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Sign problem in full configuration interaction quantum Monte Carlo:
Linear and sublinear representation regimes for the exact wave function
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We investigate the sign problem for full configuration interaction quantum Monte Carlo (FCIQMC), a
stochastic algorithm for finding the ground-state solution of the Schrödinger equation with substantially reduced
computational cost compared with exact diagonalization. We find k-space Hubbard models for which the solution
is yielded with storage that grows sublinearly in the size of the many-body Hilbert space, in spite of using a wave
function that is simply a linear combination of states. The FCIQMC algorithm is able to find this sublinear scaling
regime without bias and with only a choice of the Hamiltonian basis. By means of a demonstration we solve
for the energy of a 70-site half-filled system (with a space of 1038 determinants) in 250 core hours, substantially
quicker than the ∼1036 core hours that would be required by exact diagonalization. This is the largest space that
has been sampled in an unbiased fashion. The challenge for the recently developed FCIQMC method is made
clear: Expand the sublinear scaling regime while retaining exact-on-average accuracy. We comment upon the
relationship between this and the scaling law previously observed in the initiator adaptation (i-FCIQMC). We
argue that our results change the landscape for the development of FCIQMC and related methods.
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I. INTRODUCTION

Exact methods for solving the Schrödinger equation are
used at the forefront of understanding in condensed matter
physics [1–4] and in molecular quantum chemistry [5–7].
However, exact parametrizations of the many-body wave
function for a general system of interacting fermions scale
exponentially with the system size, i.e., O(eN ). Quantum
Monte Carlo (QMC) techniques attempting to determine these
parameters are hindered by their values being either positive
or negative, causing more pronounced variability than a set of
parameters with a single sign. Unconstrained algorithms [8]
therefore also scale exponentially. Constrained algorithms, in
which the sign of the wave-function parameters are fixed (e.g.,
by a trial wave function), can be polynomially scaling, but
at the cost of a bias [9–12]. The (unsolved) challenge to
find a constraint on the signs of a wave function, while still
reproducing the exact result, is usually termed the fermion
sign problem. For some QMC methods and specific systems
this constraint can be imposed exactly, abstracting away the
fundamental complexity of the problem. Overcoming the sign
problem is vital for the accurate treatment of real systems.

Here, we investigate the sign problem of a recently
developed QMC method developed for use in finite molecular
basis sets: full configuration interaction QMC (FCIQMC) [5].
This is the direct (ground-state) QMC analog of exact
diagonalization, finding the exact lowest-energy solution for
a finite Hilbert space with an exponential number of states
using a walker-based algorithm, where the Hilbert space is a
set of Slater determinants and grows exponentially with the
number of fermions. Since it does not impose the signs of
the wave function in advance, this method does in general
have a sign problem [13], and the cost of the storage of
the exact-on-average wave function has been shown to scale
linearly in the size of the Hilbert space for a series of atomic
systems [14–16]. Inspired by recent interest in high-throughput
data driven informatics [17], here we study 378 systems with

a plateau using a high-throughput approach. In so doing,
we considerably extend the information available about this
method.

As shown below, we discover a regime of the k-space
one-dimensional (1D) Hubbard model where the amount of
information required to store the ground-state wave vector has
sublinear scaling with the size of the Hilbert space states. This
is achieved during the simulation in the presence of a sign prob-
lem, assuming a linear wave-function ansatz, without requiring
any information or bias beyond the Hamiltonian. This regime is
smoothly connected to the more typical linear-scaling regime
including situations in which there are more walkers required
than the number of states. We use this to build a conceptual map
based on the system’s parameter space (Hubbard U and size
of Hilbert space) for the regions of scaling for this promising
QMC technique. We relate these findings back to FCIQMC
and its initiator adaptation, providing concrete insight for the
development of these methods. We discuss whether, in light
of this, QMC for the FCI problem could receive routine use
for the treatment of correlated electrons in many more realistic
contexts.

II. THEORY

FCIQMC, as all projector-based methods, exploits the fact
that |�(τ )〉 = e−τĤ |�(0)〉 tends to the ground-state solution
of the imaginary time Schrödinger equation in the limit of
τ → ∞ if |�(0)〉 has a nonzero overlap with the ground state.
The configuration interaction wave-function ansatz |�〉 =∑

i ci |Di 〉 is used, where {|Di 〉} is a set of Slater determinants
of size Ndet formed from Nelec electrons and Norb spin orbitals.
A first-order Euler finite-difference approximation to the
imaginary-time Schrödinger equation gives

ci (τ + δτ ) = ci (τ ) − δτ
∑

j

Hi jc j (τ ), (1)
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FIG. 1. (Color online) These two panels describe how we are able to identify plateaus. In (a), the decrease in U is shown to obscure the
plateau. The bold, black (red online), dashed annotation indicates the U = 0.5 population growth averaged over 100 random number seeds. In
(b), we show that the population at the plateau corresponds to the maximum value of histogram of the population (although, in general, variable
bin widths were used). These two panels share a common key.

where Hi j = 〈Di |Ĥ − S|D j 〉 and an energy offset (“shift”) S

has been introduced in order to conserve normalization. For a
sufficiently small time step [13] δτ the coefficients tend to the
ground state of the Hamiltonian matrix. Although FCIQMC is
essentially a stochastic version of the power method [13,18],
the core algorithm has inspired a wide range of developmental
advances and new methods [19].

The wave-function coefficients are discretized by repre-
senting them with a set of signed walkers [20]. In each time
step, the set of walkers is considered each in turn and Eq. (1)
sampled according to unbiased rules [14]. Since the simulation
allows the sign of a site to change, because the off-diagonal
matrix elements are of different signs, the arithmetic that
occurs on a site to determine its overall sign involves a
process termed annihilation, removing pairs of walkers which
belong to the same determinant but have opposite signs. The
annihilation step preserves the expected distribution of walkers
and crucially prevents the growth of exponential noise and
collapse onto the sign-problem-free ground state of the matrix
defined by H̃i j = Hi jδi j − (1 − δi j )|Hi j | [13].

The sign problem arises in FCIQMC because the signs
of the FCI coefficients are not known in advance. If they
were known, it is postulated that the sign problem could
be removed by factorization [21–23]. In contrast, the matrix
H̃ has coefficients that are all of the same sign in much
the same way as a bosonic wave function has the same
sign in its value for all particle coordinates. This is the
determinant space analog of the real-space bosonic solution for
FCIQMC [24].

A typical simulation contains four distinct phases [25].
Initially the shift is held constant (typically to a mean-field
energy) and the population of walkers grows exponentially.
The population spontaneously stops growing and enters the
plateau phase at a system-dependent population, during
which the ground-state sign structure emerges. The population
spontaneously begins to grow again at an exponential rate,
albeit slower than before. The shift is then varied to keep
the population approximately constant. Above the plateau,
statistics can be accumulated that are demonstrably from the
exact solution [14]; the postplateau population is a stochastic

representation of the exact wave function. The first three phases
can be seen in Fig. 1(a).

III. PLATEAU DETERMINATION

The plateau is therefore a very powerful conceptual feature
of FCIQMC. Phenomenologically, the plateau provides an
unambiguous signal of how hard the sign problem is because
it represents the minimum storage cost for an on-average exact
representation of the FCI vector [13,14]. Computationally,
this number of walkers determines the dominant scaling
bottleneck, for both memory and computer time, of the method
since each Monte Carlo iteration loops over this list. The
stochastic sampling of the propagator will also contribute to
the noise of the simulation, but this is premultiplied by the
length of the main vector.

Crucially therefore (and uniquely in projector QMC meth-
ods) the plateau provides an unambiguous measure of the sign
problem in FCIQMC: By comparing the plateau height against
the number of determinants in the Hilbert space, we obtain a
measure for how “hard” a system is for FCIQMC.

In order to study plateau heights, it is important to establish
a unique and reproducible definition accounting for variations
seen in Fig. 1(a), where plateaus are obscured by becoming
“shoulder” shaped or being overwhelmed by stochastic noise.
The plateau can be thought of as the walker population that the
simulation spends the most time at. To find this, the relative
frequency that a certain population window appears in the
simulation is computed and the maximum of this distribution
found. The histogram of the logarithm of the population rather
than that of the population is used in order to handle the
exponential growth in population. The plateau signal is shown
for various values of U in Fig. 1(b). The disadvantage of this
approach is that for some values of U , this can lead to overesti-
mation of the plateau for some runs as multiple peaks compete.
This can be circumvented by changing the bin width, and this
must sometimes be interpreted manually. This procedure is
discussed in more detail in the Supplemental Material, where
each plateau can also be verified by inspection [27].
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FIG. 2. (Color online) Analysis of all plateaus found in this study. In (a), plateau heights are plotted against the sizes of space. In (b) the
scaling trends are summarized in a diagram relating it to system parameters. In (a), the following bold, black (red online) annotations have
been made. The solid line indicates the Nplat = Ndet, where we are storing one walker per determinant (on average) across the simulation and
the storage becomes comparable to FCI (unshaded region). The dashed line indicates where U = 1.0 would be if it retained the same plateau
height scaling as high U values. The size of space was calculated by a Monte Carlo method and takes into account momentum symmetry [26].

IV. PLATEAU ANALYSIS

We now consider the 1D translationally invariant (k-point)
one-band Hubbard model, for the parameter range U = 0.5,
0.75, 1.0, 2.0, 4.0, and 8.0 for Ns = 12, 14, 16, 18, 20, and 22
sites per simulation cell. We explore a wide range of doping
levels (4 to 2Ns − 4), where the spin is always unpolarized,
for consistent simulation parameters [28]. All calculations
were performed with the HANDE QMC code [29]. We focus
on 1D systems because shell-filling effects were anticipated
to make interpretation substantially more difficult in higher
dimensions. Although this system is only of one dimension, the
range of parameters encompasses a wide range of correlation
regimes.

All of the plateaus we have found are plotted in Fig. 2(a).
We can use this to probe the different scaling laws, based on
Nplat = βN

γ

det, where the exponent γ is defined by the tangent
to the curve at a given Ndet. Some of the trends described below
are slight and to aid readers a larger version of the graph can
be found in Supplemental Material.

A. Linear in Ndet and in U

This is the conventional scaling regime that has been
previously observed. Three diagonal-running parallel lines
(Ndet ∝ Nplat) fit the data from U = 2.0, 4.0, and 8.0 at high
Ndet. The behavior of the gradient with U is consistent with
the plateau being linear in U (as shown in Ref. [13]). Overall,
therefore, γ = 1 and β ∝ U . We note in passing that these
trends are remarkably consistent as doping and the particle
number are changed.

The bold red line, almost coincident with most of the U =
4.0 data set, shows the line of Ndet = Nplat where on average
we store the same number of integers as the size of the space.
The gray shading indicates where we would expect, therefore,
to store less information than the full wave vector in order
to obtain the solution via an exact diagonalization (or FCI);

above this line in the unshaded region the memory requirement
is comparable to FCI. Although this is true for storage, the
computational time is still expected to be linear in the size of
the space, and this (being the upper limit of the scaling here)
is better than many diagonalization routines.

B. Sublinear in Ndet, nonlinear in U

At sufficiently small system sizes, sublinear scaling (γ < 1)
is observed for all U except U = 8.0. The region of this
reduced scaling depends on U , and extends to larger system
sizes for smaller U . The lowest measurable exponent observed
is γ ≈ 0.1 for U = 0.5. The reduced exponent is surprising
for two reasons. The first is that the FCI wave function is
apparently representable with storage that is sublinear with the
size of the space. The second is that the projector algorithm
here is able to find this minimal representation with no
additional information than the Hamiltonian, and in particular
no biasing.

C. Nonlinear in Ndet and in U

In the intermediate region between these two regimes, there
is a polynomial region in Ndet (γ < 1) as the scaling law
seems to return to the original linear scaling regime (with no
shift) and crosses through γ = 1. This is most prominently
seen by careful examination of U = 2.0, which only slightly
deviates from the conventional scaling laws. The return to
γ = 1 appears around Ndet = 105. The dashed red line shows
where we would expect the U = 1.0 scaling to be if the linear
scaling with Ndet and U continued, which our data set never
reaches. Nonetheless, the limiting scaling at high Ndet seems
to be linear in Ndet and U .

D. Sign problem diagram

These scaling relationships are summarized with respect to
the system parameters Ndet and U in Fig. 2(b). The tie lines
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we have plotted are made by hand, and are estimates limited
by the breadth of our data set. In particular, sharp lines should
be considered as estimates and not definitive. This provides a
comprehensive summary of the known information about the
sign problem, and scaling, in FCIQMC.

We also observe that as the system size is raised, the method
returns to linear scaling in the size of the space and exponential
scaling in the particle number. This is interesting because it
seems as it is a reverse to what might be expected to happen. As
the system gets closer to the thermodynamic limit, quantities
such as the energy become extensive (i.e., scale linearly with
Nelec). As the correlation length is increasingly well contained
within the simulation cell, we would expect the problem to
become easier and of improved scaling (due to self-averaging).

V. CONCLUSION AND DISCUSSIONS

Our principal conclusion is the discovery of a regime of
the k-space Hubbard model where the exact ground state can
be stored with sublinear representation cost. This exact-on-
average representation requires no prior knowledge beyond
on-the-fly access to the Hamiltonian matrix elements, and we
believe this finding to be widely significant [30]. By means of
a practical demonstration of the significance of this regime,
we can find the ground-state energy for the half-filled 70-site
system for U = 0.1 in 250 core hours [E = −87.418 564(7)t].
The size of space is 1038 determinants, and this is the largest
unbiased simulation to date. By way of comparison, we
estimate exact diagonalization would take 1036 core hours,
based on known scaling laws and calculations from smaller
system sizes using the algorithm implemented in ALPS [31,32].
This poses the question: How many more, larger, systems are
available for study that have simply not yet been attempted?

The low-scaling regime, occurring in a greater range
of systems at low U , seems coincident with the weakly
interacting, or weakly correlated, regime. Although this is a
tempting conclusion to draw, this is not a link that we have
the scope to explore in detail here. This is in part due to the
sign problem being representation dependent. In particular,
the 1D Hubbard model is a toy model, not only because it is
already solvable at polynomial cost [33,34], but also because a
transformation to the real space basis set leaves it sign problem
free for FCIQMC [13]. Nevertheless, where there exist large
expanses of the Slater determinant space that are redundant,
FCIQMC should be able to find them, but that sparsity must
exist to be found.

Finding such representations is greatly facilitated by our
study here. This is first and foremost because we demonstrate
the potential benefits to be found, but also for the resources this
study provisions for the development of FCIQMC. We start a
database of plateaus, semiautomated plateau height analysis,
and a practical understanding as to what might happen to the
plateau or sign problem with further development. We hope

that these concerns are placed at the forefront of FCIQMC
development. One such route of promise and significance is the
discussion of symmetry breaking and restoration in the context
of QMC techniques [35–38]. Another is the adaptation of the
core algorithm to other Fock space QMC methods [18,39–41],
but in the wider context of other quantum chemical methods
it is important to know whether there is a sign problem at
all [40,42–45].

The appearance of a sublinear regime is interesting because
it mirrors some evidence that the initiator adaptation has this
scaling in its wave-function representation [16,46]. The initia-
tor adaptation (i-FCIQMC) imposes a population dependence
on Hi j , zeroing some elements that are considered outside
the currently well-sampled space. This greatly enlarges the
size of systems that can be sampled, up to 10108 determinants
to date [47], but at the cost of a systematically improvable
bias. In this context, therefore, i-FCIQMC is an approximate
(but systematically improvable) method that expands the
sublinear scaling rather than this scaling being unique to
this approximation. This strongly implies there are further
improvements that can be made to expand this reduced scaling
still further. We would welcome further investigation of the
mechanism behind this observation; analysis of the sign
problem in i-FCIQMC likely requires a very detailed analysis
of the initiator error, for which one method is outlined in
Ref. [48].

To the wider community in QMC methods, we hope this
shows that FCIQMC provides interesting phenomenology and
therefore something else to offer beyond FCI-quality energies.
The analysis we present here argues that a sign problem that is
easy to detect is potentially more informative than an error that
is unquantifiable. It also demonstrates that FCIQMC does have
the potential to solve large systems, which is surely required
for its application in condensed matter physics, provided that
its sign problem can be controlled. This puts emphasis back
onto understanding and solving the sign problem, which is
also a more universal effort.
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