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We study the one-body momentum distribution at different densities in nuclear matter, with special emphasis on
its components at high momentum. Explicit calculations for finite neutron-proton asymmetry, based on the ladder
self-consistent Green’s function approach, allow us to access the isospin dependence of momentum distributions
and elucidate their role in neutron-rich systems. Comparisons with the deuteron momentum distribution indicate
that a substantial proportion of high-momentum components are dominated by tensor correlations. We identify
the density dependence of these tensor correlations in the momentum distributions. Further, we find that high-
momentum components are determined by the density of each subspecies and we provide a new isospin-
asymmetry scaling of these components. We use different realistic nucleon-nucleon interactions to quantify the
model dependence of our results.
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I. INTRODUCTION

Short-range correlations (SRCs) have been unambiguously
identified in a variety of nuclear and hadronic physics
experiments [1–8]. Their presence is subtle at the one-body
level because they occur at large missing energy and not near
the Fermi energy [3]. At the two-body level, these correlations
must occur at all energy scales on account of the expected
reduction of the amplitude for nucleons to be found at small
relative distances. Ultimately, these two-body correlations are
also responsible for the high-momentum components of the
single-particle distribution. The quantitative structure of the
neutron and proton high-momentum components can now
be accessed experimentally [4,6,7]. A clear manifestation
of these correlations is the population of high-momentum
components of the single-particle momentum distribution
[9,10]. The existence of such components, in turn, involves
a necessary depletion of the low-momentum single-particle
strength to conserve the total density [11]. Green’s function
techniques are ideally suited to study such effects, as they
can incorporate SRCs via ladder summation techniques in
a self-consistent Green’s function (SCGF) description [12],
including a complete treatment of off-shell effects. Moreover,
many-body approximations can be formulated to preserve
basic conservation laws, including the density normalization
[13].

Experiments indicate that two-body correlations are dom-
inated by neutron-proton components [6]. This suggests that
tensor correlations, in addition to SRCs, can play a role in
the high-momentum structure of the nuclear wave function
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[14]. Tensor correlations and SRCs act in somewhat different
momentum regions, however. A distinction between the two
is presumably possible if suitable momentum cuts are applied.
One expects that a sizable population in the neutron-proton
(np) two-body density matrix translates into a relatively
large population in the one-body momentum distribution.
Theoretical calculations of the latter are challenging, as one
needs to treat and model nuclear short-range components
within a many-body environment.

Revisiting theoretical descriptions of high-momentum
components is particularly timely, in view of the recently
found correlation between the EMC effect and SRCs [15–17].
Data are now available for a relatively large selection of
nuclei, which has allowed for the empirical determination
of the density dependence of parameters that quantify SRCs.
Whereas there is still a discussion regarding two-body center-
of-mass (and other) corrections in establishing the connec-
tion between theory and experiment [16,18], the qualitative
guidance generated by such experiments is very valuable. We
discuss the density dependence of such correlations using
numerical data for both isospin symmetric and asymmetric
nuclear matter. In particular, we discuss the impact of a finite
isospin polarization on SRCs. We also highlight the impor-
tance of tensor components in a relatively high-momentum
region.

SRCs in nuclear matter have often been studied in con-
nection to the correlated nucleon momentum distribution.
High-momentum components in the medium are indeed a
consequence of SRCs. A variety of methods have been
employed to study these distributions, ranging from correlated
basis functions [19] to quantum Monte Carlo studies [20].
In particular, extensive studies have been carried out using
Brueckner-Hartree-Fock G matrices as starting points [21],
including off-shell corrections. Recent contributions within
this extended Brueckner-Hartree-Fock approach have tackled
symmetric [22] and asymmetric nuclear matter [23].

In addition, several groups have recently tried to provide
scaling arguments for the effect of SRCs in nuclei [18,24–27].
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In practice, one aims at identifying how these effects change
with particle number and if they are dominated by the number
of particles or by the number of pairs. From an infinite-matter
perspective, if one stays at the one-body level, total and partial
nucleon densities are the more obvious available quantities for
such a scaling. In the following, we illustrate how the two are
connected in the SCGF approach. We base our analysis on the
isospin-asymmetry dependence of the dilute Fermi gas (DFG)
in the high-momentum limit (see the Appendix for details)
[28,29]. We limit our discussion to the one-body momentum
distribution, but note that the two-body distribution can be
accessed in our formalism [30].

The variation of the results with the underlying nucleon-
nucleon (NN ) interaction provides an indication of the
robustness of the physical effects at play. We choose four NN
forces, with very different short-range and tensor components,
to explore the widest possible range. We thereby aim to
reduce model dependence and to identify trends within our
many-body summation technique. The Argonne v18 (Av18)
represents a phenomenological parametrization in real space,
including 18 spin-isospin operators [31]. It is a typical example
of a particularly strong, but finite, short-range core. The
charge-dependent Bonn (CD-Bonn) interaction is based on
a meson-exchange picture and provides a very accurate fit
to the two-body sector [32]. Its short-range core is softer
than Av18, which yields less high-momentum components.
We also use the Idaho next-to-next-to-next-to-leading-order
(N3LO) chiral-perturbation-theory potential of Ref. [33]. Its
low-energy constants are fitted to reproduce the two-body
sector with a large accuracy in a χ2 procedure (see Ref. [34]
for an alternative fitting strategy). Owing to its very nature,
as an effective-field-theory potential, the interaction requires a
momentum cutoff, which is chosen at 500 MeV. In general, this
NN force induces relatively few high-momentum components
in the many-body wave function. This is particularly true
beyond the cutoff momentum, where the potential is not
expected to apply. These three NN interactions are phase-shift
equivalent. In contrast, we also display a few results obtained
with the Av4′ reduction of Av18 [35]. This potential does
not reproduce experimental NN scattering phase shifts. In
particular, it lacks tensor terms, but it is built to reproduce the
deuteron binding energy. Av4′ is therefore useful in assessing
the importance of tensor correlations in the nuclear medium.
A detailed analysis of the energy of nuclear and neutron
matter with different versions of the Argonne potential has
been recently reported in Ref. [36]. Furthermore, let us note
that we have checked that the results obtained with Av6′, the
simplest Argonne interaction to include tensor terms, are very
close to those provided by the fully realistic Av18. This is an
indication of the importance of tensor terms in the physics at
play discussed in the following.

In the following, we neglect the effect of three-body
forces. Recent calculations indicate that the isospin asymmetry
dependence of SRC is relatively insensitive to the presence
of three-body interactions, at least around saturation density
[23]. We note, however, that the usual BHF approach to
include effective two-body forces obtained from three-body
interactions by a simple density folding is not consistent
with a diagrammatic expansion including antisymmetrized

matrix elements [37]. Moreover, the density folding in isospin
asymmetric matter has not been fully implemented [38].
Hence, a fully quantitative answer to this issue is still missing.

The present study complements, from a microscopic per-
spective, a series of recent analyses of the impact of high-
momentum components on isovector properties [39–41]. Both
schematic and purely microscopic calculations with different
methods have identified the effect of SRCs in the kinetic
component of the symmetry energy. In general, a correlated
system has a larger kinetic energy than its uncorrelated coun-
terpart. The redistribution of one-body strength underlying
this increase, however, is different for different asymmetries.
In particular, the asymmetry dependence is milder in the
correlated case, which leads to a smaller kinetic symmetry
energy. At low densities, this component can even become
negative. Whether this reduction affects the observable bulk
properties of neutron-star matter is still under discussion.

II. FORMALISM

A particularly relevant question, in view of recent advances
[25,26], is the dependence of SRCs with isospin asymmetry.
In an arbitrarily isospin-polarized system, effects dominated
by np pairs will have a different asymmetry dependence than
those associated with same-isospin pairs. This can potentially
have observable implications on single-particle properties.
Here we look at the problem from the perspective of isospin
asymmetric nuclear matter [42]. We will characterize isospin
asymmetry using either the proton fraction, xp = ρp

ρn+ρp
, or the

isospin-asymmetry parameter,

β = ρn − ρp

ρn + ρp

= 1 − 2xp. (1)

In practice, our calculations are performed at finite temper-
ature to avoid instabilities associated with pairing solutions
[11,43,44]. While a proper treatment of pairing can be
implemented [45], it is not relevant for the discussion of
high-momentum components. In the following, all the results
have been computed at a low temperature of T = 5 MeV.
Although not shown here explicitly, we have checked that
our conclusions are not seriously affected by working at
finite temperature. We note that the high-momentum region
is dominated by NN correlations rather than thermal effects
[11], and hence it is insensitive to temperature.

Correlations have a particularly clear manifestation in the
single-particle momentum distribution [11],

nτ (k) = 〈a†
τ (k)aτ (k)〉, (2)

where a†(k) [a(k)] is the creation (destruction) operator of a
single-particle excitation with momentum k and isospin index
τ = n,p. The average, 〈·〉, is taken over a complete thermal
set of many-body states [12]. Our aim is to quantify how
one-body high-momentum components evolve with density
and isospin asymmetry. To access these density and asymmetry
dependencies, we perform SCGF calculations at arbitrary
densities and isospin asymmetries [44]. We provide here a
concise explanation of the ladder SCGF method. A detailed
description of the numerical techniques employed in its
resolution can be found elsewhere [44,46].
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The numerical simulations are obtained from a self-
consistent summation of ladder diagrams in the two-body
sector which accounts consistently for SRC and tensor effects.
This is achieved by means of an in-medium Lippmann-
Schwinger equation, which can be schematically represented
as

Tτ+τ ′ = Vτ+τ ′ + Vτ+τ ′G0
II,ττ ′Tτ+τ ′ . (3)

The sums τ + τ ′ stand for the three relevant channels for
in-medium scattering in asymmetric matter, namely neutron-
neutron (nn), proton-proton (pp), and np. The isospin-
dependent NN interaction, V , is summed to all orders to
obtain a well-behaved in-medium effective interaction, or T
matrix. We solve the Lippmann-Schwinger equation using
matrix techniques with up to J = 4 partial waves in all isospin
channels.

In-medium scattering is mediated by a lowest-order two-
body propagator, G0

II,ττ ′ , which accounts for both particle-
particle and hole-hole correlations and incorporates off-shell
effects completely. In asymmetric matter, the different isospin
elements of this propagator are given by

G0
II,ττ ′(k,k′; �)

=
∫

dω

2π

dω′

2π

G<
τ (k,ω)G<

τ ′ (k′,ω′) − G>
τ (k,ω)G>

τ ′ (k′,ω′)
� − ω − ω′ + iη

.

(4)

The two components of the single-particle propagator, G<
τ and

G>
τ , are related by a Kubo-Martin-Schwinger relation [28].

They can also be linked to the single-particle spectral function,
Aτ ,

G<
τ (k,ω) = fτ (ω)Aτ (k,ω), (5)

G>
τ (k,ω) = [1 − fτ (ω)]Aτ (k,ω), (6)

using the Fermi-Dirac distribution of each species, fτ (ω) =
[1 + e

ω−μτ
T ]−1. The chemical potential, μτ , is found from the

integral of the momentum distribution, nτ . We normalize the
distribution to unity,

∫ ∞

0
dk k2nτ (k) = 1, (7)

which allows for clear comparisons with a finite system like
the deuteron [8]. The momentum distribution is related to the
single-particle propagator via a density-dependent factor:

nτ (k) = 2

π3ρτ

∫ ∞

−∞
dω G<

τ (k,ω). (8)

The combination of the two expressions, Eqs. (7) and (8),
provides a nontrivial connection between the partial density,
ρτ , and the chemical potential, μτ .

Self-consistency is imposed all the way through in our
calculations. The single-particle propagators that enter Eq. (4),
for instance, are obtained from the T matrix itself. In the ladder
approximation, this effective interaction defines the imaginary

part of the (retarded) self-energy,

Im
τ (k,ω) =
∑
τ ′

∫
d3k′

(2π )3

∫
dω′

2π
[fτ ′(ω′) + bτ,τ ′(ω + ω′)]

×〈kk′|Im Tτ+τ ′(ω + ω′)|kk′〉AAτ ′(k′,ω′),

(9)

which acquires different contributions from equal and unequal
isospin partners. The difference arises from both the fermionic,

fτ (ω), and the bosonic, bτ,τ ′(�) = [e
�−μτ −μτ ′

T − 1]−1, phase-
space factors. Furthermore, there is also an isospin dependence
associated with the isospin-channel-dependent retarded T
matrix, which is properly antisymmetrized in the relevant
channels.

The dispersive contribution to the real part of the self-
energy can be obtained from a dispersion relation [12]. The
generalized, instantaneous Hartree-Fock contribution,


HF
τ (k) =

∑
τ ′

∫
d3k′

(2π )3

∫
dω′

2π
〈kk′|Vτ+τ ′ |kk′〉AG<

τ ′(k′,ω′),

(10)

must be included as well. We consider up to J = 8 partial
waves in the calculation of this contribution, which is relevant
for in-medium quasiparticle shifts. The solution of the Dyson
equation generates the single-particle spectral function:

Aτ (k,ω) = −2Im
τ (k,ω)[
ω − k2

2m
− Re
τ (k,ω)

]2 + [Im
τ (k,ω)]2
. (11)

Feeding this spectral function into Eqs. (4)–(6), one obtains
a self-consistency loop that treats all particles in the same
manner, providing feedback to the different ingredients of the
calculations. This goes beyond the scope of other approaches
in providing an asymmetry-dependent spectral function and
hence a fully correlated description of the microscopic prop-
erties of the system. In addition, macroscopic bulk properties
can be accessed by means of sum rules and the Luttinger-Ward
formalism [11,41,44].

III. DENSITY DEPENDENCE OF SHORT-RANGE
CORRELATIONS

In our previous work, we have investigated the asymmetry
dependence of the (depleted) low-momentum components
of the one-body momentum distribution [11]. In that case,
because the dependence on momentum below the Fermi
surface is particularly mild [47,48], one can focus on the single,
lowest available momentum k = 0. In contrast, any attempt to
quantify effects associated with high momenta will necessarily
depend on the definition of such “high momenta.” Here, we
define high-momentum regions as ranging from ∼400 to
∼850 MeV. At the lower end, this is far enough from the
Fermi surface to avoid effects associated to its smoothing with
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FIG. 1. (Color online) Momentum distribution for neutrons (top panels) and protons (bottom panels) in asymmetric nuclear matter. Different
panels correspond to different NN interactions, from left to right: Argonne v18, CD-Bonn, N3LO, and Av4′. Lines represent data obtained
at different proton fractions. We also show, for comparison, the momentum distribution of the deuteron (dotted line) associated with each
interaction.

temperature at different asymmetries.1 At the high end, this
range represents the limit at which momentum distributions
stop scaling, as we see next. Within high momenta, we also
define a “tensor-dominated” momentum region, ranging from
k ∼ 400 MeV to k ∼ 550 MeV (see below for details).

We start the discussion by showing in Fig. 1 the momentum
distribution of neutrons (top panels) and protons (bottom
panels) at different asymmetries for a fixed total density
of ρ = 0.16 fm−3 and a temperature of T = 5 MeV. The
different columns represent results obtained with different NN
interactions. We focus our attention on the high-momentum
region, well above the Fermi surface, and hence plot our
results in a logarithmic scale. Overall, we note that the
high-momentum components change very little when the
isospin asymmetry is modified. This suggests that, when
the momentum distribution is normalized to unity, high-
momentum components are basically determined by the total
density of the system.

We compare the results of asymmetric infinite matter to
the corresponding deuteron momentum distribution, shown
as the dotted line. Qualitatively, and as expected, the high-
momentum components in the momentum distribution of
nuclear matter are qualitatively similar to those of the
corresponding deuterons. For the phase-shift equivalent in-
teractions, we identify an area, in the momentum region
400−550 MeV, where the slopes of the two distributions are
very much alike. In contrast, Av4′ results (rightmost column),
which lack tensor effects, show a node in the momentum

1This momentum is also close to point at which a pure S-wave
deuteron would have a node in the momentum distribution; see right
panels of Fig. 1.

distribution in this region. This confirms that the deuteron
momentum distribution in this area is dominated by tensor
effects, as observed in previous studies [14]. From now on,
we call this the “tensor-dominated” region. We quantify the
agreement between the two momentum distributions in the
tensor-dominated region later.

Looking at the high-momentum components in more detail,
we observe that the intrinsic momentum cutoff of N3LO shows
up naturally in the momentum distribution (third column).
The distribution displays a sharp decrease above 500 MeV,
absent in the other NN interactions. In particular, the deuteron
momentum distribution data obtained in Ref. [49] is not
reproduced for such a soft interaction (or for an interaction with
no tensor terms, such as Av4′). One can debate whether such
high-momentum components are physically motivated in NN
interactions [50,51], but their presence in the many-body wave
function seems unquestionable. While the short-range part of
the NN interaction is not constrained by a fit to scattering
data, we note that all experiments indicate that no sharp drop
associated with a cutoff can be expected [8,49]. We therefore
adopt the interpretation that the short-range part of relative NN
wave functions must be suppressed because the probability to
find two intact nucleons at such distances must vanish on
account of their intrinsic structure. Which NN interaction is
to be preferred can then be benchmarked by demanding an
appropriate description of the modest 10% of nucleons with
momenta not contained in the mean field, as measured, for
instance, in Ref. [3]. Moreover, calculations with different
short-range NN forces provide a range of theoretical results.
One can take this spread as a measure of the uncertainty in the
short-range description of NN interactions.

We identify a small decreasing (increasing) trend in the
neutron (proton) high-momentum components as the system
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FIG. 2. (Color online) Ratio of the nucleon momentum distribution to the corresponding deuteron distribution at high momenta. Different
columns correspond to different densities, from ρ = 0.04 fm−3 (left column) to ρ = 0.16 fm−3 (right column) in equidistant steps. Vertical
panels show different NN interactions: Argonne v18 (top row), CD-Bonn (middle row), and N3LO (bottom row) panels. The dashed horizontal
line and gray region represent, respectively, the average and the error bar of the ratio in the tensor-dominated momentum region, depicted by
vertical dotted lines.

becomes more neutron rich, which we analyze in more detail in
Sec. IV. Above 600 MeV, the infinite matter results overshoot
the deuteron ones. This happens for all interactions, including
Av4′. We take this as an indication of the larger importance
of SRCs in a dense system compared to the dilute deuteron
bound state. In particular, the latter has a number density
of ρ ∼ 2/[4π (5/3)3/2r3

d /3] ∼ 0.02 fm−3, where rd is the
deuteron charge radius. This density is well below saturation,
where the results of Fig. 1 were obtained. We note that the
SRC overshooting occurs well above the tensor-dominated
region and hence the two regions should be distinguishable by
applying momentum cuts.

One can quantify in more detail the similarity between
nτ (k) and nd (k), as well as the gradual overshoot at high
momenta, by looking at the ratio of the two momentum
distribution. This ratio is shown in continuous lines in Fig. 2 for
different densities (columns) and three phase-shift equivalent
interactions (rows). We draw three relevant observations from
this figure.

First, there is a well-defined region in momentum where
both distributions have similar momentum dependencies at
subsaturation densities. Qualitatively, one can take this plateau
region as an indication of the dominance of tensor correlations.
The latter are of a similar nature in the deuteron and
in the medium and hence lead to equivalent momentum
dependencies in the distribution. There are arguments in favor
of such similarity, from either hard-scattering physics [9] or
factorization in the operator-product expansion [52].

Second, the ratio of the two distributions increases with
density. This is most clearly seen in the tensor-dominated
region, suggesting an increase in importance of tensorlike

correlations with density. Because the relevant densities of
nuclei are fairly similar to those of the deuteron, one should
expect to see similar plateaus in finite systems [49]. Also,
dense systems should have larger plateaus compared to dilute
ones.

Third, the plateaus become less pronounced as the density
increases. This suggests that the overshooting associated to
SRC occurs at lower momenta with increasing ρ. One expects
the nuclear medium to induce stronger correlations and hence
lead to larger high-momentum tails as the density increases.
This is particularly clear for N3LO (right panels), where the
effect is enhanced by the strong falloff of nd (k) above the cutoff
momentum. Overall, this agrees with the idea that medium-
induced SRC correlations become more relevant than tensor-
based ones in the high-density region. The dominance of SRCs
in the high-density region could have implications for neutron-
star matter [24].

Different measures have been proposed to quantify the
importance of tensor correlations. The ratio of the momentum
distribution of a given nuclear system to that of the deuteron is
one of such quantities. We refer to this measure as a2, following
Ref. [7].2 More specifically, we define a2 as the integrated
average of the ratio in the tensor-dominated region:

a2 =
〈

n(k)

nd (k)

〉
k=400−550 MeV

. (12)

2Note that the same notation, namely a2, has also been used to define
other quantities such as cross-section ratios [16,18].
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This is related, but not necessarily equal, to the probability
of a single nucleon to be part of a SRC pair. Specifically,
a2 measures how many high-momentum nucleons there are
in the distribution with respect to those in the deuteron. The
horizontal dashed lines in Fig. 2 correspond to the values
of the averaged a2 for the different NN interactions and
densities. Our SCGF calculations suggest values of a2 between
∼1, at low densities, and ∼5, at large densities. The node
in the deuteron momentum distribution for Av4′ would lead
to divergent values of a2. This demonstrates once again the
relevance of tensor-induced correlations in this momentum
region. We note that changing the average integration region
by ±50 MeV gives quantitatively similar results.

For all three NN interactions, the value of a2 increases with
density. The density dependence, however, is sensitive to the
NN interaction under consideration. As already mentioned,
the plateau in the ratio of momentum distributions also
becomes less and less prominent as the density increases.
A clear minimum is, however, present in all cases, which
suggests that one can still characterize the ratio in the
tensor-dominated region using an average as in Eq. (12).
To take into account any potential errors in the separation
between tensor- and short-range-dominated regions, we have
assigned a conservative uncertainty to a2. This is represented
in Fig. 2 by the gray bands, which have been obtained as
the maximum deviation between the average and the function
in the tensor-dominated momentum range. The shaded bands
extend to momenta below the tensor-dominated region, cover
the minimum in the ratio at all densities, and are wide enough
to contain the numerical uncertainties associated with the
solution of the SCGF equations. In general, we find that the
error in a2 increases with density. We still obtain, however,
a meaningful increasing trend as a function of density for all
NN interactions, which we proceed to explore further.

We show in Fig. 3 the density dependence of a2 obtained
for the three relevant NN forces. We note that, in all three
cases, a2 increases with density, saturating at high densities.
We find modest differences between the potentials, which
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a 2
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FIG. 3. (Color online) Density dependence of a2, as defined in
Eq. (12). We show values obtained for three NN interactions, with a
small horizontal offset for display purposes. Experimental a2 values
from Ref. [16] are plotted as a function of a rescaled nuclear density
(see text for details). The shaded region corresponds to power laws
with exponents 0.4−0.5.

at half saturation fall in the range a2 ∼ 2−2.7. Somewhat
surprisingly, CD-Bonn seems to provide the largest a2. In
other words, compared to the respective deuteron, CD-Bonn
is a harder interaction than Av18. We have not found a simple
quantitative explanation for this unforeseen result.

As already mentioned, the error bars increase with density
for all three interactions, particularly for N3LO, where SRCs
are hardly present. A two-parameter fit of the type a2 = b1ρ

b2

provides a range of values b1 = 7−10 and b2 = 0.4−0.5. This
yields the range depicted in the gray region in Fig. 3, which
contains all data points and their error bars.

We compare our values of a2 to those extracted from
a recent analysis of experimental data in Ref. [16]. Each
experimental point in Fig. 3 corresponds to a different isotope,
between the deuteron and gold, where experimental (e,e′p)
data is available. These data have been reanalyzed recently
in the context of the connection between the EMC effect and
SRC [15,17]. Following this analysis, we have determined
the number densities of the different isotopes by assuming a
spherical liquid drop with radius equal to the charge radius
of Ref. [53]. To this density, we have also applied a A−1

A
correction to account for the excess density seen by the
knocked out nucleon, which propagates through a less dense
environment. This should correspond to the so-called “scaled
nuclear density” of Ref. [16]. We note that at low densities
(deuteron and triton, essentially), the experimental data agree
well with our numerical estimates of a2. At moderate and
large densities, however, the experimental data are well above
our results. Nevertheless, the data of Ref. [16] are obtained
as a ratio of deep inelastic cross sections rather than as a
ratio of momentum distributions. The connection between the
observables and the momentum distributions is not free of
uncertainties. Let us stress, for instance, that our definition of
a2 does not account for the center-of-mass spreading of the np
pair, a correction that can either reduce [16] or increase [18]
the values of a2 according to different theoretical models. A
rescaling of the density or the theoretical values by a factor of
2 would lead to a good overall agreement between data and
experiments.

IV. ISOSPIN-ASYMMETRY DEPENDENCE OF
SHORT-RANGE CORRELATIONS

Our results indicate a qualitative resemblance of the
one-body high-momentum components of the deuteron and
symmetric nuclear matter. We now want to investigate whether
a similar resemblance is found in isospin-asymmetric matter.
Our final aim is to quantify how much tensor-dominated
correlations change with isospin asymmetry. We use the ratios
of the calculated momentum distributions and the deuteron
distribution as tools to assess the isospin dependence of
tensorlike correlations. We show the ratio, for a fixed density
of ρ = 0.08 fm−3 and different isospin asymmetries, in the top
panels of Fig. 4. We have chosen this relatively low density
because in the symmetric case it still shows a clear scaling.
We provide results for the three realistic phase-shift equivalent
potentials.

The ratio of isospin-dependent momentum distributions
reveals a noticeable dependence with isospin asymmetry
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FIG. 4. (Color online) (Top panels) Ratio of the neutron and proton momentum distribution to the corresponding deuteron distribution at
high momenta. Different line styles correspond to different isospin asymmetries. The three different panels correspond to thee NN interactions,
from left to right: Argonne v18, CD-Bonn, and N3LO. (Bottom panels) Rescaled neutron and proton momentum distributions, as discussed
in the text. After rescaling, all results fall in a narrow band. Gray bands are an error band associated to the maximum deviation in the
tensor-dominated region.

that was not apparent in Fig. 1. We find that the neutron
distribution becomes less populated as the system becomes
more neutron rich. Conversely, we observe an increasing trend
for the proton momentum distribution. Taking this population
as a measure of correlations, one can say that the minority
species is more correlated. This agrees with the conclusions
we drew when investigating the depletion of low-momentum,
isospin-asymmetric components [11].

For all but the highest asymmetries in the proton distri-
butions, the ratios evolve linearly with isospin asymmetry.
We justify this linear dependence in the Appendix, with a
derivation based on the DFG formalism in the high-momentum
limit. This indicates that the asymmetry dependence of the
momentum distribution should be given by

nτ (k; ρ,β) = [1 ± γ (ρ)β] × nτ (k; ρ,0), (13)

where γ (ρ) is a dimensionless, density-dependent parameter
that quantifies the isovector strength of the effective interaction
and β is the isospin asymmetry as defined in Eq. (1).
More specifically, γ should be associated with the isovector
dependence of the effective interaction in the tensor channel.
The latter parameter is negative, and therefore the plus (minus)
sign corresponds to neutrons (protons). We have tested the
validity of this asymmetry dependence for our numerical data
at different densities and for a wide range of momenta. In
particular, the asymmetry dependence holds very well in the
whole tensor-dominated, k = 400−550 MeV range and for all
asymmetries. Factorization in an isospin asymmetric medium
can presumably lead to a more quantitative justification of this
linear dependence with asymmetry [52].

The bottom panels of Fig. 4 show rescaled ratios of the
asymmetric matter and the deuteron momentum distribu-
tions. The rescaling is obtained by dividing the asymmetry-
dependent momentum distributions by [1 ± γ (ρ)β]. The
optimal γ parameter is fitted at each density. In practice,
we minimize at each asymmetry the difference between the
rescaled ratio and that of the symmetric case. We then average
over asymmetries to find an optimal γ for both neutrons and
protons at a given density. We provide error bars for this
quantity in a similar fashion to the analysis for a2, finding
the maximum deviations between the data and the averages. In
principle, this procedure could be followed independently for
both neutrons and protons, thus deriving an isospin-dependent
γ . Yet, we find a good agreement between the γ parameters
obtained independently. We take this as a confirmation of
the quality of our proposed linear asymmetry dependence.
We note that, after rescaling at a given density, the residual
dependence on asymmetry in the tensor-dominated momentum
range is effectively removed. This is a rather general property,
occurring at densities as high as ρ ∼ 0.24 fm−3.

In contrast, Sargsian [26] has suggested that a scaling of the
type nτ (k; ρ,β) ∼ [1 ± β]−γ nτ (k; ρ,0) with γ ∼ 1 should be
valid. We find that γ = 1 does not provide a qualitatively
good scaling of our data. In fact, it is not easy to find a
power that reproduces the ratios at all asymmetries. We note,
however, that the power-law scaling reduces to Eq. (13) in the
small isospin-asymmetry limit. In particular, nearly symmetric
systems like stable finite nuclei might be well reproduced
by a power law in asymmetry. Further work to validate this
asymmetry dependence in finite nuclei would have to be
explored with a different methodology [18,27,54]. We note,
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FIG. 5. (Color online) Density dependence of the γ parameter
for the three phase-shift equivalent interactions considered in this
work. Data for each NN force have a small horizontal offset for
display purposes. Error bars have been calculated as differences
between the optimal neutron and proton γ parameters. The shaded
region corresponds to linear fits with slopes 2.8−3.3 fm3.

however, that extrapolations to neutron-star matter require the
explicit linear dependence of Eq. (13).

We present in Fig. 5 the results of the averaged neutron
and proton γ computed at different densities. The error bars
represent the maximum differences between the optimal fits of
the neutron and proton distributions at different asymmetries.
Again, this is a rather conservative estimate, generally larger
than the fitting error of the individual γτ . In practice, the
parameters are very close to each other for different phase-shift
equivalent interactions, which suggests that this scaling is
universal and independent of the short-range components. In
other words, the isovector dependence of correlations in the
tensor-dominated region is very much restricted by phase-shift
equivalence. Moreover, the density dependence of γ is similar
for different interactions. In the range of densities considered,
and with the present data, we find that the density dependence
is almost linear. The gray band in Fig. 5 corresponds to a
range of regressions with linear slopes 2.8−3.3 fm3 and origins
between −0.80 and −0.85.

Overall, our results suggest that the momentum distri-
bution in asymmetric matter within the momentum range
400−550 MeV is proportional to the deuteron momentum
distribution. Given our numerical SCGF data, we propose the
following density and asymmetry dependence of a2:

a2,τ (ρ,β) = b1[1 ± γ (ρ)β]ρb2 . (14)

We have confirmed the density dependence of the symmetric
matter a2 using our asymmetric momentum distribution data.
These are shown in a horizontal dashed line in the bottom
panels of Fig. 4. The agreement with the β = 0 case is good.
The error bars are somewhat larger, owing to the additional
uncertainties in the isospin-dependent nuclear-matter case.

Up to this point, we have used our results to highlight
a qualitative scaling of the high-momentum components
with the local density of the nuclear medium. Further, one
can discuss whether the momentum dependence itself is

sensitive to the isospin asymmetry. The ratio of momentum
distributions, nn(k)/np(k), provides useful information on
this issue. The top panels of Fig. 6 show the ratio at a
fixed total density for different isospin asymmetries in the
tensor-dominated region. For symmetric systems (solid line),
the two distributions are the same at all momenta, as expected.
When asymmetry is switched on (xp = 0.4), one observes
a well-defined plateau in the whole high-momentum region,
even beyond k ∼ 600 MeV. The ratio is smaller than one,
indicating that neutrons populate less the high-momentum
components as compared to protons, as we have already
seen. This might be relevant for heavy nuclei, which have
bulk asymmetries of this order. Both momentum distributions
have similar high-momentum dependence, but with proton
populations about 15% larger than the ones for neutrons [26].
At the largest asymmetries explored here, similar to those
found in neutron stars, this percentage increases to ∼40%.

At large asymmetries, the plateau is well defined for Av18
and CD-Bonn, which have a strong short-range core. The
scaling is less defined in N3LO, owing to the decay at momenta
above 500 MeV. In all cases, the departure from 1 is stronger
when asymmetry increases. The plateau in the momentum
dependence also worsens as asymmetry increases. Again, this
suggests a picture in which the asymmetry dependence of both
momentum distributions is attributed to the tensor effects, with
protons populating more high-momentum components as their
fraction decreases. We note that the crossing around 400 MeV
is the same for all NN interactions.

A further quantitative test of Eq. (13) can be obtained
by rescaling the independent neutron and proton momentum
distributions with the same γ and then taking their ratio.
If all the isospin asymmetry is correctly included in the
scaling prefactor, all lines at different asymmetries should
fall within a narrow band. The bottom panels of Fig. 6 show
the accuracy of this rescaling procedure. We find that, after
rescaling, all the asymmetry dependence is removed. The
ratios at different asymmetries fall within 10% of each other
in the tensor-dominated region. Above k ∼ 600 MeV, where
SRCs dominate, we find differences for the larger asymmetry
cases. This is particularly clear for N3LO. All in all, the figure
suggests that the information on the momentum distribution in
one asymmetric system might be enough to extrapolate to other
asymmetric systems. A linear extrapolation using the universal
γ parameter is enough for these purposes. This procedure
should work well for the tensor-dominated region, with larger
uncertainties for the short-range-dominated region.

V. ASYMMETRY DEPENDENCE OF INTEGRATED
STRENGTH

So far, we have paid particular attention to the momentum
dependence of the distribution. In some cases, however, one
might be interested in looking at more global, or integrated,
properties [26]. We thus now proceed to analyze the inte-
grated one-body strength in the high-momentum region. This
provides an insight into the mechanisms that populate high-
momentum components and hence their importance beyond
the independent-particle model. We quantify the population
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FIG. 6. (Color online) (Top panels) Ratio of the neutron to the proton momentum distribution for different proton fractions. (Bottom panels)
Rescaled ratio of momentum distributions (see text for details). Different columns correspond to different NN interactions: Argonne v18 (left
panels), CD-Bonn (middle panels), and N3LO (right panels).

using the integrated strength,

φ2(ki,kf ) = 1

π2ρτ

∫ kf

ki

dk k2nτ (k), (15)

in three different momentum regions. The low-momentum
region, from ki = 0 to kf = 400 MeV, includes depletion
effects as well as the shifts in the Fermi momenta. In a
free Fermi gas picture at ρ = 0.16 fm−3 and T = 5 MeV,
the thermal depletion in this region is very small at all
asymmetries, in accordance with the Pauli principle. The top
panels of Fig. 7 show the asymmetry dependence of this region
for both neutrons (circles) and protons (squares). As expected,
we find a depletion of states at low momenta, with a departure
with respect to 1. The observed isovector splitting is therefore
necessarily induced by beyond-mean-field correlations, with
neutrons becoming more and more populated (that is, less
correlated) as the system becomes more neutron-rich. This
picture is in accordance with our previous results [11]. Av4′
data is less affected by isospin asymmetry compared to the
data of other phase-shift equivalent potentials. We take this as
yet another indication that tensor correlations are relevant for
the isovector dependence of the momentum distribution.

The middle panels of Fig. 7 represent the tensor-dominated
region of interest for our study. In symmetric matter for
phase-shift equivalent NN forces, this region contains between
6% and 8% of the single-particle strength. As asymmetry
increases, however, high-momentum protons become more
and more prominent. This is necessarily related to the decrease
in the low-momentum region, because the overall strength
is normalized. For a hard interaction such as Av18, and for
fractions of xp ∼ 0.1, typical of neutron-star matter, up to
10% of the proton strength is in this high-momentum region.
Conversely, neutrons populate less and less of the region,

down to 4%−5%, as the system becomes more neutron-rich.
As we have already seen, the quantitative details depend on
the short-range and tensor structure of the NN force under
consideration. The qualitative picture, however, is extremely
robust. Protons become more prominent at high momenta as
their concentration decreases. In this sense, one can say that
protons are more correlated in a proton-poor environment. The
limit xp → 0 would provide further insight, of relevance for
polaron physics [55].

The bottom panels of Fig. 7 illustrate the remaining strength
in the very high-momentum region, above 850 MeV. Only
interactions with a very strong short-range core, such as Av18,
are able to promote particles to this region, with typical
populations of ∼1%. We note that this happens also for Av4′
and for Av6′ (not shown here for brevity), which indicates that
this region is insensitive to the tensor structure of the force.
The neutron-proton splitting here also becomes very small, if
at all relevant.

Finally, we want to assess the importance of high-
momentum components in a bulk quantity that depends on
isospin asymmetry. The kinetic energy is particularly sensitive
to such components [41], as it is an integral involving nτ (k).
We provide in Table I the values of the neutron (proton) kinetic
energy per neutron (proton) as a function of xp. In symmetric
matter, one observes the expected ordering, with the stronger
short-range core potential, Av18, providing the largest values.
Conversely, N3LO, the softest interaction, produces the lowest
value.

As the isospin asymmetry increases, one observes a com-
mon trend: neutron kinetic energies increase, whereas proton
energies decrease. This indicates that, even though protons
dominate the high-momentum region, the growing contribu-
tion of neutrons in the low-momentum area still dominates the
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FIG. 7. (Color online) Integrated single-particle strength for neutrons (circles) and protons (squares) in three momentum regions: k =
0−400 MeV (top panels), k = 400−850 MeV (middle panels), and k > 850 MeV (bottom panels). The four columns correspond to different
NN interactions. Note the different vertical scales of the different rows.

kinetic energy. The isovector splitting of kinetic energies is
fairly symmetric and almost linear, except for protons in the
most asymmetric region, which we take as an indication of
the appearance of low-momentum thermal effects. Curiously,
even though Av18 provides the largest isovector splittings in
the strength, it provides the lowest splitting in kinetic energies.
This has to do with the redistribution of spectral strength as a
function of momentum, which is weighted differently in the
one-body strength than in the kinetic energy.

We also note that the total kinetic energy is the weighted
average of the proton and neutron components. Consequently,
the neutron kinetic energy dominates the result as xp decreases.
The linear dependence of the individual energy fractions

TABLE I. Neutron (proton) kinetic energy per neutron (proton)
for different proton fractions. All energies are in MeV and results for
three NN interactions are shown.

xp 0.5 0.4 0.3 0.2 0.1

Av18 Kn 41.8 42.3 44.2 44.8 45.6
Kp 41.8 41.0 40.5 39.0 36.5

CD-Bonn Kn 35.0 36.5 38.4 39.8 41.2
Kp 35.0 33.2 31.4 28.7 25.3

N3LO Kn 32.9 34.6 36.1 37.5 39.0
Kp 32.9 31.1 28.8 26.2 22.7

suggests that the total kinetic energy will be quadratic in
isospin asymmetry. Overall, however, the isospin dependence
is rather mild, so that the kinetic component of the symmetry
energy decreases with respect to the free Fermi gas case
[41]. This is the only effect that we are able to identify as
correlation-driven. Our results do not seem to suggest that
the tensor-dominated region is responsible for any dramatic
changes in total energy, at least around saturation density.

VI. CONCLUSIONS

We have reviewed the density and isospin-asymmetry
dependence of the high-momentum components of the one-
body momentum distribution. The latter were obtained at
arbitrary asymmetries and different densities by means of
SCGF ladder calculations. These are particularly well-suited
to study correlated momentum distributions, as they provide
fully fragmented single-particle propagators. To avoid the
arbitrariness associated with the short-range or tensor structure
of the NN potential, we have performed calculations with a
variety of interactions. These include phase-shift equivalent
forces with strong and soft short-range cores and with and
without tensor terms.

Our analysis shows that if the momentum distribution
is normalized to one, the high-momentum components of
each NN force become almost universal and asymmetry
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independent. Comparing with the associated deuteron of each
interaction, we see that in-medium SRCs tend to provide
larger high-momentum components than the deuteron above
∼600 MeV. By taking a ratio of n(k) to nd (k), however, we
have been able to identify a region of momentum, between
400 and 550 MeV, where the two distributions have similar
dependencies. The comparison with a tensor-free interaction
indicates that this region is dominated to a large extent by the
tensor components of the NN interactions. The quality of the
scaling of the two distributions decreases substantially with
density because of the increasing importance of SRC.

The tensor-dominated region of k ∼ 400−550 MeV is of
interest, as it is expected that the momentum distribution here
is rather universal [7]. Our calculations have demonstrated
that the ratio in this region can be characterized by a single
parameter, which we refer to as a2. This is related to the proba-
bility of finding short-range-correlated nucleons in the medium
compared to the deuteron. The latter increases with density and
is somewhat dependent on the underlying NN interaction. We
find that CD-Bonn provides the larger values of a2, followed
by N3LO and Av18. The uncertainty in this quantity increases
with density as well, but our predictions still fail to reproduce
experimental values. This could either be attributable to an
issue with pair counting or with interpretation of the data.
We have parametrized its density dependence in terms of a
power law of exponent ∼0.4−0.5. Interactions without tensor
components, however, produce divergent results for a2.

We observe that isospin asymmetry shifts the in-medium
momentum distributions to higher (lower) values for protons
(neutrons). This indicates a prevalence of high-momentum
components of the minority species as the asymmetry in-
creases, which confirms previous results. Using a DFG model
as a guiding principle, we have verified that the residual
asymmetry dependence in the high-momentum region is
almost linear with asymmetry. The parameter that drives this
asymmetry dependence is negative, but approaches zero as
the density increases. Moreover, we find that this parameter
is independent of the NN interactions. This suggests that
the isovector dependence of correlations is rather model
independent, in agreement with previous results [11].

Finally, we have turned our attention to integrated quan-
tities, which also show a dependence on correlations and
asymmetry. Dividing the momentum distribution in differ-
ent regions, we find that low-momentum neutrons are less
correlated in neutron-rich matter. Conversely, the tensor-

dominated region is predominantly populated by protons as
the system becomes more asymmetric. The isovector splittings
are qualitatively similar for all interactions, except for those
missing tensor terms. Regarding the kinetic energy of each
component, we have found an asymmetry dependence around
saturation. However, the redistribution of strength is such that
the neutron kinetic energy in neutron-rich systems is larger
than in symmetric ones. In other words, even though neutrons
populate more the low-momentum region as asymmetry
increases, this change is not as dramatic as that of the neutron
fraction itself. We note that this asymmetry dependence has
implications for symmetry energy studies [41].

Two-body observables can provide further insight into the
interplay of high-momentum components, tensor correlations,
and isospin asymmetry [18,27,30]. These are beyond the scope
of the present work, but they can be generated in the SCGF
framework. Access to such properties will provide further,
much-needed quantitative understanding of SRCs in infinite
and arbitrarily isospin-polarized nuclear systems.
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APPENDIX: DILUTE FERMI GAS

The DFG model provides a useful perspective into the
microscopic properties of correlated homogeneous fermionic
systems. This model is based on the low-density Lee-Yang
expansion for strongly interacting systems. Essentially, one
recasts the many-body problem in terms of an effective,
scattering matrix and uses it in a perturbative expansion
similar to Ref. [56]. The low-energy scattering is characterized
by a scattering length, a. Expressions for the momentum
distribution of unpolarized systems were derived up to order
(kF a)2 by Sartor and Mahaux [29]. We are not aware of any
calculations for polarized systems using this model.

For an unpolarized system of fermions with mass m, the
momentum distribution in the region above the Fermi surface,
k > kF , is given by [28,29]

n(k) = ν(ν − 1)

(2π2)3

a2

ρm2

∫
k1>kF

d3k1

∫
k2<kF

d3k2

∫
k3<kF

d3k3
δ(3)(k + k1 − k2 − k3)[ k2+k2

1−k2
2−k2

3
2m

]2
, (A1)

where we have introduced the degeneracy, ν = 4(2) for symmetric (neutron) matter. We only consider the k � 1 limit of this
model, which is particularly easy to compute and provides an indication of the asymmetry dependence. For an unpolarized
system, the limit can be found by noticing that the external momentum becomes larger than any other scale in the system. Pulling
it out of the integral, one finds

n(k) → n�(k) = ν(ν − 1)

(2π2)3

a2

ρk4

∫
k2<kF

d3k2

∫
k3<kF

d3k3 = ν − 1

ν

8a2ρ

k4
. (A2)

Similar power-law behaviors at high momenta, albeit with different exponents, are also obtained in hard scattering calculations
[9] or in the electron gas [52].
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Let us now consider the isospin-polarized case. The neutron momentum distribution is affected by the scattering of both
neutrons with neutrons (nn) and neutrons with protons (np). Each of these is mediated by its own scattering scattering length. In
the high-momentum limit, the distribution has the same structure as Eq. (A2) with ν = 2:

n�
nn(k) = 4a2

nnρn

k4
. (A3)

The scattering between different particles is somewhat different, as the internal integrals in Eq. (A1) need to take into account
the different Fermi surfaces. With this in mind, the integral becomes

nnp(k) = ν2

(2π2)3

a2
np

ρnm2

∫
k1>k

p
F

d3k1

∫
k2<k

p
F

d3k2

∫
k3<kn

F

d3k3
δ(3)(k + k1 − k2 − k3)[ k2+k2

1−k2
2−k2

3
2m

]2
. (A4)

Note that this contribution has a different overall degeneracy
factor, associated with the lack of exchange in this channel.
Taking again the k � kτ

F limit, one finds

n�
np(k) = 8a2

npρp

k4
. (A5)

Adding up the two contributions, we find the following
expression for the high-momentum limit of the neutron
momentum distribution:

n�
n (k; ρ,β) = 4

k4

[
a2

nnρn + 2a2
npρp

]
. (A6)

Introducing the total density and the isospin-asymmetry
parameter [Eq. (1)], one finds

n�
n (k; ρ,β) = n�(k; ρ,0) × [1 + γβ]. (A7)

Here we have introduced the high-momentum limit in the
symmetric case,

n�(k; ρ,0) = 2ρ

k4

[
a2

nn + 2a2
np

]
. (A8)

An equivalent expression to Eq. (A7) with a minus sign
holds for protons. The high-momentum components of the
momentum distribution have the same k−4 dependence as the
unpolarized case [29]. Their overall prefactor, however, scales
linearly with asymmetry. We have chosen to parametrize the
isovector dependence of the scattering matrix in terms of a

dimensionless parameter:

γ = a2
nn − 2a2

np

a2
nn + 2a2

np

. (A9)

For the 1S0 channel in NN scattering, we find γ = −0.52.
Strictly speaking, however, the DFG model should not

apply for nuclear systems around saturation densities. Nuclear
scattering lengths are large compared to kF , so that the
expansion should break down in this regime. This signals
the need to consider effective range effects as well as other
many-body techniques. Moreover, the limit k � 1 is not
necessarily of interest in our case, as the tensor-dominated
region is not that far away from the Fermi surface itself around
saturation.

Nevertheless, the DFG model is still a useful analytic
tool that suggests scalings of correlations. If we take the
results obtained here as a guiding principle for the scaling
of momentum distributions with isospin asymmetry, we find
that the functional form agrees well with our numerical results.
We show the density dependence of the effective γ parameter
in dense matter in Fig. 5. Incidentally, the DFG γ parameter
has the same sign and order of magnitude than that in our dense
matter calculations (see Fig. 5). In nuclear matter, we interpret
this parameter as a measure of the strength of in-medium
isovector correlation effects, rather than as a ratio of scattering
lengths.
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[10] H. Müther, A. Polls, and W. H. Dickhoff, Phys. Rev. C 51, 3040

(1995).
[11] A. Rios, A. Polls, and W. H. Dickhoff, Phys. Rev. C 79, 064308

(2009).

[12] W. H. Dickhoff and D. V. Neck, Many-body Theory Exposed!,
2nd ed. (World Scientific, Singapore, 2008).

[13] W. H. W. Dickhoff and C. Barbieri, Prog. Part. Nucl. Phys. 52,
377 (2004).

[14] R. Schiavilla, R. B. Wiringa, S. C. Pieper, and J. Carlson, Phys.
Rev. Lett. 98, 132501 (2007).

[15] L. B. Weinstein, E. Piasetzky, D. W. Higinbotham, J. Gomez,
O. Hen, and R. Shneor, Phys. Rev. Lett. 106, 052301 (2011).

[16] J. Arrington, A. Daniel, D. B. Day, N. Fomin, D. Gaskell, and
P. Solvignon, Phys. Rev. C 86, 065204 (2012).

[17] O. Hen, E. Piasetzky, and L. B. Weinstein, Phys. Rev. C 85,
047301 (2012).

[18] M. Vanhalst, J. Ryckebusch, and W. Cosyn, Phys. Rev. C 86,
044619 (2012).

[19] S. Fantoni and V. Pandharipande, Nucl. Phys. A 427, 473
(1984).

[20] A. Gezerlis and J. Carlson, Phys. Rev. C 81, 025803 (2010).

044303-12

http://dx.doi.org/10.1103/PhysRevLett.81.2213
http://dx.doi.org/10.1103/PhysRevLett.81.2213
http://dx.doi.org/10.1103/PhysRevLett.81.2213
http://dx.doi.org/10.1103/PhysRevLett.81.2213
http://dx.doi.org/10.1016/S0370-2693(99)01510-5
http://dx.doi.org/10.1016/S0370-2693(99)01510-5
http://dx.doi.org/10.1016/S0370-2693(99)01510-5
http://dx.doi.org/10.1016/S0370-2693(99)01510-5
http://dx.doi.org/10.1103/PhysRevLett.93.182501
http://dx.doi.org/10.1103/PhysRevLett.93.182501
http://dx.doi.org/10.1103/PhysRevLett.93.182501
http://dx.doi.org/10.1103/PhysRevLett.93.182501
http://dx.doi.org/10.1103/PhysRevLett.97.162504
http://dx.doi.org/10.1103/PhysRevLett.97.162504
http://dx.doi.org/10.1103/PhysRevLett.97.162504
http://dx.doi.org/10.1103/PhysRevLett.97.162504
http://dx.doi.org/10.1103/RevModPhys.80.189
http://dx.doi.org/10.1103/RevModPhys.80.189
http://dx.doi.org/10.1103/RevModPhys.80.189
http://dx.doi.org/10.1103/RevModPhys.80.189
http://dx.doi.org/10.1126/science.1156675
http://dx.doi.org/10.1126/science.1156675
http://dx.doi.org/10.1126/science.1156675
http://dx.doi.org/10.1126/science.1156675
http://dx.doi.org/10.1016/j.ppnp.2012.04.002
http://dx.doi.org/10.1016/j.ppnp.2012.04.002
http://dx.doi.org/10.1016/j.ppnp.2012.04.002
http://dx.doi.org/10.1016/j.ppnp.2012.04.002
http://dx.doi.org/10.1103/PhysRevLett.107.262501
http://dx.doi.org/10.1103/PhysRevLett.107.262501
http://dx.doi.org/10.1103/PhysRevLett.107.262501
http://dx.doi.org/10.1103/PhysRevLett.107.262501
http://dx.doi.org/10.1103/PhysRevC.14.1264
http://dx.doi.org/10.1103/PhysRevC.14.1264
http://dx.doi.org/10.1103/PhysRevC.14.1264
http://dx.doi.org/10.1103/PhysRevC.14.1264
http://dx.doi.org/10.1103/PhysRevC.51.3040
http://dx.doi.org/10.1103/PhysRevC.51.3040
http://dx.doi.org/10.1103/PhysRevC.51.3040
http://dx.doi.org/10.1103/PhysRevC.51.3040
http://dx.doi.org/10.1103/PhysRevC.79.064308
http://dx.doi.org/10.1103/PhysRevC.79.064308
http://dx.doi.org/10.1103/PhysRevC.79.064308
http://dx.doi.org/10.1103/PhysRevC.79.064308
http://dx.doi.org/10.1016/j.ppnp.2004.02.038
http://dx.doi.org/10.1016/j.ppnp.2004.02.038
http://dx.doi.org/10.1016/j.ppnp.2004.02.038
http://dx.doi.org/10.1016/j.ppnp.2004.02.038
http://dx.doi.org/10.1103/PhysRevLett.98.132501
http://dx.doi.org/10.1103/PhysRevLett.98.132501
http://dx.doi.org/10.1103/PhysRevLett.98.132501
http://dx.doi.org/10.1103/PhysRevLett.98.132501
http://dx.doi.org/10.1103/PhysRevLett.106.052301
http://dx.doi.org/10.1103/PhysRevLett.106.052301
http://dx.doi.org/10.1103/PhysRevLett.106.052301
http://dx.doi.org/10.1103/PhysRevLett.106.052301
http://dx.doi.org/10.1103/PhysRevC.86.065204
http://dx.doi.org/10.1103/PhysRevC.86.065204
http://dx.doi.org/10.1103/PhysRevC.86.065204
http://dx.doi.org/10.1103/PhysRevC.86.065204
http://dx.doi.org/10.1103/PhysRevC.85.047301
http://dx.doi.org/10.1103/PhysRevC.85.047301
http://dx.doi.org/10.1103/PhysRevC.85.047301
http://dx.doi.org/10.1103/PhysRevC.85.047301
http://dx.doi.org/10.1103/PhysRevC.86.044619
http://dx.doi.org/10.1103/PhysRevC.86.044619
http://dx.doi.org/10.1103/PhysRevC.86.044619
http://dx.doi.org/10.1103/PhysRevC.86.044619
http://dx.doi.org/10.1016/0375-9474(84)90226-4
http://dx.doi.org/10.1016/0375-9474(84)90226-4
http://dx.doi.org/10.1016/0375-9474(84)90226-4
http://dx.doi.org/10.1016/0375-9474(84)90226-4
http://dx.doi.org/10.1103/PhysRevC.81.025803
http://dx.doi.org/10.1103/PhysRevC.81.025803
http://dx.doi.org/10.1103/PhysRevC.81.025803
http://dx.doi.org/10.1103/PhysRevC.81.025803


DENSITY AND ISOSPIN-ASYMMETRY DEPENDENCE OF . . . PHYSICAL REVIEW C 89, 044303 (2014)

[21] P. Grange, J. Cugnon, and A. Lejeune, Nucl. Phys. A 473, 365
(1987). M. Baldo, I. Bombaci, G. Giansiracusa, U. Lombardo,
C. Mahaux, and R. Sartor, Phys. Rev. C 41, 1748 (1990). M.
Baldo, G. Bomnaci I., Giansiracusa, U. Lombardo, C. Mahaux,
and R. Sartor, Nucl. Phys. A 545, 741 (1992).

[22] P. Wang, S.-X. Gan, P. Yin, and W. Zuo, Phys. Rev. C 87, 014328
(2013).

[23] P. Yin, J.-Y. Li, P. Wang, and W. Zuo, Phys. Rev. C 87, 014314
(2013).

[24] L. Frankfurt, M. Sargsian, and M. Strikman, Int. J. Mod. Phys.
A 23, 2991 (2008).

[25] M. McGauley and M. M. Sargsian, arXiv:1102.3973.
[26] M. M. Sargsian, Phys. Rev. C 89, 034305 (2014).
[27] M. Alvioli, C. Ciofi degli Atti, L. P. Kaptari, C. B. Mezzetti, and

H. Morita, Phys. Rev. C 87, 034603 (2013).
[28] A. A. Abrikosov, L. P. Gorkov, and I. Y. Dzyaloshinskii,

Quantum Field Theoretical Methods in Statistical Physics, 2nd
ed. (Pergamon Press, Oxford, UK, 1965).

[29] R. Sartor and C. Mahaux, Phys. Rev. C 21, 1546 (1980); ,25, 677
(1982).

[30] W. H. Dickhoff, C. C. Gearhart, E. P. Roth, A. Polls, and
A. Ramos, Phys. Rev. C 60, 064319 (1999).

[31] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C
51, 38 (1995).

[32] R. Machleidt, F. Sammarruca, and Y. Song, Phys. Rev. C 53,
R1483 (1996).

[33] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001
(2003).

[34] A. Ekström, G. Baardsen, C. Forssén, G. Hagen, M. Hjorth-
Jensen, G. R. Jansen, R. Machleidt, W. Nazarewicz, T.
Papenbrock, J. Sarich, et al., Phys. Rev. Lett. 110, 192502
(2013).

[35] R. B. Wiringa and S. C. Pieper, Phys. Rev. Lett. 89, 182501
(2002).

[36] M. Baldo, A. Polls, A. Rios, H.-J. Schulze, and I. Vidaña, Phys.
Rev. C 86, 064001 (2012).

[37] A. Carbone, A. Cipollone, C. Barbieri, A. Rios, and A. Polls,
Phys. Rev. C 88, 054326 (2013); A. Carbone, A. Polls, and
A. Rios, ibid. 88, 044302 (2013).
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[45] H. Müther and W. H. Dickhoff, Phys. Rev. C 72, 054313 (2005).
[46] T. Frick, Ph.D. thesis, University of Tübingen, 2004; A. Rios,
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