
PHYSICAL REVIEW C 97, 064909 (2018)

Higher order and anisotropic hydrodynamics for Bjorken and Gubser flows
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We study the evolution of hydrodynamic and nonhydrodynamic moments of the distribution function using
anisotropic and third-order Chapman-Enskog hydrodynamics for systems undergoing Bjorken and Gubser flows.
The hydrodynamic results are compared with the exact solution of the Boltzmann equation with a collision
term in relaxation time approximation. While the evolution of the hydrodynamic moments of the distribution
function (i.e., of the energy momentum tensor) can be described with high accuracy by both hydrodynamic
approximation schemes, their description of the evolution of the entropy of the system is much less precise. We
attribute this to large contributions from nonhydrodynamic modes coupling into the entropy evolution, which
are not well captured by the hydrodynamic approximations. The differences between the exact solution and the
hydrodynamic approximations are larger for the third-order Chapman-Enskog hydrodynamics than for anisotropic
hydrodynamics, which effectively resums some of the dissipative effects from anisotropic expansion to all orders
in the anisotropy, and are larger for Gubser flow than for Bjorken flow. Overall, anisotropic hydrodynamics
provides the most precise macroscopic description for these highly anisotropically expanding systems.
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I. INTRODUCTION

A remarkable property of the hot and dense matter formed in
ultrarelativistic heavy ion collisions at the Relativistic Heavy
Ion Collider (RHIC) and Large Hadron Collider (LHC) is a
strong collective motion which has been successfully modeled
using relativistic hydrodynamics (see Ref. [1] for a recent
review). Dissipative hydrodynamics is formulated as an expan-
sion in gradients of the fluid four-velocity, the simplest of them
being the first-order Navier-Stokes theory due to Eckart [2]
and Landau and Lifshitz [3]. Second-order dissipative theories
developed later by Grad [4], Müller [5], and Israel and Stewart
[6] cure an undesirable feature of relativistic Navier-Stokes
theory, its acausality and instability [7,8]. These theories,
based on the principle of non-negative entropy production, are
formulated by assuming an algebraic form for the entropy-four
current in terms of dissipative quantities. Unfortunately, this
method does not provide a unique set of higher order viscous
evolution equations. This has motivated a broad spectrum of
attempts to derive dissipative relativistic hydrodynamics from
a more fundamental framework.

Hydrodynamics may be regarded as a macroscopic effec-
tive theory of a many-body system in which the complex
interactions occurring over short distance and timescales are
averaged out, and the effective degrees of freedom are a small
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number of conserved charge currents coupled to dissipative
fluxes. For sufficiently weak coupling among its microscopic
constituents, such a system can be described statistically by
a more involved kinetic theory, based on a single-particle
phase-space distribution function f (x,p) whose evolution is
typically governed by some generalized form of Boltzmann
equation. The macroscopic conserved currents and dissipative
fluxes can be formulated in terms of momentum moments
of this distribution function for which equations of motion
are then derived from the Boltzmann equation. Closing the
set of moment equations requires approximations to truncate
the resulting moment hierarchy. Different such approximation
schemes result in different sets of hydrodynamic equations.
The validity and accuracy of the applied approximations can be
judged by comparing, for specific highly symmetric situations
in which the underlying kinetic theory can be solved exactly,
the solutions of the different hydrodynamic approximations
to the corresponding momentum moments of the exact mi-
croscopic solution [9–12]. This idea has generated increased
interest for the search of new exact solutions of the relativistic
Boltzmann equation [9,13–20].

The equilibrium distribution function in the local rest frame
(LRF) of a fluid is, by definition, isotropic in the momentum
space, irrespective of the macroscopic motion of the fluid.
Using it as an approximation for the true LRF distribution
function in rapidly expanding systems is justified only in the
limit of vanishing mean free path, i.e., instantaneous local ther-
malization. For realistic systems with small but nonzero mean
free paths, this approximation fails to properly account for the
competition between microscopic scattering processes driving
the system toward local momentum isotropy (and eventually
into local thermal equilibrium) and the macroscopic expansion
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rate which drives the local phase-space distribution away from
local thermal equilibrium (and, in the case of anisotropic
expansion, also away from local momentum isotropy). This
leads to a deviation δf (x,p) of the distribution function from its
local equilibrium form, f (x,p) = feq(x,p) + δf (x,p), with
the relative size of δf increasing with the Knudsen number, i.e.,
with the product of the microscopic mean free time between
collisions and the macroscopic expansion rate θ = ∂ · u ≡
∂μuμ where uμ(x) is the fluid’s flow four-velocity.

The first attempt to include such nonequilibrium δf effects
in the distribution function f (x,p) was based on Grad’s
14-moment approximation [4,6,21]. However, this moment
expansion does not follow systematically from the underlying
kinetic theory, such as the Boltzmann equation. A systematic
approach of obtaining viscous hydrodynamics, to any given
order in gradients of the macroscopic flow velocity, is based on
a Chapman-Enskog-like iterative solution of Boltzmann equa-
tion [22–31]. Recently, this method was employed to derive
higher order dissipative hydrodynamic equations [29]. Another
novel way of formulating hydrodynamics from kinetic theory is
based on an expansion controlled by the Knudsen number and
the inverse Reynold’s number [32]. For a conformal system
and using the relaxation time approximation (RTA) for the
collision term of Boltzmann equation, this approach leads to
identical viscous evolution equations as obtained in Ref. [29],
up to second order in gradients.

All these formulations, however, assume that the local
deviations of f (x,p) from equilibrium are small and that
an expansion of f (x,p) about its equilibrium value to a
few low orders in derivatives should suffice. Anisotropic
hydrodynamics [11,20,33–40] aims to extend the domain of
applicability of traditional hydrodynamics; i.e., it attempts
to better describe physical situations where the deviation of
f (x,p) from local momentum isotropy is nonperturbatively
large. This is achieved by explicitly including in the leading-
order LRF distribution function an anisotropy parameter ξ
describing the momentum-space deformation along the di-
rection of largest anisotropy of the local expansion rate, and
then expanding perturbatively the dynamical equations for the
residual dissipative effects caused by the residual deviation
δf̃ , defined by writing f (x,p) ≡ fa(x,p; ξ ) + δf̃ (x,p). The
nontrivial additional task in this approach is to determine the
time evolution of the anisotropy parameter ξ nonperturbatively
such that the residual dissipative effects encoded in δf̃ are
minimized and can again be described perturbatively. The
recent works [12,39,41] have made significant progress in this
direction.

It is necessary that the different macroscopic hydrodynamic
formalisms described above are tested in scenarios where
the microscopic dynamics can be solved exactly. We here
study expanding systems with longitudinal boost-invariance
and reflection symmetry, and either transverse homogeneity
((0+1)-dimensional Bjorken flow [42]) or azimuthally sym-
metric transverse density and flow gradients dictated by Gubser
symmetry [43] ((1+1)-dimensional Gubser flow [43,44]). For
these highly symmetric flow patterns, in each case a convenient
system of coordinates can be found in which the macro-
scopic hydrodynamic flow appears static and the microscopic
relativistic Boltzmann equation, using the relaxation time

approximation (RTA) for the collision term [45], reduces to
an ordinary differential equation in longitudinal proper time τ
[42] or de Sitter time ρ [43], respectively, and can be easily
solved analytically [9,10,13].

In this work, we compare with these exact solutions the evo-
lution of various macroscopic variables obtained using hydro-
dynamic equations obtained from the (perturbative) third-order
Chapman Enskog (CE) approach [29,31] and the (nonpertur-
bative) anisotropic hydrodynamic approach in the PL matching
scheme [12,41]. The present work goes beyond similar earlier
comparisons [10,12,31,41] by presenting for the first time the
solution of third-order CE evolution equations for Gubser flow
and a detailed analysis of the evolution of the systems’ entropy
in the various approximations (see Ref. [20] for an earlier study
of entropy production in the isotropic Friedmann-Lemaître-
Robertson-Walker (FLRW) universe). We find that entropy
production is a sensitive discriminator between different hy-
drodynamic approximations and exhibits generically much
larger deviations from the exact solution of the Boltzmann
equation than all of the hydrodynamic observables. This
reflects a significant contribution to entropy production by
nonhydrodynamic modes whose dynamics is not constrained
by macroscopic conservation laws.

The paper is organized as follows. In Sec. II, we briefly de-
scribe the Bjorken and Gubser flow profiles and the coordinates
we use to describe them. Section III reviews the exact solution
of the Boltzmann equation in relaxation time approximation
for the two flow profiles. In Sec. IV, we elaborate on the
Chapman-Enskog formalism and derive third-order dissipative
hydrodynamics for Gubser flow. This is followed in Sec. V by a
brief review of anisotropic hydrodynamics in the PL matching
scheme for the Bjorken and Gubser flows. Numerical results
for the comparison of the different approaches are presented
and discussed in Sec. VI. We close with conclusions and an
outlook in Sec VII.

II. BJORKEN AND GUBSER FLOWS

Bjorken flow [42] is most naturally expressed in Milne
coordinates (τ,r,φ,η),

τ =
√

t2 − z2, η = tanh−1
(z

t

)
,

(1)
r =

√
x2 + y2, φ = tan−1

(y

x

)
,

with the metric gμν = diag(−1,1,r2,τ 2) (in “mostly plus”
convention) and line element

ds2 = −dτ 2 + dr2 + r2dφ2 + τ 2dη2. (2)

Equation (2) is manifestly invariant under the Bjorken sym-
metry, namely boost-invariance [SO(1,1)] along the beam
direction η, rotational and translational invariance in the
transverse (x,y) plane [ISO(2)], and reflection (Z2) sym-
metry under η → −η. The only flow consistent with the
combined ISO(2) ⊗ SO(1,1) ⊗ Z2 symmetry group is uμ ≡
(uτ ,ux,uy,uη) = (1,0,0,0), in association with (r,φ,η) inde-
pendence of all macroscopic physical quantities.

Gubser [43] relaxed the ISO(2) symmetry of Bjorken flow,
replacing it with symmetry under the SO(3)q (conformal)
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group of transformations, while maintaining the invariance
under boosts and reflections. Gubser flow appears static in de
Sitter coordinates on a curved spacetime formed by the direct
product of a three-dimensional de Sitter space (dS3) with a
line, dS3 ⊗ R, defined by a Weyl rescaling of the metric in
Milne coordinates,

dŝ2 = ds2

τ 2
= −dτ 2 + dr2 + r2dφ2

τ 2
+ dη2, (3)

followed by a coordinate transformation to x̂μ = (ρ,θ,φ,η)
where [43]

ρ = − sinh−1

(
1 − q2τ 2 + q2r2

2qτ

)
,

(4)

θ = tan−1

(
2qr

1 + q2τ 2 − q2r2

)
.

Here q is an arbitrary energy scale which sets the transverse
size of the system. In these coordinates, the Weyl rescaled line
element

dŝ2 = −dρ2 + cosh2 ρ(dθ2 + sin2 θdφ2) + dη2, (5)

with metric ĝμν = diag(−1, cosh2 ρ, cosh2 ρ sin2 θ,1), is
manifestly symmetric under the Gubser group SO(3)q ⊗
SO(1,1) ⊗ Z2 since the SO(3)q conformal symmetry corre-
sponds to standard “rotations” of the sphere parametrized by
(θ,φ). The Gubser flow becomes static in de Sitter coordi-
nates, ûμ ≡ (ûρ,ûθ ,ûφ,ûη) = (1,0,0,0), and all macroscopic
variables depend only on the “de Sitter time” ρ.

In this paper, any quantity expressed in Gubser coordinates
x̂μ is denoted by a hat and made unitless by scaling with ap-
propriate powers of the Weyl rescaling parameter (longitudinal
proper time in Milne coordinates) τ [43,44]. For example,

ε(τ,r) = ε̂(ρ)

τ 4
, πμν(τ,r) = 1

τ 2

∂x̂α

∂xμ

∂x̂β

∂xν
π̂αβ(ρ). (6)

III. EXACT SOLUTION OF THE BOLTZMANN EQUATION
FOR BJORKEN AND GUBSER FLOWS

In this section, we review the central idea common to
deriving from microscopic dynamics the dissipative hydro-
dynamic equations considered in this article. We consider a
conformally symmetric system of weakly interacting massless
Boltzmann particles without conserved charges whose phase-
space distribution function f (x,p) evolves according to the
Boltzmann equation. In the absence of external forces, and with
a relaxation-time approximation for the collisional kernel, the
Boltzmann equation has the form [45]

pμ∂μf = (u · p)
δf

τr

, (7)

where τr (x) is the momentum-independent relaxation time and
δf ≡ f − feq is the deviation of the distribution function from
its local equilibrium form feq(x,p) ≡ exp{−β(x) [p · u(x)]}.
Here β(x) ≡ 1/T (x) is the inverse local temperature and
uμ(x) is the velocity of the local rest frame, defined as the
velocity associated with the local energy flow (LRF denotes
the Landau frame). We mention that for the relaxation time
approximation for the collision kernel, the Landau definition

of fluid velocity is not simply a choice but is necessary to ensure
energy-momentum conservation, as can be seen by taking
the first moment of Eq. (7). Conformal symmetry requires
τr = 5η̄/T ≡ c/T , where the specific shear viscosity η̄ ≡ η/s
is defined as the ratio of shear viscosity η to entropy density s.
Please note that here and in the following the entropy density
in the denominator of η̄ stands for the equilibrium definition,
seq ≡ (ε + P )/T , with ε and P being the local energy density
and pressure of the fluid, respectively.

On obtaining a solution of Eq. (7), either exact or in
some approximation, the macroscopic hydrodynamic variables
are constructed from the momentum moments of f (x,p).
Specifically, the conserved energy momentum tensor T μν is
the second moment of f (x,p) [46]:

T μν ≡ 〈pμpν〉, (8)

where we use the shorthand notation 〈O(x)〉 ≡∫
dpO(x,p)f (x,p) where dp ≡ d3p/[(2π )3| p|√−g] is

the invariant momentum-space integration measure, with g
being the determinant of the metric tensor.

In the remainder of this section, we discuss the exact
solutions of Eq. (7) for Bjorken and Gubser flows. Two other,
more general methods of obtaining from Eq. (7) approximate
solutions for f (x,p), namely the Chapman-Enskog iterative
scheme and anisotropic hydrodynamics with PL matching, are
presented in the next two sections, including again their specific
forms for Bjorken and Gubser flows.

For massless systems with Bjorken symmetry, the single-
particle phase-space distribution f (x,p) = f (τ ; pT ,w) can
only depend on the longitudinal proper time τ , the magnitude
of the transverse momentum pT , and the longitudinally boost-
invariant variable w = tpz − zp0 = pT τ sinh(y−η) (where y
is the kinematic rapidity of a particle) [9,13]. With this simpli-
fication, Eq. (7) reduces, at every point (pT ,w) in momentum
space, to an ordinary differential equation in τ ,

∂f

∂τ
= −f −feq

τr

, (9)

with the integral solution [9]

f (τ ; pT ,w) =D(τ,τ0)f (τ0; pT ,w)

+
∫ τ

τ0

dτ ′

τr (τ ′)
D(τ,τ ′)feq(pτ (τ ′)/T (τ ′)). (10)

Here D(τ2,τ1) = exp[− ∫ τ2

τ1
dτ ′/τr (τ ′)] is the so-called damp-

ing function, and the energy pτ is obtained from pT and w
through the mass-shell constraint. The temperature defining
the local equilibrium distribution under the integral in the
last term is obtained from the Landau matching condition
ε = 〈(u · p)2〉 = εeq = 〈(u · p)2〉eq = (3/π2)T 4. This condi-
tion involves an integral over all momenta (pT ,w) and renders
the solution (10) highly nonlinear, in spite of its apparent
simplicity.

For Gubser flow, the symmetries constrain the depen-
dence of the phase-space distribution f as follows: f (x̂,p̂) =
f (ρ; p̂2

�,p̂η). Here p̂2
� = p̂2

θ + p̂2
φ/ sin2 θ plays the role of

transverse momentum [10,15], and p̂η = w is the same
boost-invariant longitudinal momentum variable as in the
Bjorken case. Again, the symmetry constraints reduce the RTA
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Boltzmann equation (7) to an ordinary differential equation at
each point (p̂2

�,p̂η) in momentum space,

∂f
(
ρ; p̂2

�,p̂η

)
∂ρ

= − T̂ (ρ)

c

[
f

(
ρ; p̂2

�,p̂η

) − feq(p̂ρ/T̂ (ρ))
]
,

(11)

with the solution [10,15]

f
(
ρ; p̂2

�,p̂η

) =D(ρ,ρ0)f
(
ρ0; p̂2

�,p̂η

)

+ 1

c

∫ ρ

ρ0

d ρ ′D(ρ,ρ ′)T̂ (ρ ′)feq(p̂ρ(ρ ′)/T̂ (ρ ′)),

(12)

whereD(ρ2,ρ1) = exp[− ∫ ρ2

ρ1
dρ ′ T̂ (ρ ′)/c]. Again, the temper-

ature in the equilibrium distribution on the right-hand side is
obtained by Landau matching, and p̂ρ is obtained from (p̂2

�,p̂η)
through the mass-shell constraint.

The exact solutions (10) and (12) can be evaluated nu-
merically [9,10], and the exact evolution of any macroscopic
quantity [in particular of all the components of the energy mo-
mentum tensor (8)] can then be obtained by taking appropriate
momentum moments of the exact f (x,p).

IV. DISSIPATIVE HYDRODYNAMICS FROM THE
CHAPMAN-ENSKOG METHOD

This method is based on the assumption that the deviation
of f (x,p) from its local equilibrium value is small, such
that the RTA Boltzmann equation, Eq. (7), can be solved
iteratively to obtain a Chapman-Enskog-like expansion for the
nonequilibrium part of the distribution function in powers of
space-time gradients [22,47]:

δf = δf (1) + δf (2) + δf (3) + · · · , (13)

where δf (1) is first order in derivatives, δf (2) is second order,
and so on. To first and second orders in derivatives, one obtains

δf (1) = τr

u · p
pμ∂μfeq, (14)

δf (2) = τr

u · p
pμpν∂μ

(
τr

u · p
∂νfeq

)
. (15)

The above expansion may also be seen as a perturbation series
in powers of the expansion parameter τr .

The energy-momentum tensor has the general form

T μν = 〈pμpν〉 = εuμuν + P�μν + πμν, (16)

where the local energy density ε and pressure P are related to
the temperature by ε = 3P = 3/(π2β4) through the Landau
matching condition. �μν ≡ gμν + uμuν projects a tensor to
the space orthogonal to uμ, and the shear stress tensor πμν is
traceless and orthogonal to uμ.

The evolution equations for ε and uμ are obtained from
energy-momentum conservation, ∂μT μν = 0:

ε̇ + (ε + P )θ + πμνσμν = 0, (17)

(ε + P )u̇α + ∇αP + �α
ν ∂μπμν = 0. (18)

We use the standard notation Ȧ ≡ uμ∂μA for the comoving
time derivative, θ ≡ ∂μuμ for the expansion scalar, σμν ≡
(∇μuν + ∇νuμ)/2 − (θ/3)�μν for the velocity shear tensor,
and ∇α ≡ �μα∂μ for spacelike derivatives in the LRF.

To close the equations (17) and (18), we need additional
equations for the shear stress πμν . To obtain them, we express
πμν in terms of δf ,

πμν = �
μν
αβ

∫
dp pαpβ δf, (19)

where �
μν
αβ ≡ �

μ
(α�ν

β) − (1/3)�μν�αβ is a traceless symmet-
ric projection operator orthogonal to uμ, with �

μ
(α�ν

β) ≡
1
2 (�μ

α�
μ
β + �

μ
β�μ

α ). If one substitutes on the right-hand side
for δf the first-order term (14) of the expansion (13) and
uses the energy-momentum conservation laws (17) and (18)
together with ε ∝ β−4 to eliminate all temperature derivatives
on the right-hand side of Eq. (14) in terms of velocity
gradients, one obtains the well-know Navier-Stokes result
πμν = −2τrβπσμν . Here βπ is a thermodynamic integral over
the local equilibrium distribution, related to the relaxation time
τr and shear viscosity η by τr = η/βπ .

To obtain higher order approximations for πμν , we take the
comoving time derivative of Eq. (19),

π̇ 〈μν〉 = �
μν
αβ

∫
dp pαpβ δḟ , (20)

where A〈μν〉 ≡ �
μν
αβAαβ denotes the traceless symmetric pro-

jection orthogonal to uμ of the tensor Aμν , and express δḟ
through the Boltzmann equation (7), by rewriting it as

δḟ = −ḟeq + 1

u · p
pγ ∇γ f − δf

τr

. (21)

Inserting this back into Eq. (20), one obtains

π̇ 〈μν〉 + πμν

τr

= �
μν
αβ

∫
dp

u · p
pαpβpγ ∇γ f. (22)

From this equation, it is clear that the shear relaxation time
τπ is equal to the Boltzmann relaxation time τr . Now we can
substitute f = feq + δf (1), with δf (1) from Eq. (14), on the
right-hand side of Eq. (22) to obtain the second-order evolution
equation [25] (see also Ref. [32])

π̇ 〈μν〉+ πμν

τπ

=−2βπσμν +2π 〈μ
γ ων〉γ − 10

7
π 〈μ

γ σ ν〉γ − 4

3
πμνθ,

(23)

where ωμν ≡ ∇[μuν] ≡ 1
2 (∇μuν−∇νuμ) is the vorticity

tensor.
To go to third order, δf is required up to second order in

velocity gradients,

δf = feq(φ1 + φ2) + O(δ3), (24)

where φ1 and φ2 are first- and second-order corrections,
respectively. They are found to be [29]

φ1 = − β

2βπ (u · p)
pαpβπαβ, (25)
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φ2 = β

βπ

[
5

14βπ (u · p)
pαpβπγ

α πβγ + τπ

u · p
pαpβπγ

α ωβγ + (u · p)

70βπ

παβπαβ + 6τπ

5
pαu̇βπαβ + τπ

5
pα(∇βπαβ)

− τπ

2(u · p)2
pαpβpγ (∇γ παβ) − 3τπ

(u · p)2
pαpβpγ παβu̇γ + τπ

3(u · p)
pαpβπαβθ + β − (u · p)−1

4(u · p)2βπ

(pαpβπαβ)2

]
. (26)

Please note the change of sign of several terms in the above equation compared to Ref. [29], where a “mostly minus” signature
for the metric was used. We note that φ1 and φ2 in Eqs. (25) and (26) satisfy the Landau matching conditions uνT

μν = −εuμ

and ε = εeq [28].
Substituting f = feq(1 + φ1 + φ2) into Eq. (22), some algebra yields the third-order evolution equation [29]

π̇ 〈μν〉 = − πμν

τπ

− 2βπσμν + 2π 〈μ
γ ων〉γ − 10

7
π 〈μ

γ σ ν〉γ − 4

3
πμνθ − 25

7βπ

πρ〈μων〉γ πργ + 1

3βπ

π 〈μ
γ πν〉γ θ

+ 38

245βπ

πμνπργ σργ + 22

49βπ

πρ〈μπν〉γ σργ − 24

35
∇〈μ(πν〉γ u̇γ τπ ) − 4

35
∇〈μ(τπ∇γ πν〉γ )

+ 2

7
∇γ (τπ∇〈μπν〉γ ) + 12

7
∇γ (τπ u̇〈μπν〉γ ) + 1

7
∇γ (τπ∇γ π 〈μν〉) + 6

7
∇γ (τπ u̇γ π 〈μν〉)

− 2

7
τπωρ〈μων〉γ πργ − 2

7
τππρ〈μων〉γ ωργ − 10

63
τππμνθ2 + 26

21
τππ 〈μ

γ ων〉γ θ. (27)

The right-hand side of this equation contains three second-
order and fourteen third-order terms. It may be noted that in
the derivation of the above equation, the chemical potential is
set to zero and the particle four-current is not conserved. Conse-
quently, the Landau matching condition for particle density is
not required. Thus, the term

∫
dp(u · p)δf , that contributes to

particle density, is nonvanishing. However, this scalar moment
does not contribute to Eq. (27), as demonstrated within the
moment method of derivation of hydrodynamics in Ref. [32].

An expression for the entropy four-current is derived using
the kinetic theory definition for particles with Boltzmann
statistics [46]

Sμ = −
∫

dppμf (ln f −1). (28)

Assuming small deviations from local thermodynamic equilib-
rium, f = feq(1 + φ), where φ � 1, we obtain an expression
for the nonequilibrium entropy four-current up to third order
in φ as

Sμ = sequ
μ −

∫
dppμfeq

(
φ2

2
− φ3

6

)
, (29)

where seq = β(ε + P ) is the equilibrium definition of the
entropy density. For φ = φ1 + φ2, we have

Sμ = sequ
μ −

∫
dppμfeq

(
φ2

1

2
+ φ1φ2 − φ3

1

6

)
, (30)

where we ignore terms higher than third order in the derivative
expansion. Substituting φ1 and φ2 from Eqs. (25) and (26) and
performing the integrations, we obtain [31]

Sμ = sequ
μ − β

4βπ

παβπαβuμ + 5β

42β2
π

παγ π
γ
β παβuμ

+ βτπ

7βπ

[
18

5
u̇ρπργ πμγ −2

5
πμγ ∇ρπργ +1

2
παβ∇μπαβ

+ 3u̇μπαβπαβ + παγ �μρ∇απργ

]
, (31)

recalling that βπ = 4P/5. The LRF entropy density, s ≡
−uμSμ, is given by

s =seq − β

4βπ

παβπαβ + 5β

42β2
π

παγ π
γ
β παβ, (32)

whereas the entropy flux in the LRF, S〈μ〉 ≡ �μ
ν Sν , reduces to

S〈μ〉 = βτπ

7βπ

[
18

5
u̇ρπργ πμγ − 2

5
πμγ ∇ρπργ + 1

2
παβ∇μπαβ

+ 3u̇μπαβπαβ + παγ �μρ∇απργ

]
. (33)

We observe that, beginning at third order in the derivative ex-
pansion, the Chapman-Enskog method leads to a nonvanishing
entropy flux in the LRF.

A. Evolution equations in Bjorken flow

In this and the following subsection, we simplify the hydro-
dynamic evolution equations (17) and (18) and the evolution
equation for the shear stress (27) for Bjorken- and Gubser-
symmetric systems, respectively. For Bjorken flow [42], we can
follow Ref. [29]. We observe that Bjorken symmetry implies
ωμν = u̇μ = ∇μτπ = 0, θ = 1/τ , σηη = 2/(3τ 3), and that only
the ηη component of Eq. (27) survives, which we write in terms
of π ≡ −τ 2πηη. With these simplifications, Eqs. (17), (18), and
(27) become

dε

dτ
= − 1

τ

(
4

3
ε − π

)
, (34)

dπ

dτ
= − π

τπ

+ 1

τ

(
4

3
βπ − λπ − χ

π2

βπ

)
. (35)

In the last equation, the terms proportional to λ and χ are
the only surviving second- and third-order terms, respectively.
In order to rewrite some of the third-order contributions in
the form π2/(βπτ ), the first-order (Navier-Stokes) expression
for the shear pressure, π = (4/3)βπτπ/τ , has been used. The
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transport coefficients in Eq. (35) are simply

βπ = 4P

5
, λ = 38

21
, χ = 72

245
. (36)

For Bjorken flow, the entropy flux in the LRF vanishes, S〈μ〉 =
0, and the LRF entropy density can be written as

s(τ ) = seq − 3β

8βπ

π2 − 15β

168β2
π

π3. (37)

B. Evolution equations in Gubser flow

For systems with Gubser symmetry, π̂μν is diagonal in de
Sitter coordinates, with π̂ρρ = 0, and the shear stress tensor
has only one independent component which we take as π̂ ηη:
π̂ θ

θ = π̂
φ
φ = −(π̂ η

η )/2 ≡ −π̂/2. Similar to Bjorken flow, the
vorticity is zero, ω̂μν = 0, and since the flow is static in de Sitter
coordinates, the acceleration ˙̂uμ vanishes. Furthermore, τ̂π ∼
β̂ = 1/T̂ depends only on the de Sitter time ρ, so ∇̂μ

τ̂π =
0. With these simplifications, the nontrivial terms in the ηη
component of the shear stress evolution equation are

˙̂π 〈ηη〉 = dπ̂

dρ
, π̂ 〈η

γ σ̂ η〉γ = − θ̂

6
π̂ ,

π̂ 〈η
γ π̂η〉γ = π̂2

2
, π̂ργ σ̂ργ = − θ̂

2
π̂ ,

π̂ρ〈ηπ̂η〉γ σ̂ργ = − θ̂

4
π̂2, ∇̂〈η∇̂γ π̂

η〉γ = θ̂2

6
π̂ ,

∇̂γ ∇̂〈η
π̂

η〉γ = − θ̂2

4
π̂ , ∇̂2π̂ 〈ηη〉 = θ̂2

6
π̂ . (38)

Here θ̂ ≡ 2 tanh ρ is the local scalar expansion rate for Gubser
flow.

Using the above results, the evolution equations for ε̂ and
π̂ take the form

dε̂

dρ
= −

(
8

3
ε̂ − π̂

)
tanh ρ, (39)

dπ̂

dρ
= − π̂

τ̂π

+ tanh ρ

(
4

3
β̂π − λ̂π̂ − χ̂

π̂2

β̂π

)
. (40)

As in the Bjorken case, some third-order contributions were
brought into the form π̂2θ̂ by using the first-order (Navier-
Stokes) relation π̂ = (4/3)τ̂π β̂π tanh ρ. The transport coeffi-
cients in Eq. (40) are given by

β̂π = 4P̂

5
, λ̂ = 46

21
, χ̂ = 72

245
. (41)

For Gubser flow, the expression for the LRF entropy density
ŝ(ρ) is given in terms of π̂ as

ŝ = ŝeq − 3 β̂

8 β̂π

π̂2 + 15 β̂

168 β̂2
π

π̂3. (42)

Similar to the Bjorken result in Milne coordinates, we find
that for Gubser flow the entropy flux vanishes in de Sitter (i.e.,
LRF) coordinates.

V. ANISOTROPIC HYDRODYNAMICS

Anisotropic hydrodynamics makes the single-particle
phase-space distribution function f (x,p) explicitly depen-
dent on a spacelike four-vector lμ, which denotes the local
anisotropy direction, and a momentum anisotropy parameter
βl , which controls the amount of deformation from the usual
isotropic form. The leading-order part of the distribution
function f (x,p) ≡ fa(x,p) + δf̃ (x,p) is in general written
as fa(βu(−u · p),βl(l · p)) [40] such that

limβl→0fa(βu(−u · p),βl(l · p)) = feq(βu(−u · p)). (43)

Unlike conventional hydrodynamics, the parameter βl can be
arbitrarily large, enabling anisotropic hydrodynamics to handle
large deviations of the system from local momentum isotropy
and equilibrium.

In this work, the vector lμ is taken to point in the longitudinal
η direction in the LRF, i.e., lμ = (0,0,0,1) in LRF coordinates,
and we consider the widely used Romatschke-Strickland (RS)
[33] ansatz for the anisotropic distribution function:

fa ≡ fRS = exp[−βRS

√
pμpν�μν], (44)

where

�μν(x) = uμ(x)uν(x) + ξ (x) lμ(x)lν(x). (45)

Note that for this choice βu ≡ βRS and βl = βRS
√

ξ . The
parameter βRS is related to the inverse temperature β = 1/T
through the Landau matching condition, as we shall see later.

Owing to the presence of an intrinsic directionality lμ in
the system, the energy-momentum tensor T

μν
RS corresponding

to the leading-order distribution fa only has the general
decomposition in the Landau frame [40]

T
μν

RS = εRS uμuν + PL,RS lμlν + PT,RS �μν. (46)

Here �μν ≡ gμν + uμuν − lμlν projects onto the space or-
thogonal to both uμ and lμ. The local energy density εRS,
longitudinal pressure PL,RS, and transverse pressure PT,RS can
be expressed as moments of fRS [12]:

εRS = 〈(−u · p)2〉RS = ε(βRS) R200(ξ ), (47)

PL,RS = 〈(l · p)2〉RS = ε(βRS) R220(ξ ), (48)

PT,RS = 1
2 〈�μνpμpν〉RS = 1

2P (βRS) R201(ξ ). (49)

For massless systems they are related by conformal
invariance, εRS = (2PT,RS + PL,RS), and one has ε(βRS) =
3P (βRS) = 3/(π2β4

RS). The Landau matching condition
εRS(βRS) = ε(β) yields β = βRS/R

1/4
200. For a massless Boltz-

mann gas, the anisotropic integrals Rnrq(ξ ) in Eq. (47) can be
calculated analytically [12,41]:

R200(ξ ) = 1

2

(
1

1 + ξ
+ tan−1 √

ξ√
ξ

)
, (50)

R201(ξ ) = 3

2ξ

[
1

1 + ξ
− (1 − ξ )R200(ξ )

]
, (51)

R220(ξ ) = −1

ξ

[
1

1 + ξ
− R200(ξ )

]
. (52)

The residual deviation δf̃ of the distribution function gen-
erates, in principle, additional contributions to the longitudinal
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and transverse pressures, δPL = 〈(−u · p)2〉δf̃ and δPT =
〈(l · p)2〉δf̃ . We here use the PL matching scheme [12,41] in
which the anisotropy parameter ξ (x) is chosen such that these
contributions vanish exactly. This is a dynamical matching
scheme similar to Landau matching which defines the local
temperature T (x) in such a way that the deviation δf from
local equilibrium makes no contribution to the energy density
ε(x). With this matching scheme, we can drop the subscripts
RS on PL and PT .

For massless systems with Bjorken or Gubser symmetry, it
can be shown that there are no other dissipative contributions
from δf̃ to the energy momentum tensor [12,41]. The bulk
viscous pressure vanishes by conformal symmetry, and the
shear stress tensor is fully specified by the difference between
the longitudinal and transverse pressures,

πμν = 2(PL − PT )

3

(
lμlν − 1

2
�μν

)
. (53)

It can thus be reduced to a single independent component
for which we choose π ≡ −πη

η = −τ 2πηη = − 2
3 (PL−PT ) in

the Bjorken case and π̂ ≡ π̂ ηη = 2
3 (P̂L−P̂T ) in the Gubser

case. Evolution equations for π and π̂ are obtained from the
Boltzmann equation following Refs. [12,41].

For Bjorken flow, one finds [41] that Eqs. (34) and (35) are
in anisotropic hydrodynamics replaced by

d ε

dτ
= − 1

τ
(ε + PL), (54)

dPL

dτ
= −PL−P

τπ

− 1

τ

(
3PL − IRS

240

)
. (55)

Here we followed Ref. [41] and expressed the shear stress
π through the longitudinal pressure PL via π = P−PL =
1
3ε−PL. The thermodynamic integral IRS

240 over the RS distribu-
tion function is given in terms of the momentum deformation
parameter ξ as IRS

240(β,ξ ) = ε(β) R240(ξ )/R200(ξ ), with

R240(ξ ) = 1

ξ 2

[
3 + ξ

1 + ξ
− 3R200(ξ )

]
. (56)

Equation (54) agrees with Eq. (34) in Sec. IV B while the
evolution equations for the shear stress π = P−PL, Eqs. (35)
and (55), differ. We solve Eqs. (54) and (55) by using the
relations (47) and (48) to write PL = ε(β)R220(ξ )/R200(ξ ) and
convert Eq. (55) into an evolution equation for ξ .

For Gubser flow, one obtains [12] the energy conservation
law (39) and, instead of Eq. (40), the shear stress evolution

dπ̂

dρ
= − π̂

τ̂π

+ tanh ρ

(
25

12
β̂π − λ̂aπ̂ − Î240

)
, (57)

with Î240(β̂,ξ ) = ε̂(β̂) R240(ξ )/R200(ξ ) and the modified trans-
port coefficient λ̂a = 4

3 .
For the definition of the out-of-equilibrium entropy current,

we substitute f (x,p) = fRS(x,p) + δf̃ in Eq. (28):

s =
∫

dp (u · p)f (ln f − 1) = sa + δs̃. (58)

Using fRS = exp(−βRS

√
(1+ξ )w2/τ 2 + p2

T ) for Bjorken
flow, together with the integration measure dp =

dw d2pT /[(2π )3τ (−u · p)], and applying the transformation
w → w′ = w

√
1 + ξ for which fRS → feq(τ,pT ,w′; βRS),

the leading contribution sa can be evaluated exactly:

sa(τ ) = − 1

τ

∫
dw d2pT

(2π )3
fRS(ln fRS − 1) (59)

= 4

π2β3
RS

1√
1 + ξ

. (60)

To linear order, the δf̃ correction to the entropy density is
given by

δs̃ =
∫

dp (u · p) δf̃ ln fRS + O((δf̃ )2) (61)

≈ −βRS

∫
dp (u · p)

√
(u · p)2 + ξ (l · p)2 δf̃ . (62)

To evaluate it, an approximate solution of the Boltzmann
equation for δf̃ is needed. We here use the moments method
[32] in the 14-moment approximation, δf̃ ≈ δf̃14. Because
of our matching conditions, for Bjorken and Gubser flows
δf̃ contributes zero to all 14 hydrodynamic moments of the
distribution function; hence δf̃14 = 0.1 This shows that in the
PL-matching scheme only nonhydrodynamic moments of the
distribution function contribute to the residual nonequilibrium
entropy density δs̃. We leave a detailed study of such nonhy-
drodynamic mode contributions to entropy production to future
work.

For Gubser flow, a similar calculation yields for the leading
contribution

ŝa(ρ) = 4

π2β̂3
RS

1√
1 + ξ

. (63)

The correction δ ˆ̃s, at linear order in δf̃ , again vanishes in the
14-moment approximation.

VI. NUMERICAL RESULTS AND DISCUSSION

We compare the numerical results obtained from three
different formalisms: Chapman-Enskog third-order viscous
hydrodynamics, anisotropic hydrodynamics with PL match-
ing, and the exact solution of the RTA Boltzmann equation.
Although in principle each set of evolution equations can be
solved for any initial condition, we here only show results
evolving from local thermal equilibrium (with vanishing initial
momentum-space deformation ξ0 = 0 and shear stress π0 = 0)
at some initial time.

A. Bjorken flow

For our Bjorken flow results, we initialize the system at lon-
gitudinal proper time τ0 = 0.25 fm/c with initial temperature

1The general form of the 14-moment approximation δf̃14 for systems
with Gubser symmetry is given in Eq. (48) of Ref. [12]. For systems
with Bjorken symmetry, the same expression holds without the hats.
It is straightforward to see that in the PL-matching scheme this
expression is zero in both cases.
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FIG. 1. Proper time evolution of (a) the normalized shear stress π/(ε+P ), (b) the pressure anisotropy PL/PT , (c) the entropy density per
unit rapidity and transverse area sτ , and (d) the normalized entropy density s/seq, for Chapman-Enskog third-order hydrodynamics (dotted
red lines), anisotropic hydrodynamics (dashed blue lines), and the exact solution of the RTA Boltzmann equation (solid green lines). For each
theory, three sets of curves are shown, corresponding to three different values for the specific shear viscosity, 4πη/s = 1, 3, and 10. All curves
assume an initial equilibrium state (i.e., π0 = 0) with temperature T0 = 300 MeV at τ0 = 0.25 fm/c.

T0 = 300 MeV. Figure 1 shows the resulting proper time evo-
lution of the normalized shear stress π/(ε + P ) [Fig. 1(a)], the
pressure anisotropy PL/PT ≡ (P − π )/(P+π/2) [Fig. 1(b)],
the entropy density per unit rapidity and transverse area
sτ [Fig. 1(c)], and the normalized entropy density s/seq

[Fig. 1(d)], for the three theories listed above and three choices
of the specific shear viscosity as indicated in the figure.

For small specific viscosity η̄ ≡ η/s = 1/4π , all three for-
malisms yield very similar results. Except for the normalized
entropy density s/seq in Fig. 1(d), the three curves agree within
line thickness. As the specific shear viscosity increases, in-
creasing differences between the three formalisms become vis-
ible. Generally the differences remain small for the hydrody-
namic moments of the distribution function, i.e., for the evolu-
tion of the normalized shear stress π̄ ≡ π/(ε+P ) and pressure
anisotropy [which, because of PL/PT = (1−4π̄ )/(1 + 2π̄ ),
are basically the same quantity]. Third-order Chapman-
Enskog hydrodynamics performs somewhat better at late
times whereas anisotropic hydrodynamics reproduces the exact

solution more accurately at earlier times; the exact solution lies
between these two hydrodynamic approximations.

As seen in Figs. 1(c) and 1(d), the differences between
macroscopic hydrodynamic and exact microscopic kinetic
evolution are larger for the entropy. In ideal fluid dynamics
with Bjorken flow, sτ is a constant of motion. The increase
of sτ with time shown in Fig. 1(c) thus illustrates the rate
of entropy production by dissipative effects in the different
approaches. One sees that nonequilibrium effects on the
rate of entropy production are not as well described by the
hydrodynamic models as is the nonequilibrium evolution of
the energy-momentum tensor shown in Figs. 1(a) and 1(b).
Figure 1(d) shows the nonequilibrium deviation of the entropy
from the value expected from the first law of thermodynam-
ics, seq = (ε+P )/T = 4P/T (where both P and T evolve
according to viscous fluid dynamics). For η/s = 10 times
the “minimal” KSS value of 1/(4π ) [48], the entropy differs
from the “equilibrium” value seq by up to 10% for third-order
Chapman-Enskog hydrodynamics, and even for anisotropic
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FIG. 2. The same quantities as shown in Fig. 1, but now plotted as a function of the scaling variable w̃ ≡ τT /(4πη/s). See text for discussion.

hydrodynamics (where, as discussed at the end of the previous
section, only nonhydrodynamic moments of the distribution
function contribute to the residual entropy) the deviation is
still 5–7% over most of the evolution history. This indicates
that, while the coupling of nonhydrodynamic modes into the
evolution of the hydrodynamic moments of the distribution
function is rather weak, the same is not true for the entropy
density.

A remarkable feature of the entropy evolution predicted
by the exact solution of the RTA Boltzmann equation is the
crossing of the three green curves in Fig. 1(c) corresponding
to different values of η̄: As the value of η̄ increases, the initial
rate of entropy production decreases, but entropy is produced
over a longer time period such that its eventual saturation value
increases with η̄. This feature, which is shared by aHydro,
but not by the third-order Chapman-Enskog approach, appears
counterintuitive at first sight: In first-order Navier-Stokes
theory, the slope of sτ as a function of τ is proportional to
η̄: d(sτ )/dτ = 4η̄s/3τT . However, this argument implicitly
assumes the equilibrium definition of the entropy density, s ≡
seq = (ε + P )/T , and the substantial deviation of the exact
result from this lowest-order expectation illustrated in Fig. 1(d)
(which shows that the deviation increases with increasing
η̄) demonstrates the importance of higher order terms in the

definition of the entropy density. (Note that both aHydro
and the third-order Chapman-Enskog approach have trouble
accounting for this nonequilibrium deviation of the entropy
from the first law of thermodynamics.) Microscopically, the
increasing deviation from naive Navier-Stokes expectations is
related to the growth of the relaxation time with increasing
η̄, resulting in a slower response to the expansion driving the
system away from equilibrium. We have checked that the curve
crossing disappears when plotting seqτ instead of sτ ; in this
case the initial slope of the curves is directly proportional to η̄.

Larger values of the specific shear viscosity η̄ lead to
stronger viscous heating, thereby delaying the cooling by
expansion of the fireball. At a given (sufficiently late) proper
time τ , the more viscous fluid thus has a higher temperature
than the less viscous one if both started out with the same
initial temperature T0. The authors of Ref. [49] showed that this
effect can be scaled out of the evolution plots for dimensionless
ratios such as π/P or PL/PT if one plots them as a function of
the dimensionless scaling variable w̃ = τT /(4πη/s) instead
of τ . Figure 2 shows this for the four quantities plotted in
Fig. 1. The dimensionless ratios π/(ε+P ), PL/PT , and even
the nonequilibrium entropy ratio s/seq exhibit clear scaling
behavior, converging at around w̃ � 1 to a universal late-time
attractor given by relativistic Navier-Stokes theory. That the
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aHydro attractor, whose equation involves a resummation of
terms in powers of inverse Reynolds number, closely matches
with the exact attractor has already been demonstrated in
Ref. [50], albeit with a slightly different version of aHydro that
did not implement PL matching. We note that the dimensionful
quantity sτ does not scale, but the crossing of the curves
seen in Fig. 1(c) is removed by rescaling the time evolution
variable. The scaling plots shown in Fig. 2 reinforce the
observation made in Fig. 1 that the hydrodynamic approxima-
tions reproduce the exact evolution of the energy momentum
tensor, in particular the normalized shear stress and pressure
anisotropy, much more accurately than that of the entropy ratio
s/seq. Eventually, however, even this latter ratio approaches a
universal Navier-Stokes attractor, albeit only at w̃ � 2, i.e.,
twice as long as the hydrodynamic moments.

B. Gubser flow

Gubser flow is interesting because of its very strong trans-
verse expansion which asymptotically (i.e., for very large de
Sitter times) drives the system arbitrarily far away from local
thermal equilibrium, into a state of free streaming [10,15]. This
is in contrast to Bjorken flow where there is no transverse
flow and the longitudinal expansion rate decreases for late
longitudinal proper times, allowing the system to settle into a
state of approximate local thermal equilibrium. The dramatic
transverse expansion encoded in Gubser flow thus provides a
test bed for the performance of hydrodynamic approximations
in situations very far from equilibrium.

For Gubser flow, we initialize the system in equilibrium
(i.e., with π̂0 = ξ0 = 0) at de Sitter time ρ0 = −10 with initial
normalized temperature T̂ = 0.002.2 The temperature evo-
lution is shown in Fig. 3.3 As discussed in Ref. [12], at
early de Sitter times the system rapidly moves away from
the initial equilibrium state as a result of rapid initial longi-
tudinal expansion (resulting in negative pressure anisotropy
π̂ ∼ P̂L−P̂T < 0), then briefly passes through a transient
state of approximate local momentum isotropy (π̂ = ξ = 0)
before again being driven away from it by increasingly strong
transverse expansion (resulting in positive pressure anisotropy
π̂ ∼ P̂L−P̂T > 0), eventually leading to free streaming with
π̂/(ε̂+P̂ ) → 0.5 at late de Sitter times. Figure 3 shows that
at late de Sitter times anisotropic hydrodynamics slightly
overpredicts the temperature corresponding (by Landau match-
ing) to the energy density of the exact solution of the RTA
Boltzmann equation, by a constant factor. For the third-order

2For a typical transverse size of 1/q = 4.3 fm, this corresponds to an
initial temperature T ≈ 2 GeV at τ ≈ 1.95 × 10−4 fm in the fireball
center.

3Astute readers may notice a slight discrepancy between the Gubser
flow curves shown in Fig. 3(b) and the corresponding curves for
aHydro with PL matching shown in Fig. 1 of Ref. [12]. This difference
is of numerical origin: In Ref. [12] the reference curves for the exact
solution of the RTA Boltzmann equation were computed with not
quite sufficient numerical resolution, resulting in discrepancies for
the temperature T̂ of up to 1.2% from the fully converged results
shown here.
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FIG. 3. de Sitter time evolution of the (normalized) temperature
T̂ for Gubser flow, in absolute terms (a) and relative to the temperature
corresponding to the energy density associated with the exact solution
of the RTA Boltzmann equation (b). The results for anisotropic
hydrodynamics (blue) and the third-order Chapman-Enskog approach
(red) are compared with the exact solution (green). Panel (a) shows
results for η/s = 10/(4π ) only whereas in panel (b) results are
compared for three different values of the specific shear viscosity,
4πη/s = 1, 3, and 10.

Chapman-Enskog approach, the asymptotic temperature is
seen to keep falling further below that of the exact solution,
indicating (as the following figures will show more clearly)
that this hydrodynamic model does not correctly approach the
asymptotic free-streaming state and underpredicts the shear
stress and viscous heating at late de Sitter times. For both
hydrodynamic approximations, the asymptotic deviation from
the exact solution increases with the specific shear viscosity η̄.

In Fig. 4, we show the de Sitter time evolution of the
Gubser analogs of the quantities plotted in Fig. 1 above for
Bjorken flow. As already reported in Ref. [12], anisotropic
hydrodynamics with PL matching provides a very accurate
approximation to the exact solution of the RTA Boltzmann
equation for the evolution of the shear stress and pressure
anisotropy [Figs. 4(a) and 4(b)]. In particular, it approaches
the correct free-streaming limit at large de Sitter times. This
approach is faster (in ρ) for larger specific shear viscosity
η/s. However, as was the case for Bjorken flow, the ability
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FIG. 4. de Sitter time evolution of (a) the normalized shear stress π̂/(ε̂+P̂ ), (b) the pressure anisotropy P̂L/P̂T , (c) the entropy content
ŝ cosh2(ρ), and (d) the normalized entropy density ŝ/ŝeq, for Chapman-Enskog third-order hydrodynamics (red), anisotropic hydrodynamics
(blue), and the exact solution of the RTA Boltzmann equation (green). For each theory, three sets of curves are shown, corresponding to three
different values for the specific shear viscosity, 4πη/s = 1 (solid), 3 (dashed), and 10 (dash-dotted). Thermal equilibrium initial conditions
(π̂ = 0) with initial temperature T̂0 = 0.002 were implemented at ρ0 = −10.

of aHydro to describe the evolution of the entropy content of
the system [Fig. 4(c)] and of the nonequilibrium correction
to the first law of thermodynamics [Fig. 4(d)] is much more
limited. Especially at late de Sitter times, the aHydro curves
appear to move farther away from the exact solution.

For the third-order Chapman-Enskog approach, large
deviations from the exact solution at late de Sitter times
are even observed for the hydrodynamic moments shown in
Figs. 4(a) and 4(b): Instead of saturating at the free-streaming
limit ˆ̄π ≡ π̂/(ε̂+P̂ ) = 0.5, the normalized shear stress in
Fig. 4(a) saturates at 0.4. As a result, the pressure anisotropy
P̂L/P̂T = (1+4 ˆ̄π )/(1−2 ˆ̄π ) shown in Fig. 4(b) saturates at
large de Sitter times in the third-order Chapman-Enskog
approach instead of continuing to grow as dictated by the

exact solution of the RTA Boltzmann equation and is correctly
reproduced by aHydro with PL matching. This failure is
similar to the one observed in DNMR theory [32] (which is
a second-order viscous hydrodynamic approach based on an
expansion around a locally isotropic momentum distribution
function) except that in DNMR theory ˆ̄π saturates at a value
>0.5, corresponding to negative transverse pressure and
instability against cavitation [12].

As far as the de Sitter time evolution of the entropy content
of the system [Fig. 4(c)] and of the nonequilibrium correction to
the first law of thermodynamics [Fig. 4(d)] are concerned, the
discrepancies between third-order Chapman-Enskog hydrody-
namics and the exact solution of the Boltzmann equation are
even larger than those observed for anisotropic hydrodynamics.
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FIG. 5. The same quantities as shown in Fig. 4, but now plotted as a function of the scaling variable w̃ ≡ (4πη/s)(2 tanh ρ)/T̂ . See text for
discussion.

Although all approaches correctly predict that the entropy
density ŝ cosh2 ρ increases as dictated by the second law of
thermodynamics [Fig. 4(c)], the rate of increase is overpre-
dicted by the hydrodynamic models at late de Sitter times.
The rate of viscous entropy production is controlled by the
normalized shear stress ˆ̄π shown in Fig. 4(a); near ρ = 0 it is
small in all three approaches because ˆ̄π passes through zero.
Finally, Fig. 4(d) shows that third-order Chapman-Enskog
hydrodynamics predicts a saturation of the ratio s/seq at
large de Sitter times, whereas the exact solution shows that
this ratio should continue to decrease as ρ keeps increasing.
aHydro reproduces this continued decrease, but at an incorrect
rate.

It is worth noting that for both hydrodynamic approxima-
tions studied here, the ratio s/seq shown in Fig. 4(d) passes
through 1 near ρ = 0 where ˆ̄π passes through zero. This is
not the case for the exact solution, which shows nonvanishing

deviations of this ratio from unity (whose magnitude increases
with η/s) even when ˆ̄π = 0. As similar observation was made
before in Ref. [20], it shows that the exact solution of the
Boltzmann equation includes contributions to the nonequi-
librium entropy from nonhydrodynamic moments [20] that
are not captured by the hydrodynamic approximations studied
here.

We close this section by replotting Fig. 4 as a function of the
scaling variable w̃ = (4πη/s)(2 tanh ρ)/T̂ [51] in Fig. 5.4 Our

4Noting that 2 tanh ρ is the scalar expansion rate of Gubser flow,
corresponding to 1/τ in Bjorken flow, one sees that this definition of
w̃ is the inverse of the definition used for Bjorken flow in the preceding
subsection. We have included the factor 4πη/s in the definition of w̃

in order to scale out the η/s dependence of viscous heating in the
Navier-Stokes limit of small shear stresses [49].
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findings are consistent with the detailed study of the Gubser
flow fixed point presented in Ref. [51]. As for the case of
Bjorken flow, one observes convergence of the curves describ-
ing the evolution of the normalized shear stress [Fig. 5(a)]
and pressure anisotropy [Fig. 5(b)] for different specific shear
viscosities to a common attractor at large values of w̃.5 In this
case, however, the attractor for the normalized shear stress π̄
differs for third-order Chapman-Enskog hydrodynamics from
the shared “free-streaming attractor” for aHydro and the exact
solution of the RTA Boltzmann equation. This reflects the
above observation that third-order Chapman-Enskog hydro-
dynamics does not approach the correct free-streaming limit
at large de Sitter times. Figure 5(b) additionally shows that
the rate at which the trajectories for aHydro and the RTA
Boltzmann equation approach the asymptotic value π̄ = 0.5
is slightly different for the two theories, but insensitive to the
value of η/s in each case.

In contrast to the dimensionless ratios shown in Figs. 5(a),
5(b) and 5(d), the evolution of the dimensionful entropy density
shown in Fig. 5(c) exhibits no clear scaling behavior. For
the nonequilibrium entropy ratio s/seq in Fig. 5(d), one ob-
serves different attractors for all three dynamical approaches:
Whereas in each case the curves corresponding to different
specific shear viscosity converge at large w̃, the attractors they
converge to are very different for the exact solution, aHydro,
and third-order Chapman-Enskog. The difference between the
aHydro and exact attractors is smaller than between third-order
Chapman-Enskog and the exact result, but still large. Clearly,
the hydrodynamic approximations are having difficulties re-
producing the nonequilibrium contributions to the entropy
density at large w̃, i.e., deep in the free-streaming region of
the exact solution.

VII. CONCLUSIONS

In this work, we have considered two different formalisms
for deriving macroscopic descriptions of the nonequilibrium
dynamics of a system, namely, dissipative hydrodynamics
using the Chapman-Enskog iterative scheme to third order and
anisotropic hydrodynamics (aHydro) with PL matching. The
performance of these different hydrodynamic schemes was
tested by comparing their predictions with the exact solution of
the RTA Boltzmann equation in two situations where such an
exact solution is available, namely for the Bjorken and Gubser
flows. Both situations are effectively one-dimensional such
that the energy-momentum tensor can be characterized by just
two hydrodynamic moments of the microscopic distribution

5We note that without including the factor η/s in the definition
of the scaling variable w the pressure anisotropy PL/PT approaches
different late-time attractors for different values of η/s (not shown).
This pressure anisotropy diverges at large ρ, w, and w̃ as the system
approaches free streaming and the transverse pressure goes to zero.
Including the factor η/s in the definition of the scaling variable
w̃ exhibits an additional degree of universality in this asymptotic
behavior that is not seen when plotting the pressure anisotropy as
a function of w.

function, the energy density (or, equivalently, the tempera-
ture), and a single shear stress component. The shear stress
also defines the phenomenologically important longitudinal-
transverse pressure anisotropy PL/PT . Bjorken and Gubser
flows describe two extreme situations that bracket realistic
situations: While both share boost-invariant longitudinal ex-
pansion, Bjorken flow lacks any transverse expansion (and
correspondingly allows the system to approach a state of local
thermal equilibrium at late times) whereas Gubser flow features
very strong radial expansion in the transverse directions which
at late times drives the system completely away from local
equilibrium into an asymptotic state of free streaming. Both
flows start out with strong longitudinal expansion in which
dissipative effects deform the local rest frame momentum dis-
tribution by making it narrower in the longitudinal momentum
pη than in transverse momentum pT (such that PL−PT < 0),
but for Bjorken flow the local momentum distribution becomes
asymptotically isotropic whereas for Gubser flow it eventually
becomes narrower in pT than pη (leading to PL−PT >
0). The two flows thus present a test bed for macroscopic
hydrodynamic approximations of the microscopic dynamics
under very different conditions of anisotropic expansion, with
opposite signs of the pressure anisotropy PL − PT at late
times.

In addition to the evolution of the above-mentioned hy-
drodynamic moments (whose dynamics has been studied
before), we also explored here the evolution of the entropy
density of the system (which, in practical situations such as
relativistic heavy ion collisions, controls the multiplicity of
finally emitted hadrons). Our interest in the entropy arises
from previous observations [20] that suggested that the entropy
evolution is more strongly influenced by dynamical couplings
to nonhydrodynamic moments of the distribution function, and
we wanted to know how well these couplings can be captured
in macroscopic hydrodynamic treatments.

In all cases (i.e., for both anisotropic flow patterns and
for all the observables studied), we found that anisotropic
hydrodynamics with PL matching provides a more accurate
approximation to the exact evolution obtained from the exact
solution of the Boltzmann equation than does the dissipative
hydrodynamics derived from a third-order Chapman-Enskog
expansion of the distribution function. The latter is found to
consistently underpredict the deviation from local equilibrium
even when terms up to third order in velocity gradients are
kept in the expansion of the shear stress tensor. As a con-
sequence, the results of third-order Chapman-Enskog hydro-
dynamics deviate substantially from the exact solution when-
ever momentum-space anisotropies become nonperturbatively
large. This feature is most apparent for Gubser flow, both
during early times when longitudinal expansion dominates the
pressure anisotropy and at late times when the strong transverse
expansion drives the pressure anisotropy and pushes the system
toward free streaming.

Our findings can be understood most intuitively when
plotting them against a dimensionless time variable w̃ (defined
in the text) that is scaled by the microscopic relaxation time
(which increases with increasing specific shear viscosity η/s).
For Bjorken flow, one finds that the exact solution and the two
hydrodynamic approximation schemes studied in this paper
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share a common attractor to which all solutions converge at
late times, irrespective of initial conditions. For Gubser flow,
aHydro shares a common attractor with the exact solution for
the normalized shear stress and pressure anisotropy, whereas
these quantities approach a different attractor for third-order
Chapman-Enskog hydrodynamics. For the nonequilibrium
entropy, the asymptotic evolution in Gubser flow is controlled
by three different attractors for the exact solution and the two
hydrodynamic approximation schemes, with the differences
between the exact and aHydro attractors being smaller than
between the exact solution and third-order Chapman-Enskog
hydrodynamics.
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