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The standard model of particle physics (SM), augmented with neutrino mixing, is either the complete theory
of interactions of known particles at energies naturally accessible on earth, or very nearly so, with a Lagrangian
symmetric under the global SU(2)L × SU(2)R symmetry of two-massless-quark QCD, spontaneously broken
to SU(2)L+R. Using naive dimensional operator power counting that enables perturbation and truncation in
inverse powers of �χSB ≈ 1 GeV, we show that, to O(�χSB ) and O(�0

χSB ), SU(2) chiral perturbation theory
[SU(2)χPT] of protons, neutrons, and pions admits a liquid phase, with energy required to increase or decrease
the nucleon density. We further show that in the semiclassical approximation—i.e., quantum nucleons and
classical pions—“pionless SU(2)χPT” emerges in that chiral liquid: soft static infrared Nambu-Goldstone-boson
pions decouple from “static chiral nucleon liquids” (StaticχNLs). This vastly simplifies the derivation of
saturated nuclear matter (the infinite liquid phase) and of finite microscopic liquid drops (ground-state heavy
nuclides). StaticχNLs are made entirely of nucleons. They have even parity, total spin zero, even proton number
Z , and even neutron number N . The nucleons are arranged so local expectation values for spin and momentum
vanish. We derive the StaticχNL effective Lagrangian from semiclassical SU(2)χPT symmetries to order �χSB

and �0
χSB, including all relativistic four-nucleon operators that survive Fierz rearrangement in the nonrelativistic

limit and SU(2)χPT fermion exchange operators and isovector exchange operators which are important when
Z �= N . Mean-field StaticχNL nontopological solitons are true solutions of SU(2)χPT semiclassical symmetries;
e.g., they obey all conserved vector current (CVC) and partially conserved axial current (PCAC) conservation
laws. They have zero internal and external pressure. The nuclear liquid-drop model and Bethe–von Weizsäcker
semiempirical mass formula emerge—with correct nuclear density and saturation and asymmetry energies—in
an explicit Thomas-Fermi construction.

DOI: 10.1103/PhysRevC.105.014313

I. INTRODUCTION

In the standard model (SM) of particle physics, quan-
tum chromodynamics (QCD) describes the strong interactions
among quarks and gluons. At low energies, quarks and gluons
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are confined inside hadrons, concealing their degrees of free-
dom in such a way that we must employ an effective field
theory (EFT) of hadrons. In doing so, we acknowledge as a
starting point a still-mysterious experimental fact: Nature first
makes hadrons and then assembles nuclei from them [1–4].

Since nuclei are made of hadrons, the fundamental chal-
lenge of nuclear physics is to identify the correct EFT of
hadrons and use it to characterize all nuclear physics ob-
servations. (See the recent review by Hammer et al. [5].)
Ultimately, the correct choice of EFT will both match the
observations and be derivable from the SM, i.e., QCD.

Chiral perturbation theory (χPT) [6–11] is a low-energy
perturbative approach to identifying the operators in the EFT
of hadrons that are allowed by the global symmetries of
the SM. It builds on the observation that the up and down

2469-9985/2022/105(1)/014313(19) 014313-1 Published by the American Physical Society

https://orcid.org/0000-0002-2793-6250
https://orcid.org/0000-0002-5053-1542
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.105.014313&domain=pdf&date_stamp=2022-01-18
https://doi.org/10.1103/PhysRevC.105.014313
https://creativecommons.org/licenses/by/4.0/


LYNN, COFFEY, MCGEE, AND STARKMAN PHYSICAL REVIEW C 105, 014313 (2022)

quarks (mu � 6 MeV, md � 12 MeV), as well as the three
pions (π±, π0, mπ � 140 MeV)—which are pseudo-Nambu-
Goldstone bosons (pNGBs) of the chiral symmetry—are all
nearly massless compared to the cutoff energy scale in low-
energy hadronic physics �χSB ≈ 1 GeV.

With naive power counting [12], the effective Lagrangian
of SU(2)L × SU(2)R χPT incorporates explicit breaking.
The resultant perturbation expansion in the inverse of the
chiral-symmetry-breaking scale �−1

χSB ≈ 1 GeV−1 renders
SU(2)χPT’s strong interaction predictions calculable in prac-
tice. Its low-energy dynamics of a proton-neutron nucleon
doublet and three pions as a pNGB triplet are our best un-
derstanding, together with lattice QCD, of the experimentally
observed low-energy dynamics of QCD strong interactions.
The predictive power of χPT [6,8–15] derives from its ability
to maintain a well-ordered low-energy perturbation expansion
that can be truncated.

Lynn [16] first introduced the idea that SU(2)χPT could
also admit a liquid phase and introduced the idea of an
“SU(2)L × SU(2)R chiral liquid” as a statistically significant
number of baryons interacting via chiral operators with an
almost constant saturated density which can can survive as
localized liquid drops at zero external pressure. The La-
grangian included all analytic SU(2)χPT terms of O(�χSB)
and O(�0

χSB). Lynn argued that, in the exact chiral limit, nu-
cleons in the liquid phase interact with each other only via the
contact terms in (23). Study of chiral liquids in [16] focused
on those explicit chiral symmetry breaking terms whose origin
lies entirely in the nonzero light quark masses.

The result is a semiclassical nuclear picture, where
Thomas-Fermi nucleons with contact interactions move in
a mean spherically symmetric “classical” pion field, which
in turn generates a “no-core” radial potential for nucleons.
Finite saturating heavy nuclei, with well-defined surfaces,
emerge as microscopic droplets of chiral liquid. Saturating
infinite nuclear matter emerges as very large drops of chiral
liquid, while neutron stars (Q stars) emerge as oceans of chi-
ral liquid: These droplets emerge as non-topological-soliton
semiclassical solutions of explicitlybroken SU(2)χPT. Lynn
[16] conjectured the possible emergence of shell structure in
that no-core spherical potential based on the observation that
the angular momentum of each nucleon is a good quantum
number. Reference [16] did not derive semiclassical pionless
SU(2)χPT. Here, we focus our study of chiral liquids in the
chiral limit, and prove the emergence of semiclassical pionless
SU(2)χPT solutions.

There is a long history of viewing nuclear matter as a
nontopological soliton. In the mid 1970s Lee and co-workers
[17–19], Chin and Walecka [20], and Serber [21] first identi-
fied certain fermion nontopological solitons with the ground
state of heavy nuclei (as well as possible superheavy nuclei) in
“normal” and “abnormal” phases, thus making a crucial con-
nection to the older (but still persistently predictive) insight of
nuclear liquids, such as Gamow’s nuclear liquid-drop model
(NLDM) and Bethe and von Weizsäcker’s semiempirical mass
formula (SEMF). Breaking all precedent, these workers pro-
posed for the first time a theory of liquid nuclear structure
composed entirely of nucleons and a static scalar field, with
no pions.

Mathematically, such solutions emerge as a subspecies of
nontopological solitons or Q balls [17,22–35], a certain subset
of which are composed of fermions along with the usual
scalars. A practical goal was to identify mean-field nucleon
nontopological solitons with the ground state of ordinary
even-even spin-zero spherically symmetric heavy nuclei, such
as 40

20Ca, 90
40Zr, and 208

82 Pb.
Nuclear nontopological solitons identified as nuclear liq-

uids became popular with the work of Chin and Walecka
[20], carried forward by Serot [36]. Walecka’s nuclear
quantum-hadrodynamics-1 (QHD-1) models [37–39] contain
four dynamical particles: protons, neutrons, the Lorentz-scalar
isoscalar σ , and the Lorentz-vector isoscalar ωμ. Nucleons are
treated as locally free particles in Thomas-Fermi approxima-
tion. Finite-width nuclear surfaces are generated by dynamical
attractive σ -particle exchange, allowing them to exist at zero
external pressure.

The empirical success of QHD-1 is based on balancing
σ -boson-exchange attraction against ωμ-boson-exchange re-
pulsion. That that balance must be fine tuned remains a
famous mystery of the structure of the QHD-1 ground state.
In the absence of long-ranged electromagnetic forces, infinite
symmetric Z = N nuclear matter, as well as finite microscopic
ground state Z = N nuclides, appear as symmetric nuclear
liquid drops.

These nuclear nontopological solitons are to be classified
as liquids because

(i) they have no crystalline or other solid structure;
(ii) it costs energy to either increase or decrease the

density of the constituent nucleons compared to an
optimum value;

(iii) they survive at zero external pressure, e.g., in the
absence of gravity, so they are not a “gas.”

Despite their successes, such topological-soliton models
suffer from the flaw that higher loop corrections do not
necessarily decrease in size and importance, which can signif-
icantly renormalize the parameters at each order. This was first
demonstrated by Furnstahl et al. [40] for the Walecka model
in the two-loop case. (See also the discussion in [41].)

This paper cures those problems, and resurrects nu-
clear liquids as a good starting point toward understanding
the properties of bound nuclear matter (with Z and N
both even) by strict compliance with the requirements of
SU(2)χPT effective field theory of protons, neutrons, and pi-
ons. The static chiral nucleon liquids (StaticχNLs) studied
below are true solutions to semi-classical SU(2)χPT, and have
all of the semi-classical symmetries of spontaneously broken
SU(2)χPT found in Appendix A: they obey all conserved
vector current (CVC) and partially conserved axial current
(PCAC) Ward identities; they are dependent on just a few
experimentally measurable chiral coefficients; and, by the
symmetries of spontaneously broken SU(2)χPT, they restore
(cf. Appendix A) theoretical predictive power over heavy nu-
clides.
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II. THE EMERGENCE OF SEMICLASSICAL
PIONLESS STATICχNLS

In this paper we focus on the chiral limit and postpone
treatment of departures from the chiral limit to future work.
The SU(2)χPT Lagrangian with all terms of order �χSB and
�0

χSB in the chiral limit is

LSym
χPT = Lπ ;Sym

χPT + LN ;Sym
χPT + L4-N ;Sym

χPT ,

Lπ ;Sym
χPT = f 2

π

4
Tr∂μ�∂μ�†,

LN ;Sym
χPT = N[iγ μ(∂μ + Vμ) − mN1]N

− gANγ μγ 5AμN,

= N (iγ μ∂μ − mN1)N + i �Jμ · �Vμ

− gA �Jμ,5 · �Aμ,

L4-N ;Sym
χPT =CA

1

2 f 2
π

(Nγ A N )(NγA N )+ + +, (1)

where the pion field is

� ≡ exp

(
2iπa

ta
fπ

)
, (2)

and we defined the fermion bilinear and pionic currents:

�Jμ = Nγ μ�tN, �Jμ,5 = Nγ μγ 5�tN,

�Jμ = Nγ μ�tN, �Jμ,5 = Nγ μγ 5�tN,

Vμ = �t · �Vμ, �Vμ = 2i sinc2

(
π

2 fπ

)
[�π × ∂μ �π ],

Aμ = �t · �Aμ,

�Aμ = − 2

π2

[
�π ( �π · ∂μ �π ) + sinc

(
π

fπ

)
[�π × (∂μ �π × �π )]

]
,

(3)

with �t ≡ 1
2 �τ , τ are the Pauli isospin matrices, π = |�π | =√

�π2, and sinc(x) ≡ sin(x)/x. The pion → dileptons decay
constant is Fπ = 130.4 ± 0.04 ± 0.2 MeV [42]. We use fπ ≡
Fπ/

√
2 = 92.2 MeV.

The parentheses in the four-nucleon Lagrangian indicate
the order of SU(2) index contraction, while + + + indicates
that one should include all possible combinations of such con-
tractions. As usual, γ A ≡ (1, γ μ, iσμν, iγ μγ 5, γ 5), for A =
1, . . . , 16 (with σμν ≡ 1

2 [γ μ, γ ν]). These are commonly re-
ferred to as scalar (S), vector (V ), tensor (T ), axial-vector
(A), and pseudoscalar (P) respectively. CA are a set of chiral
constants.

In the chiral limit, where �π’s are massless, the presence of
quantum nucleon sources could allow the massless NGB to
build up, with tree-level interactions only, a nonlinear quan-
tum pion cloud. If we minimize the resultant action with
respect to variations in the pion field, the equations of mo-
tion1 capture the part of the quantum cloud that is to be

1This is a chiral-limit SU(2)χPT analog of QED where, in the
presence of quantum lepton sources, a specific superposition of

characterized as a classical soft-pion field, thus giving us the
pion ground state in the presence of the ground state “chiral
nucleon liquid” (χNL) with fixed baryon number A = Z + N :

0 =
[
∂ν

∂

∂ (∂νπm)
− ∂

∂πm

]
Lπ ;Sym

χPT

+ i �Jμ ·
[
∂ν

∂

∂ (∂νπm)
− ∂

∂πm

]
�Vμ

− gA �Jμ,5 ·
[
∂ν

∂

∂ (∂νπm)
− ∂

∂πm

]
�Aμ

− 2∂μ �Jμ · sinc2

(
π

2 fπ

)
( �π × m̂)

+ 2

π2
gA∂μ �Jμ,5·

×
[

�π ( �π · m̂) + sinc

(
π

fπ

)
[�π × (m̂ × �π )]

]
. (4)

We divide the classical pion field into “IR” and “non-IR”
parts. By definition, only IR pions survive the internal pro-
jection operators associated with taking expectation values of
the classical NGB �π s in the |χNL〉 quantum state:

〈χNL|F (∂μ �π, �π )|χNL〉
= 〈χNL|IR-part[F (∂μ �π, �π )]|χNL〉
≡ {F (∂μ �π, �π )}IR, (5)

where F is an unspecified function. The IR part does not
change the χNL. It could in principle play an important role
in the excited states of the χNL: a �π condensate, a giant res-
onance, a breathing mode, or a time-dependent flashing-pion
mode. To ignore such classical IR �π s would therefore be an
incorrect definition of the excited states of χNL.

We call these “IR pions” by keeping in mind a simple
picture, where the �π wavelength is longer than the scale within
the χNL over which the local mean values of nucleon spin and
momentum vanish. Only such IR pions survive the internal
projection operators associated with taking expectation values
of the classical NGB �π ’s in the |χNL〉 quantum state.

We now take expectation values of the �π equations of mo-
tion. In the presence of the quantum χNL source, the classical
NGB �π cloud obeys

0 = 〈χNL|
[
∂ν

∂

∂ (∂νπm)
− ∂

∂πm

]
LSym

χPT |χNL〉

=
{[

∂ν

∂

∂ (∂νπm)
− ∂

∂πm

]
Lπ ;Sym

χPT

}
IR

+ i〈χNL| �Jμ|χNL〉·

massless infrared photons builds up into a classical electromagnetic
field. Important examples are the “exponentiation” of IR photons
in e+e− → μ+μ− asymmetries, and e+e− → e+e− Bhabha scat-
tering, at LEP1. Understanding the classical fields generated by
initial-state and final-state soft-photon radiation [43,44] is crucial
to disentangling high-precision electroweak loop effects, such as the
experimentally confirmed precise standard model predictions for the
top-quark [45] and Higgs’ masses [45,46].

014313-3



LYNN, COFFEY, MCGEE, AND STARKMAN PHYSICAL REVIEW C 105, 014313 (2022)

×
{[

∂ν

∂

∂ (∂νπm)
− ∂

∂πm

]
�Vμ

}
IR

− gA〈χNL| �Jμ,5|χNL〉 ·
{[

∂ν

∂

∂ (∂νπm)
− ∂

∂πm

]
�Aμ

}
IR

− 2〈χNL|∂μ �Jμ|χNL〉 ·
{

sinc2

(
π

2 fπ

)
�π × m̂

}
IR

+ 2

π2
gA〈χNL|∂μ �Jμ,5|χNL〉 ·

{
�π ( �π · m̂) + sinc

(
π

fπ

)
�π

×(m̂ × �π )}IR. (6)

We examine the following semiclassical nuclear current
components,

Jμ
± = Jμ

1 ± iJμ
2 =

{
pγ μn
nγ μ p

}
,

Jμ
3 = 1

2
(pγ μ p − nγ μn),

J5μ
± = J5μ

1 ± iJ5μ
2 =

{
pγ μγ 5n
nγ μγ 5 p

}
,

J5μ
3 = 1

2
(pγ μγ 5 p − nγ μγ 5n), (7)

and find that the ground-state expectation values of these
currents and their divergences in (6) vanish,

〈χNL|J±
μ |χNL〉 = 〈χNL|J±,5

μ |χNL〉 = 0,

〈χNL|∂μJ±
μ |χNL〉 = 〈χNL|∂μJ±,5

μ |χNL〉 = 0, (8)

because J±
μ and J±,5

μ change neutron and proton number. Since
the liquid ground state is homogeneous, isotropic and spheri-
cally symmetric, spatial components of vector currents vanish,
in particular

〈χNL|J3
i |χNL〉 � 0 (9)

for Lorentz index i=1, 2, 3. Because there are separately
equal numbers of left-handed and right-handed protons and
neutrons in the nuclear ground state we have

〈χNL|J3,5
μ |χNL〉 � 0 (10)

for all μ. Note that (8)–(10) follow because the liquid
ground state is assumed to have definite numbers of fully
paired nucleons in a spherically symmetric, homogeneous,
and isotropic arrangement. Current conservation enforces

〈χNL|∂μJ3
μ|χNL〉 = 〈χNL|∂μJ3,5

μ |χNL〉 = 0, (11)

which leaves only a single nonvanishing current expectation
value:

〈χNL|J3
0 |χNL〉 �= 0. (12)

Equation (6), governing the classical pion cloud, is thus
enormously simplified:

0 �
{[

∂ν

∂

∂ (∂νπm)
− ∂

∂πm

]
Lπ ;Sym

χPT

}
IR

+i〈χNL|J3;0|χNL〉
{[

∂ν

∂

∂ (∂νπm)
− ∂

∂πm

]
V 3

0

}
IR

(13)

with

{[
∂ν

∂

∂ (∂νπm)
− ∂

∂πm

]
V 3

0

}
IR

=
{

2i

[
(∂0 �π ) × m̂ + �π × m̂∂0 − m̂ × (∂0 �π ) − �π × (∂0 �π )

∂

∂πm

]3

sinc2

(
π

2 fπ

)}
IR

. (14)

A crucial observation is that (14) is linear in ∂0 �π ; i.e., in the
energy of the classical NGB IR �π field. Expecting the nuclear
ground state, and thus its classical IR �π field, to be static, we
enforce

{∂o �π}IR = 0. (15)

It now follows that{[
∂ν

∂

∂ (∂νπm)
− ∂

∂πm

]
V 3

0

}
IR

= 0, (16)

independently of 〈χNL|J3;0|χNL〉. The IR pion equation of
motion {[

∂ν

∂

∂ (∂νπm)
− ∂

∂πm

]
Lπ ;Sym

χPT

}
IR

= 0, (17)

therefore has no nucleon source. The ground state nucleons
are not a source of any static IR NGB �π classical field. The
nuclear ground state in the chiral liquid is thus a static chiral

nucleon liquid (StaticχNL), with no �π condensate2 or time-
dependent pion-flashing modes.

We want to quantize the nucleons in the background field
of the StaticχNL, and so consider the expectation value of
the nucleon equation of motion in the chiral nucleon liquid
static ground state. For brevity, we denote expectations in this
ground state using “〈” and “〉”:

0 =
〈
N

∂

∂N
LSym

χPT

〉
= 〈

N
(
iγ μ∂μ − mN1

)
N
〉

+ i〈 �Jμ〉 · { �Vμ}IR − gA〈 �Jμ,5〉 · { �Aμ}IR

+ 1

f 2
π

〈CA (Nγ A N )(NγA N ) + ++〉. (18)

2After explicit chiral symmetry breaking, with nonzero u, d quark
and resultant pion masses, and with partially conserved axial currents
(PCAC), a static S-wave �π condensate is a logical possibility [16].
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Since most of the nucleon SU(2)L × SU(2)R currents vanish
in the StaticχNL, and since {∂o �π}IR = 0, we find

0 � 〈N (iγ μ∂μ − mN1)N〉 (19)

+ 1

f 2
π

〈CA (Nγ A N )(NγA N ) + ++〉. (20)

Equations (17) and (19) show that, to order �χSB and
�0

χSB, StaticχNLs are composed entirely of nucleons. That
is also the basic premise of many empirical models and we
have shown that that empirical nuclear premise can be traced
(to good approximation) directly to the global SU(2)L ×
SU(2)R symmetries of two-massless-quark QCD of the stan-
dard model.

The effective Lagrangian derived from SU(2)L × SU(2)R

χPT governing StaticχNLs can now be written:〈
LSym

χPT

〉 ≡ LSχNL,

LSχNL = LFree
SχNL + L4-N

SχNL

LFree
SχNL = 〈N (iγ μ∂μ − mN1)N〉

L4-N
SχNL =

〈
1

2 f 2
π

CA (Nγ A N )(NγA N ) + + +
〉
. (21)

Semiclassical pionless SU(2)χPT thus emerges inside
StaticχNLs. Within all-loop-orders renormalized analytic
SU(2)χPT to O(�χSB) and O(�0

χSB), infrared NGB pions
effectively decouple from StaticχNLs, vastly simplifying the
derivation of the properties of saturated nuclear matter (the in-
finite liquid phase) and of finite microscopic liquid drops (the
nuclides). StaticχNLs thus explain the (previously puzzling)
power of pionless EFT to capture experimental ground state
facts of certain specific nuclides, by tracing that empirical suc-
cess directly to the global symmetries of two-massless-quark
QCD.

It will be shown below that StaticχNLs satisfy all
relevant SU(2)L × SU(2)R vector and axial-vector current-
conservation equations in the liquid phase. StaticχNLs are
therefore solutions of the semiclassical-liquid equations of
motion, possessing the symmetries of spontaneously broken
SU(2)χPT (cf. Appendix A 1).

III. SEMICLASSICAL PIONLESS STATICχNLS AS THE
APPROXIMATE GROUND STATE OF CERTAIN NUCLEI

To further elucidate the properties of the StaticχNL, we
must address the effects of the four-nucleon interactions. In
this paper, we ignore fluctuations in all bilinear nucleon oper-
ators. For our purposes this is equivalent to ignoring any and
all nuclear excited states.

A priori there are ten possible contact interactions rep-
resenting isosinglet and isotriplet channels for each of five
spatial current types: scalar, vector, tensor, pseudoscalar
and axial vector. There are therefore ten chiral coefficients
parametrizing four-nucleon contact terms: CT

K with K ∈
{S,V, T, A, P} and T ∈ {0, 1}.

The inclusion of exchange interactions induces the isospin
(T = 1) operators to appear [16], and potentially greatly
complicates the effective chiral Lagrangian. Fortunately, we

are interested here in the liquid limit of this Lagrangian.
Spinor-interchange contributions are properly obtained by
Fierz rearranging before imposing the properties of the
semiclassical liquid (see Appendix B). The appropriate
StaticχNL Lagrangian is given by

LSχNL = N̄ (iγ μ −→
∂ μ + �)N + L4-N ;BE

SχNL , (22)

where the contact interactions can be approximated by

−L4-N ;BE
SχNL = CS

200

2 f 2
π

〈NN〉〈NN〉

− CS
200

4 f 2
π

{〈NN〉〈NN〉 + 4〈Nt3N〉〈Nt3N〉}

+ CV
200

2 f 2
π

{〈N†N〉〈N†N〉}

− CV
200

4 f 2
π

{〈N†N〉〈N†N〉 + 4〈N†t3N〉〈N†t3N〉}
(23)

with only four independent chiral coefficients:

CS
200 =CT =0

S

−CS
200 = 1

4

[
CT =0

S + 5CT =1
S

+ 6
(
CT =0

T + CT =1
T

) + (
CT =0

P + CT =1
P

)]
,

CV
200 =CT =0

V ,

−CV
200 = 1

2

[ − CT =0
V + CT =0

A + CT =1
V + CT =1

A

]
. (24)

To simplify the notation and to retain the connection with
previous work [20] we introduce

C2
V ≡ 1

f 2
π

(
CV

200 − 1

2
CV

200

)
, (25)

C2
S ≡ − 1

f 2
π

(
CS

200 − 1

2
CS

200

)
. (26)

For brevity, we also define

C2
V ≡ 1

f 2
π

CV
200, (27)

C2
S ≡ 1

f 2
π

CS
200. (28)

In (22) the operator � is given by

� ≡ −mN − ĈS
200 − ĈV

200γ
0, (29)

with

ĈV
200 ≡ C2

V 〈N†N〉 − 2 C2
V 〈N†t3N〉t3,

ĈS
200 ≡ −C2

S 〈NN〉 − 2 C2
S 〈Nt3N〉t3,

0 = [
t3, ĈS

200

] = [
t3, ĈV

200γ
0
] = [t3,�]. (30)

We have ignored possible excited states that contribute to
fluctuations in the nuclear density and which are beyond the
scope of this paper.

The StaticχNL Lagrangian offers a significant improve-
ment in the predictive power of the theory, while still
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providing sufficient free parameters to balance vector re-
pulsive forces against scalar attractive forces when fitting
(to order �0

χSB) nontopological-soliton and Skyrme nuclear
models to the experimentally observed structure of ground
state nuclei. Further simplification results for a sufficiently
large number of nucleons: simple Hartree analysis of (23) is
equivalent to more accurate Hartree-Fock analysis of the same
Lagrangian without spinor-interchange terms.

We now see that, inside the StaticχNL, a nucleon living in
the self-consistent field of the other nucleons obeys the Dirac
equation

0 = (iγ μ ∂μ + �)N. (31)

Baryon-number and the third component of isospin are
both conserved; i.e., the associated currents Jμ

Baryon ≡ Nγ μN

and Jμ
3 ≡ Nγ μt3N are both divergence free. The neutral

axial-vector current J5,μ
8 ≡

√
3

2 Nγ μγ 5N , corresponding to the
projection onto SU(2) of the NGB η particle, part of the
unbroken SU(3)L × SU(3)R meson octet, is also divergence
free,

2√
3

〈
i∂μJ5,μ

8

〉 = 〈N{�, γ 5}N〉

= 2
〈
N
( − mN − ĈS

200

)
γ 5N

〉
� 0. (32)

This result can be understood as a statement that the η particle
cannot survive in the parity-even interior of a StaticχNL,
since it is a NGB pseudoscalar in the chiral limit. Similarly,
the third component of the axial vector current is divergence
free; i.e., 〈

i∂μJ5,μ
3

〉 = 〈N{�, γ 5}t3N〉
= 2

〈
N
( − mN − ĈS

200

)
γ 5t3N

〉
� 0, (33)

because the SU(2)χPT π3 particle is also a NGB pseudoscalar
in the chiral limit, and cannot survive in the interior of a parity-
even StaticχNL.

Even though explicit pion and eta fields vanish in
StaticχNLs, their quantum numbers reappear in its PCAC
properties from nucleon bilinears and four-nucleon terms in
the divergences of axial vector currents. That these average to
zero in StaticχNLs plays a crucial role in the conservation of
axial-vector currents within the liquid.

It is now straightforward to see that, in the liquid approx-
imation, a homogeneous SU(2)χPT nucleon liquid drop with
no meson condensate satisfies all relevant CVC and PCAC
equations. As shown in Appendix C, most of the space-time
components of the three SU(2)L+R vector currents Jμ

a and
three axial vector currents J5μ

a vanish: only J0
3 is nonzero in

StaticχNLs.
The neutral SU(3)L × SU(3)R currents are conserved,

〈∂μJμ
8 〉 = 0 and 〈∂μJ5;μ

8 〉 = 0, in the StaticχNL mean field. In
addition, the neutral SU(3)L+R vector current’s spatial com-
ponents Jμ=1,2,3

8 and the axial-vector currents J5;μ
8 all vanish.

Only J0
8 , proportional to the baryon number density, survives

in the StaticχNL mean field.

Since StaticχNL chiral nuclear liquids satisfy all relevant
χPT CVC and PCAC equations in the liquid phase, they are
true solutions of the all-orders-renormalized tree-level semi-
classical liquid equations of motion truncated at O(�0

χSB).

IV. NUCLEI AND NEUTRON STARS AS
MEAN-FIELD STATICχNLS

A. Thomas-Fermi nontopological solitons, liquid drops,
and the semiempirical mass formula

Mean-field StaticχNL nontopological solitons are solu-
tions of χPT semiclassical symmetries, obeying all CVC and
PCAC conservation laws. They have zero internal and exter-
nal pressure. The nuclear liquid-drop model and Bethe–von
Weizsäcker SEMF emerge—with correct nuclear density, and
saturation and asymmetry energies—in an explicit Thomas-
Fermi construction.

In Appendix D, we construct explicit liquid mean field
StaticχNL solutions based on (22), constrained to order
4π fπ ≈ �χSB � 1 GeV and �0

χSB naive power counting, in
an independent-nucleon model, using the Thomas-Fermi free-
particle approximation.3

Constant-density nontopological solitons, i.e., liquid drops
comprised entirely of nucleons, emerge as homogeneous and
isotropic semiclassical static solutions with internal and ex-
ternal pressures both zero. Their surface is a step function.
Ignoring electromagnetism, nuclear matter and finite nuclei
then have identical microscopic structure, serving as a model
of the ground state of both infinite nuclear matter and finite
liquid drops. There is no need for an additional confining
interaction to define the finite-drop surface. With even proton
number Z , and even neutron number N , nucleons are arranged
in pairs so that local expectation values for spin vanish, 〈�s〉 �
0. The microscopic structure is also spherically symmetric,
so that local momenta have a vanishing expectation value,
〈�k〉 � 0. Consequently, total spin �S = 0 and total momentum
�K = 0 in the center of mass.

The semiempirical mass formula [48,49] is

M(Z, N ) = Zmp + Nmn − EB,

EB = EVol
B + ESurf

B + EPair
B ,

EVol
B /A ≡ aV − aAsym X 2 − aC

Z (Z − 1)

A4/3
,

ESurf
B /A ≡ − aS

A1/3
,

EPair
B /A ≡ aPair

δ0(Z, N )

A3/2
. (34)

3An effective Lagrangian, built from O(�χSB ) free nucleons and
O(�0

χSB ) point-coupling interaction-operators, was also identified by
Gelmini and Ritzi [47]. However, it does not correspond to Chin-
Walecka infinite symmetric Z = N nuclear matter, and the authors
constructed no Z = N bound-state nontopological solitons with zero
internal and external pressure, which could therefore survive in an
external vacuum.
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with A = Z + N ; X is the neutron excess,

X ≡
(

N − Z

N + Z

)
, (35)

and

δ0 ≡
⎧⎨⎩+1 for Z even, N even,

−1 for Z odd, N odd,

0 for A = Z + N odd.

(36)

From [49] we use aV = 15.75 MeV, aS = 17.8 MeV, aC =
0.711 MeV, aAsym = 23.7 MeV, and aPair = 11.18 MeV.

We show in Appendix D that the SEMF is (almost) an
SU(2)L × SU(2)R χPT nontopological-soliton prediction. We
first display symmetric Z = N ground state zero-pressure
Hartree-Fock nontopological-soliton solutions, fit to inferred
experimental values for symmetric-nuclear-matter density and
volume binding energy, and find

C2
V = 1.893

1

f 2
π

,

C2
S = 2.580

1

f 2
π

. (37)

These values were obtained by fitting to a Fermi mo-
mentum (kFermi = 1.42/fm) and saturated volume energy
(Ebinding/nucleon = 15.75 MeV). We observe that for heavy
nuclei X 2 � 1, and work to leading order in that small quan-
tity. In Appendix D 2, we derive asymmetric Z �= N nuclear
matter, for which fermion-exchange terms are crucial, fitting
to aAsym = 23.7 MeV. For kF = 1.42/fm we find

C2
V = 0.61

1

f 2
π

. (38)

Additional results for CV
200 are given in Appendix D 3. Com-

bining (37) and (38) using (25) and (27) gives:

CV
200 = 2.198. (39)

In practice, there is very little sensitivity to our fourth
independent chiral coefficient CS

200: this in agreement with
Niksic [50] et al., who argue that, although the total isovector
strength has a relatively well-defined value, the distribution
between the isovector Lorentz-scalar �δ exchange channel and
the isovector Lorentz-vector �ρμ exchange channel is not deter-

mined by ground state data. We have assumed ( Z−N
Z+N )

2 � 1. In
addition, we have〈
N†N

〉 − 〈N̄N〉� 3

10

k2
F

m2
∗8

〈N†N〉= (0.0762) 〈N†N〉 � 〈N†N〉,
(40)

where kF = 279.7 MeV and where m∗8 ≡ 1
2 (m∗p + m∗n) =

555 MeV, which follows from the Thomas-Fermi solution in
as found in Appendix D 1. It follows that only the combination
(CV

200 + CS
200) can strictly be fit to our O(�0

χSB) StaticχNL
accuracy. Therefore, for convenience and without loss of gen-
erality, we choose

CS
200 = 0. (41)

All coefficients in (37), (38), (39), and (41) then obey naive
∼O(1) dimensional power counting, and so are legitimate nat-
ural chiral coefficients. Note the fine tuning between CV

200 =
2.198 and CS

200 = −2.580 in (37) and (39) inherited from
Serber’s and Walecka’s 1974 quadratic models [20], [51],
and [21]. That fine tuning is alleviated in (37) by the our
inclusion of �ρμ exchange, necessary to StaticχNLs. Equa-
tions (37), (38), (39), and (41) all satisfy naive dimensional
power-counting O(1) naturalness, and so are legitimate chiral
coefficients. The astute reader will notice that the difference
(40) is of the same order as the next terms in the chiral expan-
sion. Although we have calculated self-consistently in powers
of �χSB in chiral perturbation theory, terms of order �−1

χSB
must still play an important role in the nontopological-soliton
solutions. Indeed, it is inconsistent to neglect them. We hope
to return to this question in future work.

The SEMF is closely associated with Gamow’s nuclear
liquid-drop model (NLDM). Recall that, following Walecka’s
infinite symmetric nuclear matter (and neutron matter), we
have imposed on the Thomas-Fermi mean field the condition
that the pressure vanishes both internally and externally, not
only at the surface of a finite “drop.” Our nontopological-
soliton nuclei therefore resemble ice cream balls scooped
from an infinite vat [52], more than they do conventional
liquid drops.

We clearly have no right to use the Thomas-Fermi approxi-
mation to calculate the surface and pairing energies, ESurf

B and
EPair

B of (34), at order �χSB and �0
χSB in the spontaneously

broken theory. Unsurprisingly, the surface energy calculated
entirely as a change in density gives incorrect aS . However,
there exist O(�−2

χSB) nuclear-surface SU(2)χPT terms that
might replace the scalar σ particle in the Chin-Walecka model
in describing the nuclear surface [20,38,39], namely

LSurf
χPT = − 1

2

C220

�2
χSB

∂ν (N̄N )∂ν (N̄N ), (42)

with an O(1) constant C220, obeying naturalness. LSurf
χPT is

invariant under nonlinear SU(2)L × SU(2)R transformations
including pions, but is automatically pionless, even without
the liquid approximation. It contains no dangerous ∂0 ∼ mN

nucleon mass terms, so nonrelativistic reordering is unnec-
essary. Nucleon-exchange and spinor-interchange interactions
must also be included.

Meanwhile, calculation of aPair involves understanding
low-level excited states, such as Z-odd N-odd states which we
have ignored in our study of the Lagrangian (23), which are
beyond the scope of this paper, and will likely require explicit
pions lying outside semiclassical pionless SU(2)χPT.

B. Neutron stars

Putting aside exotica (i.e., quark condensates, pion con-
densates, strange-kaon condensates, etc.), we conjecture that
much of the structure of neutron stars may be traced directly
to two-massless-quark QCD, and thus directly to the standard
model. This will be explored further in a companion paper.
Here we note only that the models of Harrison and Wheeler
[53], Salpeter [54], and Baym, Pethic, and Sutherland [55]
are all based on the Bethe–von Weizsäcker semiempirical
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mass formula [56]. They would therefore seem to follow
from StaticχNLs; however, we do not yet know how well
the observed chart of nuclides and these neutron-star models
match the “ice-cream scoop” StaticχNL no-surface SEMF,
augmented by Coulomb repulsion; i.e., (34) with EPair

B set to
zero.

C. Shell structure from chiral symmetry breaking?

We conjecture here that nontopological StaticχNL solitons
could, with inclusion of explicit axial symmetry breaking,
be requantized to incorporate no-core nuclear shell struc-
ture and magic numbers, as imagined in [16]. Lynn first
introduced the idea [16] that SU(2)L × SU(2)R χPT could
admit a liquid phase. Like ours, his Lagrangian included
only terms of O(�χSB) and O(�0

χSB). Though he did not
anticipate StaticχNLs, he was careful to include only and all
those terms that respect the SU(2)L × SU(2)R semiclassical
symmetries—i.e., of quantum nucleons and classical pions—
discussed in this paper. These included strong interaction
terms that survive the chiral limit, as well as explicit axial
breaking terms that do not.

The purpose of [16] was to generate a “no-core” classical
static spherical central potential for | �π |, in which all of the
quantum nucleons moved, and thus plausibly shell structure
for certain heavy even-even ground state spin-zero spherical
nuclei. It now seems advantageous to focus on doubly magic
or spherically magic nuclides.

Such shell structure is plausible in semiclassical SU(2)L ×
SU(2)R χPT because the explicit symmetry-breaking terms
have naive operator power counting m=0, l =1, n=1 in
(A14). Ignoring π± − π0 mass splitting, these are〈

LN ;χSB
χPT

〉 � m(a1 + 2a3)

[
1 − cos

| �π |
fπ

]
〈N̄N〉,

≡ βσπN

[
1 − cos

| �π |
fπ

]
〈N̄N〉, (43)

with

m ≡ 1
2 (mu + md ), (44)

and with experimental parameters

(a1, a2, a3) = (0.28,−0.56, 1.3 ± 0.2),

(mu, md , σπN ) = (6, 12, 60) MeV,

β = 0.864 ± 0.120 (45)

measured in SU(3)L × SU(3)R χPT processes [13] and [57].
Since 〈LN ;χSB

χPT 〉 > 0, the explicit symmetry-breaking terms
lower the effective nucleon mass inside a static π = |�π | con-
densate.

We conjecture that semiclassical SU(2)L × SU(2)R χPT
[i.e., including all O(�χSB) and O(�0

χSB) nonstrange analytic
naive operator power-counting terms, both those from the
chira limit and those from explicit mu, md �= 0 chiral sym-
metry breaking] applied to certain finite nuclei, nuclear and
neutron matter, and neutron stars will give a reasonable match
to their structure.

FIG. 1. Illustration (not to scale) of the domains of applicability
of various analytic treatments of nuclear systems plotted in the three-
dimensional space defined by complex momentum (Rek, Imk) and
atomic/baryon number A. At the base sits the A = 2 complex k plane.
Pionless effective field theory is valid inside the cylinder whose base
is the disk with radius �A

π/ < mπ . The even-even spin-zero nuclei to
which the chiral nuclear liquid treatment of this paper are applicable
are shown here: 28

14Si, 40
20Ca, 48

20Ca, 60
28Ni, 90

40Zr, and 208
82 Pb. Their treat-

ment incorporates k’s along the Imk axis from 0 to kFermi � �χSB.
See text for further details.

V. RELATION OF STATICχNLS TO PIONLESS EFT

Our pionless static chiral nuclear liquid solution bears su-
perficial resemblance to results from pionless EFT [5]: both
are “pionless.” They are both pionless for different reasons,
however. Pionless EFTS are pionless because the pions have
been “integrated out” and so are valid for momenta less than
the pion mass. StaticχNLs are pionless because the pionic
source terms vanish in even-even, spin-zero spherical nuclei:
here we work in the chiral limit of vanishing pion mass. The
soliton solution has kF � 280 MeV. In fitting the parameters
CA in Eq. (2), we must fit to inferred infinite-nuclear-matter
data. As pointed out by Hammer et al. [5], perturbation the-
ory cannot be used to relate the coupling constants in the
two theories. In future work one might hope to relate the
coupling constants of StaticχNLs to those of pionless and of
halo/cluster EFTs [5].

van Kolck and the pionless EFT community like to
reveal relationships among their results by plotting them
on the complex Re(k)- Im(k) momentum plane inside the
circle |k| � �A

π/ < mπ . In Fig. 1 we add an orthogonal
A = Z + N axis—forming a three-dimensional cylindrical
Re(k)- Im(k)-A volume—and highlight some pionless EFT
results. In the A = 2 plane, N-N elastic scattering is prop-
erly compared to Nijmegen data and lies along positive
Re(k). The −2.2 MeV bound deuteron is at k

3S1
Pole on the

positive Im(k) axis, while the shallow resonance is at k
1S0
Pole

on the negative Im(k) axis. The A = 4 plane places the
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deeply bound (−28.296 Mev) α particle (∼ 4
2He2) at positive

Im(k).
Halo/cluster EFT at A � 5 has no pions, and is mathe-

matically similar to pionless EFT, becoming pionless EFT for
light nuclei when the cores are nucleons. We plot only the
classic example 6

2He4, where the energy required to remove
the cluster (α particle), or either of the two halo nucleons, is
much less than to break up the cluster. It lies on the A = 6
plane at positive Im(k).

In order to plot our Thomas-Fermi StaticχNL results
from Appendix D and show their position relative to pi-
onless EFT, we add an annulus to that pionless EFT
cylinder, extending the radius of its Re(k)- Im(k) base to the
region �A

π/ < |k| � �A
StaticχNL = �χSB ≈ 1 GeV. Our bound-

state StaticχNL “ice-cream-scoop” nuclei are then horizontal
lines along Im(k), in the positive Im(k)-A quarter-plane,
with 0 � |k| � kF � 280 MeV: they intersect the A axis
at AEvenEven = ZEven + NEven � 4. For visual simplicity, we
plot symmetric Z = N StaticχNL nuclei only for 28

14Si and
40
20Ca, at A = 28, 40. We show asymmetric StaticχNLs only
for 48

20Ca, 60
28Ni, 90

40Zr, and 208
82 Pb with X 2 � 1. For fur-

ther pedagogical simplicity, we have averaged 1
2 (kp

F + kn
F ) ≈

kF � 280 MeV.
Going forward, an important challenge is to find

an SU(2)L × SU(2)R χPT integration of the physics of
StaticχNLs and that of pionless EFT and halo/cluster EFT.

In the Summary of the 1985 Paris Conference on Nuclear
Physics with Electro-magnetic Probes, Ericson [58] showed
just how many facets there are to the nuclear “truth”: dif-
ferent physical domains require different descriptions, each
of which is the truth for that domain. If the StaticχNL as
derived from the symmetries of QCD describes heavy (spin-
zero even-even) spherical nuclei, its truth may be difficult
to relate directly to accurate descriptions of other physical
domains.

VI. CONCLUSIONS

In this paper, we have explored heavy symmetric nuclei in
a semiclassical approach starting with chiral EFT that respects
the global symmetries of QCD. In this, we have been guided
by two key observations: that nuclei are made of protons and
neutrons, not quarks, and that the up and down quarks, which
are the fermionic constituents of the protons and neutrons, are
much lighter than the principal mass scales of QCD, such as
the proton and neutron masses. Taken together, these strongly
suggest that the full complexity of the standard model can
largely be captured, for the purposes of nuclear physics, by
an effective field theory (EFT): SU(2)L × SU(2)R chiral per-
turbation theory [SU(2)χPT] of protons and neutrons.

Building on this long-standing insight, we have studied
the chiral limit of spontaneously broken SU(2)L × SU(2)R

[i.e., SU(2)χPT], including only operators of order �χSB

and �0
χSB. We find that SU(2)χPT of protons, neutrons,

and three pseudo-Nambu-Goldstone boson pions admits a
semiclassical liquid phase, a static chiral nucleon liquid
(StaticχNL). StaticχNLs are made entirely of nucleons, with
approximately zero antiproton and antineutron content. They

are parity even and time independent. As we have studied
them so far, not just the total nuclear spin �S = 0, but also
the local expectation value for spin 〈�s〉 � 0. Similarly, the
nucleon momenta vanish locally in the spherically symmet-
ric StaticχNL rest frame. For these reasons, our study of
StaticχNLs is applicable to bulk ground state spin-zero nu-
clear matter, and to the ground state of appropriate spin-zero
parity-even nuclei with an even number Z of protons and an
even number N of neutrons.

We classify these solutions of SU(2)χPT as “liquid”
because energy is required both to pull the constituent nu-
cleons further apart and to push them closer together. This
is analogous with the balancing of the attractive Lorentz-
scalar σ -exchange force and the repulsive Lorentz-vector
ωμ-exchange force in the Walecka model. The nucleon num-
ber density therefore takes a saturated value even in zero
external pressure (e.g., in the absence of gravity), so the
material is not a “gas.” Meanwhile they are statistically ho-
mogeneous and isotropic, lacking the reduced symmetries of
crystals or other solids.

We have shown that in this ground state liquid phase the
expectation values of many of the allowed operators of the
most general SU(2)χPT Lagrangian vanish or are small. Go-
ing forward, it is imperative to understand the effects of of
excited nucleon states to the spectra of heavy nuclei.

We have also shown that this spontaneously broken ground
state liquid phase does not support a classical pion field;
infrared pions decouple from this solution. We expect that
this emergence of “semiclassical pionless SU(2)χPT” is at
the heart of the apparent theoretical independence of much
successful nuclear structure physics from pion properties such
as the pion mass.

We have constructed explicit StaticχNLs in the Thomas-
Fermi approximation, demonstrating the existence of zero-
pressure nontopological-soliton StaticχNL solutions with
macroscopic (infinite nuclear matter) and microscopic (heavy
nuclear ground states).
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APPENDIX A: SU(2)L × SU(2)R χPT OF A NUCLEON
DOUBLET AND A PION TRIPLET IN THE

SPONTANEOUSLY BROKEN (I.E., CHIRAL) LIMIT

The chiral symmetry of two light quark flavors in QCD,
together with the symmetry breaking and Goldstone’s the-
orem, makes it possible to obtain an approximate solution
to QCD at low energies using a SU(2)L × SU(2)R EFT,
where the degrees of freedom are hadrons [6–13,59]. In
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particular, the nonlinear SU(2)χPT effective Lagrangian has
been shown to successfully model the interactions of pions
with nucleons, where a perturbation expansion (e.g., in soft
momentum |�k|/�χSB � 1, baryon number density 〈N†N〉

f 2
π �χSB

�
1, for chiral symmetry breaking scale �χSB ≈ 1 GeV) has
demonstrated predictive power. Such naive power-counting
in �−1

χSB includes all analytic quantum-loop effects into ex-
perimentally measurable coefficients of SU(2)L × SU(2)R

current-algebraic operators obedient to the global symmetries
of QCD, with light-quark masses generating additional ex-
plicit chiral-symmetry-breaking terms. Therefore, SU(2)L ×
SU(2)R χPT tree-level calculations with a naive power-
counting effective Lagrangian are to be regarded as true
predictions of QCD and the standard model of elementary
particles.

1. Nonlinear transformation properties

We present the Lagrangian of SU(2)L × SU(2)R χPT of a
nucleon doublet and a pNGB triplet. We employ the defining
SU(2) strong isospin representation of unitary 2×2 Pauli ma-
trices τa, with asymmetric structure constants fabc = εabc:

ta = τa

2
, a = 1, 3,

Tr(tatb) = δab

2
,

[ta, tb] = i fabctc,

{ta, tb} = δab

2
. (A1)

The vector and axial-vector charges obey the algebra[
QL+R

a , QL+R
b

] = i fabcQL+R
c ,[

QL−R
a , QL−R

b

] = i fabcQL+R
c ,[

QL+R
a , QL−R

b

] = i fabcQL−R
c . (A2)

We consider a triplet representation of NGBs,

πata = 1√
2

[
π0√

2
π+

π− π0√
2

]
(A3)

and a doublet of nucleons,

N =
[

p
n

]
. (A4)

For pedagogical simplicity, representations of higher mass
are neglected, even though the SU(2)L × SU(2)R baryon de-

cuplet (especially �1232) is known to have important nuclear
structure [1] and scattering [60] effects.

Since SU(2)χPT matrix elements are independent of rep-
resentation [8,9], we choose a representation [12,13,59] where
the NGB triplet has only derivative couplings,

� ≡ exp

(
2iπa

ta
fπ

)
. (A5)

Under a unitary global SU(2)L × SU(2)R transformation,
given by L ≡ exp(ilata) and R ≡ exp(irata),

� → �′ = L�R†. (A6)
It also proves useful to introduce the “square root” of �,

ξ ≡ exp

(
iπa

ta
fπ

)
, (A7)

which transforms as

ξ → ξ ′ = exp

(
iπ ′

a

ta
fπ

)
. (A8)

We observe that

ξ ′ = LξU † = UξR†, (A9)

for a certain unitary local transformation matrix
U (L, R, πa(t, x)).

The vector and axial-vector NGB currents

Vμ ≡ 1
2 (ξ †∂μξ + ξ∂μξ †),

Aμ ≡ i
2 (ξ †∂μξ − ξ∂μξ †) (A10)

transform straightforwardly as

Vμ → V ′ = UVμU † + U∂μU †,

Aμ → A′ = UAμU †. (A11)

Meanwhile the nucleons transform as

N → N ′ = U N (A12)

and

DμN ≡ ∂μN + VμN → U (DμN ). (A13)

2. Naive �χSB operator power counting

The SU(2)χPT Lagrangian, including all analytic
quantum-loop effects for soft momenta (� 1 GeV), can
be written as [12,59]

LχPT = −
∑
l,m,n

l+m�1

Clmn f 2
π�2

χSB

(
∂μ

�χSB

)m( NN

f 2
π �χSB

)l(
mquark

�χSB

)n

flmn

(
πa

fπ

)
, (A14)

where flmn is an analytic function, and the dimensionless
constants Clmn are O(�0

χSB) and, presumably, ≈1. As a power
series in �χSB we take, self-consistently, �χSB � 1 GeV and,

in higher orders, reorder the nonrelativistic perturbation ex-
pansion in ∂0 to converge with large nucleon mass mN ≈ �χSB

[2,61,62].
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3. The chiral symmetric limit

For the purposes of this paper, we retain from (A14)
only terms of order �χSB and �0

χSB, i.e., 1 � m + l + n � 2.
We can further divide LχPT into a symmetric piece (i.e.,
with spontaneous breaking and massless Goldstones) and a
symmetry-breaking piece (i.e., explicit breaking, arising from
nonzero quark masses) generating three massive pNGB:

LχPT = LSym
χPT + LSym-Breaking

χPT . (A15)

In this paper, we are interested only in unbroken
SU(2)χPT and so take n = 0 in (A14):

LSym-Breaking
χPT = 0. (A16)

We separate LSym
χPT into pure meson terms, terms quadratic

in baryons (i.e., nucleons), and four-baryon terms:

LSym
χPT = Lπ ;Sym

χPT + LN ;Sym
χPT + L4-N ;Sym

χPT (A17)

with [as in (1)]

Lπ ;Sym
χPT = f 2

π

4
Tr∂μ�∂μ�†,

LN ;Sym
χPT = N (iγ μDμ − mN1)N

− gANγ μγ 5AμN,

L4-N ;Sym
χPT ∼ 1

f 2
π

(
Nγ A N

)
(NγA N )+ + +. (A18)

As described below (1), the parentheses in the four-nucleon
Lagrangian indicate the order of SU(2) index contraction,
and + + + indicates that one should include all possi-
ble combinations of such contractions. As usual, γ A ≡
(1, γ μ, iσμν, iγ μγ 5, γ 5), for A = 1, . . . , 16 (with σμν ≡
1
2 [γ μ, γ ν]). These are commonly referred to as scalar (S),
vector (V ), tensor (T ), axial-vector (A), and pseudoscalar (P)
respectively.

In this paper, we will focus on the semiclassical symmetries
of chiral (i.e., spontaneously broken) SU(2)χPT. Nucleons
are treated as quantized fermions. Pions are classical fields;
i.e., ξ , Vμ, Aμ, U , �, πa, R, L defined in Sec.A 1 are not
quantized: their nontrivial commutation properties are entirely
due to strong isospin.

4. SU(2)L × SU(2)R invariant four-nucleon contact interactions

We focus on the four-fermion terms in (A18). We use the
completeness relation for 2 × 2 matrices:

δc f δed = 2
3∑

B=0

tB
cdtB

e f ,

[�t, U ( �π (x), r, l )] �= 0, (A19)

with tB = ( 1
2 I, �t ). (We use Greek letters for relativistic spinor

indices, and Roman letters for isospin indices.) Both isoscalar
and isovector four-nucleon contact interactions appear in the

SU(2)L × SU(2)R invariant Lagrangian:

L4-N ;Sym
χPT = CT =0

A

f 2
π

(
N

α

aγ A αβNβ
a

)(
N

λ

b γ λσ
A Nσ

b

)
+ CT =1

A

f 2
π

(
N

α

a γ A αβNβ

b

)(
N

λ

b γ λσ
A Nσ

a

)
= CT =0

A

f 2
π

(
N

α

c U †
caγ

A αβUad Nβ

d

)(
N

λ

e U †
ebγ

λσ
A Ub f Nσ

f

)
+ CT =1

A

f 2
π

(
N

α

c U †
caγ

A αβUbd Nβ

d

)(
N

λ

e U †
ebγ

λσ
A Ua f Nσ

f

)
= CT =0

A

f 2
π

(
N

α

c γ A αβNβ
c

)(
N

λ

e γ λσ
A Nσ

e

)
+ CT =1

A

f 2
π

(
N

α

c γ A αβNβ

d

)(
N

λ

e γ λσ
A Nσ

f

)
δc f δed

= CT =0
A

f 2
π

(
N

α

c γ A αβNβ
c

)(
N

λ

e γ λσ
A Nσ

e

)
+ 2

3∑
B=0

CT =1
A

f 2
π

(
N

α

c tB
cd γ A αβNβ

d

)(
N

λ

e tB
e f γ λσ

A Nσ
f

)
.

(A20)

APPENDIX B: FOUR-NUCLEON CONTACT
INTERACTIONS IN STATICχNLs

1. Boson-exchange-inspired four-nucleon contact interactions

We wish to study the expectation value of L4-N ;Sym
χPT in the

ground state of the chiral nuclear liquid (which we continue
to represent with 〈 〉). Using (A20) we find

−LBE
SχNL ≡ 〈 − L4-N ;Sym

χPT

〉
=
∑
A

CT =0
A

2 f 2
π

〈
N

α

c γ A αβNβ
c N

λ

e γ λσ
A Nσ

e

〉
+
∑
A B

CT =1
A

f 2
π

〈
N

α

c tB
cd γ A αβNβ

d N
λ

e tB
e f γ λσ

A Nσ
f

〉
.

(B1)

In what follows we ignore any and all excited states and
consider the effective Lagrangian:

−LBE
SχNL = 1

2 f 2
π

∑
A

×
{

CT =0
A

〈
N

α

c γ A αβNβ
c

〉〈
N

λ

e γ λσ
A Nσ

e

〉
+ 2

∑
B

CT =1
A

〈
N

α

c tB
cd γ A αβNβ

d

〉
× 〈

N
λ

e tB
e f γ λσ

A Nσ
f

〉}
. (B2)
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A useful identity is

1
4

〈
N

α

c γ A αβNβ
c

〉〈
N

λ

e γ λσ
A Nσ

e

〉
+ 〈

N
α

c t3;cd γ A αβNβ

d

〉〈
N

λ

e t3;e f γ λσ
A Nσ

f

〉
= 1

2

〈
pα

c γ A αβ pβ
c

〉〈
pλ

e γ λσ
A pσ

e

〉
+ 1

2

〈
nα

c γ A αβnβ
c

〉〈
nλ

e γ λσ
A nσ

e

〉
. (B3)

2. Contact interactions that mimic hadronic boson exchange

Taking expectation values inside the StaticχNL as in (B2),
we obtain

−LBE
SχNL � 1

2 f 2
π

(
LT =0

S + LT =0
V + LT =1

S + LT =1
V

)
, (B4)

where

LT =0
S = CT =0

S

〈
N

α

c Nα
c

〉〈
N

λ

e Nλ
e

〉
,

LT =0
V = CT =0

V

〈
N

α

c γ 0;αβNβ
c

〉〈
N

λ

e γ λσ
0 Nσ

e

〉
,

LT =1
V = 2CT =1

S

{
1
4

〈
N

α

c Nα
c

〉〈
N

λ

e Nλ
e

〉
+ 〈

N
α

c t3;cd Nα
d

〉〈
N

λ

e t3;e f Nλ
f

〉}
,

LT =1
S = 2CT =1

V

{
1
4

〈
N

α

c γ 0;αβ Nβ
c

〉〈
N

λ

e γ λσ
0 Nσ

e

〉
+ 〈

N
α

c t3;cdγ
0;αβ Nβ

d

〉〈
N

λ

e t3;e f γ λσ
0 Nσ

f

〉}
. (B5)

The factorization in LBE
SχNL, and its name, are inspired by

a simple picture of forces carried by heavy hadronic-boson
exchange, which is commonly envisioned in Walecka-like,
nuclear-Skyrme and density-functional models; i.e., we have
integrated out the auxiliary fields

(i) Lorentz-scalar isoscalar σ , with chiral coefficient
CT =0

S ,
(ii) Lorentz-vector isoscalar ωμ, with chiral coefficient

CT =0
V ,

(iii) Lorentz-scalar isovector �δ, with chiral coefficient
CT =1

S ,
(iv) Lorentz-vector isovector �ρμ, with chiral coefficient

CT =1
V .

To order �0
χSB, the only four-nucleon contact terms al-

lowed by local SU(2)χPT symmetry are exhibited in (B2)
and (B 2). Note that isospin operators �t = 1

2 �τ have appeared.
However, quantum-loop naive power counting requires inclu-
sion of nucleon Lorentz-spinor-interchange interactions, in
order to enforce antisymmetrization of fermion wave func-
tions. These are the same order as direct interactions, i.e.,
O(�0

χSB). The empirical nuclear models of Manakos and
Mannel [63,64] were specifically built to include such spinor-
interchange terms.

Explicit inclusion of spinor-interchange terms yields
a great technical advantage for the liquid approximation:
it allows us to treat StaticχNLs in Hartree-Fock
approximation, i.e., including fermion wave function
anti-symmetrization, rather than in less-accurate Hartree
approximation.

3. Contact-interactions, including spinor-interchange terms
enforcing effective antisymmetrization of fermion wave

functions in the Hartree-Fock approximation

In this section, we write an effective StaticχNL Lagrangian
for the four-nucleon contact interactions in terms of the ten
independent chiral coefficients: CT

K with K ∈ {S,V, T, A, P}
and T ∈ {0, 1}.

For pedagogical simplicity, we first focus on the “boson-
exchange-inspired” terms, with power-counting contact-
interactions of order (�0

χSB). “Direct” terms depend only on
CT =0

S , CT =0
V ,CT =1

S , and CT =1
V , because isoscalar (CT =0

T , CT =0
A ,

and CT =0
P ) and isovector (CT =1

T , CT =1
A , CT =1

P ) vanish when
evaluated in the liquid. “Spinor-interchange” terms depend on
all ten coefficients after Fierz rearrangement. [Such terms do
not appear in the SU(2)χPT analysis of the deuteron ground
state, because it only has one proton and one neutron.] The
combination of direct and spinor-interchange terms (which we
refer to below as “Total”) depends on all ten coefficients.

Because of the inclusion of spinor exchange terms, Hartree
treatment of the StaticχNL Lagrangian is equivalent to
Hartree-Fock treatment of the liquid. When building the
semiclassical liquid quantum state, this enforces the anti-
symmetrization of the fermion wave functions. A crucial
observation is that the resultant liquid depends on only four
independent chiral coefficients: C2

S , C2
V , C2

S , and C2
V . These

provide sufficient free parameters to balance the scalar attrac-
tive force carried by C2

S and C2
S against the vector repulsive

force carried by C2
V and C2

V when fitting to the experimentally
observed structure of ground state nuclei [as reflected, e.g., in
the different signs in definitions of C2

V and C2
S in (25) and (26)].

Motivated by the empirical success of nontopological
soliton models we conjecture that excited-nucleon-inspired
contact-interaction terms are small, and that the simple picture
of scalar attraction balanced against vector repulsion persists
when including them. Such analysis is beyond the scope of
this paper.

a. Lorentz vector (V) and axial-vector (A) forces

Proceeding in a similar manner for the vector and axial
vector terms we find

−LV,A
SχNL ≡ − 〈L4-N ;V,A〉 = 1

2 f 2
π

∑
A =V,A

{
CT =0

A

〈
N

α

c γ A αβ Nβ
c

〉〈
N

λ

e γ λσ
A Nσ

e

〉 + 2
∑

B

CT =1
A

〈
N

α

c tB
cd γ A αβ Nβ

d

〉〈
N

λ

e tB
e f γ λσ

A Nσ
f

〉}
,

(B6)
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which is

−LV,A
SχNL = 1

2 f 2
π

∑
A =V,A

{
2CT =0

A

〈
pα

c γ A αβ pβ
c

〉〈
nλ

e γ λσ
A nσ

e

〉+[
CT =0

A + CT =1
A

][〈
pα

c γ A αβ pβ
c

〉〈
pλ

e γ λσ
A pσ

e

〉+〈
nα

c γ A αβ nβ
c

〉〈
nλ

e γ λσ
A nσ

e

〉]}
.

(B7)

Direct terms. The properties of StaticχNLs enable this
expression to be written as

−LV,A
SχNL;D = 1

2 f 2
π

CT =0
V {2〈p† p〉〈n†n〉}

+ 1

2 f 2
π

[
CT =0

V + CT =1
V

]{〈p† p〉2 + 〈n†n〉2}, (B8)

where 〈p† p〉 and 〈n†n〉 represent 〈pα†
c pα

c 〉 and 〈nλ†
e nλ

e 〉, respec-
tively.

Spinor-interchange terms. After interchanging the ap-
propriate spinors, normal ordering creation and annihila-
tion operators, and Fierz re-arrangement, spinor-interchange
contributions depend on CT =0

V , CT =0
A , CT =1

V , and CT =1
A :

−LV,A
SχNL;Ex = 1

2 f 2
π

× [ − (
CT =0

V + CT =1
V

) + (
CT =0

A + CT =1
A

)]
× {〈p†

L pL〉2+ 〈p†
R pR〉2+ 〈n†

LnL〉2+〈n†
RnR〉2},

(B9)

where we have expanded the spinors p and n into left-handed
and right-handed components via p = pL + pR and n = nL +
nR.

Total direct and spinor-interchange terms. Combining the
direct and exchange terms yields:

−LV,A
SχNL;Total = 1

f 2
π

CT =0
V {〈p† p〉〈n†n〉}

+ C0
V + C1

V

f 2
π

{〈p†
L pL〉〈p†

R pR〉 + 〈n†
LnL〉〈n†

RnR〉}

+ C0
A + C1

A

2 f 2
π

∑
h=L,R

{〈p†
h ph〉2 + 〈n†

hnh〉2}. (B10)

The reader should note the cancellation of the term(
CT =0

V + CT =1
V

)
2 f 2

π

∑
h=L,R

{〈p†
h ph〉2+ 〈n†

hnh〉2}, (B11)

showing that vector-boson exchange cannot carry forces
between same-handed fermion protons, or between same-
handed fermion neutrons.

Significant simplification follows because StaticχNLs are
defined to have equal left-handed and right-handed densities;
i.e.,

〈p†
L pL〉 = 〈p†

R pR〉 = 1
2 〈p† p〉,

〈n†
LnL〉 = 〈n†

RnR〉 = 1
2 〈n†n〉. (B12)

Using (25) the contribution of (B10) to the Lorentz-spinor-
interchange Lagrangian can be written as

−LV,A
SχNL;Total = 1

2C2
V 〈N†N〉2 − C2

V 〈N†t3N〉2 (B13)

with

CV
200 = CT =0

V ,

−CV
200 = 1

2

[ − CT =0
V + CT =0

A + CT =1
V + CT =1

A

]
. (B14)

The crucial observation is that (B13) and (B14) depend on
just two independent chiral coefficients, C2

S and C2
V , (or equiv-

alently CV
200 and CV

200), instead of four, while still providing
sufficient free parameters to fit the vector repulsive force (i.e.,
within nontopological soliton, density functional, and Skyrme
nuclear models), up to naive power-counting order (�0

χSB), to
the experimentally observed structure of ground state nuclei.

b. Lorentz scalar (S), tensor (T), and pseudoscalar (P) forces

Proceeding in a similar manner we define

LST P
SχNL ≡ 〈

L4-N ;ST P
χPT

〉
(B15)

with

−LST P
SχNL = 1

2 f 2
π

∑
A =S,T,P

×
{

CT =0
A

〈
N

α

c γ A αβ Nβ
c

〉〈
N

λ

e γ λσ
A Nσ

e

〉
+ 2

∑
B

CT =1
A

〈
N

α

c tB
cdγ

A αβ Nβ

d

〉〈
N

λ

e tB
e f γ

λσ
A Nσ

f

〉}
(B16)

which is

−LST P
SχNL = 1

2 f 2
π

×
∑

A =S,T,P

{
2CT =0

A

〈
pα

c γ A αβ pβ
c

〉〈
nλ

e γ λσ
A nσ

e

〉
+ [

CT =0
A + CT =1

A

][〈
pα

c γ A αβ pβ
c

〉〈
pλ

e γ λσ
A pσ

e

〉
+ 〈

nα
c γ A αβ nβ

c

〉〈
nλ

e γ λσ
A nσ

e

〉]}
(B17)

Direct terms. The properties of StaticχNLs give

−LST P
SχNL;D = 1

2 f 2
π

CT =0
S 〈NN〉〈NN〉

+ 1

2 f 2
π

CT =1
S (〈pp〉〈pp〉 + 〈nn〉〈nn〉). (B18)

Spinor-interchange terms. Spinor-interchange contribu-
tions depend on six chiral coefficients: isoscalars CT =0

S , CT =0
T ,

CT =0
P and isovectors CT =1

S , CT =1
T , CT =1

P :

−LST P
χNL;Ex = 1

4 f 2
π

[(
CT =0

S + CT =1
S

)
+ 6

(
CT =0

T + CT =1
T

) + (
CT =0

P + CT =1
P

)]
× {〈pL pR〉2 + 〈pR pL〉2 + 〈nLnR〉2 + 〈nRnL〉2}

(B19)
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Total direct and spinor-interchange terms. As above, since
StaticχNLs have equal left-handed and right-handed scalar
densities by definition, the total direct and spinor-interchange
contribution is considerably simplified:

− LST P
SχNL;Total = − 1

2C2
S 〈NN〉2 − C2

S 〈Nt3N〉2, (B20)

where in (26) and (28) we have

CS
200 = CT =0

S ,

−CS
200 = 1

2

[
1
2CT =0

S + 5
2CT =1

S

+ 3
(
CT =0

T + CT =1
T

) + (
CT =0

P + CT =1
P

)]
. (B21)

Once again we find that (B20) and (B21) depend on just
two independent chiral coefficients, CS

200 and CS
200, instead

of six, while still providing sufficient free parameters to fit
the scalar attractive force (i.e., within nontopological soliton,
density functional, and Skyrme nuclear models), up to naive
power-counting order �0

χSB, to the experimentally observed
structure of ground state nuclei.

APPENDIX C: NUCLEON BILINEARS AND
SEMICLASSICAL NUCLEAR CURRENTS IN STATICχNLs

The structure of StaticχNLs suppresses various nucleon
bilinears:

(i) Vectors’ space components: because it is a three-
vector, parity odd, and stationary,〈

N
α

c �γ αβNβ
c

〉 ∼ 〈�k〉 � 0. (C1)

(ii) Tensors: because the local expectation value of nu-
clear spin 〈�s〉 = 1

2 〈�σ 〉 � 0,
(1) σ 0 j :〈

N
α

c σ 0 j;αβ Nβ
c

〉 = 〈
NL σ 0 jNR

〉 + 〈
NR σ 0 jNL

〉
= 2

〈
NL

[
0 �s j

�s j 0

]
NR

〉
+ 2

〈
NR

[
0 �s j

�s j 0

]
NL

〉
� 0; (C2)

(2) σ i j :〈
N

α

c σ i j;αβNβ
c

〉 = 〈NL σ i jNR〉 + 〈NR σ i jNL〉
= −2iεi jk〈NL �skNR〉

− 2iεi jk〈NR �skNL〉 � 0. (C3)

(iii) Axial vectors: because pL, pR are equally represented
in StaticχNLs, as are nL, nR,〈

N
α

c γ A;αβNβ
c

〉 = 〈NL γ μγ 5NL〉 + 〈NR γ μγ 5NR〉
= −〈NL γ μNL〉 + 〈NR γ μNR〉
� 0. (C4)

(iv) Pseudoscalars: because StaticχNLs are of even parity,〈
N

α

c γ P;αβNβ
c

〉 = 〈NR γ 5NL〉 + 〈NL γ 5NR〉
= −〈NR NL〉 + 〈NL NR〉
� 0. (C5)

Therefore, various Lorentz and isospin contributions are
suppressed in StaticχNLs. In summary, for isoscalars,〈

N
α

c Nα
c

〉 �= 0,〈
N

α

c γ 0;αβNβ
c

〉 �= 0,〈
N

α

c �γ αβNβ
c

〉 � 0,〈
N

α

c γ T ;αβNβ
c

〉 � 0,〈
N

α

c γ A;αβNβ
c

〉 � 0,〈
N

α

c γ P;αβNβ
c

〉 � 0, (C6)

and for isovectors, 〈
N

α

c t±
cdγ

A αβNβ

d

〉 = 0,〈
N

α

c t3
cd Nα

d

〉 �= 0,〈
N

α

c t3
cdγ

0;αβNβ

d

〉 �= 0,〈
N

α

c t3
cd �γ αβNβ

d

〉 � 0,〈
N

α

c t3
cdγ

T αβNβ

d

〉 � 0,〈
N

α

c t3
cdγ

AαβNβ

d

〉 � 0,〈
N

α

c t3
cdγ

PαβNβ

d

〉 � 0 (C7)

Now we form the semiclassical nuclear currents

Jμ

k = N γ μtkN, k = 1, 2, 3,

Jμ
± = Jμ

1 ± iJμ
2 =

{
pγ μn
nγ μ p

}
,

Jμ
3 = 1

2
(pγ μ p − nγ μn),

Jμ
8 =

√
3

2
(pγ μ p + nγ μn),

Jμ
QED = 1√

3
Jμ

8 + Jμ
3 = pγ μ p

Jμ
Baryon = 2√

3
Jμ

8 = pγ μ p + nγ μn,

J5μ

k = Nγ μγ 5tkN, k = 1, 2, 3,

J5μ
± = J5μ

1 ± iJ5μ
2 =

{
pγ μγ 5n
nγ μγ 5 p

}
,

J5μ
3 = 1

2
(pγ μγ 5 p − nγ μγ 5n),

J5μ
8 =

√
3

2
(pγ μγ 5 p + nγ μγ 5n). (C8)
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SU(2)L × SU(2)R nuclear currents within StaticχNLs are
obedient to its semiclassical symmetries. Thus we have

〈Jμ
±〉 = 〈Jμ,5

± 〉 = 〈∂μJμ
±〉 = 〈∂μJμ,5

± 〉 = 0 (C9)

and 〈
∂μJμ

3

〉
,
〈
Jμ,5

3

〉
,
〈
Jμ,5

8

〉 � 0,〈
Jμ=1,2,3

3

〉
,
〈
Jμ=1,2,3

8

〉 � 0,〈
∂μJμ

8

〉
,
〈
∂μJμ

Baryon

〉
,
〈
∂μJμ

QED

〉 � 0,〈
Jμ=1,2,3

Baryon

〉
,
〈
Jμ=1,2,3

QED

〉 � 0, (C10)

1√
3

〈
∂μJμ,5

8

〉 ∝ 〈(
mN + ĈS

200

)
γ 5
〉 ∼ η � 0,

1
2

〈
∂μJμ,5

3

〉 ∝ 〈(
mN + ĈS

200

)
γ 5t3

〉 ∼ π3 � 0. (C11)

The remaining nonzero contributions to the currents are〈
J0

Baryon

〉 �= 0,〈
J0

3

〉 �= 0,〈
J0

8

〉 �= 0,〈
J0

QED

〉 �= 0. (C12)

APPENDIX D: THOMAS-FERMI NONTOPOLOGICAL
SOLITONS AND THE SEMIEMPIRICAL MASS FORMULA

We are interested here in semiclassical solutions to (31),
identifiable as quantum chiral nucleon liquids, that are, for
reasons laid out in the main body of the paper, in the
ground state, spin zero, spherically symmetric, and even-even
(i.e., have an even number of protons and of neutrons). We
employ relativistic mean-field point-coupling Hartree-Fock
and Thomas-Fermi approximations, ignoring the antinucleon
sea.

We seek solutions that are static, homogeneous, and
isotropic. Given the absence of any surface terms at the
order �0

χSB in chiral symmetry breaking to which we are
working, we avoid the ad hoc imposition of such terms.
We therefore impose the condition that the pressure vanishes
everywhere, rather than just at the surface of a finite “liq-
uid drop.” Our finite StaticχNL nuclei therefore resemble
“ice cream balls” scooped from an infinite vat [65], more
than they do conventional liquid drops (which have surface
tension).

The Thomas-Fermi approximation replaces the neutrons
and protons with homogeneous and isotropic expectation val-
ues over free neutron and proton spinors, with (for j = n and
p) effective reduced mass m j

∗, three-momentum �k j , energy

E j =
√

(�k j )2 + (m j
∗)2, and zero spin. Most of these vanish

because of the absence of any preferred direction for spin or
momenta in StaticχNLs:

nn → 〈nn〉 = mn
∗

En
,

n(γ 0, �γ )n → 〈n(γ 0, �γ )n〉 = (1, �0),

n(σ 0 j, σ i j )n → 〈n(σ 0 j, σ i j )n〉 = 0,

n(γ 0, �γ )γ 5n → 〈n(γ 0, �γ )γ 5n〉 = 0,

nγ 5n → 〈nγ 5n〉 = 0, (D1)

and similarly for the proton. To simplify our notation, we drop
the 〈· · · 〉 in the remainder of this Appendix.

Within the liquid drop, the baryon number density

N†N = p† p + n†n (D2)

and scalar density

NN = pp + nn. (D3)

The neutron contributions to these densities are

n†n = 2
∫ kn

F

0

d3k

(2π )3
=

(
kn

F

)3

3π2
,

nn = 2
∫ kn

F

0

d3k

(2π )3

mn
∗√

k2 + (mn∗)2
,

= mn
∗

2π2

[
kn

F μn
∗ − 1

2
(mn

∗)2 ln

(
μn

∗ + kn
F

μn∗ − kn
F

)]
, (D4)

with

mn
∗ ≡ mn + C2

S N N − 1
2CS

200(nn − pp),

μn
∗ ≡

√(
kn

F

)2 + (mn∗)2. (D5)

The equivalent proton contributions are obtained by straight-
forward substitution of n ↔ p.

It is convenient to define

ε
∫

n ≡ 2
∫ kn

F

0

d3k

(2π )3

√
k2 + (mn∗)2,

= 3

4
μn

∗n†n + 1

4
mn

∗nn, (D6)

P
∫

n ≡ 2
∫ kn

F

0

d3k

(2π )3

k2

3
√

k2 + (mn∗)2
,

= 1

4
μn

∗n†n − 1

4
mn

∗nn, (D7)

and equivalently for protons. These look conveniently like the
neutron and proton energy density and pressure, and indeed

ε
∫

n − 3P
∫

n = mn
∗n̄n,

ε
∫

n + P
∫

n = μn
∗n†n. (D8)

The actual nucleon energy density and pressure are properly
constructed from the stress-energy tensor:

(
T N

χPT

)μν= ∂LN
χPT

∂ (∂μN )
∂νN − gμνLN

χPT , (D9)

with

εN ≡ (
T N

χPT

)00
,

PN ≡ 1
3

(
T N

χPT

) j j
. (D10)
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The total nucleon energy and pressure are thus

εN = ε
∫

p + ε
∫

n + 1

2

(
C2

V (N†N )2 − C2
V

2
(p† p − n†n)2

)
+ 1

2

(
C2

S (NN )2 + CS
200

2
(pp − nn)2

)
,

PN = P
∫

p + P
∫

n + 1

2

(
C2

V (N†N )2 − C2
V

2
(p† p − n†n)2

)
− 1

2

(
C2

S (NN )2 + C2
S

2
(pp − nn)2

)
. (D11)

Using

μn
B ≡ μn

∗ + C2
V N†N − C2

V (n†n − p† p),

μ
p
B ≡ μp

∗ + C2
V N†N + C2

V (n†n − p† p), (D12)

it follows that εN and PN are related by the baryon number
densities:

εN + PN = μ
p
B p† p + μn

B n†n. (D13)

The objects of our calculations are therefore the six quanti-
ties μ

n,p
B , mn,p

∗ , and kn,p
F . These are, respectively, the chemical

potential, reduced mass, and Fermi-momentum for neutrons
and protons.

1. Z = N heavy nuclei in the chiral symmetric limit

To calculate binding energies, we work in the chiral sym-
metric limit, mp = mn, e.g., zero electromagnetic breaking,
and m8 = 1

2 (mp + mn). We first study the case Z = N , so
mn

∗ = mp
∗ ≡ m∗ for equal numbers of protons and neutrons.

We search for a solution of the chiral-symmetric liquid equa-
tions that has PN = 0. In this simple case, μ

p
B = μn

B ≡ μB,
μ

p
∗ = μn

∗ ≡ μ∗, mp = mn ≡ mN , and kFn = kF p ≡ kF . Thus

kF =
√

μ2∗ − m2∗. (D14)

We also have n†n = p† p = 1
2 N†N , and nn = pp = 1

2 NN .
We are therefore able to write the baryon density as

N†N = μB − μ∗
C2

V

, (D15)

and the scalar density as

NN = mN − m∗
C2

S

, (D16)

where, to make connection to Walecka’s model of nuclear
matter, we use C2

V and C2
S defined in (26) and (26), respectively.

The baryon number and scalar densities are simply twice
the values in (D4); i.e.,

N†N = 2k3
F

3π2
,

NN = m∗
π2

(
μ∗kF − m2

∗ ln

[
μ∗ + kF

m∗

])
. (D17)

The fermion pressure is now

PN = 1
4

[
μBN†N + C2

V (N†N )2

− mN NN − C2
S (NN )2

]
. (D18)

To these six equations (D14)–(D18) in the seven variables kF ,
μ∗, δμ ≡ μ − μ∗, m∗, NN , N†N , and PN , we add the physical
condition that the StaticχNL nontopological-soliton pressure
vanishes internally, in order that it remain stable when im-
mersed in the physical vacuum:

PN = 0, (D19)

eliminating PN as a free variable. Equations (D14)–(D17)
can be solved analytically to give kF , μ∗, N†N , and NN as
functions of m∗ and δμ:

kF =
(

3π2

2

δμ

C2
V

)1/3

,

μ∗ =
√

k2
F + m2∗. (D20)

Equation (D18), with PN = 0, then becomes a quartic equa-
tion for m∗ in terms of δμ:

0 = m2
∗ +

(
3π2δμ

2C2
V

)2/3

−
[C2

V

C2
S

(mN − m∗)(2mN − m∗)

δμ

− 2δμ

]2

, (D21)

which has up to four roots, m∗(δμ; C2
S , C2

V ), for every value of
δμ, C2

S , and C2
V .4 To be an actual solution of the complete set

of Z = N chiral-symmetric pressure-less liquid equations, the
root must also satisfy (D16) and the second of (D17); i.e.,

�N̄N ≡ 1 − C2
S

mN − m∗
NN = 0, (D22)

where we use (D20) for kF (δμ; C2
V ) and μ∗(δμ; C2

S , C2
V ).

Now mN/ fπ ≈ 939/93 ≈ 10.10, but in principle C2
S and C2

V
are free parameters. For given values of C2

S and C2
V , we must

search for a value of δμ such that (D22) holds. The existence
of such a value of δμ is not assured for arbitrary values of C2

S
and C2

V .
Fitting to experimental values, Chin and Walecka

found that their parameters C2
V = 222.65 GeV−2 and C2

S =
303.45 GeV−2. In Fig. 2, we show that there does indeed exist
a pressureless chiral-symmetric nuclear liquid for C2

S and C2
V

4But only one of these four roots might be an infinite StaticχNL,
and then only if it were the PN → 0 limit of a finite Walecka nontopo-
logical soliton. Those solitons satisfy Newtonian roll-around-ology
[16,22–26], where the mean field nucleons move within a dynamic
σ field. PN

Internal �= 0 and PN
External = 0 are then connected by the

dynamic σ surface.
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FIG. 2. �N̄N [cf. (D22)] as a function of baryon chemical poten-
tial μB for C2

V = 222.65 GeV−2 and C2
S = 303.45 GeV−2, the Chin

and Walecka values [20] equivalent to ours. A solution of the com-
plete set of Z = N chiral-symmetric pressureless liquid equations
must have �N̄ N = 0, and thus is found at μB � 923.17 MeV, where
the curve intersects the μB axis. This value equals the Chin-Walecka
value shown as a black dot.

equal to the Chin and Walecka [20] values. Furthermore, the
inferred value of the baryon chemical potential is 923.17 MeV,
and is consistent with Chen and Walecka’s value. Figure 3
shows representative values of C2

V and C2
S for different val-

ues of kF using the first approach. Remarkably, we can
now understand Chin and Walecka’s nuclear matter to be a
pressureless chiral-symmetric nuclear liquid. We also perhaps
thereby gain some insight into the relative insensitivity of
nuclear properties to pion properties.

2. Z �= N heavy nuclei in the chiral-symmetric limit

Here we outline the analytic and numerical treatment of
the case where Z �= N in the chiral limit. The approach may
be summarized as follows:

(1) The starting point is the zeroth-order solution for the
case Z = N which determines the coupling constants

FIG. 3. Plot of f 2
πC2

S and f 2
πC2

V against the Fermi level in inverse
F . The calibration used a bulk binding energy EVol = 15.75 MeV.

C2
S and C2

V for a given Fermi level and binding energy
as in the previous section.

(2) All proton and neutron specific quantities are ex-
panded in a Taylor series.

(3) The general rule is that quantities vanishing in ze-
roth order have a first-order variation while those not
vanishing in zeroth order have only a second-order
variation; thus all terms up to second order must be
retained.

(4) The vanishing of pressure to second order provides an
additional equation which allows all variations to be
expressed in terms of the first-order change in density
only.

(5) Since there appears no way to infer separately the
value of C2

S we follow Niksic and co-workers [50]
and set this constant to zero. This leads to significant
simplification. In particular, changes in the proton and
neutron reduced masses are equal in first order.

(6) We then solve for C2
V by setting the asymmetry energy

of the liquid model to the second-order variation in the
Thomas-Fermi energy.

In this section we use the following notation for the number
and scalar densities:

ρp ≡ p† p, ρn ≡ n†n, ρ± = ρp ± ρn,

ρSp ≡ p p, ρSn ≡ n n, ρS± = ρSp ± ρSn. (D23)

We define the changes in densities as follows:

dρp − dρn = εdρ−,

dρp + dρn = ε2dρ+ (D24)

where ε is merely a placeholder for the order of the variation.
It then follows that

ρp =1

2
ρ+ + ε

2
dρ− + ε2

2
dρ+,

ρn =1

2
ρ+ − ε

2
dρ− + ε2

2
dρ+. (D25)

Since the number density for each species is given by the first
of (D4) we get the following expansions for the Fermi levels:

δkF p − δkFn =ε
2kF

3ρ+
δρ−,

δkF p + δkFn =ε2

(
2kF p

3ρ+
δρ+ − 2kF

9ρ2+
δρ2

−

)
. (D26)

It follows that

m∗8 ≡ 1

2
(m∗p + m∗n) = mN − C2

S ρS+,

m∗3 ≡ 1

2
(m∗p − m∗n) = C2

S

2
ρS−, (D27)

where we used the second of (26). We also define

μ∗8 = 1
2 (μ∗p + μ∗n),

μ∗3 = 1
2 (μ∗p − μ∗n), (D28)
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with μ∗n,p as in (D5). We now enforce C2
S = 0: it follows im-

mediately from the second of (D27) that m∗3 = δm∗3 = 0 with
considerable simplification. First, δμ∗3 is a linear function of
δρ− only; i.e.,

δμ∗3 = π2

2 kF μ∗8
δρ−. (D29)

Second, δμ∗8 is also simplified:

δμ∗8 = m∗8

μ∗8
δm∗8 + π2

2μ∗8kF p
δρ+

− π4

8 k4
F μ3

∗8

(
m2

∗8 + 2k2
F

)
δρ2

−. (D30)

(As noted, δμ∗3 is first order, while δμ∗8 is second order.) The
variation in the first of (D27) gives

δρS+ = −δm∗8

C2
S

, (D31)

where the variation in ρS+ is obtained using

δρSp,n = 3

(
ρSp,n

m∗p,n
− ρp,n

μ∗p,n

)
δm∗p,n

+ m∗p,n

μ∗p,n

k2
F p,n

π2
δkF p,n. (D32)

After some algebra and substituting the variations in μ∗3 and
μ∗8 from (D29) and (D30), we find

3

(
ρS+
m∗8

− ρ+
μ∗8

+ 1

C2
S

)
δm∗8 + m∗8

μ∗8
δρ+ − m∗8π

2

μ3
∗8 kF

δρ2
−

4
= 0.

(D33)

We must also enforce the vanishing of the Fermi pressure. The
first-order variation of the Fermi pressure vanishes identically.
The second-order term is

δPN
2 = 1

4
(ρ+δμ∗8 + μ∗8δρ+ + δμ∗3δρ−) + C2

V ρ+δρ+

− C2
V

4
δρ2

− + 1

4C2
S

(3mN − 2m∗8)δm∗8. (D34)

After using (D29) and (D30), the zero pressure equation be-
comes (

3mN − 2m∗8

4C2
S

+ ρ+m∗8

2 μ∗8

)
δm∗8

+
(

μ∗8

4
+ C2

V ρ+ + k2
F

12 μ∗8

)
δρ+

+
(

π2 (5m2
∗8 − 4k2

F )

48 kF μ3
∗8

− C2
V

4

)
δρ2

−

= 0. (D35)

Equations (D33) and (D35) are solved to express δm∗8 and
δρ+ in terms of δρ2

−. To determine C2
V we need the second

variation in the energy density E . This quantity is discussed
below.

FIG. 4. Plot of CV
200 ≡ f 2

π C2
V against the Fermi level in fm−1. The

behavior is roughly linear in the range considered and corresponds to
a one-third power of the number density.

3. Calibration of C2
V

We start with the vanishing of the pressure and the relation-
ship:

εN + PN =μpρp + μnρn = μ8 ρ+ + μ3 ρ−, (D36)

where

μ8 =μ∗8 + C2
V ρ+,

μ3 =μ∗3 − 1
2C2

V ρ−. (D37)

The zeroth-order energy density when Z = N follows at once:

εN
0 =μ∗8 ρ+ + C2

V ρ2
+. (D38)

The first-order energy term vanishes. The second-order term
is

δεN
2 = ρ+ δμ∗8 + μ∗8 δρ+ + δμ∗3 δρ−

+ 2C2
V ρ+ δρ+ − 1

2C2
V δρ2

−. (D39)

Finally, we can express δρ− in terms of the relative neutron
excess as

δρ− = Z − N

Z + N
ρ+. (D40)

The parameter C2
V can be calibrated in two ways. In the

first, we merely ascribe all of the second-order energy to the
asymmetry term in the liquid drop formula (34) for C2

V :

δεN
2 = aAsym

(Z − N

Z + N

)2

ρ+ = aAsym
δρ2

−
ρ+

, (D41)

where aAsym is fit to SEMF observation. In the second
approach, we calibrate directly to the binding energies of
isotopes, possibly using the liquid drop formula to correct for
effects that we have ignored in this paper such as the Coulomb
and surface terms. Both approaches give comparable results.
Figure 4 shows the behavior of C2

V for different values of kF .
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