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Determination af the frequency-dependent bulk modulus af glycerol
using a piezoelectric spherical shell
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Through the coupling between the electrical capacitance of a spherical piezoceramic shell and the
mechanical stiKness of a liquid contained therein, the frequency-dependent adiabatic bulk modulus

K, (u) of the liquid can be derived. Using this method, K, (u) of glycerol in the range 15 Hz —15
kHz has been measured at the glass transition. The loss peak frequencies of the compressibility

tc, (u) = K, (u) and the specific heat cr(u) have the same temperature dependence, but the

frequency dependences are diferent.

The relaxation processes in supercooled liquids at the
glass transition are seen as a frequency dependence in
many physical properties. The thermal relaxation and
the scalar part of the mechanical relaxation are coupled
and can be fully characterized by three independent re-
laxation functions. Let s be the entropy density, T the
temperature, e;~ the strain tensor, and o;~ the stress ten-
sor. We denote the relative volume change by e =Tr(e,z)
and the hydrostatic pressure by p = —

s Tr(0';i). Let ds,
de, dT, dp be the amplitudes of harmonically varying
small perturbations oc e ' . Then one has

(ds& (&~cz nz~ ( dT & ( dT
"p)-

where c„(~) is the isobaric specific heat, n~(~) is the iso-
baric expansion coefficient, and Kz (~) is the isothermal
compressibility. These three quantities constitute the
thermoelastic compliance matrix J. The quantities are
complex and thereby also describe the phase shift intro-
duced by the relaxation processes. How these relaxation
functions are related is still an open question. Zwanzig
has proposed a model in which the normalized relaxation
functions of c„(~)and rz (~) are identical. However, here
we consider the adiabatic compressibility K, (~), which is
more convenient to measure. The triple K, (ur), c„(ur),
and n„(~) will also contain the full information on J.

What is known experimentally about these functions?
Consider glycerol, the canonical example of the glass
transition. Nothing seems to be known about nz(u).
Diferent techniques have given very difFerent results on

c~(ur). The one method, s which could cover a wide fre-

quency range (10 —3x104 Hz), found that the normal-
ized specific heat c (a) = [c~(w) —c„(oo)]/[c~(0)—c„(oo))
could be fitted to 1 —4p(uw), where

is the frequency domain function corresponding to the
Kohlrausch —William-Watts relaxation function. These
authors found P = 0.65 6 0.03 (KWW exponent). The
high-&equency behavior was thus ~, very far from
the behavior ~ found by the other method. The

latter result relied on the use of the temperature-time
superposition principle (TTSP), which the first method
seemed to show valid.

The bulk modulus K, (u) was deduced from ultrasonic
measurements of the longitudinal cq and the transversal
ct sound velocity and K, (~) was described by a Cole-
Davidson distribution of relaxation times. That is, the
normalized bulk modulus was given by 1 —(1 —i~r)
with PcD ——0.32. The result was based on a few frequen-
cies in the range 1—100 MHz using the TTSP. The asymp-
totic behavior of the compressibility K, (u)[= K, (~)] in
the high-frequency limit was thus w, close to the
behavior of c„(u) found by Christensen. More recent
ultrasonic measurements —still relying on TTSP—have
given PKww = 0.60+0.05 for the longitudinal compliance
M, i(~). Jeong, Nagel, and Bhattacharya found that
this KWW exponent and the one in the ez(~) experiment
of Birge and Nagel were within experimental error of each
other. However, M, (u) = K, (u) + &G(u), and it is not
given a priori that K, (~) and the shear modulus G(~)
relax in the same way. In fact, Piccirelli and Litovitz
found that G was described by a logarithmic symmetri-
cal Gaussian distribution of relaxation times in contrast
to the asymmetrical Cole-Davidson distribution describ-
ing K, . It is thus of interest to measure the pure bulk
modulus K, (~) and to measure it in the frequency range
of the c„(~) experiments below the ultrasonic regime.

We have developed a method capable of this and ap-
plied it to glycerol. The method operates at low frequen-
cies, i.e., frequencies at which the corresponding acoustic
wavelength is much larger than the sample size (qua-
sistatic regime). On the other hand the frequencies are
sufFiciently high to ensure adiabatic conditions, i.e., the
corresponding thermal dift'usion length is much smaller
than the sample size. The relaxation function can be
found without using the TTSP, since the frequency can
be scanned continously. Furthermore, our method also
determines M, at certain discrete resonance frequencies
in the ultrasonic regime. The method is based on the
coupling between the electrical capacitance of a spheri-
cal piezoceramic shell and the mechanical stifFness of a
liquid contained therein. There are no separate emitter
and receiver of acoustic vibrations, only one transducer,
which constitute the sample cell also. The shell is made
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of a piezoceramic material (pz26, Ferroperm, Denmark)
polarized in the radial direction. We will call it the piezo-
electric bulk modulus gauge (PBG). It is covered with
electrodes on the inner and outer surfaces. On applying
a potential difference across the shell, the PBG will ex-
pand or contract radially depending on the polarity. For
a mechanical Bee outer surface, the coupling between the
complex amplitudes of the normal stress cr and the vol-
ume change AV on the one hand, and the surface charge
Q and the potential difFerence U on the other hand, is
given by a transfer matrix c,~,

fU& (c„c2& ( 0

E&) i'» '22) i ) (2)

The measured electrical capacitance therefore depends
on whether the shell is &ee to move (cr = 0) or clamped
(b,V = 0),

c22 c21
Cfree (~) 1 Cclamped (~)

C12 cll

If a medium of stiffness S(ur) = o/b, V is placed inside
the PBG, then the electrical capacitance becomes

c22 + c2iS
C12 + C11S

(4)

Thus, S(&u) can be found knowing e;z and measuring
C(ur). For a thin piezoelectric ceramic shell, c,~ can
be expressed by the inner radius r, thickness t, density

p, elastic constants s11, s12, piezoelectric constant d13,
and dielectric constant e33 Introducing the "breathing
mode" resonance frequency

&c = —
/r ((sll + si2)p)

1
kp~, /LCp

i —k (c )1/2
Ap~, L

In the specific case p = 7e65 gcm, t = 0.10 cm, r =
Qe90 cm, whereby I = 7.52 x 10 gcm . By fitting
a measurement of the free electrical capacitance to the
theoretical expressionc„1—(1 —k,') (~/~, )'

Cfree(~) = = Cp
ci2 1 —((d/(dc)

(6)

the three constants Co, kz, u are found. These constants
are both temperature and weakly time dependent due
to annealing processes in the piezoceramic itself. Thus
the same time and temperature scheme is exactly fol-
lowed during reference measurement and modulus mea-

the planar coupling constant k„= [2dis/(sii +
si2)e33] ~, the free capacitance at zero &equency Cp ——

Cf „(0) = (47rr /t) e33 and the inertance L = pt/4' r,
the result is

surement. Typical values are Co ——12 nF, kp ——0.51,
f, = u, /2m = 85 kHz. One has to correct the expression
(5) for the transfer matrix and take the finite thickness of
the transducer into account. We have indeed calculated
and used the general transfer matrix, but these lengthy
expressions are omitted here. The corrections amounts
to 15% on K, .

At the top of the sphere a small hole of radius rh makes
it possible to fill the sphere with liquid. Also, a reservoir
of liquid resides in a small tube on top of the sphere.
The hole connects this to the inside of the sphere, allow-
ing for thermal expansion of the liquid. Despite this hole,
the liquid is virtually confined in the sphere at the Ere-

quencies of interest. The characteristic time scale of the
glass transition is given by the Maxwell relaxation time
rM = qp/G, where qp is the low-&equency limit of the
viscosity and t is the high-&equency limit of the shear
modulus. Assuming Poiseuille flow through the hole, a
characteristic flow time ~f will be

32r t g
f ———

4 10 vM
3 re%,

Thus, one has in fact quite a large range of times beyond
the Maxwell relaxation time at disposal. On the other
hand, the cell can of course only be filled in a reasonable
time at high temperatures where the viscosity is low.

The stiffness S(ur) of a spherical isotropic viscoelastic
solid is derivable &om the solution of the equation of
motion. If the density is p~, the longitudinal wave vector
kt = g(pi/M, )ur, and the volume V = burrs, then o—ne
finds

t' 1 (k, r) 2 sin(k, r)
V ' '

q 3 kyar cos(k~r ) —sin(k~r) )
(8)

At low &equencies S(ur) is simply K, (ur)/V. At higher
&equencies it depends on both K, (ur) and M, (ur) because
longitudinal waves are excited.

The method was applied to that canonical example of
the glass transition, glycerol. Figure 1 shows how the
electrical capacitance C(ur) of the PBG is reduced from
its free value by the partial clamping of the transducer
due to the contained liquid. The glass transition in this
picture is seen indirectly in the decrease of C with in-
creasing &equency. Also shown is the measured Cf„,
and the calculated C ] ~p

Figures 2 and 3 present the measured real and imagi-
nary part of bulk modulus K, as a function of frequency
at di8'erent temperatures. Denote the normalized bulk
modulus by K (tr/) = [K (a) —Kp]/(K —Kp). The
solid line represents a fit to data of a phenomenological
model, where K (w) is given by an extended Maxwell
model K„(~) = [1 + ( i~rb) + q( —i~—rb) ] . It is
found that q = 1.40 6 0.03 and n = Q.43 + Q.Q2. ~b is
temperature dependent and corresponds to the Maxwell
relaxation time. The best fit of data to a &equency do-
main Kohlrausch function 4p gives P = 0.43+0.02. Such
a fit is almost as good as the extended Maxwell fit.

It seems natural in a comparison of the thermal and
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FIG. 5. Real (+) and imaginary ( ) parts of the specific
stiffness at 1 kHz measured by the quasistatic method. Kp

(x) measured by the resonance method.

not easily be analyzed in a rigorous way. The ratio of f~
at 214 and 268 K is 10, which is in agreement with the
estimate (7).

According to (8) a viscoelastic sphere will show stiK-
ness resonances when tan(kir) = kir. These resonances
are seen in the electrical capacitance of the PBG. Al-

though the resonances are moved due to the mechani-
cal coupling of the PBG and the liquid, this is only of

importance for the lowest lying resonances. Thus for
resonance &equency v„, n ) 3, the condition simply
gives longitudinal modulus to a good approximation as
16(l + 2n) 2piv„rz

In Fig. 5 M, calculated by the third resonance at
280—320 K is shown. At these temperatures the inverse
Maxwell relaxation time is much higher than the reso-
nance &equency. Thus shear modulus can be neglected
compared to bulk modulus and so Mo ——Ko in this limit.
The extrapolation of Ito(T) measured by this resonance
technique into the temperature region, where the qua-
sistatic method works, agrees within 1%. In this way
one has an independent and simple check on the validity
of the procedure of the quasistatic method.

In conclusion, we have developed a method for measur-
ing the pure &equency-dependent adiabatic bulk modu-
lus. This method was applied to glycerol in a tempera-
ture and frequency range which enables direct compar-
ison with the specific-heat measurements of Birge and
Nagel. Although the loss peak frequency of r., and c„
have the same temperature dependence and therefore the
thermal and mechanical relaxation must be connected
somehow, the relaxation functions have diferent shapes.
However a common relaxation mechanism need not lead
to the same normalized relaxation function of ~, and c„.
It could be that a comparison of ~T and cz should be
made instead as suggested by Zwanzig. However, in or-
der to convert data, information on a third thermoelastic
response function, e.g. , o.„(~),would be necessary.
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