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Magnetized vector boson gas at any temperature
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We study the thermodynamic properties of a relativistic magnetized neutral vector boson gas at any tempera-
ture. By comparing the results with the low temperature and the nonrelativistic descriptions of this gas, we found
that the fully relativistic case can be separated in two regimes according to temperature. For low temperatures,
magnetic field effects dominate and the system shows a spontaneous magnetization, its pressure splits into two
components, and, eventually, a transversal magnetic collapse might occur. In the high temperature region, the
gas behavior is led by pair production. The presence of antiparticles preserves the isotropy in the pressure, and
increases the magnetization and the total pressure of the system by several orders. Astrophysical implications of
those behaviors are discussed.
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I. INTRODUCTION

The obtaining in the laboratory of the Bose-Einstein con-
densate (BEC) for composite particles constituted one of the
milestones of physics at the end of the last century, and it
came along with the demonstration that Bose-Einstein con-
densation and superfluidity can also be considered as the
limiting states of another more general phenomenon: fermion
pairing [1–6]. Since the experimental achievement of Bose-
Einstein condensation [7], bosonic gases have attracted lot
of theoretical attention, not only for the condensate per se,
but also for other interesting phenomena linked with it like
the BEC collapse called “Bose-Nova” [8], the diffuse BEC
of magnetized charged gases [9–15], and Bose-Einstein ferro-
magnetism [16,17].

On Earth, the BEC is still an exotic state restricted to the
laboratory, however astrophysical and cosmological environ-
ments provide appropriate conditions for its natural existence.
Hypothetically, several types of meson condensates—pions
and kaons—exist inside neutron stars (NSs) [18–20]. More-
over, in the last few years new observational evidence has
come to reinforce the supposition of a NS superfluid inte-
rior [21–23]. This superfluid is composed by paired protons

*gquintero@fisica.uh.cu
†lismary@icimaf.cu
‡aurora@icimaf.cu
§hugo@icimaf.cu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by SCOAP3.

and neutrons that, given the star’s typical inner conditions,
are expected to be in an intermediate situation between the
BCS and the BEC limits [24]. Usually, the paired nucleons
are described in the BCS limit, although some descriptions
in the BEC limit have also been developed, giving birth
to BEC star models [24–27]. Boson stars are less popular
than fermion star models to describe compact objects; nev-
ertheless, self-gravitating boson systems have been studied
since the last century not only in connection to compact
objects, but also as sources of dark matter and black holes
[25,28–30].

Besides dark matter stars, Bose-Einstein condensates are
popular in cosmology as an alternative to the standard cold
dark matter (CDM) model in small scales (≈10 kpc or less)
[31]. Such models are based on the supposition that dark
matter is composed of very light hypothetical bosons (m ∼
10−21–10−22 eV), known as axions [31–35]. Large-scale pre-
dictions of axion models are the same as in CDM, but
small-scale predictions seem to be more in accordance with
observations [31]. The BEC of axions has not only proven to
be a viable dark matter candidate [31,33], but it also provides
plausible explanations for dark energy and its relation with
dark matter [32,33].

A common approximation of all these theoretical studies
is the assumption that the Bose gas is at zero or low tem-
perature. This is also the usual approximation in the case of
fermion gases in astrophysical environments. In these scenar-
ios, fermion densities are so high that thermal fluctuations
become negligible even at the billions of kelvins reached
inside neutron stars. However, this limit does not work as well
for bosons, because due to BEC they are very sensitive to
environmental changes (variations in particle density, temper-
ature, and magnetic field) as we have already reported in some
preliminary studies on magnetized spin-one particles at finite
temperature [36,37].
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Spin-one boson gases are of great interest due to their
unique magnetic properties in connection with BECs [16]
and with astrophysical magnetic field generation [27]. All this
background makes us focus this paper on the thermodynamic
properties of a magnetized neutral vector boson gas (NVBG)
at any temperature. In Secs. II and III we review the equations
of motion of neutral vector bosons and the thermodynamic
potential of the corresponding gas. Section IV is devoted to
condensation, while Sec. V encloses the magnetic properties.
In Sec. VI the equations of state are discussed. Concluding
remarks are listed in Sec. VII, while mathematical details are
given in the Appendices.

The numerical calculations and plots have been done for
a composite spin-one boson formed by two paired neutrons,
with mass m = 2mN and magnetic moment κ = 2μN , mN and
μN being the mass and the magnetic moment of the neutron.
This kind of effective bosons might be created in the core
of neutron stars (see [27] and references therein). Apart from
the astrophysical inspiration, the discussions of our results are
valid for any massive neutral vector boson gas and could be
applied to phenomena in condensate matter [17] and heavy-
ions colliders [38–40]. Along the paper, the results for the
relativistic vector boson gas at any temperature are compared
with the ones coming for the low temperature [41] and the
nonrelativistic [36] treatment of this gas. As we shall see, this
provides a better understanding of the underlaying physics, as
well as a quick way to detect the high temperature effects.

II. EQUATION OF MOTION OF A NEUTRAL
VECTOR BOSON

The Lagrangian of neutral vector bosons under the action
of an external magnetic field is an extension of the original
Proca Lagrangian for spin-one particles that includes particle-
field interactions [42,43]

L = − 1
4 FηνF ην − 1

2ψηνψην + m2ψηψη

+ imκ (ψηψν − ψνψη )Fην, (1)

where the index η and ν run from 1 to 4, F ην is the electromag-
netic tensor, and ψην and ψη are independent field variables
that follow the equations of motion [42]

∂ηψ
ην − m2ψν + 2iκmψηFη

ν = 0, (2)

ψην = ∂ηψν − ∂νψη, (3)

that in the momentum space read [41][
(pη pη + m2)δν

η − pν pη − 2iκmFη
ν
]
ρη = 0. (4)

Thus, the vector boson propagator is

D−1
ην = (pη pη + m2)δν

η − pν pη − 2iκmFη
ν. (5)

Taking the magnetic field as uniform, constant, and in p3

direction B = Be3, the generalized Sakata-Taketani Hamilto-
nian for the six component wave equation of the vector boson
is obtained from Eq. (2) [42,43]:

H = σ3m + (σ3 + iσ2)
p2

2m
− iσ2

(p · S)2

m
− (σ3 − iσ2)κS · B, (6)

with p = (p⊥, p3) and p⊥ = p2
1 + p2

2. The σi are the 2×2
Pauli matrices and the Si are the 3×3 spin-one matrices in
a representation in which S3 is diagonal and S = {S1, S2, S3}.1

The spectrum of the bosons described by Eq. (6) is

ε(p3, p⊥, B, s) =
√

m2 + p2
3 + p2

⊥ − 2κsB
√

p2
⊥ + m2, (7)

where s = 0,±1 are the spin eigenvalues.
Let us note that the magnetic field B enters in the energy

spectrum coupled with the transverse momentum component
p⊥ (see the last term in the previous equation). This coupling
reflects the breaking of the SO(3) symmetry of the free system
and the axial symmetry imposed by the magnetic field. A dif-
ference with magnetized charged quantum particles is here the
absence of Landau quantization in the transversal momentum
component, a direct consequence of the electric neutrality of
the bosons we are studying [41].

The ground state energy of the neutral vector bosons (s = 1
and p3 = p⊥ = 0) is

ε(0, b) =
√

m2 − 2κBm = m
√

1 − b, (8)

with b = B
Bc

and Bc = m
2κ

. For the values of m and κ we are
considering Bc = 7.8×1019 G.

From Eq. (8) follows that the rest energy of the magnetized
vector bosons decreases with the magnetic field and is zero
for B = Bc. At this point the system becomes unstable [41].
This instability is similar to the so-called zero-mode problem
of magnetized charged spin-1 field. Thus, one expects that
boson-boson interactions [44] provide a mechanism to remove
the instability through the condensation of vortices as in [45].
However, in the present paper, we will neither deal with this
phenomenon nor go beyond Bc, since the maximum magnetic
field expected inside NSs is around �5×1018 G [19].

III. THERMODYNAMIC POTENTIAL OF
THE MAGNETIZED SPIN-ONE GAS

To obtain the thermodynamical potential of the magnetized
NVBG we will follow the procedure shown in [41]. We start
from the spectrum Eq. (7) and the definition

�(B, μ, T ) = �st (B, μ, T ) + �vac(B), (9)

where

�vac(B) =
∑

s

∫ ∞

0

p⊥d p⊥d p3

(2π )2
ε(p3, p⊥B, s) (10)

is the zero-point energy or vacuum term and is only B de-
pendent. �vac(B) has an ultraviolet divergence which can be
easily treated since the theory of neutral vector bosons inter-
acting with a magnetic field through the magnetic moment is
renormalizable. Note in Eq. (1) that the parameter mκ , that

1

S1 = 1√
2

(0 1 0
1 0 1
0 1 0

)
, S2 = i√

2

(0 −1 0
1 0 −1
0 1 0

)
, S3 =

(1 0 0
0 0 0
0 0 −1

)
.
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plays the role of the coupling constant for the interactions of
the bosons with the magnetic field, is dimensionless [46–49].

After renormalization (see Appendix A), the vacuum contri-
bution reads

�vac(b) = − m4

288π
[b2(66 − 5b2) − 3(6 − 2b − b2)(1 − b)2 log(1 − b) − 3(6 + 2b − b2)(1 + b)2 log(1 + b)]. (11)

�st is the statistical contribution of particles/antiparticles. It depends on the magnetic field intensity B, the chemical potential
μ, and the absolute temperature T = 1/β, and can be written as

�st (B, μ, T ) =
∑

s

∫ ∞

0

p⊥d p⊥d p3

(2π )2β
ln ( f +

BE f −
BE), (12)

where f ±
BE = [1 − e−(ε∓μ)β ] stands for particles/antiparticles.

To compute �st we rewrite it as

�st (B, μ, T ) =
∑

s

�st (s), (13)

�st (s) being the contribution of each spin state. Using the Taylor expansion of the logarithm, �st (s) is transformed into

�st (s) = − 1

4π2β

∞∑
n=1

enμβ + e−nμβ

n

∫ ∞

0
p⊥d p⊥

∫ ∞

−∞
d p3e−nβε(p3,p⊥,B,s), (14)

where enμβ stands for the particles and e−nμβ stands for the antiparticles.
After integration over p3, partial integration over p⊥, and the change of variables x2 = (m2 + p2

⊥ + α2)2 − α2, Eq. (14)
becomes

�st (s) = − y2
0

2π2β2

∞∑
n=1

enμβ + e−nμβ

n2
K2(nβy0) − α

2π2β

∞∑
n=1

enμβ + e−nμβ

n

∫ ∞

y0

dx
x2K1(nβx)√

x2 + α2
, (15)

with Kl (x) the McDonald function of order l , y0 = m
√

1 − sb, and α = smb/2. Now �st (b, μ, T ) reads

�st (b, μ, T ) = −
∑

s

∞∑
n=1

enμβ + e−nμβ

2π2nβ

{
y2

0

nβ2
K2(nβy0) − α

∫ ∞

y0

dx
x2

√
x2 + α2

K1(nβx)

}
. (16)

We obtain the thermodynamic potential of the magnetized neutral vector boson gas at any temperature by adding Eqs. (11)
and (16). The thermodynamic magnitudes derived from Eqs. (9), (11), and (16) will be studied and compared with those that
come from two important cases: the relativistic low temperature limit (LT) [41] and the nonrelativistic limit (NR) [36].

The low temperature limit is obtained by assuming T 	 m and neglecting the antiparticle contribution as well as that of the
spin states with s = 0,−1 in Eq. (16). This last is equivalent to requesting, in addition, that T 	 2κB < m, since only for those
temperatures transitions of bosons from the s = 1 state to any excited spin state will be forbidden, meaning that this LT limit
is also a strong field approximation. Further detail may be seen in Appendix B, where the computation of the thermodynamic
magnitudes in the LT limit is sketched.

In the nonrelativistic limit p3, p⊥, κB 	 m. These approximations are equivalent to neglecting the vacuum and the antiparticle
contributions, and lead to the NR spectrum ε(p, s) = m + 
p 2/2m − sκB. Details of the computation of the NR thermodynamic
quantities are shown in Appendix C.

According to the assumptions of the LT and the NR limits, to consider the magnetized NVBG at any temperature is equivalent
to keeping in Eqs. (9), (16), and (11) the contributions of the antiparticles, as well as those of the vacuum and all the spin states.

For a Bose gas, the particle density is

ρ = ρGS − ∂�

∂μ
, (17)

where ρGS stands for the density in the ground state ε(0, b) = m
√

1 − b (the condensed ones), while the term − ∂�
∂μ

= − ∂�st
∂μ

accounts for the density in the excited states. In Eq. (17), ρGS is such that ρGS = 0 for T � Tc, while ρGS > 0 for T < Tc,
Tc being the critical temperature of condensation. Deriving with respect to the chemical potential in Eq. (16), we obtain the
following expression for ρ at any temperature:

ρ = ρGS +
∑

s

∞∑
n=1

enμβ − e−nμβ

2π2

{
y2

0

nβ
K2(nβy0) + α

∫ ∞

y0

dx
x2

√
x2 + α2

K1(nβx)

}
. (18)
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FIG. 1. Particle (ρ+/ρ) and antiparticle (ρ−/ρ) fraction as func-
tion of temperature for several values of the magnetic field. The
vertical lines indicate the BEC critical temperature Tc(b) [see
Eq. (19) in next section].

In Eq. (18), the particle density in the excited states can
be written as the difference between the particles (ρ+) and
the antiparticles (ρ−) in the system: ρ+ − ρ− = − ∂�

∂μ
. The

particle/antiparticle density is thus obtained by taking only the
terms with enμβ or e−nμβ , respectively.

Figure 1 shows the fraction of noncondensed parti-
cles/antiparticles (ρ+/ρ and ρ−/ρ) as a function of the
temperature and the magnetic field for ρ = 1.30×1039 cm−3.
The antiparticle density begins to be noticeable at T � m/4
and increases with B. However, to appreciate this last ef-
fect one requires magnetic fields close to Bc. Note that the
curves for b = 0 and 0.1 are practically the same. For bosons
with critical fields on the order of those of paired neu-
trons, the influence of B in pair production is not relevant,
but it could be important for particles with weaker critical
fields.

IV. BOSE-EINSTEIN CONDENSATION

Bose-Einstein condensation occurs when μ = m
√

1 − b
and ρGS = 0 [50]. Setting this in Eq. (18) we get the following

FIG. 3. BEC phase diagram in the T vs B plane for ρ =
1.30×1039 cm−3. The white region corresponds to the free gas, and
the colored one corresponds to the condensate.

expression for the critical curve (i.e., for the implicit depen-
dence of ρ, T , and B in the transition points):

ρc =
∑

s

∞∑
n=1

enm
√

1−bβ − e−nm
√

1−bβ

2π2

{
y2

0

nβ
K2(nβy0)

+α

∫ ∞

y0

dx
x2

√
x2 + α2

K1(nβx)

}
. (19)

Bose-Einstein condensation of magnetized Bose gases
depends on three parameters: Temperature, density, and mag-
netic field; so the gas can reach the condensate in several
ways. For instance, it condenses for fixed ρ and b when the
temperature decreases; for fixed T and b, when the density
increases; and for fixed ρ and T if the magnetic field augments
[41]. We have illustrated these behaviors in Figs. 2 and 3, that
correspond to the BEC phase diagrams in the ρ vs T and the
T vs b planes, respectively.

Figure 2 shows the NVBG critical curves [Eq. (19)], de-
noted as R, along with the LT and the NR limits. Note
that ρc � m3 at Tc � m, which is the condition for a Bose
gas to condense at relativistic temperatures [51]. In the low

FIG. 2. BEC phase diagram in the ρ vs T plane. The white region corresponds to the free gas while the colored one corresponds to the
condensed state. The lines indicate the critical curves ρc(T, b) for the different descriptions of the NVBG.
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temperature region there is no difference in the behavior of
the R and NR critical curves; they separate around T � m, sig-
naling the appearance of the antiparticles. On the other hand,
from these plots is evident that the LT approximation is not
valid in the nonmagnetized case (remember it is also a strong
field approximation). For b = 0.001, the LT critical curve
coincides with the other two until T � 10−3m, indicating that
this limit is not entirely correct above those temperatures.

In Fig. 3 we draw the BEC phase diagram in the T vs b
plane. As it is shown, the increasing of b augments Tc in the
relativistic cases, and as b → 1(B → Bc) the critical temper-
atures of the relativistic gases diverge, while in the NR limit
it approaches the constant value T NR

c (∞) = 2π
m [ρ/ζ (3/2)]2/3,

where ζ (x) is the Riemann zeta function [36]. The saturation
of T NR

c (b) is caused by the absence of a critical magnetic field.
For magnetic fields before saturation, we find that increasing
B increases T NR

c in a noticeable way, driving the system to
condensation. But when the magnetic field reaches the satu-
rated region, further changes on it barely affect T NR

c .
The divergence of the critical temperature of the relativistic

gases when b → 1 means that the gas is always condensed,
regardless of its density. This can also be seen if we use
Eq. (B10) to compute the critical density ρLT

c (T, b) in the LT
limit. The result is

ρLT
c (T, b) = ζ (3/2)√

2(2 − b)

(
m

√
1 − b

πβ

)3/2

. (20)

From the above expression it is easily seen that ρLT
c (T, c) = 0

for b = 1. Since the extension of our calculations to b > 1 is
not straightforward [11], no conclusions can be made about
this region.

The enhancing effect of the magnetic field on the BEC is
related to the way it modifies the ground state of the NVBG.
In general, the critical temperature of the BEC depends on
the inverse of the rest mass of the bosons εGS, so that Tc →
∞ as εGS → 0, i.e., decreasing εGS favors BEC [10,52]. For
the magnetized NVBG, εGS = ε(0, b) = m

√
1 − b, and as b

increases, ε(0, b) decreases, augmenting Tc and driving the
system to the condensate. A similar enhancing effect on the
BEC due to the magnetic field has been found and discussed
in [14,17].

It is also worth noting in Fig. 3 that at b = 0 the R
and NR critical temperatures coincide, Tc(0) = T NR

c (0) =
2π
m ( ρ

3ζ (3/2) )2/3, while T LT
c (0) = 2π

m ( ρ

ζ (3/2) )2/3. This difference
arises because in the LT limit, the spin states with s = 0,−1
were neglected and all the particles are considered to have
s = 1. Therefore, once this approximation is done, the b = 0
case cannot be recovered. This is in agreement with Fig. 2 and
highlights that the LT limit is not suitable for weak magnetic
fields. Finally, let us note that T LT

c (0) = T NR
c (∞), since in the

NR limit, b → ∞ drives the system to a state in which all the
particles are aligned with the magnetic field, i.e., they all are
in the s = 1 state.

V. MAGNETIC PROPERTIES

In this section we focus on the dependence of the magneti-
zation of the gas on the temperature and the magnetic field.

The explicit analytical form of this dependence is derived
from the definition

M = κ√
1 − b

ρGS − ∂�st

∂B
− ∂�vac

∂B
. (21)

The first term in Eq. (21), MGS = κ√
1−b

ρGS, stands for the
magnetization of the condensed particles. It has to be added
because all of the condensed bosons are aligned to the field,
but when the condensate is present �st only accounts for the
particles in the excited states. The other two terms correspond
to the magnetization of the free particles Mst = − ∂�st

∂B and the
vacuum Mvac = − ∂�vac

∂B . They read

Mst =
∑

s

κs

π2β

∞∑
n=1

enμβ + e−nμβ

n

{
my0

(2 − bs)
K1(nβy0)

+
∫ ∞

y0

dx
x4

2(x2 + α2)3/2
K1(nβx)

}
, (22)

and

Mvac = −κm3

72π
{7b(b2 − 6) − 3(2b3 − 9b + 7) log(1 − b)

− 3(2b3 − 9b − 7) log(1 + b)}. (23)

Figure 4 shows the total magnetization of the gas as a
function of temperature for ρ = 1.30×1039 cm−3 and two
values of b, 0.1 and 0.5. The LT and NR limits were drawn for
comparison, as well as Mvac. To facilitate the discussion, in
Fig. 4(a) we also plot the absolute value of the magnetization
per spin state Ms=1

st and Ms=−1
st , i.e., the expression under the

sum over the spin states in Eq. (22) evaluated for s = ±1
(Ms=0

st is zero).
For b = 0.1 the vacuum magnetization is negligible, and

the R, NR, and LT curves coincide for T → 0 and tend to κρ.
As the temperature increases, the NR magnetization decreases
and goes to zero for T → ∞ [36]. The magnetization of the
relativistic gas behaves like that of the nonrelativistic limit
up to T ∼ 0.2 m. After this temperature, M(μ, T, b) begins
to grow and increases in several orders. This counterintuitive
result stems from the quantum-relativistic character of the
problem we are studying. Two factors jointly contribute to the
increment of the magnetization with the temperature.

(1) Particles and antiparticles with opposite spin couple
differently to the magnetic field. Note that the relation be-
tween the effective magnetic moment d (s) = ∂ε(p3,p⊥,B,s)

∂B of
each spin state is

d (1) =
κ

√
p2

⊥ + m2√
m2 + p2

3 + p2
⊥ − 2κB

√
p2

⊥ + m2

>
κ

√
p2

⊥ + m2√
m2 + p2

3 + p2
⊥ + 2κB

√
p2

⊥ + m2

= |d (−1)|. (24)
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FIG. 4. The magnetization as a function of temperature for ρ = 1.30×1039 cm −3. The vertical line in the left panel marks the temperature
of the BEC.

Hence, particles (antiparticles) in opposite spin states do not
contribute to the magnetization on equal footing. The contri-
bution of particles (antiparticles) in the s = 1 state is bigger.

(2) The particle and antiparticle densities increase with
temperature (Fig. 1). The former factor is derived from the
relativistic energy expression Eq. (7), whereas the latter is
a consequence of pair production (an inherently quantum-
relativistic effect). To better understand how they work
together, let us focus on the Ms=1

st and Ms=−1
st curves in

Fig. 4(a). In the high temperature region, the contribution of
the particles with s = −1 to the magnetization is significant
and increases with T due to pair production. But, as Eq. (24)
indicates, Ms=−1

st is always smaller than Ms=1
st , resulting in

a total magnetization, M = Ms=1
st − Ms=−1

st , that is always
positive and also increases with the temperature.2 This is con-
sistent with the fact that in the T → ∞ limit, Mst [Eq. (22)]
tends to infinity regardless of the value of the magnetic field.

From Fig. 4, the behavior of the LT magnetization is quite
different from the other two cases: It decreases when T in-
creases and becomes negative around T ∼ 0.5 m (the point
where the curve ends). However, this negative magnetization
does not imply the gas having a diamagnetic behavior; it is
again a consequence of neglecting the states with s = 0 and
−1 in the LT limit. The behavior of the magnetization in this
limit reinforces the fact that it is only valid for T � 10−3 m,
something that can be also appreciated in the right panel of
Fig. 2.

For b = 0.5, Mvac is higher than the maximum of MNR

and comparable to Mst . As a consequence, the magnetization
of the relativistic cases differs from MNR at T = 0. Since the
LT limit works better for strong magnetic field, for b = 0.5
the LT and the R magnetization curves coincide in a larger
interval of temperature.

Figure 4 highlights the importance of considering the
effects of antiparticles and the vacuum, which are usually

2Above the condensation temperature, Mvac is negligible and
MGS = 0.

neglected. In particular, in the case of antiparticles, they be-
gin to be relevant for T ∼ 0.25 m, which for bosons formed
by two neutrons is equivalent to T ∼ 1012 K, a relatively
high temperature for astrophysical environments. But if we
consider a lighter particle, such as positronium, T ∼ 0.25 m
equals T ∼ 109 K, a temperature achievable in the early stages
of neutron star life.

Bose-Einstein ferromagnetism

It is also interesting to analyze the limit b → 0 in Eq. (21).
Mvac(b = 0) = 0, while setting b = 0 in Eq. (22) gives

Mst =
∑

s

m2κs

2π2β

∞∑
n=1

zn + z−n

n

{
K1(nm/T )

+
∫ ∞

m
xK1(nx/T ) dx

}
, (25)

but if we sum by s = ±1 in the previous expression it also
equals zero. However, below Tc, ρGS(T ) = 0, and the magne-
tization is different from zero even if b = 0:

M±(μ, T, 0) = κρGS(T ). (26)

Equation (26) demonstrates that a spin-one BEC that was
under the action of an external magnetic field will remain
magnetized even if the external magnetic field is somehow
“disconnected” [36,41]. This phenomenon, known as Bose-
Einstein ferromagnetism [16], is a consequence of BEC, since
all the bosons in the ground state have s = 1 [see Eq. (8)]. To
check out the connection between the magnetic behavior of
the gas and the Bose-Einstein condensation, we will look at
the specific heat and the magnetic susceptibility, the maxima
of which signal the corresponding phase transitions.

To compute the specific heat Cv = ∂E/∂T , we need the
internal energy density:

E = � − T
∂�

∂T
− μ

∂�

∂μ
. (27)
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After derivation of the thermodynamical potential with respect to the temperature and some simplifications, we find the
entropy of the gas S = −∂�/∂T to be

S = −μ

T
(ρ+ − ρ−) − 2

T
�st +

∑
s

∞∑
n=1

enμβ + e−nμβ

n

{
y3

0

4π2
[K1(nβy0) + K3(nβy0)] + αn

2π2T

∫ ∞

y0

dx
x3

√
x2 + α2

K0(nβx)

}
,

(28)

and combining Eqs. (18), (28), and (27), the internal energy can be written as

E = −�st + �vac +
∑

s

∞∑
n=1

enμβ + e−nμβ

n

{
y3

0T

4π2
[K1(nβy0) + K3(nβy0)] + αn

2π2

∫ ∞

y0

dx
x3

√
x2 + α2

K0(nβx)

}
,

while the specific heat is

Cv = S +
∑

s

∞∑
n=1

{
y3

0(zn + z−n)

4π2n
[K1(nβy0) + K3(nβy0)] + y4

0(zn + z−n)

8π2T
[K1(nβy0) + 2K2(nβy0) + K4(nβy0)]

− μ(zn − z−n)

T

[
y3

0(K1(nβy0) + K3(nβy0))

4π2
+ αn

2π2T

∫ ∞

y0

x3K0(nβx)dx√
x2 + α2

]

+ αn(zn + z−n)

2π2T 2

∫ ∞

y0

x4K1(nβx)dx√
x2 + α2

}
. (29)

The magnetic susceptibility χ = −∂M/∂B turns out to be

χ =
{

χT >Tc + χvac, free gas

χT <Tc + χvac, BEC
(30)

where

χT >Tc = ∂Mst

∂B
,

χT >Tc =
∑

s

∞∑
n=1

κ2s2(zn − z−n)

π2n

{
m2n

(2 − bs)
K0(nβy0) + 2(4 − 3bs)mT

(2 − bs)3
K1(nβy0) − 3αsT

2

∫ ∞

y0

x4K1(nβx)dx

(x2 + α2)5/2

}
, (31)

and

χT <Tc = χT >Tc + ∂MGS

∂B
,

with

∂MGS

∂B
= κ2ρGS

m
√

(1 − b)3
−

∑
s

∞∑
n=1

k2s(zn − z−n)

π2
√

1 − b

{
my0

(2 − bs)
K1(nβy0) + 1

2

∫ ∞

y0

x4K1(nβx)dx

(x2 + α2)3/2

}
,

and

χvac = ∂Mvac

∂B
= κ2m2

4π
{−b2 + (2b2 − 3) log(1 − b2)}.

Figure 5 shows the specific heat and the magnetic suscep-
tibility as a function of temperature for ρ = 1.30×1039 cm−3

and several values of the magnetic field. As in the nonrela-
tivistic case [36], the peaks of both magnitudes occur at the
condensation temperature (the solid vertical lines). This rein-
forces our conclusion that the magnetic behavior of the gas
below Tc is a consequence of condensation. From Eqs. (30)–
(32) follows that at b = 0, χ diverges for all T < Tc. The latter
was also obtained in [16,36] for the nonrelativistic suscepti-
bility and constitutes another evidence of the relation between
BEC and the magnetic properties of the gas.

The appearance of a spontaneous magnetization and
a zero-field divergent magnetic susceptibility below the
critical BEC temperature have been found in [9,11–
13,16,17,36,44,53] for charged and nonrelativistic neutral
vector bosons under the action of an external magnetic field.
Besides the similarities, we would like to remark that Bose-
Einstein ferromagnetism is not true ferromagnetism since its
cause is the combination of Bose-Einstein statistics with a
ground state that only contains particles with s = 1, and not
spin-spin interactions like in conventional ferromagnets. Nev-
ertheless, in experimental situations with real gases, spin-spin
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FIG. 5. The specific heat (a) and the magnetic susceptibility (b) as a function of b and T for ρ = 1.30×1039 cm−3. The vertical lines signal
the temperature of condensation.

interactions, although weak, could also contribute to the mag-
netic properties of vector bosons [17].

Another remarkable feature of Fig. 5 is the high tempera-
ture magnetic susceptibility. When b = 0, χ decreases with T .
But at finite magnetic field, χ → χvac when T increases. This
is consistent with the fact that the magnetization augments
with the temperature rather than canceling out. As we have
already seen, this is a consequence of the presence of a finite
fraction of antiparticles in the system and a main difference
with respect to the NR limit. The effect of antiparticles is also
present in the specific heat, that for high temperature increases
instead of tending to the classical value 3/2.

VI. ANISOTROPIC PRESSURES

Now we analyze how antiparticles and magnetic field affect
the parallel P‖ = −� and perpendicular P⊥ = −� − MB
pressures of the gas. According to their definition, P‖ and
P⊥ are the spatial components of the statistical average of
the energy momentum tensor of the system of bosons un-
der the action of a uniform and constant external magnetic
field [54–56]. In this context “parallel” and “perpendicular”
are said with respect to the magnetic field direction. This
anisotropy in the pressure is important for the gravitational
stability of astronomical objects [57], and is also connected
with an interesting phenomenon known as quantum magnetic
collapse [58].

Figure 6 shows the pressures vs the temperature for ρ =
1.30×1039cm−3 and various values of the magnetic field. The
vacuum pressure Pvac = −�vac is also drawn for comparison.
In this plot two regions can be clearly identified: In the first
one, T > m and temperature dominates; therefore, the differ-
ence between the pressures is negligible. In contrast, in the
second one, T < m, the magnetic field dominates, and the
presence of the magnetized vacuum in P‖ and the term −MB
in P⊥ are apparent. As T → 0 the difference between the
pressures increases; P‖ tends to the constant value −�vac(b),
while P⊥ becomes negative at the point at which −� = MB.
(Let us recall that for a Bose gas the statistical part of the
pressure −�st goes to zero with temperature.)

The differences between the pressures resulting from the
relativistic calculation at all temperatures and their nonrela-

tivistic and low temperature counterparts are shown in Fig. 7.
They are three: First, the presence of antiparticles in the
region of high temperatures causes a difference of several
orders between the R and the NR pressures; second, in the
relativistic cases the parallel pressure at low temperatures
is dominated by −�vac(b), while in the NR limit P‖ tends
to zero with T ; and third, the value of temperature where
P⊥ = 0 is underestimated in the NR limit and overestimated
in the LT approximation. Note that below the temperature
at which P⊥ = 0, the perpendicular pressure becomes neg-
ative and the gas is unstable. Such instability is known as
quantum magnetic collapse [58]. It seems to suggest that,
for a fixed temperature, the magnetic field presence imposes
an upper bound on the boson’s density needed to sustain it,
but this point is worth further comment. To model astro-
physical environments, in particular, when considering the
gravitational equilibrium of astrophysical bodies, Maxwell’s
contribution to the pressures B2/4π should be taken into ac-
count [59]. It modifies the pressures in the following form:
P‖ → P‖ + B2/4π and P⊥ → P⊥ − B2/4π . Thus, their rela-
tion flips from P‖ > P⊥ with no Maxwell contribution to
P‖ < P⊥ with Maxwell’s contribution [27]. In this situation
the quantum magnetic collapse is still possible, but now the

FIG. 6. The pressures as functions of the temperature and the
magnetic field for ρ = 1.30×1039 cm−3.
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FIG. 7. The R, NR, and LT parallel and perpendicular pressures as functions of temperature for ρ = 1.30×1039 cm−3 and b = 0.1.

instability occurs for P‖ instead of P⊥ [27]. Nevertheless, in
systems composed of many kinds of particles, the effect of
the Maxwell term might be balanced by the pressures of some
of the gases, being the relation P‖ > P⊥ and the possibility of
the P⊥ < 0 instability being recovered [60].

VII. CONCLUDING REMARKS

We computed the exact analytic expressions for the ther-
modynamic quantities of a relativistic magnetized neutral
vector boson gas at any temperature, including magnetization
and the second derivatives of the thermodynamical potential
(Cv and χ ). Our calculations were inspired by astrophysics;
however, they have a per se interest and can be useful in other
scenarios like particle physics and condensed matter physics.

The numerical study of the magnetized NVBG in as-
trophysical conditions allowed us to evaluate the relative
influence of the particle density, the magnetic field, and tem-
perature in the system. Depending on T there are two distinct
regimes in the behavior of the gas. For T 	 m the effects
of the magnetic field dominate the system and, in particular,
we checked its relevant role in Bose-Einstein condensation,
pressure anisotropy, and quantum magnetic collapse.

When T � m the temperature effects dominate, the most
important being the existence of a non-negligible fraction
of antiparticles. In general, the density of antiparticles is no
longer negligible around T ∼ 0.25 m, although their effects
are most strongly manifested for T � m, both values of tem-
perature being quite independent of the magnetic field. The
relevance of antiparticles is especially evident for the magneti-
zation and the pressure of the gas, since they cause an increase
in various orders in both magnitudes.

When B → 0 the NVBG remains magnetized, as in the
NR and the LT limits. This spontaneous magnetization is not
associated with an interaction between the spins of the bosons,
but it is a consequence of condensation. The ability of vector
gases to spontaneously magnetize may be connected with the
origins of magnetic fields in astrophysical environments.

The comparison of the all-temperature relativistic calcu-
lations with the NR and LT limits allowed us to establish
the validity ranges of these approximations and the physics
they ignore. In the NR limit, increasing the temperature means
going to the classical case, i.e., it is equivalent to having the
Boltzmann distribution function for the particles. However,
when we increase T in the relativistic case, the antiparticles
play the main role, contributing to all the magnitudes and
introducing nontrivial differences between both situations.
Something similar happens with the vacuum pressure and
magnetization: They are usually neglected; however, their ef-
fects are important for high magnetic field. Therefore, the NR
limit is valid only for low temperatures and weak magnetic
fields.

The LT limit, in contrast, works well for relatively strong
magnetic fields B � 0.2Bc. Looking at some fixed values we
find that, for example, for B = 1016 G, this approximation is
valid for temperatures such that T 	 10−3m. This implies that
for paired neutrons this limit cannot be used for T ∼ 1010 K,
which is a possible temperature in early stages of a NS. In
addition, we found that increasing T in the LT limit leads to a
negative magnetization, while our study shows that the mag-
netization of the gas is always positive. Hence the importance
of using the exact expressions even for low temperatures.
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APPENDIX A: VACUUM THERMODYNAMIC POTENTIAL

Here we compute the renormalized vacuum contribution to the thermodynamic potential Eq. (11) following [41]. We start
from the �vac definition:

�vac =
∑

s=−1,0,1

∫ ∞

0

p⊥d p⊥d p3

(2π )2
ε(p⊥, p3, B, s)

with

ε(p⊥, p3, B, s) =
√

p2
3 + p2

⊥ + m2 − 2κsB
√

p2
⊥ + m2.

We integrate over p3 and p⊥ with the help of the equivalence

√
a = − 1

2
√

π

∫ ∞

0
dyy−3/2(e−ya − 1) (A1)

and the introduction of the small quantity δ as the lower limit of the integral

√
a = − 1

2
√

π

∫ ∞

δ

dyy−3/2e−ya. (A2)

The latter is done to regularize the divergence of the a dependent term and to eliminate the term that does not depend on a.
Now, let us make a = ε2 = p2

3 + p2
⊥ + m2 − 2κsB

√
p2

⊥ + m2 . As a consequence

ε = − 1

2
√

π

∫ ∞

δ

dyy−3/2e−y(p2
3+p2

⊥+m2−2κsB
√

p2
⊥+m2 ), (A3)

where we dropped the explicit dependence of the spectrum on p⊥, p3, B, and s to simplify the writing. Inserting Eq. (A3) in
Eq. (A1), the vacuum thermodynamic potential reads as follows:

�vac = − 1

8π5/2

∑
s=−1,0,1

∫ ∞

δ

dyy−3/2
∫ ∞

0
d p⊥ p⊥

∫ ∞

−∞
d p3e−y(p2

3+p2
⊥+m2−2κsB

√
p2

⊥+m2 ). (A4)

After integration over p3 we obtain

�vac = − 1

8π2

∑
s=−1,0,1

∫ ∞

δ

dyy−2
∫ ∞

0
d p⊥ p⊥e−y(p2

⊥+m2−2κsB
√

p2
⊥+m2 ). (A5)

Equation (A5) may be simplified by two successive changes of variables. The first one is z =
√

m2 + p2
⊥ − sκB, and Eq. (A5)

becomes

�vac = − 1

8π2

∑
s=−1,0,1

{∫ ∞

δ

dyy−3e−y(m2−2msκB) + sκB
∫ ∞

δ

dyy−2
∫ ∞

z1

dze−y(z2−s2κ2B2 )

}
, (A6)

where z1 = m − sκB. The second change of variables is w = z − z1 in the last term of Eq. (A6). If, in addition, we sum over the
spin and recall that b = B/Bc with Bc = m/2κ , �vac can be written as

�vac = − 1

8π2

{∫ ∞

δ

dyy−3e−ym2
(1 + 2 cosh [m2by]) + mb

∫ ∞

δ

dyy−2
∫ ∞

0
dwe−y(m−w)2

sinh[mb(m − w)y]

}
. (A7)

We can identify the ultraviolet divergencies related to the terms of Eq. (A7) proportional to (1 + 2 cosh [m2by]) and sinh[mb(m −
w)y] by expanding them in powers of yb up to the higher divergent term:

�div
vac = − 1

8π2

∫ ∞

0
dyy−3e−ym2

(3 + m4b2y2)

− mb

8π2

∫ ∞

0
dyy−2

∫ ∞

0
dwe−y(m−w)2{mb(m − w)y + [mb(m − w)y]3/6}. (A8)

Now, to take the limit δ → 0 and eliminate the divergent part of �vac, we add and subtract Eq. (A8) to Eq. (A7).
To interpret in an easy way the divergent terms added to Eq. (A7), we simplify Eq. (A8) through the following operations:

Integration over w, the change of variables x = ym2, and the substitution b = B/Bc = 2κB/m. After those changes Eq. (A8)
reads

�div
vac = − m4

8π2

∫ ∞

0
dx

e−x

x3
− (mκB)2

2π2

∫ ∞

0
dxe−x 2x − 1

2x2
+ (κB)4

6π2

∫ ∞

0
dxe−x 1 + x

x
. (A9)
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The first divergent term of Eq. (A9) is the value of �vac(B = 0). Thus, it incorporates into the zero-point energy of the magnetized
system. The second divergent term is absorbed by the bare magnetic field energy. It redefines—renormalizes—the magnetic field
and the coupling constant of the bosons. The last term also incorporates to the zero-point energy that, for this magnetized gas,
depends on κ and B (a similar term appears for magnetized fermions with anomalous magnetic moment [61]).

Finally, the renormalized vacuum potential is given by

�vac = − 1

8π2

∫ ∞

0
dyy−3e−ym2{2 cosh [m2by] − 2 − m4b2y2} − mb

8π2

∫ ∞

0
dyy−2

∫ ∞

0
dwe−y(m−w)2{sinh[mb(m − w)y]

− mb(m − w)y − [mb(m − w)y]3/6}. (A10)

After integration Eq. (A10) leads to

�vac(b) = − m4

288π
[b2(66 − 5b2) − 3(6 − 2b − b2)(1 − b)2 log(1 − b) − 3(6 + 2b − b2)(1 + b)2 log(1 + b)],

which is Eq. (11) of the main text.

APPENDIX B: THERMODYNAMIC POTENTIAL OF THE NVBG IN THE LOW TEMPERATURE LIMIT

To obtain the low temperature limit of the statistical thermodynamic potential Eq. (16), we transform Eq. (15) by computing
the integral on its second term [54]:

I =
∫ ∞

y0

dz
x2

√
x2 + α2

K1(nβx). (B1)

Let us introduce the following form for K1(nβx):

K1(nβx) = 1

nβx

∫ ∞

0
dte−t− n2β2x2

4t . (B2)

If we substitute (B2) in (B1), the integration over x can be carried out:

I =
√

π

n2β2

∫ ∞

0
dt

√
te−t+ n2β2α2

4t erfc

⎛
⎝nβ

√
y2

0 + α2

2
√

t

⎞
⎠. (B3)

To integrate over t in (B3) we replace the complementary error function erfc(x) by its series expansion:

erfc(x) � e−x2

√
πx

(
1 −

∞∑
w=1

(−1)w(2w − 1)!!

(2x2)w

)
. (B4)

After integration Eq. (B3) becomes

I = z2
0

nβ

√
y2

0 + α2
K2(nβy0) − y2

0

nβ

√
y2

0 + α2

∞∑
w=1

(−1)w(2w − 1)!!

(y2
0 + α2)w

(
y0

nβ

)w

K−(w+2)(nβy0). (B5)

By substituting Eq. (B5) in Eq. (15), �st (s) reads

�st (s) = − y2
0

2π2β2

⎛
⎝1 + α√

z2
0 + α2

⎞
⎠ ∞∑

n=1

enμβ + e−nμβ

n2
K2(nβy0)

− αy2
0

π2β2
√

y2
0 + α2

∞∑
n=1

enμβ + e−nμβ

n2

∞∑
w=1

(−1)w(2w − 1)!!

(y2
0 + α2)w

(
y0

nβ

)w

K−(w+2)(nβy0). (B6)

Taking the low temperature limit T 	 m in Eq. (B6) is equivalent to making β → ∞. In this limit all the terms in �st (s) go to
zero except for the first one, therefore

�st (s) ∼= − y2
0

2π2β2

⎛
⎝1 + α√

y2
0 + α2

⎞
⎠ ∞∑

n=1

enμβ + e−nμβ

n2
K2(nβy0). (B7)
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In addition

K2(nβy0) ∼=
√

πe−nβy0

√
2nβy0

=
√

πe−nβy0

√
2nβy0

,

and �st (s) can be written as

�st (s) ∼= − y3/2
0

23/2π3/2β5/2

⎛
⎝1 + α√

y2
0 + α2

⎞
⎠ ∞∑

n=1

enβ(μ−y0 ) + e−nβ(μ+y0 )

n5/2
.

For β � 1, the antiparticle term e−nβ(μ+z0 ) goes to zero for all spin eigenvalues s = 0,±1, because μ + y0 (y0 = m
√

1 − sb)
is always a positive quantity. So, in the low temperature limit the antiparticle contribution can be neglected.

Similarly, the particle term enβ(μ−z0 ) goes to zero for s = 0,−1, since in these cases μ − y0 is negative. However, when s = 1,
enβ(μ−z0 ) goes to 1, because μ → m

√
1 − b = y0(s = 1). As a consequence, for low enough temperatures, the contribution of

the particles with spin states s = 0,−1 is also negligible and �st
∼= �st (1). Finally, since �st (1) admits further simplifications,

the statistical part of the thermodynamical potential in the low temperature limit is equal to

�LT
st (b, μ, T ) = − (m

√
1 − b)3/2

21/2π3/2β5/2(2 − b)
Li5/2(eβμ′

), (B8)

where Lin(x) = ∑∞
l=1 xl/ln is the polylogarithmic function of order n and μ′ = μ − m

√
1 − b.

Using Eq. (B8) instead of Eq. (16) in Eq. (9) the thermodynamic magnitudes are computed in the relativistic low temperature
limit [41]. They read

ρLT = ρLT
GS + ε3/2Li3/2(eμ′β )√

2π πβ3/2(2 − b)
, (B9a)

MLT
st = κ√

1 − b
ρLT, (B9b)

PLT
‖ = −�LT

st − �vac, (B9c)

PLT
⊥ = −�LT

st − �vac − MLTB, (B9d)

ELT = m
√

1 − bρLT + �vac − 3

2
�LT

st , (B9e)

with ρLT
GS = ρ[1 − (T/T LT

c )3/2] the density of condensed particles and

μ′ = −ζ (3/2)T

4π

[
1 −

(
T LT

c

T

)3/2
]
�

(
T − T LT

c

)
, (B10)

T LT
c = 1

m
√

1 − b

[√
2π π (2 − b)ρLT

ζ (3/2)

]2/3

, (B11)

where T LT
c is the LT critical temperature of condensation and ζ (x) is the Riemann zeta function.

APPENDIX C: THERMODYNAMIC POTENTIAL IN THE NONRELATIVISTIC LIMIT

In this Appendix we compute the thermodynamic potential of the magnetized vector boson gas in the nonrelativistic limit as
done in [36]. We start from the nonrelativistic spectrum ε(p, s) = 
p 2/2m − sκB and consider the density of states of the gas,
that is,

g(ε) = 4πV

(2π h̄)3

∑
s=−1,0,1

∫ ∞

0
d p p2δ

(
ε − 
p 2

2m
+ sκB

)
,

where ε is the boson energy. Let us note that the rigorous no relativistic limit obtained from the spectrum Eq. (7) in the NR limit
p3, p⊥, κB 	 m is

ε(p, s) = m + 
p 2/2m − sκB. (C1)

However, to simplify the calculations, we have done the rescaling ε → ε − m. This is equivalent to doing the substitution
μ → μ − m in the thermodynamic potential, and the only magnitude affected is the energy density, but it can be easily corrected
by the addition of mρ.
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After doing the integration over p and the sum over the spin states s, g(ε) becomes

g(ε) = 4πmV

(2π h̄)3
[
√

2m(ε − κB) +
√

2mε +
√

2m(ε + κB)]. (C2)

Note that Eq. (C2) can be separated into three terms, each one corresponding to a specific spin state. Since the thermodynamical
potential �NR(μ, T, B) is

�NR(μ, T, B) = T

V

∫ ∞

0
dεg(ε) ln[fBE(ε, μ)], ∀ μ < ε, (C3)

with fBE(ε, μ) = [1 − eβ(μ−ε)]−1, it can also be separated into three terms �NR(μ, T, B) = �−(μ, T, B) + �0(μ, T, B) +
�+(μ, T, B), corresponding to the states with s = −1, 0, and 1, respectively. Integrating over the energy in Eq. (C3) one gets

�−(μ, T, B) = − T

λ3
Li5/2(z−), (C4)

�0(μ, T, B) = − T

λ3
Li5/2(z), (C5)

�+(μ, T, B) = − T

λ3
Li5/2(z+), (C6)

where λ = √
2π/mT is the thermal wavelength, z = eμ/T is the fugacity, and zσ = zeσ κB

T where σ = −,+.
Equations (C4) and (C6) allow us to compute all the thermodynamic magnitudes of the nonrelativistic neutral vector boson

gas. In particular, one has the following expression for the particle density:

ρNR = ρNR
GS (T, B) + ρ−(μ, T, B) + ρ0(μ, T, B) + ρ+(μ, T, B), (C7)

where ρGS stands for the particles in the condensate and

ρ−(μ, T, B) = Li3/2(z−)

λ3
,

ρ0(μ, T, B) = Li3/2(z)

λ3
,

ρ+(μ, T, B) = Li3/2(z+)

λ3

correspond to the density of particles with spin state −1, 0, and 1, respectively; the magnetization

MNR = κρNR
GS −

(
∂�NR

∂B

)
= κ

(
ρNR

GS + ρ+
) − κρ−; (C8)

and the energy and pressures

ENR = 3
2 PNR

‖ − κB
(
ρNR

GS + ρ+ − ρ−
)
, (C9)

PNR
‖ = −�NR, (C10)

PNR
⊥ = −�NR − MNRB. (C11)
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