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The computational complexity of a quantum state quantifies how hard it is to make. Complexity geometry,
first proposed by Nielsen, is an approach to defining computational complexity using the tools of differential
geometry. Here we demonstrate many of the attractive features of complexity geometry using the example
of a single qubit, which turns out to be rich enough to be illustrative but simple enough to be illuminating.
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I. INTRODUCTION

The inner-product distance gives a metric on quantum
states. Two states that have a large inner product are close;
two states that have a small inner product are far; two states
that are orthogonal are as distant as any two states can be.
But there are some intuitive notions of proximity that are

not captured by the inner product. In the example below, we
consider the following two states: the Earth plus a single
spin-up electron, and the Earth plus a single spin-down
electron. Since these two states are orthogonal, the inner-
product distance says they are maximally separated.
Nevertheless, since they differ by only a single spin, there
is a sense in which they are close. The intuition is that they
are close since it is easy to change one into the other—you
just need to flip a single spin.
We would like a notion of proximity that captures

the sense in which the two states of Fig. 1 are close.
Computational complexity provides such a notion. The
relative computational complexity of two quantum states
quantifies how hard it is, given one, to make the other.
Since the two Earths are identical, the complexity distance
is small; if the two Earths had very different weather
patterns, the complexity distance would be large.
This paper studies one approach to characterizing the

complexity distance, which involves making mathemati-
cally precise our notion of when a transformation is easy.
Of course, whether a given task is easy or hard depends

on one’s capabilities. Questions of quantum computational
complexity were first addressed by those who wanted to

know what we would be able to do with a quantum
computer. In this context, the primitive capability would
be the ability to lay out gates in a quantum circuit. Thus the
traditional definition of complexity, which we review in
Sec. I B 1, is the gate definition that asks how many gates
are needed in the smallest quantum circuit that implements
the desired transformation.
The gate definition of complexity is well defined, carries

the weight of tradition and the benefits of incumbency, and
is a natural measure from the point of view of electrical
engineers planning to build actual quantum circuits. But for
some purposes it has a number of drawbacks, which we
describe in Sec. I B 1, not least that it is discontinuous.
In this paper we instead explore another idea, due to

Nielsen and collaborators [1–5], that seeks to replace the
discrete counting of quantum gates with a continuous
definition of complexity. As we explain in Sec. I B 2, the
complexity geometry approach puts a newmetric on Hilbert
space, different from the inner-product metric. Unlike the
inner-product metric, this new metric does not treat all
directions in the tangent space equally. Instead it stretches
directions that are hard to move in, assigning them a large
distance. This definition then permits us to bring all the tools

FIG. 1. According to the inner-product metric, these two states
are as far apart as any two states can be: they are orthogonal.
The complexity distance captures the sense in which they are
nevertheless close.
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of differential geometry to bear on the question of
complexity.
Our background motivation is twofold. First, we wish to

better understand the holographic complexity conjecture
[6–9], and therefore better understand the emergence of
spacetime in quantum gravity. If this conjecture is to be
made more precise, we need an exact definition of the
complexity of the holographic field theory. Such a defi-
nition could potentially be provided by complexity geom-
etry, and our first background motivation is to evaluate it for
that role; as we see, it is in many ways a better candidate
than the definition provided by gate counting. Our second
background motivation is to explore whether the tantalizing
analogies between quantum complexity and statistical
thermodynamics [10] could be better teased out with a
more amenable definition of complexity.
While those are our motivations, the direct goal of this

paper is more modest. The complexity geometry, while
simple to define, can for large systems become extremely
unwieldy. To try to build our intuitions, and to demonstrate
the power of this way of thinking in the simplest nontrivial
context, we in this paper calculate the complexity geometry
of a single qubit. We see that the complexity geometry of a
single qubit is simple enough to be intuitive, and to make
illuminating contact with the rotation of rigid bodies, but
complicated enough to exhibit many of the signature
phenomena of multiqubit complexity geometry.
Complexity geometry should not be confused with

geometric complexity [11], which as far as we know is
completely unrelated. The complexity geometry of a holo-
graphic system is also not to be confused with the geometry
of the holographic dual—they are not the same, and their
dimensionalities exponentially differ.
In Sec. I A we distinguish the two kinds of objects

whose complexities we may wish to calculate: unitaries
and states. In Sec. I B we discuss the two ways we might
seek to characterize the complexity of these objects: gate
counting and complexity geometry.

A. Unitary vs state complexity

In this paper we examine the complexity both of
unitaries and of pairs of states.
Unitary complexity is a property of a unitary trans-

formation that quantifies how hard it is to implement. This
is the quantum analogue of the classical function complex-
ity. The complexity geometry of unitaries provides a new
metric on the unitary group. We see that the metric is
homogeneous but not isotropic, and is right invariant but
not left invariant.
We may also speak of the relative complexity of a pair of

unitaries, defined as C½U1;U2�≡ C½U1U−1
2 �. For U2 ¼ 1

this reduces to the standard definition of the unitary
complexity of U1.
State complexity is a property of a pair of states,

and quantifies how hard it is, given one, to make the other.

The complexity geometry of quantum states provides a new
metric on Hilbert space. We see that this metric is not left
invariant, which means it is neither homogeneous nor
isotropic.
These two kinds of complexity can be related. The state

complexity is the complexity of the least complex unitary
that connects the reference and target states,1

Cstate½jψ1i; jψ0i� ¼minUCunitary½U� where jψ1i¼Ujψ0i:
ð1:1Þ

While real life is replete with examples of things that are
easier to do than to undo, in the field of computational
complexity it is conventional to choose a definition such
that C½U� ¼ C½U−1�. This has the consequence that relative
complexity is symmetric: the distance from A to B is equal
to the distance from B to A. In the context of gate
complexity this means that if g is a fundamental gate, then
so too is g−1; in the context of complexity geometry this
means that we are able to use a metric that is symmet-
ric: C½U1;U2�≡ C½U1U−1

2 � ¼ C½U2;U1�≡ C½U2U−1
1 �.

B. Gate complexity vs complexity geometry

The complexity of a transformation characterizes how
hard it is to implement. This paper explores the complexity
geometry definition of hardness, but as a foil let us
first briefly describe another popular way to characterize
hardness: gate complexity.

1. Gate complexity

The gate definition of complexity is a natural one for
those trying to actually build quantum circuits out of
component gates. It tells you how many of those compo-
nents you will need:

Gate complexity

≡ the number of primitive gates in the smallest quantum

circuit that implements the transformation ðto within ϵÞ
ð1:2Þ

An example of a quantum circuit is shown in Fig. 2. To
finish unambiguously specifying the definition, we further
need to

(i) choose the set of primitive gates.
For example, a classic choice for the set of

primitive gates out of which we build our circuits
is to use the two-qubit CNOT gate, together with the

1Note that the converse would not be correct—unitary com-
plexity is not the complexity of the most complex pair of states
that the unitary connects. Indeed this would not be true even if we
replaced complexity distance with inner-product distance, since
we can have hψ jUjψi ¼ 0 while Tr½U� is still close to maximal.
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one-qubit gates Hadamard and π=8 (otherwise
known as the T gate; see e.g., [12] for the definition
of these gates, and more discussion of gate complex-
ity). Together these three primitive gates are univer-
sal, in the sense that by compiling these gates we
can approximate any N-qubit unitary with arbitrary
accuracy.
(Were we just concerned with making all the

1-qubit unitaries, we could drop the CNOT.)
(ii) Choose the tolerance ϵ with which we wish to

approximate our desired unitary.
Since there are uncountably many N-qubit uni-

taries but by assumption only countably many
primitive gates, we cannot hope to be exact. Instead
we settle for making a close enough approximation.
For example, we might declare that a circuit Ucircuit
is good enough if

1 − jTr½U†
circuitUtarget�j < ϵ ¼ 10−6: ð1:3Þ

(Here and throughout this paper we normalize the
trace such that Tr1 ¼ 1.)

Drawbacks of gate complexity.—The gate-counting defi-
nition of complexity has a number of features that for
certain applications are undesirable:
(1) The choice of primitive gates seems arbitrary.

Why those particular one-qubit and two-qubit
primitive gates, out of all possible gates?

(2) The definition requires, and is sensitive to, the
introduction of an arbitrary tolerance.
Why ϵ ¼ 10−6, rather than some other value?

(3) The complexity is discontinuous.
Two points in the unitary group (or in Hilbert

space) can be arbitrarily close in inner product but
exponentially far in complexity.

Some of these drawbacks could be addressed by tink-
ering with our definition of gate complexity. For example,
we could give ourselves as primitive gates all possible two-
qubit unitaries. This would largely address complaint #1
(leaving over only the question of why we permitted

two-qubit gates but not three-or-more-qubit gates); and it
would mean that we could entirely dispense with a
tolerance—with this continuous set of primitives, using
Oð4NÞ gates we can hit everywhere in SUð2NÞ exactly [12].
Nevertheless, this definition would still give complexities
that are discontinuous—indeed if each gate still had unit
cost there would be pairs of states that are arbitrarily close
in inner product but that have exponentially large relative
gate complexity, and the set of states with submaximal
complexity would be measure 0.
Because of these limitations, many computer scientists

try to look only at coarse-grained complexity classes that
are insensitive to these definitional ambiguities. For exam-
ple, the complexity class BQP [the class of (decision)
problems that can be probabilistically solved in polynomial
time using a quantum computer] is so broad as to be largely
choice independent.
However, it is somewhat disappointing if that is the

best we can do. We would like to have a definition that
assigns a quantitative number to the complexity of a
particular unitary and have that number be somewhat
robust against arbitrary choices, perhaps up to a multi-
plicative renormalization of the complexity. With this
motivation, we turn to complexity geometry.

2. Complexity geometry

The complexity geometry approach to quantifying
quantum complexity was invented by Michael Nielsen and
collaborators [1–5]. Rather than leaping throughHilbert space
with discrete gates, instead we imagine smoothly flowing
from state to state along continuous paths. The length of the
shortest path gives the computational complexity.
Were it equally easy to move in every direction in Hilbert

space, this definition would recover the standard inner-
product metric. But not all directions are equally hard: the
whole point of inventing the notion of complexity is that the
inner-product metric does not accurately reflect how diffi-
cult a transformation is to implement. Instead, the complex-
ity metric reflects that some transformations are hard to
implement (i.e., some directions in Hilbert space are hard to
move in) by stretching the metric in those directions. By
assigning hard directions a largemetric penalty, even steps in
hard directions that are quite short in the inner-product
metric become far in the complexity metric.
The motivation of the originators of the complexity

geometry idea seems to have been primarily to use it as a
tool to bound the value of the gate complexity. Our
motivation is somewhat different. Instead of using it to
better understand the gate definition of complexity, we
consider the geometric definition of complexity to be an
interesting quantity in its own right, with a potentially
interesting holographic dual. We study the complexity
geometry as a candidate for being the fundamental defi-
nition of complexity. Thus we do not think of complexity
geometry as being a continuous approximation to gate

FIG. 2. The gate definition of complexity imagines implement-
ing U by building a quantum circuit out of primitive gates. In this
example, the primitive gates each act only on one or two qubits at
a time, but in combination they may approximate any N-qubit
unitary with arbitrary accuracy. The computational complexity is
then defined as the total number of gates in the smallest circuit
that approximates the desired unitary.
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complexity, but rather think of gate complexity as being a
discrete approximation to complexity geometry.
For the rest of this paper we explore the simple case

of the complexity geometry of a single qubit, but first
let us give the general mathematical definition of the
complexity geometry for a general number of qubits N.
We start by defining the unitary complexity geometry; the
state -complexity geometry then follows by using Eq. (1.1).
Following Nielsen, the unitary group we consider is

SUð2NÞ. Up to a discrete identification, this is the group of
purity-preserving transformations of N qubits that ignore
the global phase. The tangent space of the unitary group
is spanned by Hermitians. For a single qubit, a complete
basis for the tangent space of SU(2) is provided by the
22 − 1 ¼ 3 Pauli matrices, σi. For N qubits, a complete
basis for the tangent space of SUð2NÞ is provided by the
22N − 1 generalized Pauli matrices, σI . The generalized
Pauli matrices are composed of direct products of single-
qubit Pauli matrices and identity operators. Thus a typical
example might be

example of generalized Pauli

σI ¼ σ1x ⊗ σ2z ⊗ 13 ⊗ … ⊗ σNz: ð1:4Þ

The inner-product metric on SUð2NÞ gives the inner-
product distance, ds, between two nearby unitaries, U and
U þ dU, as2

ds2jinner-product ¼ Tr½dU†dU� ð1:5Þ

¼
X
IJ

Tr½idUU†σI�δIJTr½idUU†σJ� ð1:6Þ

¼
X
IJ

Tr½iU†dUσI�δIJTr½iU†dUσJ�: ð1:7Þ

[The form in Eq. (1.6) is manifestly right-invariant
U → UUR; the form in Eq. (1.7) is manifestly left-invariant
U → ULU; the form in Eq. (1.5) makes both invariances
manifest. Since the inner-product metric is invariant under
U → ULUUR it is sometimes called the bi-invariant met-
ric.] The inner-product metric treats all the tangent direc-
tions σI the same, as is reflected by the coefficient of every
diagonal term in Eq. (1.6) being identical.
The complexity metric generalizes δIJ in Eq. (1.6) to a

symmetric positive-definite penalty factor I IJ. The com-
plexity distance, ds, between two nearby unitaries, U and
U þ dU, is then given by

ds2jcomplexity ¼
X
IJ

Tr½idUU†σI�I IJTr½idUU†σJ�: ð1:8Þ

While still right invariant, this metric is no longer left
invariant, as is discussed in Sec. IVA.
Some directions may be harder to move in than others.

This is captured by the tensor I IJ that penalizes hard
directions with a larger coefficient. For example, a classic
choice would be that the more qubits a certain σI touches,
the higher the penalty I II it should be assigned. This
reflects the fact that in the laboratory it is typically difficult
to perform controlled operations that touch many qubits
simultaneously.3 In [10], we advocated for the proposal that
the penalty factor should grow exponentially with the
number of qubits the operator touches simultaneously
(known as the operator’s weight). We were motivated by
two considerations. First, the complexity of an operator of
fixed weight should be independent of the total number of
qubits. Second, to reflect that the maximal complexity of a
unitary can be exponentially large, the largest penalty factor
also needs to be (at least) exponentially large.
For large N, this geometry is negatively curved and very

complicated. Both the negative curvature and the unsim-
plicity of this metric are responsible for the chaotic
behavior of complexity, but they also make the analysis
of the geometry difficult. It is therefore worth analyzing the
simplest possible case.
In this paper we examine the complexity geometry of a

single qubit, N ¼ 1, which turns out to be surprisingly rich.
In Sec. II we look at the unitary complexity; in Sec. III we
look at the state complexity. In Sec. IV we extract the
general lessons that the one-qubit example can teach us
about N-qubit complexity geometry.

II. UNITARY-COMPLEXITY GEOMETRY OF A
SINGLE QUBIT

In this section we examine the transformations of a
single pure-state qubit. Ignoring global phase, the group of
linear transformations of a single qubit is, up to a discrete
identification, SU(2). The standard inner-product metric on
SU(2) is that of the round three-sphere4

ds2¼Tr½dU†dU�
¼Tr½idUU†σx�2þTr½idUU†σy�2þTr½idUU†σz�2:

ð2:1Þ
But the complexity geometry defines a new metric on
SU(2). Introducing a symmetric positive-definite two-index
penalty factor I ij gives

2Recall that if given a vector V⃗ and a complete orthonormal
basis fe⃗ig, the inner-product can be written either as V⃗ · V⃗ or asP

iðV⃗ · e⃗iÞ2; Eqs. (1.5)–(1.7) reflect that we have the same
freedom for matrices. Recall also that we have normalized the
trace such that Tr½1� ¼ 1.

3For example, the next generation of superconducting-qubit
circuits are projected to have an error rate for two-qubit gates that
is five times larger than the error rate for one-qubit gates [13].

4Again recall that we have normalized the trace so that
Tr½σiσj� ¼ δij.
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ds2 ¼ Tr½idUU†σi�I ijTr½idUU†σj� ð2:2Þ

¼ IxxTr½idUU†σx�2 þ IyyTr½idUU†σy�2
þ I zzTr½idUU†σz�2; ð2:3Þ

where in the last step we have adopted the basis in which
I ij is diagonal. In this section we explore this metric.
In the typical application of complexity geometry as

defined in Sec. I B 2, we imagined a metric that rewards k-
locality (gates that touch only k qubits at once are easy to
implement) and punishes nonlocality (gates that touch
many qubits at once are given a large penalty factor).
When there is only one qubit, such a distinction is mean-
ingless: if there is only one qubit, no gate may touch more
than a single qubit. If we treat all 1-local transformations
the same, the only possibly complexity metric on SU(2) is
the standard round metric of Eq. (2.1).
To reach Eq. (2.3), we had to do something different—

we had to distinguish between one-qubit operators. A
complete basis for the tangent space of one-qubit operators
is provided by the three Pauli matrices, which may be
thought of as effecting rotations around the three Cartesian
axes. The standard inner-product metric makes all three of
these rotations equally easy. Instead, we imagined that
some are easier than others. The three parameters Ixx, Iyy,
and Izz capture how hard it is to rotate around the three
different axes.
There are any number of practical considerations that

might give rise to unequal Ixx; Iyy, and I zz. For example, if
our qubit is a spin, we could compile our unitary by
applying a magnetic field according to some schedule B⃗ðtÞ.
Were it easy to apply a magnetic field in the x-y plane, but
for mechanical reasons hard to apply magnetic fields out of
that plane, then this would be described by a small Ixx and
Iyy but large Izz. The complexity metric of Eq. (2.3)
assigns a degree of difficulty to a given schedule for
compiling the unitary

difficulty ¼
Z

dt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IxxBxðtÞ2 þ IyyByðtÞ2 þ IzzBzðtÞ2

q
:

ð2:4Þ

The complexity of the unitary is given by the least difficult
schedule that produces it.
For many laboratory realizations of controlled qubits,

there is indeed an asymmetry between the difficulty of
implementing σx or σy and the difficulty of implementing
σz. The asymmetry arises because the two quantum states
in which the qubit is embodied are typically two non-
degenerate energy levels, so the resting (drift) evolution of
the qubit naturally implements a σz Hamiltonian, and not a
σx or σy Hamiltonian. Ironically this means that it is often
harder to add additional σz to the Hamiltonian (above and
beyond the natural evolution) than it is to add σx or σy. Ted

White has explained to us that for the superconducting
qubits being built by the Santa Barbara group, σx or σy can
be implemented with high fidelity using a properly shaped
microwave pulse, whereas additional σz requires the use of
a harder-to-control and lower-fidelity pseudo-DC pulse.
Thus for these superconducting qubits it would be natural
to take Ixx and Iyy small and equal but Izz large.
In this paper we calculate the complexity geometry for a

general single-qubit penalty factor, but focus on the same
case as is relevant for superconducting qubits—the case
where one penalty factor is much larger than the other two.

Penalty assignment focused on in this paper∶

Izz ≫ Ixx ¼ Iyy: ð2:5Þ

While this is the same hierarchy as pertains for super-
conducting qubits, that is not our reason for focusing on it.
Instead, our motivations become clear in Sec. IV. We see
that penalizing σz more than σx or σy is the assignment that
best captures the characteristic features of multiqubit
complexity geometry.
Even though there is now only a single qubit, there is

nevertheless a sense in which the hierarchy of Eq. (2.5) still
fits into the scheme of taking higher-weight operators to be
more penalized. The qubit can be thought of as being
comprised of two Majorana fermionic operators, which
satisfy fψ i;ψ jg ¼ 2δij. The Hermitian operators ψ1

and ψ2 each have weight 1, whereas the Hermitian
operator iψ1ψ2 has weight 2. On the other hand the
commutation and anticommutation relations of these three
operators would be the same if we make the identification
fψ1;ψ2; iψ1ψ2g ↔ fσx; σy; σzg. The penalty factor penal-
izes the weight-2 operator relative to the weight-1
operators.
To explore the complexity metric Eq. (2.3) further, it is

helpful to introduce explicit coordinates. But first we point
out that we have seen this metric before.

A. Complexity geometry and the motion of rigid bodies

As well as representing the complexity geometry of a
single qubit, the metric Eq. (2.3) arises in a more mundane
context: the rotation of a rigid body.

1. The motion of rigid bodies

Recall that the configuration of a rigid body in three
dimensions may be described by Rij, the element of SO(3)
that transforms from the lab frame to the body frame. For
rigid bodies with symmetric moments of inertia, I ij ∼ δij, it
is equally easy to rotate around any axis, so the kinetic
energy depends only on the angular velocity

I ij ¼ δij → kinetic energy ¼ 3

2
Tr½ _RT _R� ¼ 1

2
ωTω; ð2:6Þ
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where ωi ≡ ϵijkðRTÞjl _Rlk and the factor of 3 arises because
of our trace normalization Tr½R�≡ ΣiRii=3. We may define
the distance between any two configurations as the total
angle through which you must rotate one to reach the other.
The infinitesimal metric defined in this way is that of the
round three-sphere,

I ij ¼ δij → ds2 ¼ 3Tr½dRTdR�: ð2:7Þ

The geodesics of this metric both describe the locally
extremal way of effecting a given transformation (the way
to twist and turn the body so that it connects two
configurations with the smallest total angular rotation),
and also describes the path traced out through configuration
space by the free motion of a symmetric rigid body.
Rigid bodies that are not spherically symmetric may

have unequal moments of inertia. Consequently the kinetic
energy required to rotate with a given angular speed is
different for different axes,

kinetic energy ¼ 3

2
Tr½ _RTM _R� ¼ 1

2
ωTIω; ð2:8Þ

where Mij ≡ R
d3xρðxÞxixj and I ≡ 3Tr½M�1 −M.

Reflecting the fact that some angular directions are
harder to move in, the metric becomes stretched in those
directions,

ds2 ¼ 3Tr½dRTMdR�: ð2:9Þ

The free motion of a rigid body traces out the geodesics of
this squashed three-sphere. (Specifically, the polhode rolls

without slipping on the herpolhode lying in the invaria-
ble plane.)

2. SOð3Þ=SUð2Þ=Z2

The metrics Eqs. (2.2) and (2.9) are (almost) the same.
Underlying the link between the geometry of unitaries
acting on a single qubit and the geometry of rotations in
three dimensions is the mathematical fact that SU(2) is the
double cover of SO(3),

SUð2Þ ¼ S3; ð2:10Þ

SOð3Þ ¼ symmetries of S2 ¼ S3=Z2: ð2:11Þ

The transformations of a single qubit may thus be mapped
to the configurations of a rigid body, with the mapping
given by

Rij ¼ Tr½U†σiUσj�; ð2:12Þ

ωi ¼ iTr½ _UU†σi�: ð2:13Þ

Both U and −U get mapped to the same element Rij,
reflecting the fact that SU(2) is the double cover of SO(3).
[Indeed, since U and −U differ only by a global phase, we
might be tempted to change the definition of complexity
geometry so as to identify them, moving from SU(2) to
PUð2Þ≡ Uð2Þ=Uð1Þ ¼ SUð2Þ=Z2 ¼ SOð3Þ, in which
case the connection between complexity geometry and
rigid motion becomes exact.]

UNITARY COMPLEXITY
of single qubit

RIGID BODY MOTION in
three dimensions

GEODESIC MOTION on
squashed three-sphere

Space of single-qubit operators
is SUð2Þ ¼ S3

Space of orientations is
SOð3Þ ¼ SUð2Þ=Z2 ¼ S3=Z2

Space of points is topologically S3

Some tangent directions are
easy/hard to move in

Some axes have small/large
moment of inertia

Some directions have
small/large circumferences

Least complex way to compile unitary Free rotation of rigid body Geodesic motion on squashed sphere
If all tangent directions are equally
penalized recover inner-product metric

If all axes have same moment
of inertia recover round
SO(3) metric

If all circumferences are
equally squashed
recover round S3 metric

Lab-frame quantities like Rij are neither left invariant nor
right invariant, in the sense that they change under both
U → UUR and U → ULU. By contrast body-frame quan-
tities like ωi are right invariant, since they do not care about
the overall orientation of the rigid body.
For the complexity geometry the coefficients I ij encap-

sulate the extent to which some tangent space directions are
easier or harder to move in. For the rigid body, this gets

mapped to different axes being easier or harder to rotate
around because of unequal moments of inertia. (For the
complexity geometry the only restriction is that the
coefficients of I ij are positive; for a rigid body with
non-negative mass density there is a triangle inequality
0 ≤ I zz ≤ Ixx þ Iyy, so that, for non-negative mass den-
sity, Ixx ¼ Iyy ¼ 1 & Izz > 2 is an impossible Berger.)
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B. Complexity geometry in Euler coordinates

Let us put a coordinate system on the unitary group in
order to give an explicit representation of the complexity
metric.We use (the Tait-Bryanversion of) Euler angles. Any
element of SU(2) may be written as U ¼ eiσzθzeiσyθyeiσxθx ,
and plugging this parametrization into Eq. (2.3) gives an
explicit form for the metric.

1. I ij = δij → round S3

In Euler coordinates, the inner-product metric is

inner product∶ ds2jI ij¼δij
¼ dθ2x þ dθ2y þ dθ2z

þ 2 sin 2θydθxdθz: ð2:14Þ

This is the round three-sphere, in unusual coordinates. All
points are the same, and all directions are the same.

2. I xx =I yy = 1 → Berger sphere

We may break the symmetry SUð2Þ → Uð1Þ by making
one of the moments of inertia different from the other two.
This gives the metric of the so-called Berger sphere [14]

ds2jIxx¼Iyy¼1¼ cos22θydθ2xþdθ2yþIzzðdθzþsin2θydθxÞ2:
ð2:15Þ

The geometry of Eq. (2.15) is also sometimes called a
squashed three-sphere, but it is not squashed in the same
sense that a beach ball gets squashed when you sit on it. A
squashed beach ball (an oblate spheroid, if you will) is
neither isotropic nor homogeneous—the equator bulges
more than the poles. A squashed sphere, by contrast, is also
not isotropic but is homogeneous—though not all direc-
tions are the same, all points are. We have more to say about
this—and how it relates to the right-but-not-left invariance
of Eq. (2.3)—in Sec. IVA.5

For the inner-productmetric of Eq. (2.14), all the sectional
curvatures are positive—indeed we know that the inner-
product metric gives a uniformly positively curved three-
sphere—which means that geodesics converge. However,

for theBerger spherewith large enoughIzz, sections defined
by two easy directions become negatively curved,

at θx ¼ θy ¼ θz ¼ 0∶ R
θyθx
θxθy

¼ R
θxθy
θyθx

¼ 4 − 3Izz; ð2:18Þ

which means that easy geodesics diverge. We discuss the
significance of this in Sec. IV C.
(Even as I zz gets large, the curvature of sections

defined by one easy and one hard direction remains
positive, Rθxθz

θzθx ¼ Rθyθz
θzθy ¼ I zz, but not positive

enough to prevent the Ricci scalar R ¼ Rθyθx
θxθy þ

Rθxθy
θyθx þRθyθz

θzθy þRθzθy
θyθz þRθxθz

θzθx þRθzθx
θxθz ¼

8 − 2Izz going negative.)

III. STATE-COMPLEXITY GEOMETRY OF A
SINGLE QUBIT

In the last section we considered the computational
complexity of unitaries. The space of SU(2) unitaries is
topologically an S3 (and, for the inner-product metric but not
the complexity metric, also geometrically an S3). In this
section, we consider the computational complexity of pure
states.TheCP1 space ofone-qubit pure states is topologically
an S2 (and, for the inner-product metric but not the complex-
ity metric, also geometrically an S2, the Bloch sphere).
The space of single-qubit pure states has one fewer

dimension since any given unitary has a kernel—a state it
leaves invariant. Thinking of the unitary as a rotation, this
kernel is the vector that points down the rotation axis.
Therefore a given infinitesimal step in Hilbert space may be
effected by any member of a one-parameter family of
unitaries—to calculate the complexity metric on state
space, we want to find the shortest unitary in this family.

A. Deriving the one-qubit state-complexity metric

The state of the qubit is represented with ψ⃗ , a unit vector
in R3. In this representation the states in the Hilbert space
form an S2: the Bloch sphere. The map from the fj1i; j0ig
representation of the quantum state to the Bloch sphere
representation is given by

5Beyond Berger: for general I ij the components of the complexity metric in Euler coordinates are

gij ¼

0
BB@

gxx ðIxx − IyyÞ cos 2θy cos 2θz sin 2θz Izz sin 2θy

ðIxx − IyyÞ cos 2θy cos 2θz sin 2θz Ixxsin22θz þ Iyycos22θz 0

Izz sin 2θy 0 Izz

1
CCA; ð2:16Þ

where gxx ¼ cos2 2θyðIxx cos2 2θz þ Iyy sin2 2θzÞ þ I zz sin2 2θy. This is the fully general squashed three-sphere. Though it is again not
obvious from inspection, this metric is completely homogeneous but also completely anisotropic. The sectional curvature is minus the
deviation of a vector in the ith direction due to displacement in the jth direction, namely [15],

geodesic deviationij ¼ −Rji
ij

���
not summed

¼ 3I2
kk − 2ðI ii þ I jjÞIkk − ðI ii − I jjÞ2

I iiI jjIkk

����
not summed

: ð2:17Þ
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ψ⃗ ¼ hψ jσ⃗jψi: ð3:1Þ

The Hilbert space inner product of two states defined in this
way is

jhψ2jψ1ij2¼
1þ ψ⃗1 · ψ⃗2

2
¼ 1þ cosθ12

2
¼ cos2

θ12
2
: ð3:2Þ

To compute the metric it suffices to consider target states
that are nearby, jψ þ dψi; normalization requires that
ψ⃗ · d⃗ψ ¼ 0. To leading order, the one-parameter family
that transforms from jψi to jψ þ dψi is

U ¼ 1þ 1

2
iðd⃗ψ × ψ⃗ þ αψ⃗Þ · σ⃗ þ � � � : ð3:3Þ

Geometrically we can understand this unitary as rotating
the state around an axis

r⃗ ¼ d̂ψ × ψ⃗ þ αψ⃗

jd̂ψ × ψ⃗ þ αψ⃗ j ð3:4Þ

that is orthogonal to d⃗ψ (but not necessarily orthogonal to
ψ⃗); see Fig. 3.
With no penalty factor (I ij ¼ δij), the metric is

ds2 ¼ Tr½dU†dU� ¼ ðd⃗ψ × ψ⃗ þ αψ⃗Þ · ðd⃗ψ × ψ⃗ þ αψ⃗Þ
4

¼ d⃗ψ · d⃗ψ þ α2

4
: ð3:5Þ

This is minimized at α ¼ 0, giving the inner-product metric
4ds2 ¼ d⃗ψ · d⃗ψ ¼ dθ2 þ sin2θdϕ2. [The factor of 4 in this
expression is because the distance is half the angle, as in
Eq. (3.2), reflecting that orthogonal states, Δs ¼ π=2,
appear on the Bloch sphere at antipodal points, Δψ ¼ π.]

ψ

dψ

r1

r2
r3

r4

ψ

r

ψ

r

p

FIG. 3. Top left: the state of the qubit can be represented as a unit vector ψ⃗ on the two-sphere. Top right: to transform from jψ⃗i to
jψ⃗ þ d⃗ψi we can rotate around any axis r⃗ that is orthogonal to the change in state, r⃗ · d⃗ψ ¼ 0. There is a one-parameter family of
possible rotation axes that all satisfy r⃗ · d⃗ψ ¼ 0 and therefore any of which can be used to implement the transformation; these lie on a
great circle. Bottom left: in order to make the rotation angle dθ as small as possible, we should rotate around an axis orthogonal to the
initial state, ψ⃗ · r⃗ ¼ 0; this is the appropriate rotation axis when I zz ¼ 1. Bottom right: in order to make the penalty factor as small as
possible, we should rotate around an axis orthogonal to the penalized direction, p⃗ · r⃗ ¼ 0; this is the appropriate rotation axis when
Izz → ∞, as in Sec. III C. For intermediate values, 1 < I zz < ∞, the optimal rotation axis, given by Eq. (3.15), lies between these two
extremes.

ADAM R. BROWN and LEONARD SUSSKIND PHYS. REV. D 100, 046020 (2019)

046020-8



Now let us introduce a penalty factor, I ij ¼ δijþ
ðIzz − 1Þpipj, that punishes rotations around the axis p⃗
while leaving rotations round axes orthogonal to p⃗ unpun-
ished. The penalized scalar product may be defined as
a⃗⋄b⃗≡aiI ijbj¼ a⃗·b⃗þðI zz−1Þða⃗·p⃗Þðb⃗·p⃗Þ. Equation (2.2)
gives the complexity ds of implementing dU as

ds2 ¼ Tr½idUU†σi�I ijTr½idUU†σj�; ð3:6Þ

4ds2 ¼ ðd⃗ψ × ψ⃗ þ αψ⃗Þ⋄ðd⃗ψ × ψ⃗ þ αψ⃗Þ; ð3:7Þ

4ds2 ¼ d⃗ψ × ψ⃗⋄d⃗ψ × ψ⃗ −
ðψ⃗⋄d⃗ψ × ψ⃗Þ2

ψ⃗⋄ψ⃗
þ ψ⃗⋄ψ⃗

�
αþ ψ⃗⋄d⃗ψ × ψ⃗

ψ⃗⋄ψ⃗
�2

: ð3:8Þ

If we set α ¼ 0 by fiat, then the metric is
4ds2 ¼ dθ2 þ Izzsin2θdϕ2: motion down a line of longi-
tude is unpenalized; motion around a line of latitude is
penalized by

ffiffiffiffiffiffiffi
Izz

p
; and there is a conical singularity at the

origin. However, choosing α ¼ 0 is choosing to go the long
way around, because we can generally shorten distances by
judicious choice of α.
To derive the state complexity geometry, Eq. (1.1) tells

us to choose the member of the one-parameter family of
connecting unitaries that minimizes the complexity, which
means choosing α to put the last term in Eq. (3.8) to 0. Then
using polar coordinates on the two-sphere that place the
penalized axis p⃗ at the north pole gives the metric for Ixx ¼
Iyy ¼ 1 as6

4ds2 ¼ d⃗ψ · d⃗ψ þ ðIzz − 1Þðd⃗ψ · ψ⃗ × p⃗Þ2
ðI zz − 1Þðψ⃗ · p⃗Þ2 þ 1

¼ dθ2 þ Izzsin2θ
I zzcos2θ þ sin2θ

dϕ2: ð3:10Þ

For Izz ¼ 1, all directions are treated the same and we
recover the standard round Fubini-Study metric on the
Bloch sphere. For I zz ≠ 1, however, the complexity metric

differs from the inner-product metric. We study the proper-
ties of this metric in Sec. III B.

1. Geometric interpretation

To add insight, let us reexamine the derivation of
Eq. (3.10) while stressing its geometrical interpretation.
The essential idea is captured by Fig. 3.
To transform from ψ⃗ to ψ⃗ þ d⃗ψ (where d⃗ψ · ψ⃗ ¼ 0 by

conservation of normalization) we must rotate around an
axis r⃗ that is orthogonal to d⃗ψ ,

d⃗ψ · r⃗ ¼ 0: ð3:11Þ
Any such axis works, and there is a one-parameter family
of them, given by Eq. (3.4).
Elementary geometry tells us that, to get from ψ⃗ to

ψ⃗ þ d⃗ψ by rotating around the axis r⃗, the total angle dθ
through which we must rotate is given by

dθ2 ¼ d⃗ψ · d⃗ψ
jψ⃗ × r⃗j2 : ð3:12Þ

This angle is minimized when the axis of rotation r⃗ is
orthogonal to the initial state ψ⃗ , so that jψ⃗ × r⃗j ¼ 1. This is
equivalent to putting α ¼ 0. When there is no penalty factor
this is the optimal rotation axis, and this gives the inner-
product metric.
However, once I zz ≠ 1 not all dθs count equally.

Instead, the complexity distance ds associated with a given
dθ varies with the axis of rotation as

4ds2 ¼ ð1þ ðI zz − 1Þðp⃗ · r⃗Þ2Þdθ2: ð3:13Þ

For Izz > 1, the larger jp⃗ · r⃗j, the more the rotation is
penalized.
As a function of r⃗, the complexity distance associated

with a given d⃗ψ is therefore

4ds2 ¼ 1þ ðI zz − 1Þðp⃗ · r⃗Þ2
jψ⃗ × r⃗j2 d⃗ψ · d⃗ψ : ð3:14Þ

The optimal rotation axis is determined by the interplay of
two factors. On the one hand, to make the rotation angle dθ
small we should choose a rotation axis that is as close as
possible to orthogonal to the initial state, r⃗ · ψ⃗ ¼ 0. On the
other hand, to make the penalty factor small we should
choose a rotation axis that is as close as possible to
orthogonal to the penalized direction r⃗ · p⃗ ¼ 0. The opti-
mal compromise is given by

α ¼ ðI zz − 1Þðp⃗ · d⃗ψ × ψ⃗Þðp⃗ · ψ⃗Þ
1þ ðI zz − 1Þp⃗ · ψ⃗

; ð3:15Þ

which not coincidentally is also the value of α that puts the
last term in Eq. (3.8) to 0. When Izz ¼ 1 the optimal axis of

6For general I ij we should reuse Eq. (3.8) except now with
a⃗⋄b⃗≡Ixxða⃗ · p⃗xÞðb⃗ · p⃗xÞþIyyða⃗ ·p⃗yÞðb⃗ · p⃗yÞþI zzða⃗ ·p⃗zÞðb⃗ · p⃗zÞ.
This gives the unilluminating expression

4ds2¼I zzIyycos2θcos2ϕþ I zzIxxcos2θsin2ϕþIxxIyysin2θ

I zzcos2θþ Ixxsin2θcos2ϕþIyysin2θsin2ϕ
dθ2

þ2
I zzðIxx−IyyÞsinϕcosϕsinθcosθ

Izzcos2θþ Ixxsin2θcos2ϕþIyysin2θsin2ϕ
dθdϕ

þ IzzðIxxcos2ϕþIyysin2ϕÞsin2θ
Izzcos2θþIxxsin2θcos2ϕþIyysin2θsin2ϕ

dϕ2: ð3:9Þ
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rotation is orthogonal to the initial vector r⃗ ∼ ψ⃗ × d̂ψ. When
Izz ≫ 1, the axis of rotation is forced to be equatorial,
r⃗ · p⃗ ¼ 0. For any value of I zz, rotating around the optimal
axis recovers the complexity metric of Eq. (3.10).

B. Properties of the one-qubit state-complexity metric

The complexity metric for a one-qubit state with Ixx ¼
Iyy ¼ 1 is described by Eq. (3.10). The effect of the penalty
factor is to deform the Bloch sphere. As shown in Fig. 4, for
Izz < 1 motion along lines of latitude becomes easier and
the Bloch spheroid becomes prolate;7 for Izz > 1 motion
along lines of latitude becomes harder and the Bloch
spheroid becomes oblate.
The curvature of this metric is

R ¼ 8I zzð1 − 2ðI zz − 1Þcos2θÞ
ðI zzcos2θ þ sin2θÞ2 ð3:16Þ

pole∶ Rjθ¼0 ¼ 8

�
3

Izz
− 2

�
ð3:17Þ

equator∶ Rjθ¼π
2
¼ 8Izz: ð3:18Þ

For I zz < 3
2
the curvature is everywhere positive. But, as is

shown in Fig. 5, for large I zz the curvature starts out
negative at the pole, becomes more negative away from the
pole, before hitting a minimum just above the equator at

∂θR¼ 0→ cos2θmin¼
2

Izz−1
→Rmin¼−

8I zz

3
: ð3:19Þ

The curvature then shoots up to a large positive value 8Izz
at the equator.

C. Even simpler case: one-qubit complexity
with I zz → ∞

Let us consider the state complexity of a single qubit in
the limit in which σz-rotations are completely forbidden,
Izz → ∞: the z axis of the gimbal has completely seized up
and will not rotate at all, and so the rotation axis r⃗ is
required to be equatorial.
Everywhere except very close to the equator, the state

complexity geometry becomes

Ixx¼Iyy¼1 & Izz→∞∶4ds2¼dθ2þ tan2θdϕ2: ð3:20Þ

→ R ¼ −
16

cos2θ
: ð3:21Þ

The one-qubit state complexity geometry is almost-
everywhere negatively curved as Izz → ∞. However,

FIG. 4. Deformed Bloch spheres with various penalty factors Izz. Unlike the squashed three-spheres of Sec. II B, these two-spheres
are squashed in the same sense that a beach ball gets squashed when you sit on it. For Izz ¼ 1 every direction is punished equally and we
have the Bloch sphere with the standard inner-product metric. The Bloch spheroid is prolate for I zz < 1 and oblate for Izz > 1. For
Izz > 3=2 the Bloch spheroid is negatively curved at the poles and cannot be embedded in R3. For very large I zz the Bloch spheroid
becomes two back-to-back negatively curved spaces glued together by positive curvature at the equator.

FIG. 5. The curvature R of the deformed Bloch sphere for
different values of Izz, given by Eq. (3.16). For Izz < 1 the
curvature is everywhere positive and largest at the poles. For
Izz ¼ 1 the curvature is uniformly positive and the Bloch sphere
is spherical. For large I zz, the curvature is like two negatively
curved disks stuck together by a thin very positively curved wall.

7This might be a good metric to describe historical trade and
migration patterns on Earth, where there is evidence that climate
gradients make East-West spreading easier than North-South
spreading [16].
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nowhere does the geometry closely resemble the hyperbolic
plane: there are no regions many-curvature-lengths long
where the curvature length (l ¼ cos θ) is roughly constant.
Very close to the equator, θ ∼ π

2
�Oð 1ffiffiffiffiffi

I zz

p Þ, the metric

deviates from Eq. (3.21) and has a delta-function positive
curvature. For the unitary complexity metric of Sec. II B,
when Izz → ∞ the curvature diverged everywhere; for the
state complexity it only diverges at the equator. In the limit
Izz → ∞, the complexity state geometry becomes two
negatively curved disks glued together along the equator.
As with the unitary complexity of the last section, we

have seen that nontrivial I ij can deform a positively curved
sphere such that sectional curvatures become negative. We
return to this again in Sec. IV C.
The separation of two points both on the equator is

Δsjθ1¼θ2¼π
2
;I zz¼∞;Ixx¼Iyy¼1 ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δϕð2π − ΔϕÞ

p
; ð3:22Þ

which is larger than Δsjθ1¼θ2¼π
2
;Izz¼Ixx¼Iyy¼1 ¼ 1

2
Δϕ except

at Δϕ ¼ 0 and Δϕ ¼ π.

IV. DISCUSSION

The single-qubit example is rich enough to exhibit many
of the essential features of complexity geometry, as we now
assess.

A. Right invariance vs left invariance

The one-qubit example accurately captures that the
unitary complexity distance is right invariant but not left
invariant, and that the unitary complexity metric is homo-
geneous; the same example also captures that the state
complexity distance is not left invariant, and that therefore
the corresponding metric is not homogeneous. These
properties apply both to complexity geometry and to the
gate definition of complexity. Table I gives a summary.

1. Unitary complexity geometry on SUð2NÞ is
homogeneous but anisotropic

The inner-product distance on SUð2NÞ is both left
and right invariant since it is invariant under fU1; U2g →
fULU1UR;ULU2URg,

left and right invariant∶ Tr½ðULU1URÞðULU2URÞ†�
¼ Tr½U1U

†
2�: ð4:1Þ

The right invariance makes the inner-product metric on
SUð2NÞ homogeneous (i.e., every point is the same). For
the single-qubit example of Eq. (2.14), the inner-product
metric on SU(2) is that of the round S3, and so the SU(2)
metric is in addition isotropic (i.e., every direction is the
same); for N ≥ 2, the inner-product metric on SUð2NÞ is
not isotropic.
The complexity distance on SUð2NÞ is right invariant but

not left invariant. The complexity distance between two
unitaries U1 and U2 is given by the complexity of the
unitary that connects them,

C½U1;U2� ¼ C½U12� where U1 ¼ U12U2: ð4:2Þ

(Taking U1 and U2 to be infinitesimally separated gives the
complexity metric.) It is clear that U1 ¼ U12U2 if and only
if U1UR ¼ U12U2UR, which means that the complexity is
right invariant:

right invariant∶ C½U1;U2� ¼ C½U1UR;U2UR�: ð4:3Þ

We see this reflected in Eq. (2.2) where taking U → UUR
and dU→dUUR does not change the complexity distance.
By contrast,U1¼U12U2 does not implyULU1¼U12ULU2,
so in general the complexity is not left invariant,

not left invariant∶ C½U1;U2� ≠ C½ULU1;ULU2�: ð4:4Þ

The asymmetry between left and right arises because U12

acts from the left and not from the right—we compile
circuits by adding gates to the end, not to the start. (Beware
that in much of the mathematics literature this convention is
reversed [17].) Right invariance of the complexity distance
translates into homogeneity of the complexity geometry,
since right-multiplying by UR can translate any point to
any other.

TABLE I. Inner-product metrics are left invariant, whereas complexity metrics are not.

Right invariant Left invariant Homogeneous Isotropic

Inner-product metric SU(2) ✓ ✓ ✓ ✓
Inner-product metric SUð2NÞ ✓ ✓ ✓ ✗
Complexity metric SU(2) ✓ ✗ ✓ ✗
Complexity metric SUð2NÞ ✓ ✗ ✓ ✗
Inner-product metric CP1 N/A ✓ ✓ ✓
Inner-product metric CP2N−1 N/A ✓ ✓ ✓
Complexity metric CP1 N/A ✗ ✗ ✗
Complexity metric CP2N−1 N/A ✗ ✗ ✗
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2. State complexity geometry on CP2N − 1 is
neither homogeneous nor isotropic

The inner-product distance on CP2N−1 is left invariant
since it is invariant under fjψ1i;jψ2ig→fULjψ1i;ULjψ2ig,

left invariant∶ ðULjψ1iÞ†ðULjψ2iÞ¼ ðjψ1iÞ†ðjψ2iÞ: ð4:5Þ

This makes the inner-product metric (also known as the
Fubini-Study metric) on CP2N−1 both homogeneous (every
point is the same) and isotropic (every direction is the
same). Indeed, for the single-qubit example of Eq. (3.10),
the inner-product metric on CP1 is that of the round S2.
The complexity distance on CP2N−1 is not left invariant,

for the same reason that the unitary complexity on
SUð2NÞ is not left invariant. As a consequence the state
complexity geometry Eq. (3.10) is neither isotropic nor
homogeneous.
The complexity metric is not left invariant. Instead, there

is a preferred basis in which the penalty tensor I IJ is
diagonal. This should not surprise us. Nature itself also
picks out a preferred basis, since the Hamiltonian of the
Standard Model is local in some bases but not in others.
Ultimately, it is this special structure to the interactions of
fundamental physics that is inherited by our laboratory
equipment and begets the preferred basis for complexity.

B. Geodesics and time-independent Hamiltonians

The one-qubit example accurately captures the general
relationship between the paths generated by time-
independent Hamiltonians, the geodesics of the complexity
geometry on SUð2NÞ, and the geodesics of the complexity
geometry on CP2N−1.

1. Geodesics of the unitary group vs
time-independent Hamiltonians

(i) For the inner-product metric on unitaries, every
geodesic is generated by a time-independent
Hamiltonian, and every path generated by a time-
independent Hamiltonian is a geodesic of the inner-
product metric. The relationship is one to one.

(ii) For the complexity metric on unitaries, the relation-
ship is much looser: to generate geodesics generally
requires the use of a time-dependent Hamiltonian,
and a time-independent Hamiltonian generally does
not generate a geodesic. This can be seen by
examining the equation of motion. For a geodesic
of the complexity geometry, the rate of change of the
Hamiltonian in the direction of any operator K is [2]

h _H;Ki ¼ ihH; ½H;K�i; ð4:6Þ

where hA;Bi≡P
IJ Tr½AσI�I IJTr½BσJ�. For SU(2)

this reduces to the Euler equations for a spinning
top, and the statement that complexity geodesics do

not conserve H is equivalent to the statement that
spinning tops do not conserve angular velocity ω⃗.

However, there is a class of time-independent
Hamiltonians that do generate geodesics: those
Hamiltonians for which every nonzero term has
the same penalty factor. In this case, the cyclic
property of the trace guarantees that the right-hand
side of Eq. (4.6) is 0. Rotating bodies that start
spinning around a principal axis continue to spin
around a principal axis.

To use an automotive simile, minimizing the unitary
complexity is like optimizing the driving route. To min-
imize travel time, the optimal route must strike a balance
between keeping the number of miles small and keeping the
traffic speed high. Similarly, to minimize complexity
distance, the geodesic must strike a balance between
keeping the inner-product distance small and keeping the
penalty factor low. Using a time-independent Hamiltonian
minimizes the inner-product distance, which is only opti-
mal if the penalty factors are the same. When traffic speeds
differ, the geodesic gives the route that minimizes not
driving miles but driving minutes.

2. Geodesics on Hilbert space vs time-independent
Hamiltonians

(i) For the inner-product metric on states, every geo-
desic is generated by a time-independent Hamilto-
nian, but most paths generated by time-independent
Hamiltonians are not geodesics of the inner-product
metric.

For example, the time-independent Hamiltonian
σz rotates about the poles of the Bloch sphere and so
generates all the lines of latitude, but only one of
those lines of latitude—the equator—is an actual
geodesic. By contrast all geodesics (all great circles)
may be generated by rotating around some axis.

(ii) For the complexity metric on states, in general
there is no connection between geodesics and
time-independent Hamiltonians. For the example
of Eq. (3.10), the only geodesics that are generated
by time-independent Hamiltonians are either lines
of longitude (generated by purely easy Hamilto-
nians) or the equator (generated by purely hard
Hamiltonians).

Consider the geodesic that connects two states
both on the equator (θ ¼ π

2
) of the Izz ¼ ∞ state-

complexity metric of Sec. III C. The infinite penalty
factor constrains the instantaneous rotation axis to
be equatorial (constrains the Hamiltonian to have
no σz component), and subject to this constraint
the geodesic will be the connecting path that
rotates through the smallest total angle. First
consider the path that has a fixed rotation axis (a
time-independent Hamiltonian). This path is given
by rotating around the axis that bisects the two
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states—the total rotation angle along this path is π,
so the complexity distance is Δs ¼ π=2 (indepen-
dent of Δϕ). However, this is not the shortest path,
and not a geodesic. Instead, along the actual geo-
desic the relative sizes of the σx and σy terms change,
so the instantaneous rotation axis precesses along
the equator. The geodesic is thus generated by a
time-dependent Hamiltonian and has length given
by Eq. (3.22).

3. Geodesics of the unitary group vs geodesics
on Hilbert space

Equation (1.1) tells us that for every right-invariant
metric on SUð2NÞ there is a corresponding metric on
CP2N−1. How are the geodesics of the two spaces related?
The relationship between the two sets of geodesics is the

same for the complexity metric as it was for the inner-
product metric, and the same for the many-qubit metric as it
was for the single-qubit metric. On the one hand every
geodesic of the Hilbert space can be implemented by acting
with a geodesic of the unitary group: for every geodesic
jψgðtÞi there is a geodesic UgðtÞ such that jψgðtÞi ¼
UgðtÞjψð0Þi. On the other hand, implementing a geodesic
UgðtÞ on a typical state does not generally give a geodesic
of the state metric: jψðtÞi ¼ UgðtÞjψð0Þi is usually not a
geodesic.
Both of these facts can be understood from the

definition of state complexity in Eq. (1.1). The relative
state complexity of two states is the complexity of the
least complex unitary that maps one to the other. There
are two minimizations implicit in this definition: for a
given unitary, minimize over all the paths that give
rise to that unitary; and then minimize over all unitaries
that implement the desired transformation on the state. It
is the first minimization that guarantees geodesics of the
state geometry can be implemented by geodesics of the
unitary geometry; it is neglecting the second minimization
that means that applying a geodesic of the unitary
metric to a state generally does not give a geodesic of
the state metric.

C. Negative curvature

The one-qubit example accurately captures that intro-
ducing anisotropic penalty factors may generate negative
curvature.
The inner-product metric for a single qubit is

spherical, so the curvature is positive. The mean curvature
is positive, and every sectional curvature is positive.
However, we saw with Eqs. (2.17) and (3.16) that for
sufficiently anisotropic penalty factors some sectional
curvatures become negative.
For example, consider the state complexity metric of

Eq. (3.10). Expanding near the North pole at θ ¼ 0 (i.e.,
expanding near the state that has hσzi ¼ 1) gives

4ds2 ¼ dθ2 þ
�
θ2 þ

�
2

3
−

1

Izz

�
θ4 þ � � �

�
dϕ2: ð4:7Þ

For small I zz the coefficient of θ4 is negative, and so the
curvature is positive. But for I zz > 3=2 the sign flips. Two
easy geodesics that start together at θ ¼ 0 and emanate
along lines of constant ϕ have a separation that grows like

2Δs ¼
�
θ þ 1

2

�
2

3
−

1

Izz

�
θ3 þ � � �

�
Δϕþ � � � : ð4:8Þ

For I zz > 3=2 the geodesics accelerate apart—negative
curvature makes geodesics diverge.
Anisotropic penalty factors do not make all sections

negatively curved. Sections are defined by a pair of
directions, and we saw in Eq. (2.17) that when the pair
is comprised of one easy and one hard direction, or two
hard directions, the sectional curvatures are still positive.
But when the section is defined by two easy directions, the
sectional curvature becomes negative.
The mathematical origin of the negative curvature is that

the commutator of two easy directions is itself hard. To see
this, consider the Baker-Campbell-Hausdorff formula,
which tells us that, to second order in t,

exp½iH1t� exp½iH2t�

¼ exp

�
iðH1 þH2Þt −

1

2
½H1; H2�t2 þ � � �

�
: ð4:9Þ

This formula can be used to relate the length of the
hypotenuse of a right-angled triangle to the length of its
two sides. If one triangle arm points in the ð−H1Þ-direction,
and the other in theH2-direction, then Eq. (4.9) tells us that
the hypotenuse points not only in the H1 þH2-direction
but also has a component in the ½H1; H2�-direction. If the
commutator ½H1; H2� is hard, then the effect of the penalty
factor is to make the hypotenuse longer.
Long hypotenuses are a feature of negative curvature.

Consider the right-angled triangles shown in Fig. 6. In flat
space, Pythagoras’ theorem tells us that the hypotenuse (the

FIG. 6. Left: in a positively curved (or flat) space, taking the
hypotenuse substantially shortens the path compared with fol-
lowing each arm in turn, Lhypot ≤

ffiffiffi
2

p
Larm. Right: in a negatively

curved space, the hypotenuse tends to hug each arm in turn—the
more negative the curvature, the smaller the distance saved by
taking the red path rather than the blue path, Lhypot ≥

ffiffiffi
2

p
Larm.
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red geodesic from one corner to the other) is much shorter
than the sum of the two arms. In negatively curved spaces
like the hyperbolic plane, by contrast, the hypotenuse tends
to hug each of the two arms in turn, and has a length closer
to the sum of the two arms and therefore longer than would
have been predicted by Pythagoras.
In the complexity geometry, the hypotenuse is not much

shorter than the sum of the two arms. In this regard, the
complexity geometry reflects our expectations from com-
plexity. One way to compile eiH1teiH2t is to first compile
eiH1t and then compile eiH2t and then concatenate the
resulting unitaries—this is like taking the blue path in
Fig. 6. There may be a more efficient way to do it than
simple concatenation—a red path—but generally the effi-
ciencies are small, and this is reflected in the failure of the
geodesic on the hypotenuse to substantially shorten
the path.
Geodesics deviate on negatively curved spaces, and the

deviation causes geodesic instability. Rigid body motion
also has a well-known instability—the “tennis-racket
effect”—in which rotation around the principal axis with
intermediate moment of inertia is unstable. Given that we
have shown that evolution on the complexity geometry is
isomorphic to rigid body motion, you might wonder if these
two instabilities are the same. They are not. For example,
the tennis-racket instability is absent when Ixx ¼ Iyy,
whereas the negative curvature persists.
We have seen that the easy-easy section of the single-

qubit complexity geometry is negatively curved. In the full
N-qubit complexity geometry described in Sec. I B 2, it is
also true that sections defined by two easy (low-k)
directions are generally negatively curved. For the N-qubit
complexity geometry the negative curvature gives rise to
the chaotic growth of perturbations and is necessary to
recover the switchback effect. The connection between
complexity and negative curvature is explored in more
detail in Ref. [19].

D. Cut loci and tacking

Another feature of complexity geometry that the one-
qubit example manifests is the existence and importance of
cut loci. (This section is based on material that was
explained to us by Henry Lin.)
Consider the complexity of the unitary U ¼ eiσzδ, for

δ ≪ 1. One way to generate this unitary is straightforward:
rotate directly in the σz-direction through an angle δ. The
length of this path upper bounds the complexity distance

C½eiσzδ� ≤ ffiffiffiffiffiffiffi
I zz

p
δ: ð4:10Þ

This is the most direct way to generateU. But it is not the
only way, and for large Izz may not be the cheapest way.
An alternative path is to zigzag in the easy directions,
commutating σx and σy to build up σz indirectly. To leading
order in δ we have

e−iσx
ffiffiffiffiffi
δ=2

p
e−iσy

ffiffiffiffiffi
δ=2

p
eiσx

ffiffiffiffiffi
δ=2

p
eiσy

ffiffiffiffiffi
δ=2

p
¼eiδσz þOðδ3

2Þ:
ð4:11Þ

This path is not itself a geodesic, but it does not need to be
to upper bound the complexity distance

C½eiσzδ� ≤ 2
ffiffiffi
δ

p
: ð4:12Þ

The reason for the square root growth is that this path only
generates σz to the extent that σx and σy fail to commute; in
the language of differential geometry, the failure of parallel
transport is proportional not to the perimeter of the path but
to the area. [We saw the same square root growth, and for
the same reason, in the state geometry of Eq. (3.22).]
For very small δ, the direct geodesic is always the

shortest. However beyond a certain point, known as the cut
locus [20], the indirect path becomes cheaper. For large Izz,
the (first-order) transition between Eqs. (4.10) and (4.12)
occurs at

δcut locus ∼
1

Izz
⟷ Ccut locus ∼

1ffiffiffiffiffiffiffi
I zz

p : ð4:13Þ

After going much less than a single unit of complexity in
the σz-direction, it is already cheaper to take a circuitous
route round the easy directions. To use a loose nautical
metaphor, rather than sail directly into the wind we tack
back and forth.8

Indeed, we already saw this prefigured in Sec. IV C
where negative curvature means that rather than proceeding
directly down the hypotenuse at 45° it is cheaper to hew
close to an easy direction down one arm of the right-angled
triangle, and then switch to the other easy direction for
the second arm. It is a general feature of complexity
geometry—both for a single qubit and also for the many
qubit case—that the cheapest way to move a long distance

8We can repeat this for the completely anisotropic case
Izz ≫ Iyy ≫ Ixx ¼ 1. As before, the direct path just ploughs
along in the σz-direction and has complexity given by Eq. (4.10)
as C½direct� ¼ ffiffiffiffiffiffiffi

I zz

p
δ. The indirect path uses that

eiσzδ ∼ eiσxθxeiσyθye−iσxθxe−iσyθy ð4:14Þ
so long as the area of the rectangle is large enough θxθy ∼ δ and
θx, θy≪1. The length of this indirect path is C½θx; θy� ∼ θxþffiffiffiffiffiffiffi

Iyy
p

θy, and minimizing this subject to the constraint θxθy ∼ δ
gives

C½indirect� ¼ I1=4
yy

ffiffiffi
δ

p
: ð4:15Þ

The cut locus occurs when the direct and indirect paths have the
same length,

δcut locus ∼
ffiffiffiffiffiffiffi
Iyy

p
Izz

⟷ Ccut locus ∼

ffiffiffiffiffiffiffi
Iyy

Izz

s
: ð4:16Þ
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in a hard direction is to tack back and forth in the easy
directions.
In the limit Izz → ∞, the cut locus is driven towards

the origin, and so the linear regime of Eq. (4.10) shrinks to
0. The unitary complexity in the difficult direction is given
by [21]

C½eiσzδ�jI zz¼∞;Ixx¼Iyy¼1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δð2π − δÞ

p
: ð4:17Þ

This is analogous to the state-complexity result in
Eq. (3.22).
Starting at any point, and proceeding along any geodesic,

one eventually arrives at a cut locus. The distance to
the cut locus depends on the hardness of the geodesic.
Equation (4.13) shows that in hard directions, the cut locus
is close. By contrast, in easy directions, the cut locus is
much farther away: to make eiσxδ, the cheapest way is
generally just to proceed directly in the (easy) σx-direction.
It is only for δ ≥ π—which is to say only once that antipode
at −1 has been reached—that the cut locus is encountered.

E. Close in inner product, far in complexity

The example of Fig. 1 shows two states that are
maximally separated in inner-product distance but rela-
tively close in complexity distance. The opposite situation
can also arise: we can have two states that are close in inner
product but far in complexity. Let us examine three aspects
of the relationship between inner-product distance and
complexity distance; we see that the single-qubit example
captures only the first two.
(1) Two states that are arbitrarily close in inner product

are arbitrarily close in complexity, and vice versa.
The complexity metric and inner-product metric are topo-
logically identical, which means if two points are arbitrarily
close in one metric they are arbitrarily close in the other.
More specifically, two states that are separated by an inner-
product distance δ have a complexity distance bounded by

ffiffiffiffiffiffiffiffiffi
Imin

p
δ ≤ ΔC ≤

ffiffiffiffiffiffiffiffiffiffi
Imax

p
δ; ð4:18Þ

where Imin and Imax are the smallest and largest penalty
factors. That the geometric definition of complexity is a
continuous function of SUð2NÞ and CP2N−1 is in marked
contrast to the gate definition of complexity outlined in
Sec. I B 1. An immediate corollary of Eq. (4.18) is that if
Imin ≥ 1 then the complexity distance is never less than the
inner-product distance.
(2) The complexity distance can be a huge multiple of

the inner-product distance.
In the metric of Eq. (2.15) [and (Eq. (3.10)] the ratio of the
complexity distance to the inner-product distance can be
very large. Indeed, for small enough δ the upper bound of
Eq. (4.18) is tight,

for δ≲ I−1
zz ∶

C½eiσzδ�
δ

¼ ffiffiffiffiffiffiffi
I zz

p
: ð4:19Þ

Even though two points are separated by only a small inner-
product distance, if the direct route passes in a hard
direction, then the complexity distance gets multiplied
by a huge number, and this ratio becomes ginormous.
(3) The complexity distance can be huge even while the

inner-product distance is small.
(This is true for the large-N complexity metric; it

is not true for the single-qubit complexity metric.)
In the complexity metric with a large number N of qubits
discussed in Sec. I B 2, there may be states that are
exponentially close (in N) in inner product but exponen-
tially far (in N) in complexity. However, this is a feature
that is not captured by the single-qubit example with
Izz ≫ Ixx ¼ Iyy ¼ 1. As we now show, in the single-
qubit metric all complexity distances are upper bounded by
an Oð1Þ number no matter how large Izz gets.

(i) One-qubit unitary complexities are never large.
For the inner-product metric, the two unitaries 1

and −1 ¼ exp½iπσz� are as distant as two unitaries
can be: they lie at opposite antipodes of the S3 and
are therefore separated by π. You might imagine that
turning on a large penalty factor Izz would greatly
increase the distance between these two unitaries,
since you are punishing movement in the σz-direc-
tion. But in fact increasing Izz does not increase the
distance at all, since there remains a path in the
unpunished σx-direction using −1 ¼ exp½iπσx�.

Generalizing away from the antipodal case, it is
clear that there are no pairs of points that become very
distant since any SU(2) can be written in proper Euler
coordinates as eiσxθ1eiσyθ2eiσxθ3 . Indeed, Ref. [18]
shows that no matter how large Izz, no distance
exceeds π,

0 ≤ inner-product distance

≤ complexity distancejIzz≥Ixx¼Iyy¼1 ≤ π: ð4:20Þ
The diameter of the Berger sphere as a function of Izz
is shown in Fig. 7.

(ii) One-qubit state complexities are never large.
The same pattern applies to state complexity,

considered in Sec. III. For the inner-product metric
on quantum states the maximum distance is π=2.
Inspecting Eq. (3.21) shows that making Izz arbi-
trarily large does not increase the maximum distance.

0 ≤ inner-product distance

≤ complexity distancejIzz≥Ixx¼Iyy¼1 ≤
π

2
: ð4:21Þ

In summary, in the single-qubit example adding a
large penalty factor may greatly multiply the distance
between two points that start off close, but does not greatly
increase the distance between two points that start off
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already distant. The explanation is related to a phenomenon
discussed in Sec. IV D: sufficiently distant points will
generally be beyond the cut locus, and therefore connected
together by many different geodesics. Some geodesics will
be short (in inner-product distance) but hard (large I),
others will be long (in inner product) but easy (small I).
The easier paths will be mostly unaffected by making Izz
arbitrarily large. The reason that there is still a relatively
short easy path is that for the single-qubit example a large
fraction of the directions are easy—two out of three. This is
very different to the multiqubit case of Sec. I B 2 where
easy directions are by assumption exponentially rare.
(Of course, we can make the single-qubit example

capture that complexities can be large by making two of
the moments of inertia large,9 or even more trivially and
even more tastelessly by making all three large. But even if
we did, the single-qubit complexity geometry would still
fail to capture why the complexity can grow so large, and in
particular would fail to exhibit the fractal nature of the
complexity frontier described in Sec. IVG.)
Even though the maximum distance does not grow as Izz

gets large, there are two simple geometrical quantities that
do. The first is the volume—the volume of the Berger
sphere depends linearly on Izz—and indeed for the general
higher-dimensional complexity metric the volume also gets
large as the penalty factors grow. The second quantity is the
average distance. As I zz grows, the average distance
between two points on the Berger sphere gets closer to
the maximum distance. It is also a property of the higher-
dimensional complexity geometry that the average distance
is close to the maximum distance.

F. Complexity geometry vs gate complexity

The single-qubit example accurately illustrates some of
the relative merits of the geometric and gate-counting
definitions of complexity.

In this paper we have discussed two different definitions
of computational complexity: gate complexity (Sec. I B 1)
and complexity geometry (Sec. I B 2). That there are
multiple definitions is to be expected: computational
complexity measures how hard a given transformation is
to implement, and so it is no surprise that two different
people with two different sets of abilities will disagree
about how difficult a given task is. We are now in a position
to compare these two definitions.

GATE COMPLEXITY COMPLEXITY GEOMETRY

Complexity is the number of
gates in smallest circuit
that implements
transformation

Complexity is the length of the
shortest path that implements
transformation

Only allowed steps are
primitive gates

All directions allowed but
some highly penalized

Primitive gates typically
taken to be k-local

k-local directions typically
assigned low penalty
(unpenalized)

Tolerance ϵ required when
primitive gate set is
countable

No tolerance ϵ required:
can hit target exactly

Complexity is discontinuous
function of SUð2NÞ &
CP2N−1

Complexity is continuous
function of SUð2NÞ &
CP2N−1

In Sec. I B 1 we saw some of the shortcomings of the
gate definition of complexity when applied to systems
undergoing evolution by a continuous Hamiltonian. Let us
see how the complexity geometry definition fixes or
ameliorates those shortcomings.
First, in the gate definition the choice of which primitive

gates are permitted, while perhaps dictated by real-world
engineering constraints, seems arbitrary. Why those par-
ticular k-local gates and not others? In the complexity-
geometry definition, all possible k-local directions (i.e., all
terms in the Hamiltonian that are the tensor product of at
most k one-qubit σis) are permitted, and typically with
the same penalty factor too. The only arbitrariness that
remains is deciding how severely to punish non-k-local
directions as a function of their non-k locality (deciding
what schedule of penalty factors I ij to apply as a function
of the weight).
Second, the gate definition of complexity as described in

Sec. I B 1 required the introduction of a tolerance ϵ, which
described how close we must come to the target state before
declaring victory. This is no longer necessary with com-
plexity geometry: movement in all directions in Hilbert
space is now permitted (even if punished by a large penalty
factor), and every target state can now be hit exactly.
Third, the gate definition of complexity is discontinuous

in the sense that two points may be arbitrarily close in inner
product but still have very different complexities. By
contrast, Eq. (4.18) told us that, when the penalty factors
are all finite, points that are arbitrarily close in inner
product are also arbitrarily close in the complexity metric,

FIG. 7. The maximum separation on the Berger sphere as a
function of Izz, for Ixx ¼ Iyy ¼ 1. The maximum distance is
never greater than π, no matter how large I zz; on the other hand
the maximum distance never goes below π=2 no matter how small
Izz is [18].

9Reference [18] shows that for Ixx ¼ Iyy > 2Izz, the maxi-
mum distance is πIxx=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ixx − I zz

p
.
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so the map from inner-product geometry to complexity
geometry is continuous.
What exactly is it about complexity geometry that

allows it to dispense with a tolerance and that makes it
continuous? Examining Eq. (4.18), you might imagine that
the essential feature is that the complexity geometry
permits direct motion in every direction. But that is over-
kill. Even if direct motion in some directions were
completely forbidden—even if the penalty factors in some
directions were infinite—then so long as a generating
subset is still permitted we can build up everything by
tacking back and forth and there is no need for a tolerance.
Furthermore, since infinitesimal motion in the permitted
directions has infinitesimal cost, the map from inner-
product geometry to complexity geometry is continuous.
Thus even if we took Izz ¼ ∞ in the single-qubit complex-
ity geometry of Eq. (2.15) (and even if we took Ik¼3 ¼
Ik¼4 ¼ � � � ¼ Ik¼N ¼ ∞ in the multiqubit complexity
geometry), there would still be no need for a tolerance
and the complexity geometry would still be continuous.
It is worth clarifying what continuity does and does not

mean. On the one hand we have just seen that the
complexity metric is continuous. On the other hand we
discussed in Sec. IV E that in the multiqubit example there
are pairs of points that are exponentially close in inner
product but exponentially far in complexity. There is no
contradiction because continuity is a statement about
infinitesimals. On short enough scales the complexity
does not vary much from point to point—it is clear that
for δ < I

−1
2

max the complexity varies by less than a single
unit, and in the last paragraph we argued that the existence
of indirect easy paths means the variation in complexity
may be small even for somewhat larger δ. But move too far
and the complexity starts varying dramatically. If for some
experimental reason we were constrained to measure the
complexity with an inner-product resolution worse than the
characteristic scale of variation, the complexity distance
would be functionally discontinuous.
We have highlighted three big differences between

complexity geometry and the gate definition of complexity.
Let us mention one more. When compiling circuits out of a
countable set of primitive gates, at each step motion is
restricted to discrete jumps in a discrete set of directions.
This means there are many fewer options than when
applying an arbitrary Hamiltonian, and this limitation gives
rise to a pattern of gate complexity that is considerably
more intricate than that produced by the complexity
geometry. As one example, consider the set of states that
have a complexity below some value: in the complexity
geometry this set forms a single connected component; in
the gate definition the set breaks up into numerous
disconnected islands. As another example, we have seen
that the complexity geometry of a single qubit is too simple
to generate large complexity; by contrast the gate complex-
ity of a single qubit may be huge.

[Indeed, when only a discrete set of gates are permitted,
even the complexity of just a single U(1) phase is rich
enough to be interesting. Fernando Pastawski has explained
to us that if we are are permitted to pick only one gate, the
choice that minimizes the average complexity of U(1) is the
golden gate that rotates by the golden ratio. This is because
the golden ratio optimally avoids near collisions by having
the most irrational continued fraction expansion.]
For some applications, the so-called shortcomings of the

gate definition of complexity may actually be advanta-
geous. For other applications, we might try to modify the
gate definition so that it becomes more like the complexity
geometry and inherits some of its features [1–4,22–25]. But
for our intended applications, the complexity geometry
definition seems superior.

G. What N = 1 fails to capture

We have seen that the single-qubit example manifests
many of the important features of complexity geometry.
What are the features that the single-qubit case does not
capture?
The short answer is that the single-qubit example fails to

capture anything that relies on the distinction between
scaling polynomially, exponentially, or double exponentially
with N. The difference between these scalings gets washed
out when N ¼ 1. This means that the single-qubit example
misses many of the statistical properties of complexity.
For example, for the general-N complexity geometry

described in Ref. [1] and in Sec. I B 2, there are vastly more
hard directions than easy directions: exponentially many
hard directions vs only polynomially many k-local direc-
tions. By contrast, for the single-qubit example we focused
on in this paper, there are more easy directions than hard:
two vs one.
Similarly, for the general-N case there are double

exponentially more high-complexity states than low-
complexity states, with the consequence that there may
emerge a statistical thermodynamics of complexity, and in
particular an analog of the second law [10]. By contrast,
for the single-qubit case, there is no parametric separation
between the time to reach maximum complexity [Oð2NÞ]
and the quantum recurrence time [Oð22N Þ].
Another feature of large-N complexity geometry that the

single-qubit complexity geometry fails to capture is the
fractal-like structure of the set of low complexity states.
Consider the set of N-qubit unitaries with a complexity less
than some value. For very small values, this set is a high-
dimensional ball around the identity, bounded by a spheri-
cal complexity frontier. Measured in the complexity metric
this ball looks round; measured in the inner-product metric
the ball is deformed by being stretched in easy directions
and squeezed in hard directions. For larger values of the
complexity, the set becomes increasingly convoluted, with
multidimensional tendrils wrapping many times round the
SUð2NÞ in easy directions while making little progress in
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the hard directions. The tendrils are intertwined and give
rise to a fractal-like structure. The topology of the set
becomes increasingly complicated as it intersects itself at
cut loci. We expect the one-qubit complexity geometry to
be too simple to exhibit this convoluted behavior.10

V. CONCLUSION

In complexity geometry, nothing is ever forbidden, it is
merely expensive. Rather than leaping through Hilbert space
in discrete gate-sized jumps, now steps of any size and in any
direction are permitted. However, steps in difficult directions
are penalized in proportion to their difficulty. In this paper
we discussed why this geometric definition of complexity is
one that is well suited to holographic applications, and have
studied the single-qubit example as a simple tractable case
that nevertheless embodies many of the general phenomena
that apply to complexity geometries in general.
There is prior literature on using single-qubit examples

as simple laboratories to study gate complexity. For a very
carefully chosen set of primitive gates, it is possible to used
advanced mathematics to calculate the gate complexity
efficiently [26]. For more general sets of primitive gates,
Solovay and Kitaev proved a theorem about how accurately
one-qubit operators can be approximated [27]. As dis-
cussed in Sec. IV F, since the gate definition of complexity
limits evolution to discrete jumps, the resultant pattern of
complexity is more intricate and convoluted.
There is also prior literature on seeking simple models of

complexity geometry. The complexity geometry has been
explored for harmonic oscillators [22], coherent states [28],
free fermions [29], the permutation group [30], and other
systems [23,31–37].
There is even prior literature on considering the com-

plexity geometry of a single qubit. In Ref. [5], Gu et al.
considered the complexity geometry of SU(2) with, in our
notation, Ixx ¼ Iyy ¼ 1 and Izz ¼ 0. They showed that in
this limit the metric of Eq. (2.15) becomes that of a round
two-sphere. Notice that this limit is opposite to the one we
focus on in this paper: we have argued that studying the
limit I zz ≫ Ixx ¼ Iyy produces generalizable morals by
better embodying the characteristic phenomena of multi-
qubit complexity geometry.
In this paper we have looked at complexity geometry

with the smallest positive integer number of qubits: 1. The
next smallest possible integer number of qubits is 2.
Following the method of Sec. II A, two-qubit unitary
complexity geometry can be related to the rotation of rigid
bodies in six dimensions, since SUð4Þ ∼ SOð6Þ. In the two-
qubit case it would be tempting to make the two-local
operators hard (large moments of inertia), and make the
one-local operators easy (small moments of inertia).

However, it would actually better reflect the large-N case
if the assignment were the other way round. In Sec. IV C
we saw that to generate negative curvature, the commutator
of two easy directions should be hard. But one-local
operators commute to other one-local operators, so making
the one-local directions easy does not generate negative
curvature. Instead, to faithfully imitate the large-N com-
plexity geometry, even if not to accurately reflect a realistic
laboratory capability, the one-local directions should be
hard and it should be the two-local directions that are easy.
Another simple example would be the complexity geom-

etry of the Heisenberg group. The Heisenberg group is in
some sense even simpler than the single qubit, since one
of the generators—the identity, which generates a global
phase—commutes with the other two: ½1̂; x̂� ¼ ½1̂; p̂� ¼ 0.
The only nontrivial commutator is ½x̂; p̂� ¼ i1̂. In order that
easy directions commute to a hard direction, both x̂ and p̂
should be easy, and 1̂ should be hard.
Even in the single-qubit case, there is a limit to what we

have been able to wring from analytic analysis. Clear
targets for numerical investigation include tracing the cut
locus, calculating the average distance between two points,
mapping the shape of what we have called the complexity
frontier, and calculating the distance between two unitaries
generated by evolving for a time t with slightly different
easy Hamiltonians (the switchback configuration). Given
the relatively low dimensionality, this should be within
computational reach for general Ixx, Iyy, and I zz, and
indeed even if generalized to a handful of qubits.
In this paper we have examined the complexity of a

single qubit. In the limit we focused on—large Izz but still
moderate Ixx and Iyy—the complexity never gets very
large. When normalized so that a unit step in an easy
direction reaches an orthogonal state, the largest relative
complexity is never more than O(1). From the perspective of
the gate definition of complexity it is somewhat surprising
that increments of complexity less than 1—“subgate
complexity”—have any meaning. And yet they do: within
a single unit of complexity we have found most of the key
phenomena of computational complexity. We even found
negative curvature that leads to the exponential growth of
perturbations, despite the fact that this phenomenon is
commonly explained in terms of an epidemic spreading
amongst the qubits [38], an explanation that makes no sense
whatsoever when there is just a single qubit. When there are
N qubits, the corresponding surprise is that it is sensible to
talk about increments of complexity less than N—a circuit
depth less than 1—and yet we have seen that from the
perspective of complexity geometry there is nothing wrong
with considering “subdepth-one complexity.”
In the AdS/CFT correspondence, both the anti–de Sitter

(AdS) (bulk) side and the CFT (boundary) side of the
duality are separately local, in the sense that the interactions
in each theory arrange themselves so that only nearby
points interact. From tensor network constructions of

10Though it might be interesting to numerically investigate the
complexity geometry for the case I zz ≫ Iyy ≫ Ixx to see what
vestiges remain.
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holographic theories it is clear how the locality of the CFT
is directly inherited by the AdS so as to give rise to bulk
locality on scales longer than the AdS length. But the AdS
that arises from holographic field theories is local not
merely on scales longer than the AdS length, but also on
scales much shorter than the AdS length, all the way down
to the string/Planck length. From the CFT point of view this
is something of a surprise. From the CFT point of view it
is not at all obvious that it makes sense to talk about
bulk regions smaller than an AdS length, and it is not
well understood how the CFT’s strongly coupled matrix
degrees of freedom arrange themselves so as to give rise to
“sub-AdS locality.”
The holographic complexity conjecture relates the com-

putational complexity of the CFT to the volume or action of
regions of the AdS bulk [6–9]. In light of the forgoing it is
interesting that the surprise that locality makes sense even
on sub-AdS scales is mapped by the duality onto the
surprise that complexity makes sense even on subdepth-one
scales. A single AdS volume in the complexity-volume
conjecture [7], and single AdS-sized Wheeler-de-Witt
patch in the complexity-action version of the conjecture
[8,9] gets mapped to a complexity equal to the dimension of
the boundary gauge group, which is to say a complexity
equal to the number of qubits—a depth-one circuit. If the
holographic complexity conjecture is to resolve sub-AdS
scale features of the bulk, it is necessary to have a definition
of complexity that can resolve circuit depths of less than 1.
The ultimate limit of locality—a single Planck-sized
region—corresponds to a complexity far less than a single
gate.
In this paper we have explored different definitions of

complexity. Ultimately, the question of which definition is

the best is really a question of which definition is the most
useful, which in turn depends on what system we wish to
study, and to what purpose. For us, the most interesting
definition of complexity would be the one holographically
dual to the size of the black-hole wormhole. With this
motivation, we investigated the complexity geometry
definition. We did this by calculating the complexity
geometry of a single qubit. Within a single qubit we found
many of the signature phenomena of the full multiqubit
complexity geometry: we saw that the geometry is right-
but-not-left invariant, and saw the impact that has on
homogeneity and isotropy; we saw that geodesics are no
longer generated by time-independent Hamiltonians; we
saw that easy-easy sections develop negative curvature, and
saw the consequences that has for the exponential growth
of perturbations; we saw that highly anisotropic penalty
factors drive the cut locus close to the origin, and saw the
repercussions this has on the pattern of complexity dis-
tances; we saw that the ratio between the complexity
distance and the inner-product distance may be ginormous;
and we saw exhibited the relative merits of the gate
counting and geometric definitions of complexity. In short,
we saw that the humble Bloch sphere, when squashed by
anisotropic penalty factors, prefigured and illustrated many
of the features of the complexity geometry of an exponen-
tially larger Hilbert space.
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