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lmy|

3, Iml N+N+M—-1 \"’z 1=l
apbml o+ T s izt 2] oyl
X (9)oo % dsnin v (g2 15757 59) (g* 1575715 oo (g2 15341215 D oo
i 3 iy o] gl
217 Tis + - +. " +—=—"4— . +—= 1 .
(42173 9) oo NN ML (i3 1 L5153 9) e = (g TS oo (¢t SN+1215 Do
D U(1)
]]]I“J,,
m | m 1
4+ N+N ts ) % N+Nf+M ts:l: B )
" q N+N, 17534 q NA+N+M N+N/+M+l’q
1 Iy | s ) ! \'"N+Nf+M 1l +
(¢ SN0 Do (67 USN N M SNN 1415 Do
‘m” \mN\ \MN+Nf\ \'"N+Nf+M 1l ZN+N./+M—2\,,,I<7,”HI\
X C] ' i=1 4
N+N ¢+M-2
|ml|+‘mN‘+|mN+Nf|+|mN+Nf+M 1‘+Z ! [m=m |
N+N+M
mN+Nf+M_u+I _'”N+Nf+M—zx
< J[ %™ e (7.13)

a=1

where my = my.y M= 0. The fugacities x, and z, are now associated to the topological and flavor symmetries for 3D

O N N O N O
quiver gauge theory | | . The terms from the second to fourth line are
1] 1]
the two half-indices of Neumann b.c. N/ for 4D U(1) gauge theory and the full-index for 3D U(1)N VM1 twisted vector
multiplet. The terms appearing in the next two lines describe the contributions from 3D twisted hypermultiplets. The
remaining terms count bare monopole of dimension

Imy| | |my| | myen, | Imyen cuei] N+Nf+M_2|mi_mi+1|
A) = D M

2 2 2 2 2

(7.14)

We expect that the half-index (7.12) is equal to (7.13). In fact, we have checked that they match up to certain orders of ¢
for (N,M,N;) = (2,2,0), (2,2,1), (3,3,0) (see Appendix A 2b).
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APPENDIX: SERIES EXPANSIONS OF INDICES

We only show the several terms in the expansions of indices by using Mathematica.

1. 3D full-indices
a. Wilson lines in SQED,

We have checked that the 3D full-index (3.7) for the SQED, with a Wilson line operator WV, of charge n and the 3D full-
index (3.8) for the twisted hypermultiplet with a vortex line )V, agree up to O(g'°) for n =1,...,5.
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(A1)

]I?/BHSQED' ™ Series expansions
n=1 n=1 G+ (x+x g =2+ x g+ 2+ 1+ x3)g + (7 +x)g -
n=2 n=2 | 2@+t +x)g -3 +x)g +1(x T Fx0)g+ 2+ T4+ 22+
n=>3 n= Pgi+ 20 +x)g — (7 0@+ A+ x) g = A+ x)gt -
n=4 n=4 P+ +x)gs - +x)gT + A 4 x)gT - P + x)gF A+ -
n=>5 n= B+ (x ' +x)g* — O+ x)@ + A +x)g° — (! + x)g? + -

b. Abelian mirror symmetry

We have confirmed that 3D A = 4 full-indices for the following Abelian gauge theories agree up to O(q°).

Theories

Mirror theories

Series expansions

T[SU2)]

T[SU2)]

L+ 2 (14242441424 2)g + -

SQED;

(14 (72 + 22720505 (o + ;) (01 + x%3) (6 + 33)))g? + 175 51 (2 + B)g + -

SQED,

1+ (72 4+ a7ty g g 12 (g (g + 3 + xy) + 33 (3304 + Xp(x3 + x4))
1 (B (03 + X4) + X34 (x5 + x4) + 52 (5F 4 3x3x4 + 43))) ) + - -
(A2)

c. Non-Abelian mirror symmetry

We have confirmed that the 3D N = 4 full-indices for the following mirror pairs of non-Abelian gauge theories agree up

(A3)

to O(¢?).
Theories Mirror theories Series expansions
(1)—(2) =(1) 5 1 1 1 1
(2)—[4] | =20 %e tes ta e b e (# e (egmy taa (23t wa)) 2y 2oty (123 (23 ag) 2y 22
[2]
. 1
+t4w3m4(13+m4)zl22+12(t4:z§zl22+t4wizlzz+wgz4(2%+zl22+3t42122+z§))))q2
— 7
T[SU(3)] T[SU(3)] (22T Loy tag (o fag) (2 +a3) (wotag)+t 22T Leg b e (2 +20) (21 +23) (22 +23))a 2+
(1) = (2) = (1) (1) = (2) = (1) N1
\ | | | | | 1+t*2(3+t4(3+12151+13m;1)+z2z;1+zsz; )q2
a2 [ a2 [ .
Jr<t3 (w2+w3)(wl}ltgi);zi$3+1’1w4)+t—3 (22+23)(Zz11+222t)3(:§23+2124))qur...
(1) = (2) - (@) (2)— (1) 2 1
-2 (z1+z2) -1, —1 + 3
CR B v (ot ARy (704 )4 224 2 22 )
3
3(z1 @y @3 ®3\, ,-3(Z1 22 23 24 Z4  24\), T ,..
H(P (PR ) (B 2B M )ty
2)— (2) —(1
(1)—(2)—[4] @-@ -0 14e—2 trogrgry (votagtag)zy o +taf (wgeytag(@gteg))zy zo+ay (t1ad (@g+ay)zr 2o

t211m21‘3z42122

+ttagaeg(egtag)zrzotaa(ttadzyzotttad s zotagay (23 +(2:3t4) 2120 +22))) q% e
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d. Seiberg-like duality
We have checked that the pairs of full-indices for Seiberg-like dual 3D A = 4 gauge theories agree up to O(g°).

Ugly Good Series expansions
1 (E+g) 1 ? (1 + x3)) (o +- o (g + 1
(2) _ [3} SQED3 + tHM 14¢ 1 <Z;|z22) qi -+ (1 (%1 xz))(;:;;;])(xz x3) 4t 2 (ZZ Zzz) )qé + .-
(3)-15] | (2-1[5]+HM L+ G g (A4)
+ (Z2 XpX3X4X5 (X2+X3+X4+X5)+X1 (20020425 +23204 X5+ X3 (X4 +x5) ) 201 (34%5 (X3 +x4+x5)
XX X3 XX
2 (xgx5+23 (xgFx5)) 20 (x (x4+x5)+x4x5(X4+X5l)ix33 (443»4x4x5+x ) + 12 (7 z+zZZ) )q% R

2. 4D half-indices
a. Hafl-BPS boundary conditions

We have checked that the following pairs of half-indices of dual half-BPS boundary conditions in 4D A = 4 gauge
theories agree up to certain orders of g.

Half-BPS b.c. Series expansions Up to orders
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b. Hafl-BPS interfaces

We have confirmed that the following pairs of half-indices of 3D dual interfaces agree up to certain orders of g.

Half-BPS interfaces Series expansions Up to orders
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