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Electronic Maxwell demon in the coherent strong-coupling regime
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‘We consider an external feedback control loop implementing the action of a Maxwell demon. Applying control
actions that are conditioned on measurement outcomes, the demon may transport electrons against a bias voltage
and thereby effectively converts information into electric power. While the underlying model—a feedback-
controlled quantum dot that is coupled to two electronic leads—is well explored in the limit of small tunnel
couplings, we can address the strong-coupling regime with a fermionic reaction-coordinate mapping. This exact
mapping transforms the setup into a serial triple quantum dot coupled to two leads. We find that a continuous
projective measurement of the central dot occupation would lead to a complete suppression of electronic transport
due to the quantum Zeno effect. In contrast, by using a microscopic detector model we can implement a weak
measurement, which allows for closure of the control loop without transport blockade. Then, in the weak-coupling
regime, the energy flows associated with the feedback loop are negligible, and dominantly the information gained
in the measurement induces a bound for the generated electric power. In the strong coupling limit, the protocol
may require more energy for operating the control loop than electric power produced, such that the whole device

is no longer information dominated and can thus not be interpreted as a Maxwell demon.
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I. INTRODUCTION

In the famous thought experiment, Maxwell’s demon is
an intelligent being that measures the direction and speed of
particles in a box with two compartments. By suitably opening
or closing a shutter between the compartments, the demon can
sort the initially thermally distributed particles into cold and
hot fractions. This thermal gradient can be used to extract work.
Effectively, the feedback loop implemented by the demon leads
to a local reduction of entropy, ideally without any energetic
cost, only using the information from the measurement. The
possibility of converting information into work has inspired
generations of researchers to investigate the role of information
in thermodynamics [1].

With nowadays rapid improvement of competing exper-
imental approaches, it has become possible to implement
different versions of a Maxwell demon in real-world scenarios.
These approaches include electronic [2,3], qubit-qubit [4],
qubit-cavity [5], and photonic [6] implementations. Beyond
Maxwell’s demon, which is concerned with the control of
average currents, for electronic transport setups feedback
schemes proposing the control of even higher moments [7]
have been experimentally implemented [8]. With such ad-
vanced experimental abilities, huge interest exists in exploring
quantum implications of a Maxwell demon.
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Generally, it should be noted that in the theoretical discus-
sion of quantum feedback control devices, two fundamentally
different approaches exist. In an autonomous (also termed
coherent or all-inclusive) feedback loop, the original quan-
tum system is supplemented by another auxiliary quantum
system, which modifies the dynamics to reach a specified
objective. This all-inclusive approach has the advantage of
simpler balance equations for the joint entropy of system and
controller. However, such systems are hard to design for ar-
bitrary feedback loops (both theoretically and experimentally)
and are not very flexible as the feedback loop and thus the
desired function is hard wired in the device. Alternatively,
one can implement an external feedback loop by performing
measurements on the quantum system, classically processing
the obtained information, and performing conditional control
operations on the quantum system just as in the original thought
experiment. By changing the classical control protocol, i.e.,
choosing different control actions, the scheme can be modified
to achieve different objectives. In contrast to classical systems,
which ideally remain unaltered by the measurement alone,
the dynamics of quantum systems is modified already by a
measurement, which can have drastic consequences such as
the quantum Zeno effect. Thus, while this second approach
appears closer to the original setup and may be more flexible,
it has the disadvantages that its theoretical discussion and
experimental implementation are also demanding regarding
the inclusion of the quantum measurement process and the
fidelity of measurement and control steps, respectively. We
note that it has been possible to relate the entropy balances
of autonomous [9,10] and external [11,12] Maxwell demons
with each other. Furthermore, in electronic transport setups,
both autonomous and external versions of Maxwell’s demon
have been experimentally implemented [2,3].
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Being introduced within the framework of classical physics,
models discussing Maxwell’s demon theoretically typically
employ the weak coupling limit between the controlled system
and its reservoirs [11,13-15]. Here, the energy contained in
the interaction between them is negligible. By contrast, in the
strong-coupling limit, it is known that this interaction energy is
no longer negligible [16—22], and even the partition into system
and reservoir components becomes less obvious. In our model,
this interaction energy is directly related with the energetic cost
associated to opening or closing the shutter. Therefore, it is
an intriguing question how Maxwell’s demon performs when
the interactions between controlled system and its reservoirs
become strong.

In this paper, we will attempt to discuss this case for
an electronic external feedback loop. Particularly, we aim
at generalizing the setup in Ref. [11] to the strong-coupling
regime. The generalization of the corresponding autonomous
setup in Ref. [9] will be discussed in a companion paper [23],
but see also Ref. [24]. On the technical side, we will employ
a fermionic generalization of a reaction-coordinate mapping,
which s frequently employed in bosonic systems [19,25-27] to
treat the strong-coupling and non-Markovian limit. We will see
that projective measurements will imply Zeno-related modifi-
cations [28] to the Maxwell demon dynamics, which requires
a generalized discussion of the control loop including weak
measurements [29]. Since these methods are partially new, we
will explicitly present them in the following. Below in Sec. II,
we briefly review the underlying model, discuss the fermionic
reaction coordinate mapping to a triple quantum dot, and show
how to set up the propagator for single feedback cycles in
the case of strong (projective) and weak measurements of the
central dot’s occupation. Afterwards, in Sec. I1I, we discuss the
thermodynamics by defining the heat currents and the energy
injected by the measurement as well as the energy injected
by the control. We discuss the performance of the device in
Sec. IV before concluding.

II. MODEL

In this section, we first briefly review the original model sys-
tem in the presence of projective measurements and piecewise-
constant feedback control in Sec. II A. Then, we show how to
map it to an equivalent triple quantum dot model in Sec. IIB,
where a Markovian embedding in an extended space allows
us to treat non-Markovian and strong-coupling effects in
the original system. Afterwards, we discuss the effect of a
projective (strong) measurement on such a triple quantum
dot in Sec. IIC and show that to avoid Zeno blocking, the
introduction of weak measurements is necessary. Finally, we
discuss the weak-measurement implications of a microscopic
detector model in Sec. IID, with technical details exposed in
Appendix B, and close the feedback loop in Sec. IIE. For
orientation, we depict the setup and feedback cycle we have in
mind in Fig. 1.

A. SQD with projective measurements

The system we are aiming to control is a single electron
transistor, where a single quantum dot (SQD) is tunnel coupled
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FIG. 1. Top: Sketch of the considered electronic transport setup
with some relevant parameters. Through the bottom circuit, the
rates I', allow for a current flowing between the left and right
leads characterized by the inverse temperatures 8 and the chemical
potentials 1. Via monitoring the occupation 74y of the central dot
with a nearby quantum point contact (QPC), the QPC current signal
(obtained by measuring n QPC charges in time interval At) can be
fed back into the system by conditioning the tunneling rates on the
measured dot occupation. We aim at the strong coupling limit by
including collective reservoir degrees of freedom into the system
(blue region). Bottom: Schedule of the feedback cycles composed
from repeated but alternating application of measurement phases
(orange) of duration At, followed by control phases (green) of
duration At — Art. In this paper, we consider the limit At — 0,
keeping however the effect of the measurement (y At) finite. During
control (implemented by conditional rates I'Z/F), the QPC detector
is formally decoupled and the system Hamiltonian is conditioned
on the preceding measurement, and during measurement, the system
Hamiltonian is fixed to Hs (implemented by fixed rates I',), and the
QPC interaction is dominating the central dot dynamics.

to two leads

H=ed'd+) (adcly, + He) + Y ealycra- (1)
ka ka

Here, € denotes the dot level and d the annihilation operator
of an electron in the dot, which can tunnel via the ampli-
tudes f, into left or right reservoirs o € {L,R}, described
by noninteracting modes with annihilation operators ¢, and
energies €. Spin effects are not considered throughout this
paper (spin-polarized electrons). In the absence of feedback,
the single electron transistor is exactly solvable for arbitrary
coupling strengths, see, e.g., Ref. [30]. However, in the weak-
coupling limit a simple rate matrix YW = W, + Wk is suffi-
cient to describe the evolution P = WP of the probabilities

195104-2



ELECTRONIC MAXWELL DEMON IN THE COHERENT ...

PHYSICAL REVIEW B 97, 195104 (2018)

P = (pg,pr)" for the empty and filled dot state

B _fa(e) +[1 - fa(é)]
W“jy@@ﬁ@>—n—ﬂ@0' ?

Here, fy(€) = [ef«€=#) + 117" denotes the Fermi function of
reservoir o € {L,R} with chemical potential u, and inverse
temperature S, and the overall prefactor is determined by the
spectral coupling density (SD)

IP(w) =27 ) |tra|*8(0 — €a). 3)
k

which contains the nonthermal reservoir properties such as
its level distribution €, and the coupling strengths #, of
individual reservoir modes k to the system. By keeping the
reservoirs at different temperatures and chemical potentials,
the total system can be interpreted as a thermoelectric generator
[31], where a thermal gradient can be harnessed to drive
electronic transport against a voltage gradient. Now, when
additionally placing a quantum point contact (QPC) near the
quantum dot, it is possible to read out the time-dependent dot
occupation with high precision [32]. The current signal can
be processed and fed back into the system by changing the
tunneling rates in a time-dependent fashion. In a simplified
treatment, this can be treated as a sequence of instantaneous
projective measurements, followed by a period of conditional
piecewise-constant evolution, where ' (e) — rE/F depend-
ing on the measurement outcome empty/filled, respectively.
After averaging over all outcomes and considering the limit of
continuous measurements [33], one obtains an effective rate
matrix under feedback

W — —TEf,(e) +TE[1 — fy(e)]
* T \4TEfue)  —TE1 - fu(l )

which breaks the conventional local detailed balance relation.
Even in the absence of a temperature gradient this can be
used to generate electric power [11], which can be interpreted
as an electronic Maxwell demon. We stress that a modified
version of the fluctuation theorem is still valid [11], and the
particular form of broken detailed balance implies that the
second law is obeyed when the information current resulting
from the feedback loop is included in the entropic balance [12].
Very recently, this feedback scheme has been experimentally
verified [3].

However, there are some limitations in the SQD treatment.
First, the scheme is valid in the weak-coupling limit only
Ba FS /F <« 1, such that for strong feedback driving the results
should be questionable. Second, the discussion of this scheme
as a Maxwell demon lacks the calculation of the energetic
balance done with the control actions, since this is neglected
in the conventional master equation treatment. Third, the
treatment with a projective measurement does not fully comply
with the experimental situation. With the present contribution,
we would like to overcome these limitations.

“

B. TQD without measurements

By applying separate fermionic Bogoliubov transforms for
each reservoir, we can include separate reaction coordinates
into the system, which maps our setup to a serial triple quantum

FIG. 2. Sketch of the reaction coordinate mapping from the SQD
(left) to the TQD (right) model. A collective degree of freedom
is separated from each reservoir of the SQD and absorbed into a
redefined system, the TQD, which is still tunnel coupled to two
residual reservoirs. The original feedback loop on the SQD that
modifies the tunneling rates in a Markovian treatment is thereby
mapped to a feedback loop on the TQD, where the internal tunneling
amplitudes within the TQD are changed in a piecewise-constant
fashion.

dot system (TQD) that is tunnel coupled to two residual
reservoirs via the renormalized tunneling amplitudes Ty, see
Fig. 2 for an illustration.

After the mapping, the Hamiltonian of the TQD assumes
the form

H = Qudl di + ed'd + Qrd}dy
+aL(did! + ddly + rr(drd! + ddb)
+ 3 (ThadoCl, + T, Crad))
o k

+ 3 &uClyCra- 5)
o k

Here, the first two lines denote the TQD system Hamiltonian
Hs with reaction-coordinate on-site energies 2, and TQD
internal tunneling amplitudes A, the third line contains the
coupling, and the last line the residual reservoir terms. Based
on this TQD model, a new SD can be introduced

TP () =27 Y |Tial*8( — &), 6)
k

which can be obtained from the original SD with complex
calculus methods. More details regarding the fermionic reac-
tion coordinate mapping are exposed in Appendix A and a
companion paper [23]. Specifically, when we parametrize the
original SD by a Lorentzian function

T,s2
(a) - 6&)2 + 52

the TQD system parameters can be analytically evaluated and
the transformed SD becomes flat

r'%w) = 7

Qy =€, Ay = s

r'Y(w) = 24,. 8)

This suggests that a Markovian treatment of the TQD system
in the infinite-bias and/or high temperature regime yields
the exact dynamics of the SQD. We note that opposed to
previous treatments of similar mappings in the literature
(e.g., Refs. [34,35]), the mapping discussed above can be
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systematically extended by mapping any reservoir into a chain
of reaction coordinates. Most important however, the discussed
mapping holds also for time-dependent modifications (see
also Ref. [36] for a bosonic periodically driven example).
In the transformed picture, instead of changing the coupling
to the residual reservoirs, the feedback loop now modifies a
parameter (1, ) of the TQD Hamiltonian only. This means that
in the case of the discussed piecewise-constant feedback inter-
ventions we simply have Hg — HSE /F whereas the coupling
to the residual reservoirs remains constant.

C. TQD with projective measurements and Zeno blockade

Let Pz = dd' and Pz = d'd denote projection operators
on the empty or filled central dot state, respectively. Upon
measuring outcome v € {E,F} with probability Tr{P,p}, the
TQD density matrix transforms according to

_ PP,
© Tr{P,p}

Now, if for each measurement outcome the subsequent evolu-
tion p = L, p is conditioned on the measurement outcome v
(which results from switching Hy — Hy), we get—Dby aver-
aging over the measurement outcomes—immediately before
the next measurement

o(t + At) = [e“2Pg + 52 Pr]p(t), (10

where we have used P,p=P,pP,. We see that even in the
absence of feedback (Lg = L), the projection superoperators
‘P, may strongly affect the dynamics. We note also that
although Pz 4+ Pr = 1 in ordinary operator space, this does
not hold in superoperator space Pg + Pr # 1, which formally
reflects the fact that quantum measurements always affect the
system. This prevents the transformation of Eq. (10) into a
master equation in the continuum limit (Az — 0). However,
we can use that P,P, = §,,,P, to infer that the projected
density matrix p = (Pg + Pr)p=Pgp Pg + Prp Pr obeys in
the continuous measurement limit a master equation of the
form

v

p C))

b= (Pe + Pe)LePe + LePe)p = L20p. (1)

In numerical investigations (not shown) we have found that this
effective feedback Liouvillian £} is bistable, with different
stationary solutions corresponding to an empty and filled
central dot, respectively. In addition, the currents associated
with these stationary states vanish throughout. Thus, the
usual Redfield treatment—see Appendix C3—will lead to a
complete blockade of the current if the central dot is strongly
and continuously measured, see also Sec. IIL A.

This can be attributed to a Zeno-type blocking of transport
[34,37], which however is not observed in actual electronic
transport experiments. This motivates us to model the effect
of measurement more realistically, which naturally leads to
the concept of positive operator-valued measures (POVMs)
[29,38] or weak measurements. We note that the secular
approximation would not imply a TQD current blockade, but
it is not applicable in the continuum measurement limit. The
Zeno blockade of the current for projective measurements at
high rates is also found in an independent investigation [39]
based on dynamical coarse graining [40].

D. TQD with weak measurements

A natural way to introduce a weak measurement is via a
physical interaction with a detection device such as a QPC
[41,42]. Schematically, system and detector are allowed to
interact for a finite time At (described, e.g., by unitary or dis-
sipative evolution), leading to the buildup of system-detector
correlations. Afterwards, a projective measurement in the
detector Hilbert space (in our case, fixing the number of charges
n tunneled through the QPC during A7) performs a weak
measurement on the system (TQD), implementing Neumarks
theorem [43]. The feedback loop could then be closed by
conditioning the subsequent evolution on the measurement
outcome, as sketched in Fig. 1 bottom panel. To characterize
the measurement properties, we will for the moment however
not consider any feedback and consider the limit At = At
(measurement device is always on).

Starting from a microscopic model for the interaction
between the TQD and a QPC measurement device, we derive an
effective Lindblad generator for the TQD dynamics during the
measurement, which eventually can be used to obtain the weak
measurement superoperator, see Appendix B. Effectively, the
weak measurement is described by a POVM, which depends on
two dimensionless parameters x and y and can be written as a
minimally disturbing measurement [29], which after observing
n tunneled QPC electrons during measurement interval At acts
on the TQD system density matrix p as

Mn;o = Mn;oMr]:’

xn/2 P ; yn/2 oy :
M, = ——e2dd" + Z—e1dla = Mi.  (12)
N Vn!

The special form of our detector model lets the measure-
ment affect the central dot only. It is not hard to show that
> M,i M, =1 although the M,, operators are no projectors.
Microscopically, the x and y parameters are linked to the
maximum QPC current y, the reduced QPC current y (1 — o)?,
and the measurement time A 7. They correspond to the average
particle transfer through the QPC during At for an empty
(x = yAr) or filled (y = yAt(l — o)%) SQD, respectively,
see Fig. 3.

Formally, we see directly that the action of M,, preserves
the Hermiticity of any valid density matrix. Furthermore, the
positivity of p is also preserved, which can be deduced from
the observation that both trace and determinant of M, p are
non-negative for any valid p. To preserve the trace, one has to
renormalize afterwards, i.e., p™ = r?//l\;;p 7 is a valid density
matrix. The limit x = y corresponds to a QI'gC thatisinsensitive
to the dot occupation (o = 0), and consequently it has (after
normalization) no effect on the TQD. Usually, the detector is
tuned to obtain information about the system, and the von-
Neumann entropy of the system

Sw(p) = =Tr{pIn p} (13)

will decrease for most individual measurement outcomes.
However, this need not always be the case, i.e., the entropy
for individual outcomes n may also increase under the action
of the measurement. In particular, on average, the effect of any
minimally disturbing measurement will increase the entropy
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FIG. 3. Left: Illustrative QPC trajectory described by the number
of charges transferred through the QPC during time interval At = At.
Dividing the particle number by At defines a time-dependent current.
The distribution of tunneled charges (right) clusters around two mean
values, which correspond to x = Iz At = y At (upper green line)
and y = IrAt = y(1 — 0)*At (lower red line). The detector can
discriminate between the two charge states of the central dot when the
two peaks of the distribution are sufficiently separate. In the extreme
limit, for x > y > 1, the projective measurement is reproduced.
The shown trajectory (an extension of Fig. 5.12 of Ref. [42]) has
been generated for an SQD monitored by a weakly-transparent
QPC, compare Appendix B 3. Parameters: f;(¢) = 1.0, fr(e) = 0.0,
LAt = TrAt = 0.01, y At = 100, y At(1 — 0)* = 50.

[29] SvN(Zn M, p) = Syn(p). For the model at hand one can
confirm this by considering that on average the measurement
will induce a reduction of coherences, bringing the eigenvalues
of the reduced central dot density matrix closer together and
thereby increasing the entropy.

Since the QPC statistics is in the considered limit just given
by the sum of two Poissonian distributions that propagate
at different speeds, one can define a suitable discrimination
threshold (dashed line and right panel in Fig. 3) at the
point where both distributions coincide, i.e., where x"e™ =
y"ire™Y leading to

xX—=y

In(x) — In(y)” (14

Hthr = IthrAT =

Supposing that x > y (sensitive QPC), obtaining a value of
n in the measurement that is close to the two peaks will
tell a lot about the state of the system, but when n & ny,,
the measurement is practically useless. To obtain a compact
description with just two rates (and also to compare with the
SQD treatment) it is natural to coarse grain the measurement
outcomes into the ones interpreted as an empty or filled dot,
respectively,

MEp

> Mup

NN

£ F,,(x)dd'pdd' + F,

WP
+e 2

(y)d'dpd'd

thr

Foy (xy)dldpdd' + dd' pd'a),

MFIO = Z an

N<RNy

2 [l — Fy, (x)ldd pdd" + [1 — F,, (»)1d'dpd'd

— /9 1
e S — Fy (Jan)I(didpdd! + He),
(15)

where p still denotes the TQD density matrix and F,(x) =
I'(n,x)/ '(n) with T'(n,x) denoting the incomplete Gamma
function and I'(n) = (n — 1)! the ordinary Gamma function.
The F,(x) functions behave similar to Fermi functions, such
that when x > y > 1, the measurement superoperators ap-
proach the projective limit Mg/r — Pg/r. We note that, as for
the projective case, these superoperators do not add up to the
identity. Furthermore, we also note that Mg Mg = Mg ME.

E. TQD with feedback

By conditioning the subsequent evolution on the measure-
ment outcome, we close the feedback loop. We denote the
implicit dependence of the dissipators on ry/" by £ — Lg/F,
which yields for At > At the feedback iteration equation
(recall that the measurement duration At is implicit in the

ME/r)

Pt + A1) = (P ETED M + S ETAD M) p(r)
= P(ADp(1). (16)

For finite At < At this can be solved for a stroboscopic
stationary state p2"2% = P(Ar)p>" 7. We note that when
Lg/r are of Lindblad form, the above propagator P(At) will
preserve all density matrix properties, since it is derived from
an average over all conditional evolutions (which separately
preserve the density matrix properties). This property must
be preserved in the limit of small Az. We therefore consider
the limit At <« At — 0, keeping however x and y finite to
preserve the measurement effects [44]. This implies that the
QPC coupling y must be large, justifying a posteriori the
singular coupling limit used in its derivation in Appendix B.
Formally, we therefore only set the explicit dependence on At
to zero and then expand for small At to obtain

ot + At) = [Mg + Mg + At(LgMEg + LeMEg)]p(2).
(17)

Subtracting p(¢) on both sides and dividing by Ar we get an
effective feedback master equation, described by the feedback
dissipator

_ME-I-MF—I

L
o At

+ Leg Mg + Le M. (18)
The corresponding stationary state will be defined by Lg,p =
0. The first dissipator defines an effective measurement dissi-
pator (compare Appendix B)

r _ Mg+ Mg -1
mp = p
T. 1
2 r[depde - E{d*d,p}], (19)
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which is of Lindblad form and appears formally divergent as
At — 0.However, in the discussed regime At < At we stress
that the measurement dissipator remains finite. Effectively,
it is determined by the parameter T' = 2 (1 — e o rAT/2) 5
0 describing the dephasing due to the QPC measurement
[37,41]. If we would have directly expanded the projective
measurement iteration (10), the corresponding measurement
dissipator would indeed diverge. The action of (19) on the
central dot density matrix appears trivial, since it deletes
coherences which cannot be created anyway and leaves the
diagonal elements of the central dot untouched. However, for
the simulation of the full TQD density matrix we have found
that the inclusion of this term with sufficiently small Az is
necessary to preserve the density matrix properties of the TQD
system: Even when Lg and Lp are chosen of Lindblad form
and Mg/ separately preserve positivity and Hermiticity and
Mg 4+ Mg corresponds to a Lindblad exponential, the action
of LeMEg + LgMg alone will in general not preserve the
density matrix properties. These can only be recovered by
adding a very strong (strongness of the superoperator does
not imply a projective measurement) measurement dissipator.

III. THERMODYNAMICS

In this section, we will define sensible expressions for the
heat exchange during the control and measurement phases
(Sec. IITA and Sec. IIIB, respectively) and for the work
required to switch the Hamiltonian between measurement and
control (Sec. III C). These can be used to show that our system
obeys the first law (Sec. III D) and the second law (Sec. II1 E) of
thermodynamics, which bound the performance of the demon.

A. Heat flow during conditional evolution
Since by construction Lg = E;EU + ﬁfER) and Lr = Ei;m +
£§R), the new dissipator Ly, = Ly + LEME + LEME =
Lo + LY + LY is still additive in the reservoirs, where
Lg‘g) = Lg‘ Mg + ,ng)./\/lp. Therefore, a phenomenologic
way to define the stationary matter current entering the
TQD from reservoir « proceeds via considering %(NS) =

Tr{(dEdL +dtd + dlidR) 0}, which would at steady state result
in

Ly = Tr{(d]d + d'd + dhdr) (L 5) ). 0)

where p denotes the stationary state of the full feedback
Liouvillian (18) and « € {L,R}. First, we note that the matter
current at steady state is conserved IIS,IL '+ 1Y = 0, since the
feedback operations do not inject particles into the TQD
system. We further note that the currents depend on §,, but
also implicitly on I'Y’" due to the feedback. Also, doubling
I't and 'k will not necessarily double the current, since
these parameters enter the TQD Hamiltonian. An alternative
definition of the steady-state matter current would be to look
at the time derivative of the occupation of the central dot,
which decomposes into a left- and right-flowing contribution.
Due to the special structure of the Born-Markov master
equation—see Appendix C3—these are fully identical with
the Heisenberg equations of motion for the central dot, leading

to the definition I’ = —i,/ " Tr{[d'd, — d}d1p}. From this

form, we see more directly that a projected density matrix (e.g.,
p — d'dpd’d) would lead to a vanishing matter current for
any density matrix p (e.g., via Tr{[dd, — dld]dfdpdfd} =
Tr{d'd[d'd, — did]d'dp} = 0, using that d> = 0 = (d)?).

Finally, the matter currents entering the TQD can also be
defined microscopically using the counting field formalism
[45]. We have found these three definitions to be equivalent at
steady state within the Born-Markov (nonsecular) description.

The energy currents entering the system from the left and
right reservoir would be sensibly defined in a similar way.
We note that this treatment neglects the interaction energy
between TQD and its reservoirs, but keeps the interaction
energy between the central dot and its reservoirs. However, in
addition the system Hamiltonian now depends on the control
operations, eventually leading to

1 = Te{HE (L9 Mep) + HE (L0 Mep)). @)

In the presence of feedback (L # £ and HE # HY),
the energy currents are not necessarily conserved, since the
feedback loop may inject energy into the system, both during
measurement and switching. Again, we find from microscopic
considerations based on counting fields the same definitions
for the energy exchanged with the reservoirs. Together, the
energy and matter currents enter the heat current from the
corresponding reservoirs Q@ = Iéo‘) — o Iﬁ ),

B. Heat during measurement

If we do not change the TQD Hamiltonian Hg during
the measurement, the average energy injected into the TQD
during At is (in Appendix B we detail Mg 4+ Mp using a
microscopic model)

= Al‘Tr{['IS'C'ms:O}s (22)

which suggests defining the energy current due to the measure-
ment in the conventional way

I]f:ns = Tr{HsLsp}. (23)

Making the form of L, explicit, we see that when [d td, Hs] —
0 (this holds approximately in the weak coupling limit be-
tween central dot and its reservoirs), the measurement will on
average not inject any energy. Furthermore, the measurement-
associated energy current also vanishes when the measurement
isinsensitive (6 = 0). For simplicity, we use as a natural choice
the average of the two Hamiltonians Hg = %(Hg: + HSF ) in the
numerical results of this paper.

We finally note that a special Hamiltonian acting during the
measurement implies that switching work is applied twice to
the TQD, at the beginning and at the end of the measurement
process, see below. An alternative scheme would be to leave the
previous Hamiltonian acting during the measurement, which
however would complicate the discussion.

C. Switching work

To run the feedback loop, work has to be performed on the
system, both when initializing the measurement (switching the

Hamiltonian from HSE Fto Hg) and right after the measurement
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(switching back from Hg to H;: / 1:). The Hamiltonian Hg chosen
implicitly determines the rates I, during the measurement via
Eq. (5), compare also Fig. 1. On average, this will imply for
the switching work during a feedback cycle

Wy = Tr|(Hs — Hg)e ™ Mgp)
+Tr{(Hs — H§ )" Mpp}
+Tr{(H§ — Hs)Mgp}
+Tr{(H§ — Hs)Mgp}. 24)

Now, upon expanding for small At we see that the leading order
in At is linear, and we get for the Wy, = % the expression

Wew = Tr{(Hs — Hg)(LeMep)}
+Tr{(Hs — H)(LeMzp)). (25)

We see that for a constant TQD Hamiltonian throughout, this
expression must vanish. It can be further simplified by adopting
the choice Hg =1 /2(H§5 + HSF ) (which we will use in our
numerical simulations), where the expression for the work
rate becomes Wy, = %Tr{(Hg — HSE)(/SEME — LrME)p}.
In particular, with §;, = 5 this means for the rates during

measurement I', = 1(/TE + ,/FaF)z.

D. First law

By adding the contributions (21), (23), and (25) we see
analytically that at steady state the energy is conserved

0=1" + I + 1P 4 W,

= Tr{Hs(Lms + LEME + LeMEp)P)} (26)

where we have used that Lg/p = £,(EL/)F + L‘ER/)F. This expression

vanishes as p denotes the stationary state of the corresponding
feedback Liouvillian. In our considerations we will only
investigate the total energy flow due to the feedback loop

1P = I + Wew = — (17 + 1Y), 27)

which is manifest already by a mismatch of left and right
energy currents. Considering the generation of electric power
Py =—(uL — MR)ISI‘ ) as the main demon objective, it appears
natural to define the gain as the ratio of output power vs the
energy required to run the feedback loop

Py VI

. = 28
Wew + 1" 28)

G .
1 1

Since it is also information that is needed to run the feedback
loop, the gain is not bounded by one. Furthermore, since it
counts only electric output power, this measure vanishes at
equilibrium (V = 0) although the demon feedback loop may
produce a finite current.

E. Second law

In our considerations, we are operating the QPC in a
unidirectional transport regime, whose associated entropy
production rate [45] S; = B Vopclgpc diverges. With all other
quantities remaining finite, the global entropy production rate
is therefore always positive by construction. However, we may

attempt to write a balance equation for the local entropy of the
TQD system. In doing so, we first note that the construction
of the feedback loop enables us to consider the change of the
von-Neumann entropy along particular trajectories belonging
to different measurement results.

We will discuss only trajectories that start with the sta-
tionary state of the feedback loop. Without the coarse grain-
ing of the measurement outcomes, this is defined by p =
> e 2 M, 5 (for simplicity of notation we have put here
At — 0). Then, the entropy at the end of the feedback loop
will for an initial measurement outcome n be given by

€L"AtMn,5>

Pn

SM(AL) = SvN<

= ASY + AS™ 4 SN(p). (29)

Here, the probability for this outcome is given by p, =
Tr{M,p}, ASg’) denotes the system entropy change during
control, and AS") the system entropy change during measure-
ment, all conditioned on the measurement outcome 7.

For a Lindblad-type conditional control with thermal reser-
voirs, we can split the entropy change of the system into a
non-negative irreversible part A;S® > 0 and an exchange part
[46,47]

ASY = A;S™ 4 AgS™
= AS™ + 3" B[AED — g AN]. (30)
where the latter part is related to the heat flows entering the

system. Inserting and solving for the exchange entropy and
measurement contribution yields

Y ABED — nANP] - A8
o

L, At 5
= A" + [st(m - SN(#)} G1)

n

If we average over all measurement outcomes, the last term
on the r.h.s. corresponds to the mutual information between
system and detector that is discarded, see Appendix E. By
averaging over this expression, we see by invoking that [48]

eﬁ,,Al‘M”ﬁ eﬁ,,Aanﬁ
anvN <—> g SVN Pn———
2 " 20,

and A;S™ > 0 on average, we must have

> [— AR~ AND] - Asﬁsz} >0, ()
n o

Dividing by At and considering At — 0, the first terms just
become the energy and matter currents, leading to

=Y BullE” = talyy’] = diSms > 0, (34)

which denotes a version of the second law for the continuum
weak measurement limit [49]. It can be used to bound the
energetic performance of the device by the information gained
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by measurement. For our setup where By = Br = B this
yields—using Eq. (27)—our version of the second law

B(IES + Wey — Pat) — d;Sms > 0, (35)

which can be used to bound, e.g., the gain. In particular, to have
again G > 1 (information-driven regime) when Ig* + W,,, >
0, it is necessary that d; S,y < 0, i.e., that the measurement on
average reduces the system entropy. Technically, we note that
the average of the measurement entropy change is given by

Map g M” (36)

n Pn

ASps = Z Pn |:TI‘{,(_) Inp} — TI‘{

In the regime of positive electric power, we can also define an
efficiency for the conversion of both information and feedback
energy into electric power via (compare also Ref. [50])

:BPel
U+ W)~

which is bounded by one by the second law (35). However,
we stress that also other regimes are conceivable, for example
generating both electric power P, > 0 and simultaneously
extracting work Wsw < 0 [39], which would motivate other
definitions of efficiency.

Finally, we remark that the same second law can be derived
when the entropic contribution of the abstract detector (and
thus, the mutual information between system and detector) is
explicitly taken into account, see Appendix E, which is similar
to the framework of repeated interactions [51].

n= , (37

IV. NUMERICAL RESULTS

We will first investigate the weak-coupling regime, where
one would expect that the TQD treatment is equivalent to the
SQD treatment in Ref. [11]—as far as the current through
the system is concerned. However, our extended description
now allows us to quantify the injection of energy into the
TQD system by measurement and control steps, which will
in general not vanish. We will demonstrate that in the weak-
coupling regime this is indeed negligibly small in comparison
to the generated electric power, such that the device indeed
implements a Maxwell demon feedback loop in the weak-
coupling regime. Next, we will investigate how these relations
change beyond weak coupling.

A. Weak-coupling regime

We first benchmark our TQD treatment in the absence
of measurement (x = y) and also in the absence of control
HE = HSF to yield similar results as the SQD treatment. Indeed,
the black curves in Fig. 4 demonstrate close agreement of the
TQD and SQD treatments in the weak-coupling-limit in the
absence of any measurement and control. Then, we compare
the SQD treatment in the presence of feedback control with the
TQD treatment, first only in presence of measurements (x > y)
but absence of control (HE = HY). This already suppresses the
current due to the partial projection of spatial superpositions
(solid brown), but does not break the detailed balance relations
and therefore does not produce electric power. Finally, when
control is applied to the TQD (solid red), a similar situation as
with the SQD in the presence of feedback (dashed orange)

0,8 0.02 T T T

[ I T T T 1 1
— I 0,015 ! |
o6 | TN 1= |

—~ — 1" =
- 0,01 E e 1% v i

% L — 1,V {181 —

£ 040005 1" SEL

g L aw /d d g i

+ = Aiieiaiaialataiatale N5 -

5 !

2 02+ [/ 7 ]

5] 0005F, | v Loy L1y ;

g F -1 08 -06 -04 -02 . 1

172) \Y%

5 ol B /o |
= e SQD: no feedback i
.g ! SQD: feedback

= -0,2 | — TQD: no measurement/no control [

“é __________ ! TQD: measurement/no control |
= 777 1| — TQD: coarse-grained feedback

-0,4 1| - =+ TQD: adaptive feedback H
/////// | |

-10 0 10
dimensionless bias voltage BV

FIG. 4. Main: Current through the TQD/SQD vs bias voltage.
Dashed curves correspond to the SQD benchmark either in the absence
(thin black) or in the presence of feedback (bold orange), where finite
electric power is generated (area of large rectangle). In the absence
of both measurements and control actions (x =y and HE = H{),
the TQD treatment (solid black) follows the SQD treatment closely.
This changes already when measurement is active but no control is
applied (solid brown). When the feedback loop is closed (solid red),
the current no longer vanishes at the origin, and there is a regime
where electric power is produced, albeit reduced as compared to
the SQD (red small rectangle). Additionally adapting the feedback
to the actual measurement outcome has little impact (dash-dotted
magenta, see Sec. IV C). Inset: Curves for the coarse-grained feedback
demonstrate that in the demon regime the generated power (solid red)
is significantly larger than other contributions such as measurement
energy (dashed green), switching work rate (dotted blue), and sum
of left and right energy currents (solid black). Other parameters:
Be = Ber, = Ber = 1, BI'E = BT} = 0.015, BI'T = BI'E = 0.005,
x=10,y =3, =TE+TE)/2,TAt =1, 4. = —pug = V/2,and
BéL = Bér = 0.1.

arises. Although the electric power is significantly reduced
(red rectangle area vs orange rectangle area), the inset demon-
strating the TQD energy flows defined in Egs. (21), (23), and
(25) show that these contributions are negligible in comparison
to the electric power (solid red curve in the inset), which
justifies calling this parameter regime information dominated.
The dash-dotted magenta curve describes adaptive feedback,
explained in Sec. IVC.

In a nutshell, we obtain that the more realistic TQD treat-
ment with weak measurements and coherent control supports a
Maxwell-demon mode in the weak-coupling regime, but with
a significant reduction in electric output power. To compensate
for this, one can explore the strong-coupling regime, see below.

B. Towards strong coupling

A naive extrapolation of the SQD treatment towards the
strong coupling limit predicts that all currents and derived
quantities such as generated power should scale linearly in
the coupling strength, apparently predicting no limit in power
production. However, from the exact solution of the SQD in
the absence of feedback control we know that by increasing
the coupling strength to the reservoirs, the current through the
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FIG. 5. Plot of the electric power vs bias voltage. With increasing
coupling strength the generated power as well as the window of
positive power increases, but so does the energy consumption needed
to run the feedback loop. Top inset: The gain (similar color coding)
defined in Eq. (28) demonstrates that in the strong coupling regime,
more energy is needed to run the engine than is gained from the
produced power, manifest in a gain factor below one (thin dash-dotted
line). Bottom inset: The efficiency defined in Eq. (37) is not a
monotonous function of the coupling strength, and at intermediate
coupling strengths both information and feedback energy are best
converted into electric power. Parameters for x = 0.01 are identical
to Fig. 4; other curves only have correspondingly scaled coupling
constants.

system can be increased only up to a finite limit [30], see also
the benchmark in the companion paper [23]. Therefore, it is an
intriguing question how the generated electric power scales in
the strong-coupling regime. In this section, we therefore inves-
tigate how the currents change when the coupling strength is
scaled by a factor Fs F 5k Fg‘ /F We note that this convention
leads to larger differences between the coupling constants and
thereby also to a larger switching work as « is increased. In
Fig. 5 we show the power vs bias voltage for different coupling
strengths, where we adopt the convention that the previous
parameters of the weak-coupling limit (Fig. 4) are reproduced
when « = 0.01. We observe that by increasing the coupling
strength, the electric output power is indeed increased as well
(main plot). For weak to moderate coupling strength (solid
black, dashed red, and dash-dotted green curves), we see that
the device is still information dominated, as the gain factor
(28) can become larger than one, indicating that then mainly
information is converted to electric output power. However,
as the gain factor G continuously decreases with increasing
coupling strength, beyond a critical coupling, the device is no
longer information dominated, and the gain G is smaller than
one (dot-dot-dashed blue and dotted brown curves in the top
inset of Fig. 5). Considering both information and feedback
energy as consumed resources, the efficiency (37) becomes the
relevant figure of merit. In contrast to the gain, the observed
maximum efficiency does not evolve monotonously with the
coupling strength (bottom inset). It first grows with increasing
coupling strength, and we observe an acceptable maximum
efficiency of nearly 80% at a moderate coupling strength where

the device is still information dominated (green dash-dotted
curve). However, for stronger and ultrastrong couplings, the
efficiency decreases again (dot-dot-dashed blue and dotted
brown curves), such that in this energy-dominated regime,
the device is useless from a practical viewpoint: Running the
feedback loop requires more energy than is generated from
information.

Additionally, we observe that in the information-dominated
(Maxwell-demon) regime, where the gain is larger than one,
also the nontrivial point V* (brown circle), where the generated
power vanishes, is hardly dependent on the coupling strength.
Experimentally, this may be an important hallmark for the
identification of this regime. For the naive SQD treatment, the
position of this point may be calculated analytically

[Tg

il

BV*=—1In (38)
which is however significantly larger than the observed value
for the TQD treatment even in the weak-coupling regime,
compare also the main plot of Fig. 4. We attribute this to
the inherent weakness of the measurement, which strongly
delimits the capabilities of the demon.

C. Coarse-graining effects

We see that in the TQD treatment, the electric power
produced by the device is significantly smaller than in the SQD
treatment, compare Fig. 4. Consistently, the efficiency in the
weak-coupling regime (where the device operates information
dominated) is also significantly below the SQD efficiency,
compare Fig. 5 with the discussion in Appendix D. This leads
us to the conclusion that the presented TQD treatment does
not efficiently use the information to close the feedback loop.
Knowing that coarse graining strongly influences the entropy
balance [52], one might question whether this results from the
employed coarse graining of measurement outcomes into Mg
and Mp. Instead of just using the two coarse-grained rates
Ff/ F, we can consider n-conditioned rates, where a suitable
choice could be

x"e™I'E 4 yre™TE

x"e=X + yhe~V

re = 39)
This will preserve positive tunneling rates throughout with
similar tunneling rates as in the coarse-grained picture. Further-
more, if y < n < x, the conditional rates will be between the
coarse-grained ones, and in particular I'0") = L(I'F 4 T'F),
such that the feedback is adapted to the weakness of the
measurement. The information gained by the measurement is
thus no longer discarded. We have observed however, that the
generated electric power is not significantly enhanced by this
procedure, see the dash-dotted magenta curve in Fig. 4.

V. SUMMARY

We have considered the performance of an externally
controlled feedback loop implementing an electronic Maxwell
demon. To explore the strong-coupling limit, we employed a
fermionic reaction-coordinate mapping to an effective triple
quantum dot system, serially coupled to two leads. Combining
this with continuous projective measurements of the central dot
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occupation, the destruction of coherent superpositions within
the triple dot system led to a complete suppression of the
current due to the quantum Zeno effect. Since the mapping
holds also for weak couplings, this raises the question why the
Zeno suppression was not observed in the original approach
based on a single dot rate equation [11]. An independent
investigation shows that this is due to the inherent Markovian
assumption in the single dot rate equation: If a non-Markovian
approach is applied to the single-dot feedback problem, the
Zeno suppression is found [39]. By performing a mapping to a
triple quantum dot, we obtain a Markovian embedding, which
captures the non-Markovian Zeno suppression in the single
quantum dot.

A Zeno suppression is not directly observed in the nu-
merous counting statistics experiments, with detectors always
switched on and thereby continuously measuring. We therefore
are led to believe that realistic charge measurements are far
from projective and reflected this in our work by generalizing
our model to weak measurements. Inspired by charge detectors
used in experiments, we implemented this by using a micro-
scopic detector model for a point contact. Effectively, this led
already in the weak-coupling limit to an overall reduced perfor-
mance of the demon in comparison with the original single-dot
model—both in terms of information-to-power conversion ef-
ficiency and electric power output. In the intermediate coupling
strength regime, the energy to run the feedback loop becomes
important, and the driving force is no longer information but the
device rather acts like a pump. Finally, in the strong-coupling
regime, the energetic contribution (opening and closing of the
shutter) becomes dominant, showing that the device can no
longer be interpreted as a demon.

Beyond obvious applications to more advanced models
(e.g., Coulomb interactions, spin valves), it would in the future
also be interesting to discuss the implications of finite-time
control cycles, which enables us to lift the strong-coupling
assumption during detection. Then, measurements may be
constructed that leave the system energy invariant, such that
the only energy required for the feedback loop is the switching
work.
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APPENDIX A: REACTION COORDINATE
MAPPING FROM SQD TO TQD

Given a spectral density I'”(w) for the initial reservoir,
the new coupling strength A between system and reaction
coordinate and the energy 2 of the reaction coordinate are
calculated according to (compare also Ref. [23])

1
A2 = 2—/1"<0)(a))da),
b

1
Q= - / oIl Yw)dow.
27 ||

(AD)

We note that the transformation does not determine the phase
of A. This phase can be transformed away, such that we will
not consider it here. Finally, the new spectral density can be
obtained from the old one via

40 PTO(w)
[+P [ e doT 41X 0@

w

r'w) =

(A2)

where P denotes the principal value. These equations can be
derived from the Heisenberg picture dynamics of the annihi-
lation operators of the central dot [23]. When we introduce
a reaction coordinate for both left and right leads (A — X,
and 2 — ,), we obtain for the Lorentzian density (7) the
results I)Lo,|2 = % and 2, = €,. Altogether, this implies the
mapping (5) with Eq. (8) exemplified in the main paper. We also
mention that to apply such mappings recursively ad infinitum,
it would be necessary that the spectral density has a rigid cutoff.
In contrast, for the considered example a repeated application
of the mapping would lead to divergent integrals and will not
be performed.

APPENDIX B: DERIVATION OF THE MEASUREMENT
SUPEROPERATOR

1. Measurement dissipator without counting fields

We start from an interaction Hamiltonian between central
dot and the QPC of the form

Hy =AY [twywyly +Hel, A=1-0d'd, (B
kk'

where the system coupling operator A suppresses the tunneling
amplitudes f;; between left and right modes of the QPC
Hopc =) ekLy,ijkL +> ekRy,ijkR by 1 — o when the
central dot of the TQD system is occupied. Thus, when o = 0,
the QPC is insensitive to the charge of the central dot, and
for 0 =1, QPC transport is completely blocked when the
central dot is filled. We now assume in addition that during the
measurement, the interaction dominates the internal dynamics
of the TQD system. Then, the singular coupling limit is
applicable (compare, e.g., Sec. 3.3.3 in Ref. [53]), which
automatically leads to a dissipator of Lindblad form. This will
locally act only on the central dot, just as if it was only an
SQD coupled to the QPC. In the limit where the bias voltage
of the QPC is large 8Vgpc > 1 we can consider the wide-
band limit (compare Sec. 5.4 of Ref. [42]) where T(w,0’) =
2 1t |28(w — €x0)8(w’ — €xr) — To, which condenses
into the QPC tunneling rate y = TpVgpc and the simple
dissipator

.1
Lyp = V[ApA' - E{ATA,p}}

1
= yaz[d*dpd*d — E{d*d,p}}. (B2)

In the last line, we have inserted the definition of A
and used the fermionic anticommutation relations. This
particularly simple form allows one to easily compute
the exponential of Lg. Defining the superoperators
Jp=didpd'd, Jip=3id'dp, and Jrp = ipd'd, we
can—since they all mutually commute—compute their

195104-10



ELECTRONIC MAXWELL DEMON IN THE COHERENT ...

PHYSICAL REVIEW B 97, 195104 (2018)

action separately e 77 ATy = [ddl + e VAT 241d)p,
eV TRAT = pldd 4 e VA2t d], and  etYTTATp =
P+ (e*"ZVAT — 1d'dpd’d, which upon  sequential
application yields for the total effect of the measurement
on average

eL'dn(O)Arp — ddT,OddT + dtd,Ode
+e VA2t apddt + dd' pdid). (B3)

From this, we can see that on average the effect of the
measurement is just the destruction of coherences between
empty and filled central dot states. By employing the fermionic
anticommutation relations we therefore get the expression

eLa@AT _q 6—02&

1
= d'dpdd’ + H.c.), (B4
A7 A7 (d'dpdd" +H.c.), (B4)

which implies with Mg + Mp = %« @A7_gee the discus-
sion in the subsection below—Eq. (19) in the paper.

2. Measurement dissipator in the presence
of QPC electron counting

To furthermore infer the counting statistics of the QPC, it
is a well-established practice to introduce counting fields [45],
which yields a generalized dissipator of the form

La()p = y[e“XApAT - %{A* A,p}] (B5)

where x denotes the counting field for the charges transferred
through the QPC circuit. By computing derivatives of the
moment-generating function M(y) = Tr{e“«00A% p(¢)} with
respect to the counting field x, we can determine all moments
of the charge distributions of tunneled QPC charges during
the interval [¢,# + At], where At denotes the duration of the
measurement. By construction, the inverse Fourier transform
of the generating function yields the full distribution

1 + .
Pn(Ar)zTr{E / eﬁd‘“)““”dxp(t)}, (B6)

and the corresponding conditional (not normalized) density
matrix is given by [54]

1 + )
p" (1 + AT) = o / eLaOATTIN gy o (1)

= M, p(1), (B7)

which defines the measurement superoperators M,,. In system
(TQD)-detector (QPC transfer particle number) Hilbert space
the most general density matrix can be written as psp(t) =
> P™(1) ® |n)(m|, such that by performing a projective
measurement of the number of particles transferred through
the QPC and tracing out the detector afterwards, this leads
to the identification p™ = p™". We note that from the com-
pleteness relation of the Fourier transform we can also infer
that p(t + At) =Y, p™(t + A1) = e“4O2% p(¢), such that
>, M, = e£a@AT In a similar fashion as before, we can also
partition the generalized dissipator into mutually commuting
superoperators Lg(x) = y[e* T + J. + Jr], for which we

can separately compute the exponential. Eventually, this yields

M, = (yAr) TJle YV ATIRATR) (B8)
" n! ’
By using that A" =dd' 4+ (1 — 0)"d'd we can explicitly
determine the individual superoperators

J"p = [dd' + (1 —o)'dldlp
x [dd' + (1 — o)"dd],
67yAT(]L+JR),0 2 [efyAr/deT + e*yAr(lfaﬁ/Zde]p

x[e 7AT2qdt 4 e VAT I=02g1 4] (BY)

which upon nested application eventually leads to Eq. (12) in
the main paper.

3. Example: SQD monitored by QPC

Taking La(x) from Eq. (B5) with A = 1 — od'd, we can
evaluate the action of the QPC in the dot eigenbasis |0),
[1). Due to the special form of the dissipator, it does not
couple between the populations and the coherences of the
dot density matrix, and we get (La(x)p)go = ¥ (e* — 1)pno
and (Lqg(x)p)1; = y(1 — o)*(et* — 1)p;. Since for a single
quantum dot system, coherences do not play a role, we
therefore obtain that the generalized rate matrix (acting on the
probability vector P = (pg, pr)" for finding the dot empty or
filled, respectively) is diagonal in the SQD eigenbasis

Walx) = y(@** — 1)((1) g _00)2>~ (B10)
Here, we see that for the chosen large QPC-bias limit, we
only have unidirectional transport through the QPC, such that
only terms with eTiX occur, and y > 0 describes the QPC
transmission (compare Sec. 5.4.1 of Ref. [42]). The total
rate matrix is then constructed additively—compare Eq. (2)—
which leads to

WOO = Wa(x) + WL + Wk. (B11)

Here, the rate matrices W, /g describe electronic jumps onto
or off the dot from the left and right leads, respectively, and
Wi 1s a generalized rate matrix for the QPC, with the counting
field x describing the number of transferred QPC charges. In
the absence of counting (x = 0), the effect of the QPC on the
single dot vanishes, for a larger system such as, e.g., a double
dot however, the QPC would still have an effect [55].

The above rate matrix is an extremely simple example of
a bistable stochastic process: For vanishing SQD tunneling
rates Wy, g — 0, the dot occupation cannot change, and the
statistics P,(At) will be fully Poissonian, depending on only
the initial SQD occupation: When it is empty, the cumulants
will be given by y At, and when it is filled, they are given
by y(1 — o)*>At. The interesting case arises when the SQD
rate matrices Wy g are small in comparison to Wy: Then,
slow switching events occur between the two Poissonian
distributions [56], and the time-dependent detector signal can
be used to infer the occupation of the dot [32].

From the theory of full counting statistics, we can infer the
probability P, (At) of observing n QPC charge transfer events
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during in the interval [¢,7 + Atf] via

1 [t A
P,l(At)zg / Tr{eVOM P()}e " dy, (B12)

¥4

where the trace corresponds in this case to the multiplication
from the left with the row vector (1,1). Furthermore, a mea-
surement of n QPC charge transfers after At would project the
probability vector to

1 + )
Pt + At) = W / VO Py gy (B13)
T

-7

which still needs to be normalized by P,(At). In the limit
where y > Ty, a perturbative treatment for these expressions
can be used. To generate a trajectory such as in Fig. 3, we start
with an empty dot P(0) = (1,0), then compute the probabilities
P,(At), choose accordingly a particular outcome n—which
defines a current I = n/Atr—and perform the projection,
which leads to P(Art). This is then taken as the initial state
for the next iteration and so on. Due to the projection, it is
more likely to measure large currents after large currents and
low currents after low currents, which leads to the switching
behavior shown in Fig. 3.

APPENDIX C: TRIPLE DOT PROPERTIES

1. Spectrum

In the simple case when €, = er = €, the spectrum and the
eigenvectors of the TQD part of the Hamiltonian (5) can be
computed analytically. The eigenstates can be grouped into
states with the same total particle number, with energies

Ey =0,
TLo. Tgro
El=e¢, Ef=c+,-2% 4 KR
2 2
(CDH)
To. Tro
EY =2, Ej=2+,|—%4 8%
2 2
E3=36.

We note that the TQD energies become near degenerate
for small I',8,. Applying the master equation formalism to
it should be well justified now when §,8 < 1. Applying
the secular approximation on top however should only be
admissible when /I, 8, > 8.

Furthermore, it should be noted that out of the 64 matrix
elements of the TQD density matrix, not all are allowed within
our treatment, as a master equation treatment of the TQD will
only admit to create superpositions of states of similar charge
on the TQD. That is, we can have coherences between the
singly and the doubly charged states separately, leading to
20 =149 4 9 + 1 nonvanishing density matrix elements in
total. Taking only these physically allowed matrix elements
into account and then performing the partial trace over the left
and right dots, we obtain that the reduced density matrix of the
central dot must always be diagonal.

2. Correlation functions

Identifying the coupling operators between the TQD and
the residual reservoirs as

A= d{, B = ZT/:iCkL’

P
Ay=d., By= Z TkLC]iLa

k

(C2)

Az = dlz, B; = Z TR Cir,

k
Ay = dg,

B,y = Z TkRC/IR,
X

we can represent the nonvanishing correlation functions as
(compare e.g. Chap. 5 in Ref. [42])

1 +00 )
Ci®) = 5 / FO@I1 = fi@)]e ™ do,

_ ™o ot
Ca(r) = e I (o) fL(@)e™ do, (C3)

and similar for C34(t) and C43(7) by replacing L — R. From
this, we can read off the Fourier transform of, e.g., the left-
associated correlation functions

(@) = T (Ho)l — fi(4w)l,
(@) = T (—w) fL(—o). (C4)

3. Born-Markov master equation in the absence of feedback

We can decide not to perform the secular approxi-
mation, but only the Born and Markov approximations.
This will in general not lead to a Lindblad type master
equation

p=Lp=~ilHs.pl+) L. (C5)

but we can nevertheless expect that for weak residual couplings
8, it will approximately preserve the basic thermodynamic
properties of the system.
In our case, it assumes the form
p = —i[Hs,p] — {leL,ML21p] + [c] .My 12p] + Hec.)
—{[cr, M 219] + [ch, Mg 12p] + H.c.}, (C6)

where (similar for the right lead L — R and 12 — 34)

My =Y To(Ey — Eg)alc] [b)la) (b,
ab

My =Y Ti(Ey — E)alelb)la)(bl.  (C7)
ab

Here, we have used the TQD energy eigenbasis Hs|a) = E,|a)
(compare Appendix C 1) and the half-sided Fourier transform
of the correlation function

Top(w) = / Cop(v)e i dr. (C8)
0
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These can be rewritten using the convolution theorem

+00
Faﬁ(a)) :/

L f yaﬁ(sz)[w(w Q)+ %Q}dsz

Cop(1)O(1)e M d7

yotﬂ( ) Q, (C9)

_Vaﬁ(a)) + _P/

where we have inserted the Fourier transform of the Heaviside-
® function. These principal value integrals can in principle be
evaluated numerically, but for a Lorentzian tunneling rate we
may also obtain an analytic solution in terms of polygamma
functions (not shown for brevity). For flat tunneling rates, this
Lamb shift contribution diverges logarithmically. For example,
for a Lorentzian tunneling rate I'{"/(w) we would get for large
bandwidth §, (compare, e.g., Appendix C of Ref. [57])

1
Ip(w) ~ EFL[I — foHw)]

'L 27 BrL(w — ur)
+1§|:l ﬁLSL—i-Sﬁ\IJ(Z —271 )]
1
[71(w) & EFLfL(—w)
L 2 Br(@+ )
e ()
(C10)

where W(x) denotes the digamma function, and similar for
the right-associated rates. However, since in our approach the
transformed TQD has flat tunneling rates I'(V(w) = 28,, we
have to consider the limit 8, — Scuorf — 00 and I'y — 26, in
the above equations. Numerically, we see that the currents and
steady states do not depend on the cutoff width ¢y

APPENDIX D: SQD EFFICIENCY

To evaluate the efficiency of information conversion of an
SQD treatment, we can use earlier results [12]. The entropy
flow term for the rate Eq. (4) becomes

Se=Y_ Wy Pyin X“

(
o mm’ mm’

= Z Bo (15 —

= 2 A0+ A n

(9]

(a) (@)
e l\) + Z I In e FE

I‘EFF D1
At steady state, this becomes the negative entropy production
rate, and the second law reads

— Z Ba Q@ — Iy’ In >0, (D2)

FEFF -

such that an efficiency of information conversion is—in the
region of P, > 0—given by (we assume equal temperatures
and in the SQD treatment both energy and matter currents are

conserved)
BPa  —B(uL — Ur)
n= = = (D3)
I(L) In IfTq In Pl
riTE rirk

Using the numerical values in the figures in the main paper, this
is way larger than the efficiency in Fig. 5 in the weak-coupling
limit.

APPENDIX E: SECOND LAW WITH
INCLUDED DETECTOR

One can also derive the second law by considering the
implementation of the measurement apparatus in more de-
tail. Then, it is not necessary to perform an average over
different trajectories. We note that the treatment here fits in
the framework of repeated interactions [51], where the QPC
measurements and external feedback operations assume the
role of the units, which however are subject to a nonequilibrium
environment. It is sufficient to remain at the level of the
average density matrix pgp involving TQD system and detector
and the corresponding reduced density matrices of system
ps = Trp{psp} and detector pp = Trs{psp}, respectively. We
will consider a finite measurement and control times Af,
Az, dropping however for brevity their dependence in the
stroboscopic stationary state. Right before the measurement,
the joint density matrix is given by

pSh = 5 ®10)(0], (E1)

and the mutual information 1 = Syn(ps)+ Syn(op) —
SyN(psp) = 0 of this state actually vanishes.

As the first part of the measurement, we let the TQD system
and QPC interact during the time-interval Az, leading to the
joint density matrix

pSp = (M) ® In)nl, (E2)

where the measurement superoperators are defined in Eq. (12).
We note that the joint entropy of this state is exactly given by
the sum of the Shannon entropy of the detector and the aver-
aged entropy of the system [38] SvN(p ->,P.InP, +
> PaSun( P:p ), where as before P, = Tr{/\/ln p}. Also, we
>, Mp =

can calculate the reduced density matrices pél) =

eLaOAT 5 and ,o =Y, P,In)(n|, and the mutual information
between system and detector becomes
M5
I(l) — SVN(e[,dt(O)A‘[[)) _ Z Pn SvN( np) (E3)
n P[’L

We can confirm its non-negativity by inequality (32).
During control, we apply the conditional evolution, leading
to

P& = Y (“ATEINM,5) @ |n) (n]. (E4)

The entropy of this state can also be additively de-
composed into the Shannon entropy of the detector and

the averaged system entropy SvN(pg))) =—-) P/InP,+

L,l t T
>, P,ISvN(M) By construction, the reduced density
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matrices become pg) = p and ,0](32 ) = >, Paln)(n|, such that
their mutual information is now

eﬁ,L(Athr)Mn =
19 = Sn(@ — Y Pnst(fp), (ES)

for which we can also confirm the non-negativity by inequality
(32). Thus, not all of the mutual information is used to perform
the feedback operation.

Finally, we reset the detector to its initial value by pg)) =
> |O)(m|p§?3)|m)(0|, closing the loop. In terms of units, we
would replace the old unit by a new one. When the detector is
reset, we discard the mutual information 7@, which explains
the detrimental effect on performance. Explicitly, this resetting
yields

Py = (Z eﬁ"m"A”Mm) ®10)(0] = pi),  (E6)

where we have used that we operate at (stroboscopic) steady
state. Accordingly, also the entropies must be the same after
one feedback cycle.

During control, the detector does not change, and as we
have a conventional evolution, we have for the change of total
entropies [47]

ASe = Sin(psp) — Sen(pSp)

= AiSa+ ) BAQ, (E7)

ae{L,R}

with irreversible entropy production A;S,; > 0 and heat trans-
fers from the reservoirs A Q. The measurement-associated
contributions can be separated into the buildup of system-
detector correlations and their removal when resetting the
detector. From the explicit expressions for the entropies we

also have

Mnﬁ Lo(At—A )-/\/ln/3
-asa = T a[sn(TFE) - s(e oo 2
M,.p _ _
=y P [st< - ) - SvN(p)] + S (p)
n n
_ Z P.S N eﬂn(At—A‘[) Mn,(_)
- nwy Pn
Map

= ASms + SvN(ﬁ) - Z PnSVN <e£"(AI_At)T>7

(E8)

where we have used Eq. (36). Comparing the two expressions
above and re-arranging eventually yields

—BLAQY — BRAQW — ASy
== AiS(:t + SvN(ﬁ)

_ Y Py sy (efrar-an MaP >0, (E9)
nOvVN Pn =

n

which upon invoking Eq. (32) yields the same second law (34)
as in the main paper. We see that the last two terms on the r.h.s.
correspond to the mutual information 7 that is discarded in
the resetting of the detector. Finally, we also mention that we
can express the average of the measurement entropy change as

ASms = VN(;O_(S‘I)) - SvN(ﬁ) - I(l)

= S (osp) — Sw(pD) — 1,

which demonstrates that it is not only the mutual information
gathered during the measurement which bounds the perfor-
mance, but also how much of it is actually used during the
feedback.

(E10)
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