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We establish a theoretical method which goes beyond the weak-coupling and Markovian approximations while
remaining intuitive, using a quantum master equation in a larger Hilbert space. The method is applicable to all
impurity Hamiltonians tunnel coupled to one (or multiple) baths of free fermions. The accuracy of the method is
in principle not limited by the system-bath coupling strength, but rather by the shape of the spectral density and
it is especially suited to study situations far away from the wide-band limit. In analogy to the bosonic case, we
call it the fermionic reaction coordinate mapping. As an application, we consider a thermoelectric device made
of two Coulomb-coupled quantum dots. We pay particular attention to the regime where this device operates as
an autonomous Maxwell demon shoveling electrons against the voltage bias thanks to information. Contrary to
previous studies, we do not rely on a Markovian weak-coupling description. Our numerical findings reveal that
in the regime of strong coupling and non-Markovianity, the Maxwell demon is often doomed to disappear except
in a narrow parameter regime of small power output.
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I. INTRODUCTION

Many problems in quantum transport are modeled by an
impurity Hamiltonian Himp linearly coupled to a bath of free
fermions described via

H = Himp +
∑

k

(tkdc
†
k + H.c.) +

∑
k

εkc
†
kck. (1)

Here, c
(†)
k annihilates (creates) a fermion of energy εk in the

bath, which is tunnel coupled with complex amplitude tk to
the system via a fermionic annihilation (creation) operator
d (†) of the system. The actual physical system under study is
described by Himp, which could be one (or multiple) quantum
dots, molecules in mechanically controllable break junctions
or nanoelectromechanical systems, among other possible im-
purity systems.

To treat such systems theoretically, various approximate
or formally exact techniques have been developed, such
as quantum master equations (MEs) [1–3], the formalism
of nonequilibrium Green’s functions [4], or renormalization
group techniques [5]. Whereas MEs easily allow to treat inter-
actions in the impurity even under nonequilibrium situations,
their use is limited to the weak-coupling, Markovian, and
high-temperature (“sequential tunneling”) regimes. Green’s
functions can overcome the latter problem, but have difficulties
to treat interacting impurities (for instance, due to Coulomb

*philipp.strasberg@uni.lu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

forces). Whereas this problem can be tackled by using numer-
ical renormalization group approaches, they in turn are hard to
apply far away from equilibrium.

In the first half of this paper (Sec. II), we will introduce a
technique which lies “in-between” these approaches. It allows
to some extent to overcome the limitations of the standard
perturbative approach commonly applied to obtain a ME
while still retaining a description in terms of a ME such that
interactions and nonequilibrium situations can be conveniently
treated. The price to pay is an enlarged Hilbert space, in
which a suitable redefined impurity Hamiltonian H̃imp includes
particularly chosen dominant degrees of freedom from the
bath, which we will call fermionic reaction coordinates (RCs).
In the context of linear bosonic reservoirs (Caldeira-Leggett or
Brownian motion models), this technique has a longer tradition
[6]. It has found various applications in the theory of open
quantum systems [7–22] and it is also closely related to the
“time-evolving density matrix using orthogonal polynomials
algorithm” (TEDOPA) [23–28]. We remark that, although it
shares many similarities with the bosonic case, the RC mapping
was not studied for fermionic reservoirs before. In addition, our
paper adds additional insights to the recent attempts to find
a meaningful thermodynamic description beyond the weak-
coupling and Markovian regimes [29–46]. In particular, our
work shows that techniques based on a redefined system-bath
partition using RC mappings [34,39,42,46] turn out to be useful
for fermionic reservoirs, too.

In the second half of the paper (Secs. III and IV), we make
use of our method to study two (spinless) Coulomb-coupled
quantum dots in contact with three heat reservoirs. This setup
is raising increasing attention within the context of quantum
thermodynamics, as it provides a prototypical example of a
thermoelectric device transporting electrons against a potential
bias due to an energetic flow from a hot to a cold bath [47,48].
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It is well studied in the weak-coupling and Markovian regimes,
theoretically [49,50] as well as experimentally [51,52]. More-
over, Ref. [50] identified necessary conditions which guarantee
that this device can be interpreted as an autonomous Maxwell
demon (MD), i.e., a device which is capable of extracting work
(in this case by charging a battery) due to a clever way of
processing information. From this perspective, the device was
further studied theoretically [53,54] and experimentally [55].

Unfortunately, the study in Ref. [50] has revealed that a
proper operation of the device as a MD requires a strong cou-
pling to a cold reservoir and structured (i.e., non-Markovian)
spectral densities for the hot reservoirs. These three require-
ments challenge the usual range of validity of a ME description,
but the question whether the transparent interpretation of a MD
also holds under these conditions has not been answered yet.
By using the method of fermionic RCs, we will indeed show
that the device can still be interpreted as a MD, albeit in a very
narrow parameter regime restricted to low-power output. Our
results are also in qualitative agreement with a recent study [56]
where cotunneling effects were taken into account. Another
complementary paper studies the impact of strong-coupling
effects for nonautonomous, i.e., measurement-based, feedback
loops on the thermodynamic performance of a MD [57].

II. FERMIONIC REACTION COORDINATES

In this section, we develop the theory of fermionic reaction
coordinates (RCs), which is useful to explore the physics
of open systems beyond the weak-coupling, Markovian,
and high-temperature assumptions. Technically speaking, this
mapping is a unitary transformation applied to the bath
Hamiltonian, which allows to separate out a particular degree
of freedom in the bath, called the RC. The details of this
transformation are reported in Sec. II A.

The hope is then that the original impurity together with the
RC is only weakly coupled to a Markovian residual bath such
that it is possible to apply standard master-equation (ME) pro-
cedures to this redefined system-bath partition. Whether this is
possible is case dependent and will be discussed in Sec. II B.

To make the paper self-contained, we also give a short
review in Appendix A of the ME approach including the
definition of energy and particle currents, which we will use in
the second part of this paper. Furthermore, in Appendix B we
benchmark the fermionic RC method against the exact solution
of the Fano-Anderson model (also known as single-electron
transistor).

A. Mapping

The mapping will work whenever it is allowed to describe
the interaction between an arbitrary impurity HamiltonianHimp

and the fermionic reservoir as in Eq. (1). An important quantity
in the study of such open systems is the spectral density
(SD) (also called hybridization function) of the bath, which
is defined as

J (ω) ≡ 2π
∑

k

|tk|2δ(ω − εk). (2)

It contains the complete information about the way in which the
bath is coupled to the system and will be of central importance
in the following.

For mathematical rigor one often demands that J (ω) is
strictly greater than zero for ω ∈ [ωL,ωR] and zero outside
this interval where ωL < ωR ∈ R are referred to as cutoff fre-
quencies [17]. However, as long as all quantities converge, our
equations also remain valid if the SD decays only exponentially
or polynomially. Convergence problems for infinite cutoff
frequencies arise only when the mapping is applied iteratively
(see below). Furthermore, gapped SDs (having support only at
disconnected intervals) can be treated by applying this mapping
to each sub-SD separately.

For later reference, we start by considering the Heisenberg
equation of motion for d and ck (suppressing the time depen-
dence on all operators and setting h̄ ≡ 1 throughout):

ḋ = i[Himp,d] + i
∑

k

t∗k ck, (3)

ċk = −iεkck + itkd. (4)

We Fourier transform them according to the definition f̂ (z) ≡∫ ∞
−∞ dt eiztf (t) [with Im(z) > 0]. This yields (again dropping

the explicit z dependence) to

−izd̂ = i ̂[Himp,d] + i
∑

k

t∗k ĉk, (5)

−izĉk = −iεkĉk + itkd̂. (6)

After some algebra we obtain a formally exact expression for
d̂ , which reads as

−izd̂ = i ̂[Himp,d] + i

2
W0(z)d̂. (7)

Here, we introduced the Cauchy transform

W0(z) ≡ 1

π

∫ ωR

ωL

dω
J (ω)

ω − z
. (8)

By the Sokhotski-Plemelj theorem this fulfills for ω ∈ R

W+
0 (ω) ≡ lim

ε↘0
W0(ω + iε)

= iJ (ω) + P
∫ ωR

ωL

dω′

π

J (ω′)
ω′ − ω

,

(9)

where P denotes the Cauchy principal value.
We now perform the mapping by introducing a new set of

fermionic creation and annihilation operators {C(†)
k } via Ck =∑

l �klcl where � is a unitary matrix fulfilling ��† = 1 such
that the fermionic anticommutation relations are preserved. In
particular, we fix the first row of � by the requirement

λ∗
0C1 =

∑
k

t∗k ck, (10)

where the parameter λ0 is fixed by the requirement {C1,C
†
1} =

1, which implies

|λ0|2 =
∑

k

|tk|2 =
∫ ωR

ωL

dω

2π
J (ω). (11)

In analogy with the bosonic case, we will call C1 a fermionic
RC or collective coordinate. Furthermore, we demand for l �= 1
and m �= 1 that

∑
k εk�lk�

∗
mk = δlmEl . Hence, in terms of the
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new fermions, the Hamiltonian (1) becomes

H̃ = Himp + λ0dC
†
1 + λ∗

0C1d
† + E1C

†
1C1

+
∑

k

(T ∗
k C

†
1Ck + TkC

†
kC1) +

∑
k

EkC
†
kCk , (12)

with Tk = ∑
m εmtm�km/λ0 and

E1 =
∑

k

εk|tk|2
|λ0|2 =

∫ ωR

ωL

dω

2π

ωJ (ω)

|λ0|2 . (13)

The complex phase of the constant λ0 is not fixed by this proce-
dure, but it can be fully absorbed by redefining the operator C1,
adding only an additional phase to the renormalized couplings
Tk . We will therefore consider λ0 positive in our numerical
investigations. The effect of the residual modes {Ck}k �=1 is
specified by the residual SD J1(ω) = 2π

∑
k |Tk|2δ(ω − Ek),

which we now finally determine as a functional of the original
SD J (ω).

For this purpose, we look again at the Heisenberg equations,
but now within the transformed coordinates. After Fourier
transformation, we obtain analogously to Eqs. (5) and (6)

−izd̂ = i ̂[Himp,d] + iλ∗
0Ĉ1, (14)

−izĈ1 = −iE1Ĉ1 + iλ0d̂ − i

N∑
k=2

T ∗
k Ĉk, (15)

−izĈk = −iEkĈk − iTkĈ1 (k �= 1). (16)

Again, we can formally solve for Ck and C1 to obtain an exact
expression for d̂:

−izd̂ = i ̂[Himp,d] + i
|λ0|2

E1 − z − 1
2W1(z)

d̂. (17)

Since both Eqs. (7) and (17) are exact, they must coincide.
Thus, by comparison we obtain

W1(z) = 2(E1 − z) − 4|λ0|2
W0(z)

, (18)

and due to relation (9), we get

J1(ω) = Im[W+
1 (ω)] = 4|λ0|2J (ω)

|W+
0 (ω)|2 . (19)

This finally completes the mapping: performing a specific
normal-mode transformation on the Hamiltonian (1) yields a
new Hamiltonian (12). The new parameters λ0, E1 and the new
SD J1(ω) are given by Eqs. (11), (13), and (19), respectively.
They are all completely specified in terms of the initial SD
J (ω). We remark that this mapping is formally exact; no
approximation has been made. The mapping is summarized
in Fig. 1.

Before proceeding, we remark that the impurity
Hamiltonian Himp is allowed to be explicitly time dependent
without invalidating any point in the derivation above as the
explicit form of Himp never entered the derivation. In fact,
even a global time dependence of the tunnel Hamiltonian
HI of the form α(t)HI does not invalidate any point of our
derivation above as we can include the time dependence α(t)
in the definition of the operator d ′(t) ≡ α(t)d. The reason

FIG. 1. Pictorial representation of the RC mapping (top) and the
equations determining the transformation for the general case (middle
column) and the example of a Lorentzian SD as used throughout the
text (right column). The shaded gray area in the sketch indicates which
part is treated as the impurity, whereas the remaining part is treated
as the bath in spirit of the ME approach outlined in Appendix A. We
used different colors for the free fermions in the original/residual bath
to emphasize that they are not the same before and after the mapping.

for this generality comes from the fact that the mapping is
a unitary transformation in the bath Hilbert space alone and
does not touch the system Hilbert space.

Finally, we investigate what happens if we apply the
mapping iteratively. In fact, if we define a new impurity
Hamiltonian

H̃imp ≡ Himp + λ0dC
†
1 + λ∗

0C1d
† + E1C

†
1C1 , (20)

a new tunnel coupling H̃I = ∑
k (T ∗

k C
†
1Ck + TkC

†
kC1) and a

new residual reservoir H̃R = ∑
k EkC

†
kCk , we see that the

Hamiltonian (12) has the same structure as (1). Thus, applying
the mapping iteratively we obtain a chain of RCs with coupling
constants λ0,λ1, . . . , energies E1,E2, . . . , and residual SDs
J1(ω),J2(ω), . . . . These can be determined recursively in full
analogy

|λn|2 =
∫ ωR

ωL

dω

2π
Jn(ω), (21)

En+1 =
∫ ωR

ωL

dω

2π |λn|2
Jn(ω), (22)

Jn+1(ω) = 4|λn|2Jn(ω)[
P

∫ ωR

ωL

Jn(ω′)
ω′−ω

dω′
π

]2 + [Jn(ω)]2
, (23)

where we have additionally inserted Eq. (9). In analogy to the
bosonic case [17], it is therefore natural to ask what is the
limiting SD J̄ (ω) obtained after n → ∞ iterations.

Assuming that the limit exists and denoting

[λ̄,Ē,W̄ (z)] = lim
n→∞[λn,En,Wn(z)], (24)
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we obtain from Eq. (18) the condition

W̄ (z) = 2(Ē − z) − 4|λ̄|2
W̄ (z)

(25)

with the two possible solutions W̄±(z) = Ē − z ±√
(Ē − z)2 − 4|λ̄|2. The SD for (Ē − ω)2 � 4|λ̄|2 therefore

becomes

J̄ (ω) =
√

4|λ̄|2 − (Ē − ω)2, (26)

where the requirement of positivity fixes a unique solution of
the square root. Thus, the limiting SD describes a semicircle
with radius 2|λ̄| centered around ω = E. In fact, Ē and |λ̄| are
fixed by the initial cutoff frequencies via Ē = (ωL + ωR)/2
and 2|λ̄| = ωR − ωL. Indeed, if this were not the case, one
would obtain a contradiction. This follows from Eq. (19)
together with our initial assumption that the SD is strictly
greater for ω ∈ (ωL,ωR) and zero outside this interval. We
remark that our reasoning here does not allow to draw any
conclusion about the behavior of convergence. In particular, it
could happen that the sequence of SDs does not converge (e.g.,
for infinite cutoff frequencies). The necessary conditions for
convergence were studied by Woods et al. [25].

B. Advantages of the RC mapping

The previous section described how to apply a unitary
transformation to the bath such that it can be mapped to a new,
redefined impurity coupled to a residual bath. It is different
from the conventional bosonic mapping [17]. There, the final
Hamiltonian is described in terms of position and momentum
operators and has a different quadratic form, which, rewritten
with creation and annihilation operators, displays counter-
rotating terms which are absent in the fermionic case. See also
Ref. [25] for further details on this point.

We emphasize that this mapping is formally exact, it does
not touch the system Hilbert space and, thus, it can be applied
to arbitrary (even time-dependent) impurity Hamiltonians and
also to tunnel Hamiltonians HI with a global time dependence.
Furthermore, if the impurity is coupled to multiple reservoirs,
the mapping can be applied to each reservoir separately such
that it can be easily applied to the study of nonequilibrium
scenarios (see Sec. IV).

In principle, the hope is that after the mapping, the problem
is easier to tackle by using any preferred theoretical method.
We here follow the idea to use a Markovian quantum ME for the
extended system with redefined impurity Hamiltonian H̃imp (as
shaded in gray in Fig. 1) [19,22,34,39,42,46]. To get a feeling
for this approach, let us consider an initial Lorentzian SD of
the form

J (ω) = 	
2

(ω − ω0)2 + 
2
, (27)

where 	 describes the overall coupling strength and 
 the
width of the Lorentzian centered around the resonance fre-
quency ω0. We will indeed use this SD for our applications
below. By applying Eqs. (11), (13), and (19), we obtain that the
system couples to the RC with coupling strength λ0 = √

	
/2
and energy E1 = ω0, which is in turn coupled to a residual
bath described by a SD of the form J1(ω) = 2
. Thus, we
see that the residual SD is completely flat, which is commonly

believed to describe Markovian behavior. In order to justify a
ME approach, the redefined impurity should be additionally
weakly coupled to the residual bath, which is exactly the case
if the initial width 
 of the Lorentzian is small. Therefore,
our method should be especially suited for the study of very
structured SDs (e.g., described by sharp peaks) opposite to the
wide-band limit. The equivalence for the particular example
of a single quantum dot coupled to a bath with Lorentzian SD
and a double quantum dot with flat SD was already noticed
before [58], but we emphasize that our mapping is in general
valid for any impurity system and SD.

Even if the residual bath is not strictly Markovian or weakly
coupled to the redefined system, one might hope that the ME
including the RC provides nevertheless a convenient way to
improve the accuracy of the results (compared to a conventional
ME approach) as it takes a larger part of the model exactly
into account. This is also supported by our benchmark in
Appendix B where the coupling strength to the residual bath is
rather moderate than weak. Moreover, if one is more interested
in weak coupling than Markovianity, it is also possible to split
the support of the SD into multiple intervals and to apply the
RC mapping to each interval separately. This gives rise to more
RCs, but also to a weaker coupling to the residual baths. Fur-
thermore, it should be emphasized that the validity of any ME
approach is likely to break down at very low temperatures. This,
however, does not indicate a failure of the RC method itself.

A benefit of the present approach is that it straightfor-
wardly allows for a consistent thermodynamic interpretation
[34,39,42,46]. In fact, due to the ME approach, we have direct
access to the internal energy and entropy of the redefined
impurity as well as to the energy and matter currents IE and
IM from the residual reservoir, which are defined in Eqs. (A13)
and (A14). If the system is coupled to multiple reservoirs ν at
inverse temperature βν and with chemical potential μν , it is
straightforward to establish the validity of the nonequilibrium
first law (energy balance) and second law (positivity of entropy
production rate 
̇) of thermodynamics:

dt Ẽimp(t) =
∑

ν

Q̇ν(t) + Ẇmech(t) + Ẇchem(t), (28)


̇(t) ≡ dt S̃imp(t) −
∑

ν

βνQ̇ν(t) � 0. (29)

Here, Ẽimp(t) = tr{H̃impρ̃imp(t)} is the internal energy and
S̃imp(t) = −tr{ρ̃imp(t) ln ρ̃imp(t)} is the entropy of the redefined
impurity and the heat flows are given by Q̇ν(t) = I

(ν)
E −

μνI
(ν)
M . In case of an explicit time dependence, Ẇmech(t) =

tr{[dt H̃imp(t)]ρ̃imp(t)} denotes the mechanical work done on
the system. Note that a clean derivation of the positivity of the
entropy production rate, Eq. (29), requires a ME in Lindblad
form although we have numerically observed no violation of
positivity for our ME derived in Appendix A.

The strategy to reformulate the laws of thermodynamics for
an extended system incorporating a part of the previous bath
has been suggested in Refs. [34,39,42,46]. It has the advantage
that it avoids the difficulties faced with other methods such
as Green’s functions [30–32,38,45] or hierarchy of equations
of motions [36,37], where the interaction energy cannot be
unambiguously assigned to the system or the bath when the
system is not at steady state.
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We remark that the RC method allows to treat a larger class
of initial conditions for the redefined impurity. To compare it
with the conventional ME method [1–3], one has to choose the
initial state of the RC to be equilibrated and decorrelated from
the impurity state. In comparison with Green’s function tech-
niques [30–32,38,45], one usually assumes initially a global
equilibrium state instead. Finally, we remark that by applying
counting field techniques to the residual baths, nonequilibrium
fluctuation relations such as those derived in Ref. [59] also hold
for our approach.

To close this section, let us compare our method with the
TEDOPA algorithm [23–28], which can be straightforwardly
extended to fermionic reservoirs [24,25]. The goal of this
method is to provide an exact mapping of the whole reservoir
onto a semi-infinite chain of coupled fermions by using the
theory of orthogonal polynomials. Then, one usually solves the
whole system exactly by using density matrix renormalization
group (DMRG) methods [60]. In principle, our method also
allows by iterative application to obtain a semi-infinite chain
of coupled fermions, but we believe that the strength of our
method lies in the possibility to apply it step by step and to
treat the transformed system by an approximate, yet simple
and intuitive ME approach.

III. AUTONOMOUS ELECTRONIC MAXWELL
DEMON: A REVIEW

We here collect some recent results about autonomous
Maxwell demons (MDs), especially within the context of
electronic transport. We start by giving a simplified argument
in Sec. III A to underline why it is important to extend the
study of autonomous MDs beyond the weak-coupling regime.
Section III B gives an overview over recent activities in the
field with special attention paid to the electronic context. In
Sec. III C we then consider a particular important model, which
we will numerically study using the theory of fermionic RCs
in Sec. IV. For comparison, Sec. III D finally reviews the
thermodynamics of this model in the weak-coupling regime
and shows under which conditions the device can be viewed
as an autonomous MD. The last two subsections also fix most
of the notation and parameters eventually used in Sec. IV to
explore the non-Markovian regime.

A. A general argument

For readers unfamiliar with the working mechanism of
an autonomous Maxwell demon, we here give a simplified
description of it, which is in direct analogy with the device
studied later on in this section.

Let us start by specifying what we mean by an autonomous
MD. We consider bipartite systems where one part can be un-
derstood as the controlled system and the other part assumes the
role of the detector and controller by the physical interaction
with the controlled system. The complete device should be
autonomous in the sense that there is no time dependence in
the global Hamiltonian. Also, external interventions by means
of measurement and feedback control are forbidden, very
similar to the idea to use “coherent quantum control” to sim-
ulate measurement-based quantum control [61,62]. Thus, all
physically relevant parts of the device are explicitly modeled.
The device should also be a useful thermodynamic machine

allowing, for instance, the extraction of work. These desiderata
are also fulfilled by many other engines, but beyond that we
especially require the following:

(i) The way information is processed in the device should
be particularly transparent and these “informational degrees of
freedom” are called the demon part of the device (whereas the
rest is simply called the system).

(ii) The energetics associated to the demon part should be
negligible (though not necessarily strictly zero) compared to
the energetics of the system itself, i.e., the device should be
information dominated.

For the moment, let us denote by 
ES (
ED) and τS (τD)
some characteristic energy scale and some typical relaxation
time scale of the system (demon). Furthermore, we assume
that the system (demon) has access to some heat reservoir
at temperature TS (TD). Whenever convenient, we will also
use the notation of rates γS,D = τ−1

S,D and inverse temper-
ature βS,D = (kBTS,D)−1 in our description. We emphasize
that the relaxation rates γS,D are within the conventional
weak-coupling approach proportional to the coupling strength
between the system/demon and their respective reservoir;
compare also with Appendix A.

We start our analysis with the observation that an important
feature of any MD is to extract work from fluctuations. Thus,
in order to have non-negligible fluctuations in the system, we
demand that


ES ≈ kBTS. (30)

Let us assume that the device delivers useful work and let us
approximate the output power via

Ẇout ≈ γS
ES. (31)

In the nonautonomous version of MD, the second law for
feedback control predicts that the maximum amount of work
in the case of an ideal classical feedback controller is bounded
by [63,64]

βSWout = βS
ES � IS:D, (32)

whereIS:D denotes the mutual information between the system
and the demon,

IS:D ≡ S(ρS) + S(ρD) − S(ρSD). (33)

Here, ρSD denotes the density operator of the system and
demon, ρS,D = trD,S{ρSD} the marginal state, and S(ρ) ≡
−tr{ρ ln ρ} the von Neumann entropy. Roughly speaking,
IS:D quantifies the amount of correlations shared between the
system and the demon and it plays an essential role in the field
of information thermodynamics [63]. Based on this insight, the
goal of an autonomous MD will also be to establish a strong
correlation between the system and the demon part in order to
harness it via some intrinsic feedback loop; thus, the demon
part has to act like a detector. This implies that the demon must
be able to react quickly enough to changes in the system, which
naturally leads to the requirement

γD � γS (requirement Ia), (34)

i.e., the demons typical timescale τD is much smaller than τS .
This requirement inevitably tells us that in order to enhance the
power output of the device by increasing γS , this necessarily
implies a corresponding increase in γD , which in turn implies
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that the demon must be more strongly coupled to its own bath
at temperature TD .

However, requirement Ia is not enough to guarantee that the
demon adapts with high probability to the correct state: given a
certain state of the system, there should be a unique and stable
state of the demon. Expressed differently, whereas we required
the system to fluctuate relatively strongly, the demon should not
fluctuate more than necessary. Therefore, for any system state
the requirement of a reliable or precise demon translates into


ED

kBTD

� 1 (requirement Ib). (35)

Requirements Ia and Ib are linked to our desideratum (i)
mentioned initially. Point (ii) is fulfilled by the requirement


ES � 
ED (requirement II). (36)

From requirement Ib and II and condition (30) it also follows
immediately that

kBTS ≈ 
ES � 
ED � kBTD. (37)

Hence, the heat reservoir of the demon must necessarily be
much colder than the heat reservoir of the system.

To conclude, the above argumentation shows us that an
autonomous MD needs to be carefully tuned. The fact that
the demon acts like a detector requires it to be fast and precise
and, thus, to be much more strongly coupled to its own bath
than the system. On top of that, a small energy consumption
requires the demon to have access to a low-entropy (or low-
temperature) reservoir. Both requirements, strong coupling
and low temperature, challenge the usual range of validity
of commonly employed perturbative approaches. The rough
estimates given here should be also compared with the analysis
in Sec. III D.

B. Maxwell’s demon in the electronic context

The central idea of an electronic MD is to find some feed-
back mechanism, which shovels particles against a chemical
gradient instead of a thermal gradient as in the traditional
thought experiment of Maxwell. The big advantage of this
setup comes from recent technological advances, which al-
low to measure and manipulate single electrons in quantum
dots (see, e.g., [51,52,55,65–69]). Direct measurement and
manipulation of individual phonons, which are predominantly
responsible for thermal transport, is much harder instead. Thus,
there have been many theoretical studies how to use charge
fluctuation in mesoscopic conductors to extract work via some
feedback loop, either in an autonomous way [50,54,70–74] or
not [57,64,75–81].

In the following, we will focus on the autonomous MD
introduced in Ref. [50]. Globally, it resembles a thermoelectric
device based on two Coulomb-coupled quantum dots [47,49].
However, by a careful fine tuning of the parameters, it is
possible to show that it resembles the phenomenological
electronic MD introduced in Ref. [75] and, thus, it has a
particularly transparent interpretation in terms of informa-
tion flows [50,53,54,78]. Moreover, very similar experimental
realizations were reported [51,52,55,69] although it remains
unclear whether it is possible to reach the ideal information-
dominated regime.

FIG. 2. Sketch of the autonomous MD device. Two quantum dots
(black circles) with onsite energies εs and εd interact capacitatively
with strength U . The demon dot is tunnel coupled to an electronic
reservoir kept at temperature TD and chemical potential μD . The
system dot is tunnel coupled to two reservoirs kept at the same
temperature T , but with different chemical potentials μL − μR =
V � 0. Gray arrows indicate the two independent currents IE and
IM pointing in the direction where they are defined to be positive.
The goal of the demon is to reverse the electric current (i.e., IM < 0)
with the smallest possible imbalance in the energy flow through the
system.

C. Model

The model is schematically depicted in Fig. 2. The Hamil-
tonian of the impurity (system and demon) reads as

Himp = εsd
†
s ds + εdd

†
ddd + Ud†

s dsd
†
ddd, (38)

where d
†
s/d (ds/d ) is a fermionic creation (annihilation) operator

for the system/demon dot. The Hamiltonian describes two dots
with onsite energies εs and εd and Coulomb interaction U ,
which we will treat exactly with our method. Note that there
are no electrons tunneling between the dots.

The noninteracting reservoirs ν ∈ {L,R,D} are modeled
as free fermions as in Eq. (1) with Hamiltonian H

(ν)
R =∑

k εkνc
†
kνckν . The reservoirs L and R are tunnel coupled to

the system quantum dot via the Hamiltonian

H
(ν)
I =

∑
k

(tkνdsc
†
kν + t∗kνckνd

†
s ) (ν ∈ {L,R}), (39)

whereas the reservoir D is tunnel coupled to the demon dot via

H
(D)
I =

∑
k

(tkDddc
†
kD + t∗kDckDd

†
d ). (40)

The total Hamiltonian then reads as Htot = Himp +∑
ν∈{L,R,D}(H

(ν)
I + H

(ν)
R ). Within the weak-coupling

approach, each reservoir is assumed to be well described
by an equilibrium distribution according to a temperature Tν

and chemical potential μν . Below, we will set for simplicity
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(1) (2) (3) (4)

FIG. 3. A possible stochastic trajectory which becomes likely in the MD regime as explained at the end of this caption. In contrast to Fig. 2,
we here sketched the transition frequencies εs,εd ,εs + U and εd + U in the dots. The Fermi distributions in the baths are shown as density
profiles where the darkness of the color is proportional to the occupancy of that energy. To complete the picture, we also sketched the Lorentzian
SDs of each reservoir whose product with the Fermi function determines the transition rates (see Appendix A). The trajectory starts with a
filled dot of the demon but an empty dot of the system (1). If an electron wants to enter the system, it needs an energy εs + U and, although the
Fermi factor is smaller for the right reservoir, this is overcompensated by the imbalance of the Lorentzian tunneling rates (2). After an electron
has entered the system, it pushes the electron in the demon dot to a higher energy above the chemical potential such that it instantaneously
jumps out of the dot due to requirement (44) (3). Finally, and again due to the imbalance of the Lorentizian tunneling rates, the electron in the
system dot leaves to the left bath and the demon dot gets refilled (4). Overall, one electron was transferred against the bias by harnessing the
correlation between the system and the demon dot and by transferring an energy amount U from the hot to the cold reservoir.

TL = TR ≡ T and μL = εs + V/2 and μR = εs − V/2 where
V = μL − μR � 0 denotes the bias voltage across the system.

The SD J (ν)(ω) of each reservoir ν is modeled by a
Lorentzian as in Eq. (27) with coupling strength 	ν , peak
width 
ν , and resonance frequency ω0ν . In the following, we
will set 	L = 	R ≡ 	S and 
L = 
R ≡ 
S , i.e., the system is
coupled with equal strength to the left and to the right reservoir
and only the position of the peaks will be different.

D. Thermodynamics in the idealized limit

In the idealized picture, the device is weakly coupled to three
Markovian thermal reservoirs as depicted in Fig. 2. Within this
approach, the dynamics of the system is governed by a master
equation (ME) with rates obtained from Fermi’s golden rule
(see Ref. [50] for the full rate ME). Altogether, the system
works as a thermoelectric device [49,50]. If we set TD < T ,
the device is able to convert an energy current IE ≡ −I

(D)
E > 0

flowing into the reservoir D into an electric current IM ≡
I

(L)
M < 0 flowing against the bias V provided that the SDs

J (ν)(ω) and other parameters are chosen appropriately [for a
definition of energy and matter currents, see Eqs. (A13) and
(A14)]. Because the device is out of equilibrium, it produces
entropy at a rate


̇ = βV IM + (βD − β)IE � 0. (41)

It is also possible to give compact analytical expressions for IM

and IE in terms of the steady state [49,50], but for our purposes
it suffices to note the following proportionality relation:

IM ∼ 	S. (42)

This means that the power output of the device is directly
proportional to the coupling strength 	S in the weak-coupling
regime and, hence, it is desirable to choose 	S as large as pos-
sible. Furthermore, we add that one can associate a second law
to the local dynamics of the system only, which reads as [53]


̇S = βV IM − βIE − İS � 0. (43)

Here, İS is the flow of mutual information between the
system and the demon (for a precise definition, see Ref. [53]).
Equation (43) shows that the ability to shovel electrons against
the bias, βV IM < 0, can be influenced by energetic (βIE) as
well as entropic (İS) contributions.

More importantly for our discussion, there is a clean limit
in which the system can be viewed as an autonomous MD
and in which the reduced dynamics of the system quantum
dot coincides with the ideal, nonautonomous MD studied in
Ref. [75]. In this regime, the stochastic trajectory shown in
Fig. 3 becomes likely and transport against the bias possible.
We will shortly review here this limit for completeness; more
details can be found elsewhere [50,53]. The three different
limits we need to take are the following (compare also with
Sec. III A):

1a Fast demon. First, the demon needs to be relatively fast
in order to adapt quickly enough to the system state such that
it is guaranteed that the correct feedback loop is applied. This
is ensured by demanding that

	D � 	S, (44)

implying that the demon is much more strongly coupled to its
reservoir than the system [cf. Eq. (34)]. Within the formal limit
	D/	S → ∞, the demon dot can be adiabatically eliminated
and a closed effective description for the system dot alone
emerges. In the strict limit, the flow of mutual information
becomes exactly identical to İS = −βUIE so that the effective
second law coincides with the true second law 
̇S = 
̇.

1b Precise demon. In order to use the demon as a detector,
it should also be precise in the sense that it is as correlated
as possible with the system since this increases the mutual
information [compare with Eq. (32)]. Optimal results can be
achieved by choosing the chemical potential of the demon such
that εd = μD − U/2 and by requiring [cf. Eq. (35)]

βDU � 1. (45)
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Then, in the strict limit of 	D/	S → ∞ and βDU → ∞, the
demon dot is occupied if and only if the system dot is empty
and vice versa implying a perfect (anti)correlation between the
system and the demon. It should be noted, however, that this
strict limit also implies a diverging entropy production rate
(41). Additional details concerning the use of such setups as
detection devices can be found in Refs. [82,83].

2 Maxwell demon. Within the fast and precise demon limit,
the demon can be reliably interpreted as a detector, yet it still
disturbs the energetic balances of the system at the order of U .
Not very surprisingly, the MD limit consists of demanding that

βV ≈ 1, β(V + U ) ≈ 1,
U

εs

� 1, (46)

which is in agreement with Eqs. (30) and (36) if we note that
the energy current through the system is roughly proportional
to εSIM in the limit of negligible U . Thus, in this limit
the difference in energy transferred from the right to the
left reservoir (which is given by the flow of energy in the
detector bath IE) becomes immeasurably small compared
to the energetic current εSIM . In this regime, the term βIE

becomes negligible and the second law reads as


̇ = 
̇S = βV IM − İS � 0, (47)

i.e., the ability to shovel electrons against the bias is purely
entropy (or information) dominated.

The above three limits are, however, not sufficient to shovel
electrons against the bias. In order to achieve this, we also
need to break the left-right symmetry of the device even
in the absence of any bias (V = 0). This is most easily
done by choosing different SDs J (L)(ω) and J (R)(ω) ful-
filling J (L)(εs) > J (L)(εs + U ) and J (R)(εs) < J (R)(εs + U )
as depicted in Fig. 3. More specifically, we choose for our
Lorentzian SDs

ω0L = εs, ω0R = εs + U. (48)

The imbalance in the SDs is then quantified by

J (L)(εs)

J (L)(εs + U )
= J (R)(εs + U )

J (R)(εs)
= 1 + U 2


2
S

, (49)

which was previously [50] described by the parameter eδ .
Furthermore, we choose to fix the following parameters for

all upcoming numerical calculations: We set the onsite energies
equal εs = εd = ε, the inverse temperature to βε = 1, and we
choose a small, but finite positive bias V = 0.01ε. In addition,
we set U = 0.015ε such that it is small compared to the
system energy [see Eq. (46)]. The SD of the demon is peaked
around ω0D = μD = εd + U/2 and we choose 
D = 0.01ε.
The coupling strength of the demon is set to 	D = 100	S

ensuring that the demon is fast enough.
Thus, there are three free parameters left: (1) the variance


S of the Lorentzian SD of the left and right reservoir controls
the imbalance of the SDs [see Eq. (49)], thereby having
influence on the power output and the validity of the Markov
approximation; (2) the tunneling rate 	S which controls the
work output [see Eq. (42)] and (via 	D = 100	S) the strength
of the coupling between the demon dot and its reservoir; and
(3) the temperature ratio βD/β influencing the precision of the
demon [see Eq. (45)] and, thus, the correlation with the system.

IV. ELECTRONIC MAXWELL DEMON
BEYOND WEAK COUPLING

In this section we report our main findings which are based
on numerical comparison of the ideal (i.e., weakly coupled,
Markovian, and high temperature) model (see Sec. III D), with
the extended RC approach able to go beyond these limitations.1

We will focus on the steady-state behavior only and compare
three important quantities.

First, the electric current IM flowing through the system dot
from the left to the right reservoir. It is directly proportional to
(minus) the work output of the device and is therefore an im-
portant quantifier for the overall thermodynamic performance.

Second, we look at the relative energetic imbalance
|IE/I

(L)
E | where IE = −I

(D)
E denotes the energy flow into the

demon reservoir and I
(L)
E the energy flow from reservoir L [for

a definition of energy and particle currents, see Eqs. (A13)
and (A14)]. If this quantity is large, the device works in
an energy-dominated regime, whereas it goes to zero in the
Maxwell demon limit (46).

Third, we will evaluate the mutual information IS:D be-
tween the system and the demon dot. It reveals key insights
about the question whether the working mechanism of the
device can be seen as some implicit measurement and feedback
loop, which needs large correlations. Note that for our setup
0 � IS:D � 2 ln 2, but the maximum value is attained only for
a pure and maximally entangled state. The classical limit is
instead Icl

S:D � ln 2 such that values relatively close to this
limit signify already strong correlations in our noisy setup. In
our numerical studies we have found that it suffices to restrict
the plots of the mutual information to the interval [0, ln 2],
although this does not a priori imply that there are no quantum
correlations present.

A. Extended models

The validity of the standard ME approach as sketched in
Appendix A is limited by the coupling strength to the reser-
voirs, the degree of non-Markovianity, and the temperature of
the reservoirs. In principle, all three limitations are challenged
by the electronic MD model from Sec. III. We therefore
compare it with three different extended models:

(1) The working mechanism of our device requires a break-
ing of the left-right symmetry, which was achieved by choosing
different SDs J (L)(ω) and J (R)(ω) peaked around εs and
εs + U , respectively. In the ideal case, where the peaks are very
narrow, the SDs act like perfect electron filters increasing the
thermoelectric performance. Quite problematically, however,
a strongly peaked SD is usually associated with strong non-
Markovianity [3,84]. In order to capture the non-Markovian
behavior of the left and right reservoirs, we introduce fermionic
RCs C

(†)
l and C

(†)
r for the left and the right reservoirs in what

we call “model 1.” For the SDs centered at ω0,L = εs and
ω0,R = εs + U , the resulting redefined impurity Hamiltonian

1Numerical results were obtained using a Mathematica notebook,
which is available upon request from the corresponding author. To
compute marginal states, as needed for Eq. (33), we used the algorithm
“Partial trace of a multiqubit system” by M. S. Tame.
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extended model (1) extended model (2) extended model (3)

FIG. 4. Sketch of the geometry of the extended models studied in the text. Each circle represents a single fermionic site (“quantum dot”).
The tunnel coupling is indicated by straight lines and the Coulomb interaction by a capacitor. The three reservoirs as well as the energy and
electric current are also indicated as in Fig. 2.

reads as

H̃
(1)
imp = Himp + εsC

†
l Cl + (εs + U )C†

r Cr

+
√

	S
S

2
(C†

l ds + d†
s Cl + C†

r ds + d†
s Cr ), (50)

and the coupling to the residual left and right reservoirs is
described by a flat SD J

(ν)
1 (ω) = 2
S , ν ∈ {L,R}. A sketch of

the setup is shown in Fig. 4. We remark that the inclusion of
additional quantum dots to model peaked SDs acting as energy
filters has been used elsewhere, too [49,85,86].

(2) Putting the problem of non-Markovianity aside, the
most pressing problem is that the demon dot must be relatively
strongly coupled to a low-temperature heat reservoir. This
problem becomes more pronounced if we want to enhance the
power output by increasing 	S . Model (2) therefore introduces
a fermionic RC C

(†)
d for the demon bath in order to study those

effects. When we use ω0,D = εd + U/2, the resulting redefined
impurity Hamiltonian reads as

H̃
(2)
imp = Himp +

(
εd + U

2

)
C

†
dCd

+
√

	D
D

2
(C†

ddd + d
†
dCd ) (51)

and the coupling to the residual demon reservoir is described
by a flat SD J

(D)
1 (ω) = 2
D . A sketch of the setup is again

shown in Fig. 4.
(3) In order to capture both problems, model 3 finally uses

a fermionic RC for all reservoirs (see Fig. 4). Within our
framework, this will provide the ultimate test for the simplified
model from Sec. III D. The redefined Hamiltonian is given by
the sum of Eqs. (50) and (51) without counting Himp twice,

H̃
(3)
imp = H̃

(1)
imp + H̃

(2)
imp − Himp. (52)

The SDs of the residual reservoirs L, R, and D are given by
2
S, 2
S , and 2
D , respectively.

B. Numerical results

In what follows, we will compare the results of our extended
models with the original MD treatment exposed in Sec. III D.
We will refer to the latter as double quantum dot Maxwell

demon (DQDMD) treatment and use red, dashed lines in
the plots. The regime where the simple double quantum dot
treatment and the MD interpretation are valid are shaded in
gray in the plots.

1. RCs for the system reservoirs

We start with the extended model (1) to answer the question
how narrowly peaked can we choose the SDs J (ν)(ω) before
the Markovian description from Sec. III D breaks down? The
answer is shown in Fig. 5. It clearly shows that there is an
optimum value for the sharpness of the peak, which can be
found by maximizing the power output −V IM while still
retaining a valid Markovian description.

FIG. 5. Plot of the dimensionless quantities IM/	S (top), IE/I
(L)
E

(bottom), and IS:D (inset) versus the dimensionless sharpness of the
peak of the left and right SDs 
S/εs (note the logarithmic scale).
Results using the extended model (1) are shown with a solid line, the
dotted red line refers to the DQDMD description from Sec. III D. The
shaded gray area indicates the region where the DQDMD treatment
and the MD interpretation are valid. To remain in the strict weak-
coupling regime, we chose 	S = 10−5εs . Furthermore, βD/β = 300.
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FIG. 6. Plot of our three relevant quantities versus the dimen-
sionless coupling strength 	S of the system (note the logarithmic
scale again) for the extended model (2) (solid line) and the DQDMD
treatment (dotted red line). The shaded gray area indicates the region
where the DQDMD treatment and the MD interpretation are valid.
Parameters as in Fig. 5 with 
S/εs = 0.01.

For 
S → 0 the RC description indeed predicts IM → 0 be-
cause the coupling to the residual baths is directly proportional
to 
S . It is worth to emphasize that the naive ME treatment
of Sec. III D predicts a monotonically increasing power output
in the limit 
S → 0 in strong contrast to the actual behavior.
We conclude that one has to be very careful if one chooses
strongly peaked SDs (sometimes called “spectral filters”) to
increase the power output of a thermodynamic device.

In the opposite limit, 
S → ∞, the engine also breaks
down because the SDs become essentially flat and the left-right
symmetry remains unbroken. Note that the amount of mutual
information between the system and the demon is almost
unaffected by the shape of the SD as expected.

Although the simple DQDMD description becomes inaccu-
rate below a certain critical threshold 
∗

S/εs ≈ 0.01, the plot
also shows that a Markovian description is valid even if the
SD is not completely flat but slightly structured [at the critical
value, the imbalance (49) is for the chosen numerical param-
eters roughly 1.18]. Finally, we note that the regime, where
the Markovian description is valid while at the same time the
energetic imbalance is very small (less than 5%), is restricted to
a very narrow window around 
∗

S/εs demonstrating the careful
fine tuning needed to ensure a working autonomous MD.

2. RC for the demon reservoir

Numerical results associated to model (2) concerning the
question what happens to the demon in the strong-coupling
and low-temperature regimes are shown in Figs. 6 and 7.

First, Fig. 6 shows our three relevant quantities as a
function of 	S , which (in the weak-coupling regime) is directly
proportional to the power output of the device [Eq. (42)]
and influences the demon coupling strength via our choice
	D = 100	S . Numerical parameters are the same as in Fig. 5

FIG. 7. Plot of our three relevant quantities versus the dimension-
less inverse temperature βD/β of the demon reservoir (in logarithmic
scale) for 	S = 10−4εs (main plots) and 	S = 10−5εs (insets). The
rest is as in Fig. 6.

with the choice 
S = 
∗
S = 0.01εs . As expected, the plot

of the electric current IM demonstrates that the DQDMD
treatment is only valid for very small coupling strength 	S <

10−4εs (shaded gray region), beyond that the demon fails to
work. Also, the plot of the relative energy imbalance IE/I

(L)
E

shows that we are leaving the MD regime of negligible energy
consumption for larger 	S because more transport channels
are opening up. More interestingly, however, is the plot of the
mutual information IS:D , which reveals the physical reason
why the demon fails. As explained in Sec. III, the working
mechanism is based on a strong correlation between the demon
and the system due to the Coulomb interaction and a careful
tuning of the demon’s reservoir. But, for stronger coupling 	D

the electron in the demon dot gets more and more correlated
with its reservoir than with the system, i.e., it becomes more
and more delocalized. The only way to counterbalance this
behavior is by increasing the Coulomb interaction U , but this
increases the energy imbalance pushing us away from the MD
regime. This is the ultimate reason why the MD is limited
to the weak-coupling situation and, thus, due to the required
timescale separation 	D � 	S , to very low power output.

To complement the analysis, Fig. 7 shows the same
quantities for varying inverse temperature βD for relatively
strong-coupling strength 	S = 10−4εs and, shown as insets, for
	S = 10−5εs , which was used in Fig. 5. As expected, for larger
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FIG. 8. Repetition of the plots shown before for the extended model (3). In all plots we chose 	S = 10−5εs , 
S = 0.01εs , and βD/β = 300
unless that parameter is varied in the respective plot. The gray shaded area indicates the region, in which the ideal MD interpretation holds.

	S we see stronger deviations from the ideal values confirming
our previous observation. In addition, Fig. 7 demonstrates two
more important features. First, the device works better for
lower temperatures because the formation of correlations is
hindered if the demon is subjected to more thermal noise.
Second, this figure also shows that a DQDMD description
is usually only valid at high temperatures, whereas more
sophisticated methods are needed for lower temperatures. We
stress once more that, although the RC method allows to treat
lower temperatures, its validity also does not extend down to
zero temperature TD → 0.

3. RCs for all reservoirs

Finally, numerical results using model (3) are shown in
Fig. 8. It is our most accurate analysis and combines models
(1) and (2) and the plots demonstrate that the results, which
we have drawn above in a separate analysis, hold true also
in the complete picture. Furthermore, although the simple
DQDMD picture from Sec. III D fails for most parameters as
expected, it also agrees well if we pay careful attention to
its range of validity. Thus, the analysis of the ideal MD [50],
despite the various limits involved, remains qualitatively and
quantitatively true for a narrow parameter window.

V. SUMMARY

In this paper, we have developed the theory of fermionic
RCs, which provides a tool to extend the range of validity
of the usual ME, especially for very structured, i.e., strongly
non-Markovian, SDs. The benefit of our approach is that the
ME approach still allows to treat interactions in the system
exactly, it can be straightforwardly applied to nonequilibrium
situations and has a transparent thermodynamic interpretation.
One drawback of the method is that not every initial SD can
be mapped to an effectively weakly coupled and Markovian
situation such that the application of the ME has to be justified
on a case-by-case study. Another drawback comes from the use
of a ME itself, which becomes invalid at very low temperatures.
Nevertheless, we believe that the fermionic RC mapping has

the potential to find widespread application in quantum trans-
port as a simple and transparent tool to treat structured SDs.

As a particular application we then considered a thermoelec-
tric device, which can be interpreted as an autonomous MD for
a specific range of parameters. Previous analyses in the field of
information thermodynamics were done in the idealized weak-
coupling and Markovian regimes, an exception being Ref. [56].
As we have argued in Sec. III A and as Ref. [50] explicitly
shows, MD lives in a parameter regime where the use of these
idealized assumptions becomes increasingly questionable. We
here addressed systematically the question of what happens to
the performance of an autonomous MD if we relax the weak-
coupling and Markovian assumptions (also see Ref. [57] for the
study of a nonautonomous MD in the strong-coupling regime).

Our numerical results clearly convey two messages: First,
we have proven that it is indeed possible to reach the idealized
MD regime, even if one uses a more sophisticated method,
which is able to take into account strong-coupling and non-
Markovian effects. Thus, MD is not a mere hypothetical being,
but can be found in actual physical systems. On the other hand,
our paper also indicates that the possible parameter regime of
an ideal MD is very narrow and necessarily limited to low-
power output. It therefore still remains a challenge to find out
to what extent MD will play a role in actual, practically useful
devices, where already the use of a model Hamiltonian of the
form (38) amounts to a strong assumption as it neglects, e.g.,
spin and vibrational degrees of freedom as well as multiple
charges on a single quantum dot.
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APPENDIX A: DERIVATION OF THE MASTER EQUATION

In this appendix we briefly state the essential steps to derive
the quantum ME used in the main text. We start by focusing
on an impurity (also often called the “system”) coupled to
a single reservoir with Hamiltonian Htot = Himp + HI + HR .
Because within the weak-coupling approach there is no direct
influence between the different reservoirs, we can simply add
the contributions of them at the end. More detailed derivations
of MEs can be found elsewhere [1–3,59]. Note that Himp, HI ,
and HR are arbitrary and left unspecified here. For the MEs
used in Sec. IV, one would indeed need to replace Himp by H̃imp.

Our starting point is the second-order Liouville–von
Neumann equation in the interaction picture after performing
the Markovian approximation

dt ρ̃(t) = −
∫ ∞

0
dτ trB{H̃I (t)H̃I (t − τ )ρ̃(t)R0

− H̃I (t)ρ̃(t)R0H̃I (t − τ ) + H.c.}, (A1)

where Ã(t) ≡ ei(Himp+HR )tAe−i(Himp+HR )t denotes operators in
the interaction picture and R0 = e−β(HR−μNR )/Z describes the
equilibrium density operator of the reservoir with NR being
the particle-number operator of the reservoir.

For our purposes, it suffices to consider an interaction
Hamiltonian of the form

HI = d
∑

k

tkc
†
k +

∑
k

t∗k ckd
†, (A2)

where d is an arbitrary fermionic system operator. We denote
the eigensystem and transition frequencies of Himp as

Himp =
∑

k

Ek|k〉〈k|, ωkl ≡ Ek − El (A3)

such that we can write the system coupling operator in the
interaction picture as

d̃(t) =
∑
k,l

eiωkl t dkl|k〉〈l|, dkl ≡ 〈k|d|l〉. (A4)

Then, after introducing the SD J (ω) = 2π
∑

k |tk|2δ(ω − εk)
of the bath and after moving out of the interaction picture, we
obtain terms like

e−iHimpt trB{H̃I (t)H̃I (t − τ )ρ̃(t)R0}eiHimpt

=
∫ ∞

−∞
dω

J (ω)

2π

∑
k,l

{
ei(ω+ωkl )τ f (ω)dd∗

kl|l〉〈k|ρ(t)

+ e−i(ω+ωkl )τ [1 − f (ω)]d†dkl|k〉〈l|ρ(t)
}
, (A5)

e−iHimpt trB{H̃I (t)ρ̃(t)R0H̃I (t − τ )}eiHimpt

=
∫ ∞

−∞
dω

J (ω)

2π

∑
k,l

{
ei(ω+ωkl )τ [1 − f (ω)]dρ(t)d∗

kl|l〉〈k|

+ e−i(ω+ωkl )τ f (ω)d†ρ(t)dkl|k〉〈l|} (A6)

and their Hermitian conjugate. Here, f (εk) = trB{c†kckR0} =
[eβ(εk−μ) + 1]−1 denotes the Fermi distribution.

To evaluate the integral over τ , we then use∫ ∞

0
dτ e±iωτ = πδ(ω) ± iP 1

ω
(A7)

and neglect the imaginary principal value part in the following
(cf. Appendix B). After this step, the full ME can be written as

dtρ(t) = −i[Himp,ρ(t)] + [χ †ρ(t),d] + [d†,ρ(t)χ ]

+ [θρ(t),d†] + [d,ρ(t)θ †], (A8)

where we introduced the operators

χ ≡
∑
k,l

J (ωlk)

2
f (ωlk)dkl|k〉〈l|, (A9)

θ ≡
∑
k,l

J (ωlk)

2
[1 − f (ωlk)]dkl|k〉〈l|. (A10)

The ME (A8) is ready for numerical implementation. Note that
we did not perform the commonly employed secular approx-
imation, which guarantees a Lindblad form of the generator
[1–3,59], but often predicts unphysical results especially for
more complex systems (see also Appendix B).

If we include coupling to multiple baths characterized by
a distinct chemical potential or temperature, we can simply
add up the contribution of each bath separately to the ME. The
result is then

dtρ(t) = −i[Himp,ρ(t)] +
∑

ν

Lνρ(t) (A11)

with the dissipator

Lνρ ≡ [χ †
νρ,dν] + [d†

ν ,ρχν] + [θνρ,d†
ν ] + [dν,ρθ †

ν ].

(A12)

The energy and particle currents into bath ν are then given by

I
(ν)
E = tr{HimpLνρ(t)}, (A13)

I
(ν)
M = tr{NimpLνρ(t)}, (A14)

where Nimp is the particle-number operator of the impurity.

APPENDIX B: EXAMPLE AND BENCHMARK:
SINGLE-ELECTRON TRANSISTOR

To benchmark our approach, we consider the possibly
simplest fermionic transport setup usually called a single-
electron transistor (SET): a spinless quantum dot with onsite
energy ε coupled to two fermionic baths ν ∈ {L,R}. In this
case, we have Himp = εd†d and we model the contact to the
baths again by a Lorentzian of the form (27), which we assume
to be the same for the left and right reservoirs.

Figures 9 and 10 now compare the energy and particle
current through the SET using three different methods. The
first (dotted green) is based on a standard rate equation for the
probability to find the quantum dot empty or filled (i.e., the
ME from Appendix A applied to Himp = εd†d). The second
method makes use of a single RC mapping individually applied
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FIG. 9. Plot of the matter current over the dimensionless coupling
strength β	 in logarithmic scale computed using different methods:
the naive rate-equation approach (thin dotted green), the exact solution
(thick red), and the RC approach based on different levels of
approximation for the ME; the Born-Markov treatment of Eq. (A8)
including the Lamb shift terms from Eq. (A7) (RC+BM, thin solid
dark blue curve), Eq. (A8) neglecting the Lamb shift (RC+BM-LS,
dashed bold light blue curve), and Eq. (A8) with an additional secular
approximation (BMS, thin dashed-dotted solid black). Parameters are

 = 0.1ε, ω0 = ε, βε = 1 and μL = ε = −μR .

to each reservoir and yields the Hamiltonian

H̃imp = Himp +
∑

ν

(λ0dC
†
1ν + λ∗

0C1νd
† + E1C

†
1νC1ν), (B1)

which now consists of three serially coupled quantum dots. The
second method then treats the residual baths as weakly coupled
and Markovian by using the ME treatment from Appendix A.
In addition, it allows for different perturbative treatments by
either including (solid dark-blue line) or neglecting (dashed
light-blue line) Lamb shift terms or by performing an addi-
tional secular approximation on top (dashed-dotted black line).
Finally, the model also admits an exact solution for the matter
and energy current which reads as (solid red line; compare
with, e.g., Ref. [87])

IM =
∫ ∞

−∞

2dω

π

JL(ω)JR(ω)[fL(ω) − fR(ω)]

[JL(ω) + JR(ω)]2 + 4[ω − ε − 
(ω)]2
,

IE =
∫ ∞

−∞

2dω

π

ωJL(ω)JR(ω)[fL(ω) − fR(ω)]

[JL(ω) + JR(ω)]2 + 4[ω − ε − 
(ω)]2
.
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FIG. 10. Plot of the energy current instead of the matter current
with the same parameters as in Fig. 10.

Here, 
 = 
L + 
R denotes the Lamb shift


ν(ω) ≡ P
∫

dω′

2π

Jν(ω′)
ω − ω′

= 	
(ω − ω0)

2[(ω − ω0)2 + 
2]

= ω − ω0

2

Jν(ω). (B2)

As we can see, the RC method based on the ME (A8) (i.e.,
without secular approximation) gives an excellent agreement
with the exact result for a wide parameter regime. Generally,
we see that over all coupling strengths, including or neglecting
the Lamb shift has little effect. For intermediate-coupling
strengths, including the Lamb shift terms, it is even reduc-
ing the agreement with the exact solution, whereas for the
ultrastrong-coupling regime it is improving the agreement, as
is particularly visible in the energy current. More importantly,
however, we see that the often employed secular approximation
fails completely in the weak to intermediate parameter regimes.
These reasons justify the use of the ME we derived in
Appendix A.

It is nevertheless important to remark that the RC method
is also limited. First of all, in order to justify using a weak-
coupling ME for H̃imp, the width 
 of the Lorentzian must
be small enough because it is directly proportional to the
coupling strength of the RC with the residual bath. Second,
even for small 
 our approach is still based on the use of a ME
invalidating our results for very low temperature. For instance,
the differential conductance of the SET limV →0

dIM

dV
computed

with the RC method completely fails to reproduce the exact
results for T → 0 (not shown here for brevity).
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