
PHYSICAL REVIEW 8 VOLUME 4, NUMBER 9 NOVE MBER 1971

Renormalization Group and Critical Phenomena.
II. Phase-Space Cell Analysis of Critical Behavior*

Kenneth G. Wilson
L aborato~ of Nuclear Studies, Come/l University, Ithaca, Near York 14850

Qeceived 2 June 1971)

.A generalization of the Ising model is solved, qualitatively, for its critical behavior. In the
generalization the spin s~ at a lattice site n can take on any value from — to ~. The interac-
tion contains a quartic term in order not to be pure Gaussian. The interaction is investigated
by making a change of variable sa=P g (n)s, where the functions g (n) are localized wave-
packet functions, There are a set of orthogonal wave-packet functions for each order-of-mag-
nitude range of the momentum k . An effective interaction is defined by integrating out the
wave-packet variables with momentum of order 1, leaving unintegrated the variables with mo-
mentum &0.5. Then the variables with momentum between 0.25 and 0.5 are integrated, etc.
The integrals are computed qualitatively. The result is to give a recursion formula for a se-
quence of effective Landau-Ginsberg-type interactions. Solution of the recursion formula gives
the following exponents: g=0, y=1.22, p=0. 61 for three dimensions. In five dimensions or
higher one gets q=0, y=1, and v=2, as in the Gaussian model (at least for a small quartic
term). Small corrections neglected in the analysis may make changes (probably small) in the
exponents for three dimensions.

I. INTRODUCTION

In Paper I of this series' the Kadanoff picture of
scaling for the Ising model was discussed. Kada-
noff considered the problem of the critical behavior
of the Ising model. 3 He proposed that the critical
behavior could be understood in terms of the effec-
tive interactions between blocks of spins of block
size L, with L being larger than 1 but smaller than
the correlation length (. Kadanoff suggested that
one could introduce an effective spin variable s'
for each block and that the effective interactions
of these spins would have the Ising form, but with
interaction parameters' E~ and h~ depending on L.
In I it was suggested that a basic assumption of the
Kadanoff theory is an analyticity assumption,
namely, that K„z and h„z depend analytically on Kz,

and A, L, if n is a fixed integer. The rationale for
this is that a block of spins of size nL is made up
of a finite number of blocks of size L, so the sums
over the interactions of the L-size blocks which

give the interaction on one nL-size block ought to
be analytic. (In I this assumption was stretched to
include the case that n= 1+ &, where c is infinites-
imal. )

No justification has been found for the Kadanoff
picture. The difficulty is that Kadanoff assumes
that the effective spin variable s' has only two
values, up or down. In the exact Ising model a
block of spins of size L and z different configura-
tions (where d is the dimensionality of the system)
and it is hard to see how to reduce the z different
configurations to just two. Because there has been
no justification for the Kadanoff picture, it has
been impossible to calculate specific critical ex-

ponents within the Kadanoff picture; the best one
can do is to derive the scaling laws' which relate
all the critical exponents to two unknown param-
eters.

Is there some generalization of the Kadanoff
picture which can be derived from the exact parti-
tion function of the Ising model? This problem mill
be discussed, qualitatively, in this paper. It will
be shown here that one can obtain an effective inter-
action for blocks of spins of size L, but the effec-
tive interaction will not be simply an Ising inter-
action. The effective interactions discussed in this
paper differ from Kadanoff's effective Ising models
in several respects. The effective block spins s'
of Kadanoff's theory will be replaced by a field
variable sz, (x). The box size I will be built into
the field sz(x) in a qualitative sense, namely, sz, (x)
will be restricted to have wavelengths —J. only.
This means that sz(x) does not vary enormously
within a block of size L and for qualitative purposes
one can think of sz(x) within a block as if it were
a single block variable. Also, in contrast to
Kadsnoff's picture, the magnitude of sz, (x) will be
unrestricted. The effective interaction of this
paper has the Landau-Ginsberg form':

3Cz= —,'Kz f, Vsz(x) —f—Pz[sz(x)], (1.1)

where f„means J-d'x, Kz is a constant, and PL, [s]
is a function which changes with L. The function
Pz[s] is equivalent to an infinite number of param-
eters (for example, Pz[s] could be represented by
the coefficients of its Taylor series expansion in
s). So instead of having just two parameters Kz and

h& depending on the block size L, one now has an
infinite number of L-dependent parameters. In



the language of I, this means one has an infinite
number of irrelevant vRx'1RMes

A recursion formula mill be derived which deter-
mines Psr[s] given the function

Puffs]

.The critical
behavior of the Ising model mill be obtained, qual-
itatively, by solving the recursion formula. It
mill be found that at the critical point the functions
PI,[s] approach a limit as I -~ except for some
scale factors. This limit is analogous to the criti-
ca1 "saddle point" discussed in I for the case of
one irrelevant variable. Solutions of the recursion
formula near the critical point wiQ show the same
qualitative features as discussed in I for the case
of one irrelevant variable. From these solutions
three critical exponents wi11 be calculated explicit-
ly (for three dimensions). The results are v=0. 61,
y--1. 22, and g=0. ~ These are qualitative results:
Cox'x'eetlons to the analysis of this pRpex' ean change
these exponents, but hopefuQy not by much.

It mill also be found that in five dimensions or
higher these exponents have the mean field values
v=0. 5, y=1, and q=0. Four dimensions will be
seen to be the dividing point below which the ex-
ponents are nonclassical; no exponents wiQ be ob-
tained for four dimensions.

The ideas which undex lie the recursion formula
are as foQows. The partition function wiQ be ex-
pressed as a functional integral over all functions
sz, (x) of the interaction e~r. This is in lieu of the
sum over all block spin variables which appears
in the Kadanoff picture. The limitation on wave-
lengths in s~(x} means the Fourier transform of
sr, (x), say oi(k}, must be zero for Ikl & L '. To be
precise the functional integral is over all functions
o~ (k) defined for Ikl & I . To derive the recursion
formula, the variables or, (k) for 0.5L ~& Ikl &I, '
will be integrated out. %hen these integrations are
completed, one is left with a functional integral
over all functions o~(k) defined for 0& Ikl &0.5I, ~.

The Fourier transform of such functions can be
denoted s~r, (x) since they contain only wavelengths
~ 2L. The integrand of this new functional integral
miQ be written in the form e~; this defines the
interaction 5Cgg,

The evaluation of the integrals wiQ be done
qualitatively, not quantitatively; an accurate cal-
culation would give more complicated effective in-
teractions KI, than the Landau-Ginsberg form
(complications include more derivative terms, even
nonlocal interactions}.

The analysis given in this paper is based on an
earlier discussion of a problem in quantum field
theory (pions interacting with a fixed source}. 8

The ideas of this payer can be applied to relativistic
quantum field theory. So the ideas of this paper
are not special to the problem of critical phenom-
ena. The basic problem causing the difficulties
in undex standing critical phenomena is the problem

of the infinite number of degrees of freedom. This
problem is also the bottleneck in quantum field
theory and in many of the stubborn problems of
solid-state physics. The methods of this paper are
methods for attacking the problem of the infinite
number of degrees of freedom xegardless of where
this problem arises.

The model that mill be studied in this paper is
a generalization of the Ising model. Consider the
partition function

Z(K, h; r, X) =II' f„dst exp( —rgb sa —X ps sr

+If Qs Q, spasm, f+& Qg sg) . (1.2}

The vectors n are vectors with integral compo-
nents. They label the lattice sites of a simple
plane, cubic, or hypercubic lattice. The g, is a
sum over the d axes of the lattice (d = 2 for a plane
lattice, d=3 for a cubic lattice, etc. ). A unit
vector along the axis ~ is denoted i. The changes
from the Ising model are that sz is a continuous spin
variable, instead of being + 1 only, and that tex ms
proportional to s~g and sg have been added in the
exponential. Let E and h be the ordinary thermo-
dynamic variables (K=- J/kT and k= —p,H/kT,
where J is a spin-spin coupling parameter, p, the
magnetic moment of a spin, and H the external
magnetic fieM). The constants x and X are to be
fixed constants independent of 7.' and H. The con-
stants ~ and X determine the intrinsic probability
for the spin s; to have any particular value. This
intrinsic probability is essential in the continuous-
spin case since otherwise the integrals over s; mill
diverge. If X =0 the partition function reduces to
the Gaussian model of Berlin and Kac, ' which has
special critical exponents disagreeing both with
experiment Rnd with numerical calculations for the
Ising model. For X- ~ and y- — the model xe-
duces to the Ising model, as follows. If the intrinsic
probability function for the spin sz has the foxm
exp[ —&(s'„- 1) + X] (i.e. , ~ = —2X), then it has max-
ima Bt sg =+ 1 Rnd -1, and lf X ls 1Rlge the prob
ability function is very sharply peaked at san=+1
(see Fig. 1). The partition function of Eg. (1.2)
for general X interpolates between the Gaussian
model and the Ising model. A very similar model
has been discussed by Migdal and another similar
model by Langer. 0

One needs a term besides -xsg in the probability
function in order to get depB, rtures from the Gaus-
sian model. The use of an sg~ term in particular
is arbitrary; one can use any function of sam instead
which is nonlinear in s,» and which does not destroy
the normalizability of the probability function (e.g. ,
—Xss is all right but +As; is not, for positive X).

There are tmo reasons why a continuous spin is
used in this paper instead of a discrete spin. One
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FIG. 1. Plot of the function f(g) = g- ~~ ' "~ vs q
2+

fox &=1.8.

action is given. (In Sec. II, and thereafter, the
effective lattice spacing variable I will be replaced
by a variable I, given by L = 2'. ) In Sec. III the
full interaction is analyzed in terms of phase-space
cell variables and the recursion formula for the
effective Landau-Ginsberg interactions is derived.
In Sec. IV solutions of the recursion formulas are
discussed; both analytic approximations and
numerical calculations are reported, and values
for the exponents y, q, and v are obtained. In
Sec. V various limitations of the present work are
discussed, including the reasons for omitting the
case of a finite magnetic field, temperatures below
the critical temperature, or two dimensions.
Section VI concludes this paper with a discussion
of the ideas learned from the phase-space cell
analysis.

II. ANALYSIS OF PARTITION FUNCTION:
PRELIMINARY DISCUSSION

is a technical one: The analysis of this paper
makes use of changes of variables to linear com-
binations of the sg and these changes are awkward
to make if s~ is restricted to be +1. The second
reason is that the analysis of this paper predicts
that the critical exponents in five dimensions and
higher will be the same as the exponents of the
Gaussian model, at least for small X, and to show
this the model must include the Gaussian model
as a special case.

The lattice variable sz will be replaced by a field
s(x) with the Fourier components of s(x) restricted
to have momenta of order 1 or less. . This replace-
ment is made because the problems of critical
phenomena concern large wavelengths for which
the lattice variable n should be equivalent to a con-
tinuous variable x. Once this replacement is made
the interaction of Eg. (1.2) can be expressed in
the Landau-Ginsberg form.

To carry out the functional integral over the
variables o~ (k) for 0. 5L ' & I k I & L ', a change of

. variable will be made replacing the functional vari-
able o~(k) by an infinite set of discrete variables
SL,-. The change of variables is set up by expand-
ing the function o~ (k) in terms of an orthonormal
set of wave packets defined for 0.5L ' & ik I & L '.
These wave packets will not be written down ex-
plicitly; rather their qualitative features will be
determined from phase-space arguments based on

an analogy with the phase-space formulation of
Fermi statistics.

In Sec. D a preliminary discussion is presented
of the wave-packet ("phase-space cell" ) variables
s~- and their usefulness in studying critical phe-
nomena. In particular, the form of the interaction
of Eq. (1.2) in terms of phase-space cell variables
is discussed and a preliminary estimate of the
order of magnitudes of various terms in the inter-

A. Approximate Factorixation and Wave-Packet Variables

It ivould be ideal if one could introduce a set of
integration variables in the integral of Eq. (1.2)
such that the integrand factorizes. For example,
if K is zero the integrand factorizes into separate
functions for each sz and the partition function is
an infinite product of independent single-variable
integrals. If A. =0 the integrand factorizes in terms
of the Fourier-transform variables

gf n
0'g =~g 8 Sg .

In this case one has

(2. 1)

—r Z, s,'+ Z Z, &~, s, s,.;+k Z, s,

= —r f v„-o „-+KJ ~~, cosk, a;o „-+koo
k

(2 2)

sg=H y (n)s' . (2. 2)

This expansion defines a change of variables, from
the variables sz to the variables s'. Let the wave

(where Jf means II,.(2v) ' f', dk, and k, is a com-
ponent of k), so each pair of variables (g„-, o „-) is
independent of the corresponding pairs with dif-
ferent momenta. With both K and A. nonzero there
is a conflict between the E and X terms in the in-
teraction which prevents factorization; for any choice
of integration variables. However, one can try to
achieve an approximate factorization: namely, one
can try to introduce a change of variables such
that the coupling between different degrees of free-
dom is smaller than the terms involving only a
single degree of freedom.

Imagine expanding the function s~ (as a function
of the discrete variable n) in a complete set of
wave functions g (n):
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functions P (n) be orthonormal (and real so that
the variables s„' are real}; orthonormality means
that

Zg g (n)tII„,(n) = 5„„,.
Let the Fourier transform of g (n) be P (k):

Q„(k)=~&g e'"'P (n)

(2.4)

so that the Fourier transform of s is o'g with

vf =H„y„(k)s„' . (2. 6)

Qn.e mould like to keep the width of the functions
Q„(k) small for doing so will minimize coupling of
different degrees of freedom (m and m„say) due
to the K term F.rom Eq. (2. 2), the part of the K
term coupling m to m& has the form

E f Z;„cos(k,) P„(k)P„,(-k)s„'s', .
If the mave packets limit the range of k in the in-
tegral enough, one can approximate eosp, by the
constant cosjp, „where k,„is the mean momentum
of one of the packets. However, f„g„(-k)P,(-k)
is the orthogonality integral expressed in terms of
the momentum-space wave functions, so this
vanishes unless m = m&. Thus the nonvanishing
part of the coupling comes only from the integral

K J. (cosh, -cosh, „)@ (k)$„(-k}s's',
Rnd this ls smRD lf 0] eaxlxlot differ much fx'om $g~
over the width of the packets $„(k) and p„1(-k).

In conQict with the desire to keep the width of
$„(k) small is the desire to keep the width of g„(n)
small, for if these mave packets cover many lattice
sites then there mill be many wave packets which
overlap at a gi.ven site n and then there miU be
large couplings of different degrees of freedom
through the Xsz terms. Evidently one wants the-
wave packets g„{n)and P„(k) to be ininimal wave
packets, i.e. , the midths hn and hk should satisfy
the lower bound imposed by the uncertainty prin-
ciple:

(2.7)

(The exact bound is unimportant as the analysis
given here mill be only an order of magnitude
811alysls. )

Thex'e is a useful qualitative characterization of
a complete set of minimal orthonormal mavepackets
which is suggested by the layman's description of
Fermi statistics. If one wants to obtain the prin-
cipR1 qualitative px'edlctlons of Fermi statlstlcs
without discussing antisymmetrized mave functions,
one instead describes the electrons as classical
particles but subject to the restriction that no more
than one electron (with a given spin) can occupy a
unit volume in phase space. One then divides phase
spRce into cells of unit volume eRch of'which eall
contain at most one electron of a given spin. %hen

8. Phase-Space Decomposition

The problem of hom best to define the degrees of
freedom s' is now the problem of finding the best
division of phase space into cells of unit volume.
Vfe propose the following solution. The vaxiable
Ik I has R range from 0 to of order 1; divide this
interval logarithmically, namely, define the in-
tervals

2'=~k~ =2X2' (2. lo)

as the momentum-space division. This means mo-
mentum space is divided into spherical shells whose
inner radius is half the outer radius. The largest
shell is the shell /=0 (l —lkl —2) (in this |lualitative
analysis me ignore the range IkI & 2 up to the max-
imum value which is of order v). There are an
infinite number of smaller shells. For each shell
in momentum space separately one divides position
space into blocks of equal size forming a cubic

this picture is translated into the language of mave
functions, it is evident that one associates a
minimal mave packet mith each cell of unit volume
in phase space. Tmo different wave packets are
orthogonal if the coxresponding cells in phase space
do not overlap; a set of wave packets are complete
if the corresponding cells fill the whole of phase
space. For qualitative purposes, one can treat
the magnitude of I P (k) I as constant if k is within
the range of the corresponding ceD'l and 0 else-
where, and similarly for lg„(n)I (see Fig. 2).
Finally the magnitudes of I p„(k) I and I g„(n) I are
detex mined by the normalization condition. If
V„(m) snd V~(m) are the momentum-space volume
and position-space volume, respectively, for the
phase-space cell m(V„= V, ' so that the phase-space
volume is l), then one has

~Q„(k) ~
-[V,(m)] '~' (within phase-space cell m),

(2.8)

j g (n)
~

- [V„(m)] ' (within phase-space eeD m) .
{2.9)

This is a qualitative characterization of a complete
oxthonormal set of minimal mave packets. For
quantitative purposes one mouM hRve to take into
account tails of the wave packets which extend out-
side their assigned cells.

It will be assumed here that one can divide phase
space into cells of unit volume in any may one
pleases and still be able to construct a correspond™
ing set of minimal wave packets. There is no
guarantee that this is actually possible, and no ex-
amples of such a set of wave packets will be given
here. The analogy to the qualitative description
of Fermi statistics should be sufficient to justify
the qualitative analysis given here.
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FIG. 2. Example of a wave-packet
I (II) (k) ) (curve shown) and a square-

wave approximation to ) f(k) I used
for order-of-magnitude calculations.

lattice, each block having volume inverse to the
volume of the momentum-space shell. This re-
quirement on the position-space blocks means that
the Eth momentum-space shell has corresponding
position-space blocks whose lengths are of order
2'. The position-space blocks double in length
each time / is increased by 1. This division of

phase space is illustrated in Fig. 3.
The motivation for this method of division is the

following. The momentum-space intervals have
been kept small enough so that the coupling terms
coming from the nearest-neighbor spin interaction
are smaller by about a factor of 2 than the corre-
sponding diagonal terms [diagonal terms involve

(1,z) (4, 0)

(3,0)

3a 0

z (o, z)
0

(z, o)

(],o)

a 0

ao

. 25

(O, 1)

(-1,1)

(-1,0)

FEG. 3. Division of phase space
into cells. The magnitude of R is
plotted versus one component of g.
The range 0.25«l E) & 2 is shown.
Each phase-space cell is labeled with
the corresponding values of m

&
and l.

( s )
0

-4a0
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(8„')' not 8„'8',]. It appears at first sight that the
coupling terms for the large-E shells are very much
sIQaller than the diagonal terms, but this is an
illusion. The reason is that the diagonal terms
coming from the K go 8o 8o,; term tend to cancel the
corresponding terms coming from —r go 8o. If
one combines these two terms, then in momentum
space one is looking at f„[--~+K Z& cosk&]&r pp I.
At the critical point the coefficient [-~+K Z, cosk, ]
will VRlnsll (to R f11's't RppI'ox1111Rtio11' see IRtel')
for k=O, and for nonzero A, the coefficient is of
order —Kk'/2, where 0'=g, O';. It is still true that
the coupling terms in a given shell (i.e. , coupling
of diffexent position-space blocks for a given mo-
mentum shell) are smaller than the diagonal terms,
but only by Rbout R factox' 2 since the variatlon in
4 over a shell is roughly half the mean value of k~

in a shell. If we had allowed a much larger range
of 4 in a shell the size of the coupling terms would
have become essentially equal to the diagonal
terms —an intolerable situation.

The coupling terms in the X Xo 8o4 term are reduced
in size in the proposed division by the following
mechanism. The degrees of freedom which couple
through this term are degrees of freedom fxom dif-
ferent momentum-space shells whose position-
space blocks overlap. A coupling term will thus
involve at least two position-space blocks corre-
sponding to two different momentum-space shells.
These blocks will be disparate in size, one being
several times larger than the other (at least twice
as large). The coupling term will involve products
of the large-block wave packet times the small-
block wave packet, summed over the lattice sites
contained in the small block. The wave packet for
the large block is smaller in size than the wave
packet for the small block because of the normaliza-
tion condition on these wave packets. Hence the
coupling term is small at least compared to the
diagonal term for the small block since the only
difference is the substitution of a large-block wave
packet for a small-block wave packet.

In case the above argument is not clear, here is
an example worked out in detail. Label the new
variables s' as'~ s-„where l labels the momen-
tum-space shell and m is a lattice variable dis-
tinguishing the blocks in position space associated
with a given shell (see Fig. 3). Compare the cou-
pling term proportional to so, soo to the diagonal
terms s04, and soo. These terms are, respectively,

x, =~&- &~, x-, ,

X-, = —r E, (L,(n)8'-, —I &~, [y-, (n)]'8-',

(2. 11)

+KZo ~; g-, (n)g-, (n+i)8'-, . (2. 12)

By the normalization condition, I goo(n) I is of order
1 for In) of order 1; it is zero elsewhere ("else-
where" being out of the block 0). The function

I go, (n) I is of order 2 "~' for Inl ~ 2' and zero else-
where. The sums over n are restricted to |nl -1
when g+(n) is involved; the term involving go~, (n)
is summed over all n with t n I

~ 2'. With these
orders of magnitude the three terms cited above
are of order X2 so, s~, X2 so„and XS040, respec-
tively. To estimate the size of these terms re-
quires an estimate of the size of soo and sz, such
estimates will be made latex. But independently
of the size of the variables soo and s» the coupling
term is smaller than one of the diagonal terms.
If I s» I && lsoo I then the so) terIQ is IQuch larger
than the coupling term, while if Iso, t

~ )so~I the
soo term is larger than the coupling term. This
conclusion is not necessarily true for / = 1 because
the soo s» term ha, s an extra fa,ctor of 6 in front of
it. The effect of the coupling term with E = 1 will
be discussed in Sec. III.

One can now see that the division of phase space
is essentially uniquely determined. If one makes
any of the k-space shells much larger, the K-type
coupling terms between neighboring position-space
blocks become too large. If one tries to make
smaller k-space shells, i.e. , shells whose width
hk is much smaller than the mean value of 4, then
one has many shells having about the same volume,
so that the corresponding position-space blocks
are the same size, and this means large coupling
from the ). go 8o term The P.recise definition of
the momentum-space shells (k changing by a factor
2 in a shell) will be discussed in Sec. III.

C. Structure of Partition Function: Diagonal Terms

Now a systematic analysis of the partition func-
tion will be described, using the variables s-, de-
fined above. For simplicity only the case @=0

ill b d s ssed. ' Fi st the diag nal te s ill
be examined' 1Rter the effect of coupling tex'IQs
will be discussed.

Let the diagonal. terms in the exponential of Eq.
(l. 2) be denoted Ro. To be explicit, Xo is

—6X Zo tgg(n)goo(n)8o1 8oo ~

—~ +Jo &o~(n)8or ~

"~o ~so(n)8oo ~

The terms proportional to s-, are best calculated
in momentum space; they have the form f„" P-, (k)

2&&/my(-k)( —t+ZK( cosk1)8m)', w111ch is roughly

[(-~+Kd) J„- y-, (k)y-, (-k)
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The two terms must be separated because of the
possible cancellation of x against Kd. In the sec-
ond term gg, can be approximated by its order of
magnitude in the 3th shell, namely, 0 - 2 '. The
remaining integrals are 1, by normalization. The

4
coefficient of s-, can be calculated using orders of
magnitude given earlier. One now has an order
of magnitude for X-,:

X-g - (- r+ Kd - 2-"K)s'-, —u"gs-'g . (2. Is)

The partition function with coupling terms ne-
glected is, roughly,

Z=II-.II, f" ds-. ,

x exp( —r i~s sp —X ~~ggsp+K ~~gg~g s;sgg, g) ~

(2. iS}

The product o iso can be expressed in terms of the
variables s-, . Let k be in the momentum shell l, .
For any E, the lattice site n=0 lies in the position-
space block m=0. Therefore one has

o, s, =L'.- Cg y-.g.(k)ypg(O)s-. ..spg . (2. 16)

With Z simplified to the form (2. 14), the products
s t ~0& average to zero if s-, is distinct from so

mug
Hence one can replace of sp by ppg (k)ppg (0)sp, ,
from the orders of magnitude of gtgpg (k) and (pg (0}
(see Table I), this is of order sp, . Thus the valueOlg'

of g(k) in order of magnitude is simply the order of
magnitude of s~o, . This can easily be determinedOl g'
from the order-of-magnitude form for S. If Kd& x
(this will mean T & T,) then one can neglect the s-,
term in Z, at least for large l, and the order of
magnitude of s-, is (r —Kd) g. This means (s-,)
is constant for large l and g(k) has no singularity
for k- 0. If Kd = r the exponent in Egl. (2. 14) has
the form g- gg (-K2 's-, —X2 's", ). There is
now a competition between the Gaussian and quartic
terms to determine which will cut off the exponential
and fix the order of magnitude of s-, . The Gaus-
sian term cuts off the exponential when s-, is of
order 2 ' while the gluartic term cuts off the ex-
ponential when s-, is of order 2"~p. Hence the
Gaussian term cuts off first if d&4; the quartic
term wins if d & 4, and both terms cut off simul-
taneously for d =4. If d» 4, one has (s-g)-2P' for
large l, which means g(k) behaves as )'g p. This

x exp(Z- Zg [(—r+Kd-2 'K)s-, —X2 's"g]$ .

(2. 14)

It is also interesting to compute the Fourier trans-
form g(k) of the spin-spin correlation function.
The exact definition of g(k) is' (at or above the
critical temperature)

g(k)=Z'll, f ds~, s,

TABLE I. Orders of magnitude associated with the
phase-space cell (m, E).

Quantity

a,

~x
~a

I g) -g(gg) I
'

t @-g(~) lb

Order of magnitude

ma&

p
2-2 j

2ld~-1

2-"se
2-u/2 1/2

2 ' /2-i/2

22l ord 2'�/4
of order 1

For x in box m, i.e. , for t x—ma& t of order a&.
For R in shell l, i. e. , 2 g & [ k I & 2 x 2 g.

'At the critical point.
The estimate 2+/ is obtained in Sec. II for dimension

d &4; a better estimate (obtained later in Sec. III) gives
22' always.

means one is at the critical point; furthermore the
behavior k is what one expects from mean field
theory. For d& 4 one has (s-g)-2 "g gs so that g(k)

For d=3 this gives k 3/~; for d=2 one
gets k ~. One is still at the critical point but the
exponents do not agree with mean field theory.
They do not agree with experiment or numerical
solutions of the Ising model either. However, one
still has to determine the effects of coupling terms,
and these will change the exponents.

D. Structure of Partition Function: Couplings

The next step is to study the effects of coupling
terms. These are of two types. First there are
terms coupling different position-space boxes in
the same momentum shell, arising from the
K egg gg sggsgg. -g term. These coupling terms are re-
duced in size from the original nearest-neighbor
coupling strength K. But at the critical point the
constant K is just large enough so a perturbation
expansion in the complete K term diverges. 3

Since only a part of the K term consists of coupling
between different position-space boxes, this cou-
pling should be easily handled by perturbation
theory and does not affect the qualitative analysis
described earlier. This point will be discussed
further later, without changing the conclusion.

The crucial coupling terms are those from the
Qgg sgg term The.se will be discussed in two stages.
First the terms coupling the shell l =0 to a partic-
ular large l shell will be discussed; afterwards a
more general analysis will be presented including
the troublesome terms coupling neighboring mo-
mentum shells.

To get a preliminary understanding of the effects
of coupling terms between different momentum
shells, consider the coupling between two specific
shells, namely, the l = 0 shell and a shell with a
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large but fixed value of /. All other shells will be
ignored in this preliminary analysis. Further-
more, only the coupling terms proportional to
$-0$-,, will be considered (m and m, are arbitrary).
In principle there are other coupling terms, for
example, terms proportional to s-Os- &, but these

mg

will be dropped in the preliminary analysis.
Fol s'-.Os'-, g to occur as a coupling term with non-

zero coefficient, the position-space boxes labeled
by m and mz must overlap. The boxes associated
with shell E are much larger than the boxes as-
sociated with shell 0. Call the boxes associated
with shell / "large boxes, " and the boxes associated
with shell 0 "small boxes. " The large boxes have
a volume of order 2'~, the small boxes a volume of
order 1. A single large box, such as the box m„
overlaps with 2' smaD boxes. A single small box,
such as the box m, overlaps only one large box.
Let the large box m, which overlaps a given small
box m be the box m, (m). The overlay condition is,
roughly,

~m-2'm,
~

&2'. (a. iv)

If this condition is satisfied& then the interaction
includes a term —Xa '".$-0$-, (as calculated
8R1'1181'). Consider liow tile pR1't of the pRrtltioll
function involving the two momentum shells 0 and
E, and consider only the terms discussed so far.
The result is

&=II-II.-, f d$.-, j"d$-,

x exp{2 [(—'v+ IM —If)$0 ~$0]

—l.a "~-$'-, $'-, , ~-, -,(-)}. (2. 18)

Using the estimated orders of magnitude for s-0
Rnd $-, obtained earlier, the product $~$-, is at2 2

nlost of order 2 (using 'tile es'tl111Rte 2 fol'

$-, ,). In five dimensions or higher this is an over-
estimate. This means 2 '"s-os-, is at most of or-
der 2 '" which is small This means that the cou-
pling term involving any given spin s-0 from a small
box is small compared to the diagonal term involv-
ing s-0. The situation is different if one compares
coupling terms and diagonal terms involving a given
spin s-, from a large box. The trouble is that the

in s"
& appears in 2' coupling terms since 2

small boxes fit into one large box. The sum total
of these coupling terms (Rll of which have the same
sign) is of order 2'~~2 (for d ~4). This is much
larger than the diagonal term involving sm ).

Since the coupling terms axe small compared to
the diagonal terms from shell 0, it is reasonable
to do the integx ations over s-0 treating the coupling
terms as a perturbation. The s-, integrations will

mph'

be postponed until later. The form of an s-0 in-
tegration is

I' oo 2 4 2I = J d$0 exp[( —'Y+Zd —E)$0 —X$~0 —Xm$mo] )«dO

(a. Io)
where

2
~m "

Smyth l my=my(m)

Because x- is small, one expands the integral I-
in powers of g-. The expansion has the form

2
Im = Co+ CgX + C2X + ' (a. as)

where co, cl, etc. are constants of order 1 (co, cl,
etc. will be functions of r, K, and X but not of /).
It is convenient to write I- in exponential form;
it still has a power series expansion, say,

2I- = exy(bo+ b,x -+ biz "+~ ~ ~ ), (2.22)

with bo= Inca, bl = cl/co, etc. The partition function
now has the form (still keeping only the two mo-
mentum shells)

z=II-, j"d$-...(II- I-)

xexp(Z" [(—x+Kd —2 K)$-, -2 X$- &]}

=IIm f «m s

&& exy(~+",[2' bo+ ( —x+Kd 2'K+ Xb—,)$-,

—2-"(l.- l.'b, )$'-, +l.'2-'"b,$6, —"]} .2 mg& 3 mg&

(2. 28)
In the last expression, terms from the product
II-„I"have been converted to sums over m, in the
exponent; a factor 2'" is included because there
are 2'" boxes m for each box m, .

One now has the partition function expressed as
an integral only over /-shell variables s-,&. The
effect of the coupling terms is to make nontrivial
changes in the coefficients of s-,„s-~„etc. As

2

a result one has a new condition for being at the
critical temperature; one must have

—y+Kd- XQ)=0 (a. 24)

to ensure that the order of magnitude of s-,, goes to
infinity as l- ~. As long as this condition is sat-
isfied, the coefficients of s.-,, and s-,

&
have the

same order of magnitude as when the coupling terms
6were neglected. It is easily seen that the s-,&

terms and higher are negligible.
If one on1y had to discuss coupling between an

arbitrary shell / with large l and the shell 0, this
would end the discussion. However in practice one
has couplings between all pairs of shells. But one'
can imagine what the effects wiD be of these cou-
plings. Suppose one can start by integrating out
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the variables s p treating the coupling to other
shells as a perturbation. The result will be to get
a new form for Z involving only s-„s-a, etc. The
effective interaction between these spins will in-

2volve new coefficients for the 8-, and 8-, terms.
Then one integrates the spins s-, from the shell
l =1, treating the coupling of this shell to remaining
shells as a perturbation. The result of this is to
produce a second effective interaction involving the
spins s~, s-s, etc. To compute the partition func-
tion one repeats this process an infinite number of
times, until all spins have been integrated.

%'hen one carries through this sequence of jn-
tegrations taking into account couplings between all
pairs of momentum shells, one gets results qualita-
tively different from those obtained keeping only
diagonal terms. The reason is the following. In
the analysis keeping only diagonal terms, the coef-
ficient of a given term s-, &

was —X2 '~. But with
off-diagonal terms taken into account, the coef-
ficient of s-, , changes each time a momentum shell
is integrated out. As a result the constant X is re-
placed by a succession of constants X„X2, . . ., X, ,
which only stops when s-, itself is integrated out.

m1

From the previous analysis one sees that the dif™
fer ence A., —X, , is nontrivial for any A between 1
and / —1; as a result 1, can have a strong l depen-
dence; A, 2 may be very different from y2
which would change the order of magnitude of s,
from previous estimates.

Another problem arises when all couplings be-
tween momentum shells are taken into account. The
couplings between neighboring momentum shells
are not small and cannot be treated in perturbation
theory. For example, if the specific coupling dis-
cussed previously were the coupling to the shell
l =1, the quantities x- are not necessarily small,
and in addition there is a factor of 6 in the coupling
term. Hence the integrals I- probably cannot be
expanded in powers of x-. As a result the effec-
tive interaction one gets after integrating out one
or more momentum shells will be more compli-
cated, involving complicated functions of s-, rather
than just quadratic and quartic terms.

III. IMPROVED ANALYSIS OF PARTITION FUNCTION

simplifications in the formulation of the partition
function and estimate more carefully some orders
of magnitude connected with the division of phase
space into ceQs.

It is convenient to replace the discrete spin vari-
ables si by a field s(x) depending on a continuous
variable x. This is accomplished by introducing
wave functions P-, (x) depending on x in place of
wave functions depending on n. Then

s( ) =Zp» Z
g 0 /m)(x)s~( (s. i)

The wave functions satisfy the orthonormality con-
dition

y-, (k) = f 8"*.y-, (x) .
We suppOse that the absolute value I Pg( (k) I is to
a zeroth approximation constant in the shell 2 '
—Ik I

—2. 2 ' and 0 outside this shell. The normal-
ization condition for Q-, (k) is

f, I e-., (~) I'= l,
where f» means (27/) Jd k. The volume of the fth
shell is (2v) 2 '"w, where w is a constant; hence
from Eq. (3.4) one has

(k) I

~ 2M/2 -1/l

(3.3)

(3.4)

(s. 5)

The precise phase-space volume for a degree of
freedom is" (2v)'; hence the position-space boxes
associated with momentum shell / have volume
2'"se '. This means the spacing of the position-
space boxes is a„with

(s. 6)

f 4i(xN. ,i,(x) = &.;,/)-«, (3.2)

where I„"means fd x. Replacing ss by s(x) is a
minor change. For large l one cannot distinguish
g-, (n) from g-, (x) since g-, (n) should be slowly
varying over distances of order 1. For small l,
for which a position-space box covers only a few
lattice sites, the functions g-, (x) willdiffer quantita-
tively from g-, (n) but the qualitative analysis of
this paper is unaffected by the change. The
Fourier-transform functions are

A. COA11HII APProxlHl8tfofl

Now a more careful analysis of the partition
function will be carried out taking into account all
the couplings between momentum shells coming
from the Ps s~ term. The couplings between dif-
ferent spins of the same shell will be ignored; 'by

the argument presented earlier these couplings should
be a perturbation and not important in a qualitative
analysis. In the following analysis we shall try
to estimate all terms to within a factor of 2 or so.
As a preliminary we. shaQ make some technical

(s. v)

To a zeroth approximation we imagine that I g-, (x) I

is constant inside the box m and zero outside it;
then the normalization condition gives

Iy- (x)I =2-""u'" (s. 3)

The quantity I P-, (k) I for k =0 must be 0 since k =0
is outside the shell f. This means f„-g-,(x) must
vanish; this means in turn that P-, (x) must be nega-
tive over about half the volume of the box m. Our
picture willbe that P-, (x) =2 ' w

' in half the
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volume and —2'~~ nr
'12 in the other half. Quanti-

tatively this picture is absurd, but for qualitative
purposes, in particular for integrals involving
g-, (x), one hopes that this discontinuous formula
is a rough approximation to the correct continuous
function.

Any two phase-space cells with different m and
E can be transformed into each other by combining
a translation in position space with scale trans-
formations in position and momentum space. We
assume an analogous transformation applies to the
wave functions P-, (x), namely,

s, (x) = 2~ "as'(x/2)

(n is a constant that will be fixed later) then

(s. i6)

venient to make a scale transformation such that
X, is an interaction of exactly the same form as
X0, so that the analysis of X0 can be used to inte-
grate $C1 too. The scale transformation is obtained
as follows. From the scaling law for the wave
functions, one has

g-, (x) = 2 ~'y-, ,(x/2) . (s. is)

If one writes

q-, (x) =go, (2 'x —mao) . (s. 9)

Consider a partitition function of the following
form:

s'(x) = o. ' 2 5 g-, ,(x)s-, .
m l =1

If one defines

(s. Iv)

00 00.

2=/ Q
m l=0

(3.10)
-1

Sml -1 + Sml

one has

(s. is)

where

Z, = —f P[s.(x)] ——,
' Z J' Vs(.x) Vs(x) . (S. ii)

The function P(s) will be permitted to be an arbitrary
even function of s, provided it goes to infinity
when s- ~ (this is necessary to ensure convergent
integrals). The expression f-„vs(x) ~ vs(x) is the
continuum form of 2gz g, ( —sssz, ;+st�). [When
these expressions are converted into momentum
space the continuum term is Jf kso „-o f while the
lattice sum becomes f„- g, (2 —2cosk, )o qo „- which
is of order Jf kso „-o f, especially for the small-k
part of the integral. ] When the model of Eq. (1.2)
is converted to continuum form, one obtains an
interaction of the form (3.11) with

s'(x)=Z 2 q-, (x)s-', .
m l=0

(s. i9)

Since the sum over I now starts at zero, s'(x) is a
field of the same form as the original field s(x).
K~ will be expressed in terms of s'(x) instead of
sy(x).

The constant z is an arbitrary scale factor in the
definition of s'(x). It will ultimately be chosen to
make the coefficient of the f Vs'(x) term in Rt be
the same as the coefficient K in K. For now it
will be left as an arbitrary constant.

Substituting s' for s1, one has

s(x) =Z- &-0(x)s-,+2 i'o, s'(x/2) . (3.20)

P(s) = (r Kd)s'—+ Xs' . (s. 12)
Now one can write Xo in terms of s~ and s'(x).
The gradient term becomes

s(x) =Z- g-0(x)s-0+s, (x),
where

(s. is)

s, (x)=Z, Z |)-,(x)s-, .
m l=1

(3. 14)

The result of integrating the variables s»0 will
be to express Z as an integral over the variables
sm1, smp, etc. , with an effective interaction'K1de-
pending on the field s~(x). Then one has to set up
the problem of integrating the variables s-1, when
these integrations have been carried out one must
integrate the variables s-a, and so on. It is con-

Interactions of the form (3.11) have been discussed
by Landau and Ginsberg. '

B. Integration Over Shell I=0

One now wants to compute the integrals for de-
grees of freedom from the shell 1=0, that is, one
wants to integrate the variables s-0, leaving the
variables s-1, s-„etc. unintegrated. It is con-
venient to isolate the s-o terms in s(x) by writing

f vs(x) ~ v„s(x)

=poZ- s'-, +n'2~ f v[s'(x/. 2)] v[s'(x/2)],
(3.21)

(s. 22)po = f [vkmo(x)-]

[where this integral is independent of m, owing to
Eq. (3.9)]. In Eq. (3.21) coupling terms (propor-
tional to s-Os- 0 with m, em) have been neglected.
There are no cross terms proportional to s-Os'(x/2)
because the gradient term does not couple degrees
of freedom from different momentum shells [cf.
Eq. (2. 2)]. The size of the coupling terms relative
to the size of the term g- s-o is determined by the
ratio of the variation of ka within the shell l=0 to
the mean value of k in the shell. The reason for
this is that p0 is equal to the average value of k
within the shell l =0 from Eq. (3.22), while the
coefficient of s"os-,o can be written ff (ks —po)
&& Q "0(k)p-,o(k) (the subtraction of po does not change
the integral because the wave functions are ortho-
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gonal). The integral of the absolute value of the
wave functions by themselves is 1, from their order
of magnitude, so the full integral cannot exceed
the maximum value of Ik2 —poI; i.e. , the integral
is a measure of the fluctuation of k within the shell
from its average value po. This fluctuation should
be smaller, by a factor of 2 or 3, than po itself.
In any case, the fluctuation of k within the shell
l =0 is smaller by a factor of 2 or so than the fluc-
tuation of k if one kept the full range of k in each
phase-space cell. But keeping the full range of k
in each phase-space cell is equivalent to using the
original lattice variables; in terms of these vari-
ables the nearest-neighbor coupling terms are just
large enough so that a perturbation expansion in
the coupling terms diverges. By considering only
the shell l = 0, the size of the coupling term is re-
duced by a factor of 2 or so from the critical size,
and will be neglected.

The P term in $Co is calculated as follows. First
one breaks up the integration over all x into inte-
grations over each position-space box m. Within
the box m one has

where the last term was rewritten from Eq. (3. 21)
by substituting I/2[vs'(x/2)] for v[s'(x/2)] and
then changing variables by x/2-x.

Now consider the integrations over s-o. It is
convenient to introduce the following definitions:

y- = (lpga)'"s-, , (s. 25)

The approximation of replacing s'(x/2) by a con-
stant is sufficient to make practical the calculation
of the integrals over s-o. This means one does
not have to assume that the coupling between s-o
and the variables in s'(x/2) is small. This is
fortunate, since it was shown in Sec. II that the
coupling between neighboring shells was not likely
to be small. This was due especially to the factor
of 6 in the coupling term (see Sec. II B).

The form of Xo is now

X, = ——,
'

w ' Z- {P[ —w'"s-o+ 2~ ~'ns'(mao/2)]

+P[w"'s-, +2""ns'(maga)]] --,' Zp, Z- s-o

—(Kn'/8) f vs.'(x) vs'(x), (3. 25)

s(x) = g-o(x)s-, + 2 'i'ns'(x/2)

so the integral over the box m is

(3.23) Q(y) = w 'P [(ICpo) '"(2w)'i'y],

z- = (Epo)' '(2w) '~'2 "ns'(maga),

(3.27)

(s. 23)

f P[y-o(x)s-, +2 i'ns'(x/2)] .
x eboxm

Now the degrees of freedom included in s'(x/2) are
associated with position-space boxes which are
larger than box m by at least a factor of 2. This
suggests that s'(x/2) will be essentially constant as
x varies over the box m. So approximate s'(x/2)
by its value at some point inside the box, for ex-
ample, the point x= mao. Now since g-o(x) is nega-
tive (namely, —w'~z) over half the box m and posi-
tive over the other half, one has

f, P[s(x)] =Z- —,
'

w '{P[—w"'s-o+2 ~'ns'(mao/2)]

+P[w'~'s-o+2 'ns'(mao/2)]} . (3.24)

The factor —,
'

se
' is half the volume of box m.

The replacement of s'(x/2) by a constant within

the cell m is the second major approximation made
in the qualitative analysis of the partition function.
The basic idea behind this approximation is that
since s'(x/2) only contains momenta k & 0. 5, it
should be more slowly varying than the wave func-
tion g-o(x) which contains only momenta 0. 5 & k & 1.
Roughly speaking the wavelengths of s'(x/2) should

be 2 or 3 times the wavelength of g-o(x). In the
phase-space cell m, t)t-o(x) goes through essentially
one complete cycle, in our crude picture. So
s'(x/2) should go through only a fraction of a cycle;
the simplest approximation one can make to
s'(x/2) is to replace it by a constant. It is hard to
evaluate how good an approximation this is.

m l =1
dz-, II [(zpea)-'"l(z-. )]

&&exp —Kaa 8 gs' x ~ . 3.30
X

It is convenient to define a new quantity Z, by re-
moving some factors from Z, and then define X, as
the interaction whose integral is Z, . In defining

Z, it is also convenien, t to change integration vari-
ables from s-, to s-, , Specifically, one writes

z=z, II [(Kp /2) ' 'I(0)] II II n
m l =1 m

(s. sl)

z, = II II ds-', e ';
m l=0

then one has

(3.32)

Z, =Z.- In[1(z.-)/f(0)] —(Ifn'/3) f [vz'(x)]'.

(s. ss)

These formulas have been arranged so that the
ratio I(z-)/I(0) appears in place of just I(z") in the
definition of X,. The purpose of this is a practical

I(z) = f dy exp[ —y ——,
'

Q(z —y) ——,
' Q(z+y)] .

(s. as)
With these definitions the result of doing the s-o
integrations in the partition function is to give
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one: ln calculations described subsequently, I(z-)
can turn out to be unmanageably large whereas the
ratio is usually not. VA.at one is interested in is
not Z itself but the free energy, defined as V ' lnZ
where V is the volume of the system, calculated
in the limit V- ~. In a volume V there will be
2 '"seV position-space boxes associated with mo-
mentum shell /, or 2 '

ao boxes per unit volume.
Hence one has [from Eq. (3.3l)]

+Z 2 '"wine+ V 'lnZ, . (8. 84)

This equation will be discussed further below.
It is convenient to rewrite X~ by replacing the

sum over m by an integral. This should be a rea-
sonable approximation since the points mgo/2 fol
which s'(x) is calculated in the sum are closely
spaced relative to the distance over which s'(x)
changes. To be specific we replace mao/2 by x;
the sum over m becomes (go/2) '

J„-, where (ao/2)"
is the volume surrounding the point mao/2. Then

X,= 2"u f, (lnI [(Kpa/2n )'~~2~ ~ans'(x)] —inI(0)}

—(Ka'/8) f. [vs'(x)]' . (3.35)

This means that the form of X, is the same as the
form of Xo. That is, one can write

X, = —J P,[s'(.x)] —(K, /2) f [vs'(x. )]2, (3.36)

Kq=Kn /4,

P, (s) = —2 mflnI[(Kpo/2@v) 2 os] —lnI(0)} .
(3.88)

C. Recursion Formulas

One can now set up a recursion formula which
allows one to carry out the s-, integrations for any
/. To compute the s-, integrations, which means
the s„-0 integrations, one simply substitutes P,(s)
for P(s) and K, for Kin the formula for 3CO and re-
peats the calculation which converted $CO into K&.
This will generate a new function Pz(s) and a new
constant Kz which define the interaction Xa. The
recursion formulas which give K„, and P„~(s) in
terms of K, and P, (s) will now be obtained. It is
convenient in practice to work with the function
Q, (y) defined by analogy with Eq. (3.2'7) to be

Qi(X) = ~ 'Pi [(2~/% po)'"y] (3.39)

It is also convenient to introduce independent scale
factors a, for each /, to be fixed later. The recur-
sion formulas are

I&(z) = J„dy exp[- y'--' Qi(z+y) -k Q&(z —y)],
(3.41)

Q...( y) = —2'(lnI, [2-'"o., (K, /K. ..)"'y] - lnI, (0)} .
(3.42)

The factor (K, /K„, )'~' appears in Eq. (8.42) be-
cause when Eq. (8. 38) is generalized to give
P„~(s), K is replaced by K, inside the function I„
while the conversion of P...to Q„, through Eq.
(3.39) involves K, , Using Eq. (3.40), one can
rewrite Eq. (8. 42) as

Q&,&(y) = —2' [lnI&(2x 2~'ay) —lnI&(0)] . (3.43)

To complete the recursion formulas, one defines

%~=K,

Qo(y) = Q(y)

(3.44)

(3.45)

(3.46)

+2 (1 —2 ) 'inn, ] . (3.48)

This formula expresses the free energy as a sum
of contributions from each momentum shell. The
expression in brackets is the free energy per de-
gree of freedom in shell /; the factor sv2 '" in front
converts this to a free energy per unit volume.

There is also a recursion formula for calculating
the free energy. There is one point that has to be
clarified before the formula can be written down.
If the system is confined to a volume V, i.e. , if
s(x) is defined for x in a volume V, then s'(x) is
defined in asmaller volume, namely, 2 "V, owing
to the scale change going from s, (x) to s'(x). Hence
when Z, is calculated as integrals over the s-, one
should include only those position-space boxes m
which lie within the volume 2 V. It is more con-
venient, however, to compute Z, over all boxes
lying in the original volume V; this can be com-
pensated for by multiplying lnZ& by 2 . Define I'&

to be Fy = V 'lnZ$ where Z$ is computed as just
described; then the term in I' due to Z, is 2 ~F,.
But the rule for computing Il j from X, is now iden-
tical to the rule for computing F from 3CO. So we
are ready to write a recursion formula involving
E) and F)+y» namely»

&, = —
2 ruin(K, po/2)+wlnI, (0)+2~(1 —2~) ~inc, ,

+2 P„g . (8. 4V)

To complete the specification of the recursion for-
mulas, one defines I' = I'0. The recursion formula
for E, leads to the following formula for the original
free energy F:
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s, (x)=Z Z y-, ,(x)s-.. . (3.49)
m

where the s-, are the original phase-space cell
variables. The field s, (x) is the contribution to the
original field s(x) from degrees of freedom with
momenta ~ 2 & 2 '. The field s, (x) is constant over
distances small compared to 2' (in units of the
original lattice spacing); for qualitative purpose
the field s, (x) can be represented by its values on
a lattice with lattice spacing - 2'. The effective
interaction X, resulting from integrating the vari-
ables s-p s f& ~ ~ ~

& sm, g could have been written
as a functional of s, (x). However, it was decided
to express X, as a functional bf a scaled field vari-
able, which we shall denote s„(x). The relation of
s, (x) to s„(x) is

-re/3si(x) = 2 &pcvgQ2 ' ' ' ng gs«(2 x) (3. 50)

The product ap a, & arises because there are l
changes of scale involved in the definition of
s„(2 'x). The scaled field s„(x) is representable,
qualitatively speaking, by its values on a lattice
with unit lattice spacing. In terms of s„(x), the
effective interaction is

&,=- J' „P,[s„(x-)j K,/2 f—„[Vs„(x)-j', (3. 51)

where

P, (s) = soQ, [(K,pq/2w) ' s j . (3. 52)

The effective interaction , is analogous to the
effective Ising model discussed in I for block size
I = 2'. The interaction X, describes the interac-
tions of low momentum degrees of freedom, to be
precise degrees of freedom with wavelengths of
order 2' or larger. The field variable s, (x) is
analogous to block spin variables of I for block
spacing L =O'. By introducing the scaled variable
s„(x)one has eliminated all reference to the new
lattice spacing in X„ the only way X& is distin-
guishable from the original interaction 'Kp is if K,

So far the constants n, have not been determined.
It is not difficult to see that the free energy F is
independent of how the a, are chosen: The functions

Q, (y) and I,(s) are independent of the o.'s; the con-
stants K, do depend on the n's, but Q, (y) and I, (z)
do not depend on the K's. In the free energy itself
any change in the 0,'s is compensated by corre-
sponding changes in the K's. The n's will there-
fore be left arbitrary for now.

D. Interpretation of Recursion Formulas

The recursion formulas for carrying out the in-
tegration over the l th momentum shell have now

been written out. The next step is to clarify the
significance of these formulas, and to relate them
to the general ideas of the renormalization group.

Define s, (x) to be

is different from K or if P, (s) is a different func-
tion from P(s). This is analogous to the result of
I that the block Hamiltonian could be distinguished
from the original Hamiltonian only if the coupling
parameters Kl, and AL, of the block Hamiltonian
were different from the original constants K and h.
Having an I-dependent function P, (s) is equivalent
to having an infinite number of l-dependent con-
stants. For example, one might try to represent
P, (s) by a power series expansion g„~f„,s ". The
constants f„, (0—n —~) are an infinite set of I-de-
pendent constants.

The recursion formulas determine P„,(s) and
.K„& given K„o.&, and the function P, (s). (The
scale factor n& is analogous to the scale factor
introduced in I when a block spin was rescaled to
have the values + 1 instead of +I; see below. )
The recursion formulas are analogous to the re-
normalization-group differential equations of I.
More precisely the recursion formulas are anal-
ogous to the finite transformation giving K» and
h,» in terms of KJ. and h~, since the effective lat-
tice spacing is doubled when l - l+ 1.

The basic idea of I was that at the critical point
the coupling parameters of the effective Ising mod-
el should approach a fixed point (K~ -K„k~= 0)
when L - . This continued to be true when there
was an "irrelevant" parameter ql, in the effective
Ising interaction. In this paper the renormaliza-
tion group involves an infinite number of irrelevant
parameters. One can still hypothesize that the
critical point corresponds to a fixed point, although,
as was made clear at the end of I, this is not
guaranteed.

A fixed point would be a solution of the recursion
formulas independent of l, e. g. , P, (s) = P, (s) and
K, =K, for all l. It is easy enough to make K& be
a constant: We simply define o, = 2 for all l. So
the crucial problem is whether there exists a func-
tion P, (s) which solves the recursion formula. In
practice this means there should be a function

Q, (y )
—= Q, (y) solving Eqs. (3.41) and (3.43).

In I the effective coupling parameter Kl. was in-
dependent of I- only at the critical point, whereas
Bow one can fix K, =K independently of l simply by
choosing a&= 2 for all l. The reason for this dis-
crepancy is that in I the scale factors analogous to
o. , were chosen to fix the order of magnitude of the
scaled block spiris (the scaled spins had values +1).
In principle one could choose the constants n, to
fix the order of magnitude of the scaled spin func-
tions s„(x)but in practice it is awkward to do so.
So in this paper one keeps K& fixed but the order of
magnitude of s„(x) is allowed to float. At a fixed
point the order of magnitude of s«(x) will be inde-
pendent of l because it can only change with l if Q, (y)
changes with I (see below).

To continue this analysis of the significance of
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the recursion formulas, it is necessary to have a
qualitative formula for the spin-spin correlation
function g (k). The calculation that folIows will give
only a rough order of magnitude for g(k) but will
be sufficient for the purposes of this payer. A pre-
liminary discussion of g (k) was given in Sec. II C;
Eqs. (2. 16) and the continuum form of (2. 15) are
still valid. It will still be true that the products
s $ f so, average to zero un less m = 0 and l, = l, but
this must be proven again. Consider the expecta-
tion value of s-&s-, &, for arbitrary m, l, m&, and

Let l, be greater than or equal to l. The ther-
modynamic expectation value is

Xo(s-, sm, l, )=Z-'Il g ds-„, (sm, s.-„,s ) .
(3.53)

The integrals for la & l can be carried out in the
same fashion as in the calculation of Z. %hen one
comes to do the integrations for la= l one gets one
integral with an extra factor s-, in it. (Assume
for now that l& &l so s-», is not involved in the in-
tegrations for la= f. ) Tbe actual integration vari-
able y is a scaled form of s-&, if one traces through
the changes in scale one finds s~& = &0&1.
x (K,po/2) ' y. Now the integral over s-, in Z re-
duces to the form given in Eq. (3.41) where z is a
variable depending on degrees of freedom with l2 &l.
With the extra factor sm& included this integral be-
comes

no nl nl I(KIPo-/2) f „dyy

x exp[-y —o Ql(z -y)- 2 QI(z+y)] .

This integral vanishes for any z because. the inte-
grand is odd in y. This means that the expectation
value of s-, s-», vanishes unless m1=m and l, = l.
Thus one should consider the expectation value
(s-, ). In this case the integral over s-I becomes

no nl' ' nl I(KIPo/2) -f „d3'3'

X exp[—y —o QI(z y) —. o 'QI (z+y)] .

It is:eonve111ent to def1ne

RI(z)= [II(z)] ' f„dy3'

x exP [-y —o Q I (z —y ) —p 'Q I (z +y )]

(3.54)

The function R, (z) is the expectation value of y for
fixed z. If R, (z) were to be independent of z, then
the integral containing s-, would only differ by a
constant factor from the integral without s -„. in
this case the average (s-, ) would be simply
no' ' 'nl-I(KIPo/2) 'RI. When R, (z) does depend on
z, then to compute (s",) one must not only com-

puts the integral over y that gives R, (z); one must
also compute integrals over those degrees of free-
dom for la &l which are contained in z. That is,
there mill be an integral for la= l+ 1 which differs
from Eq. (3. 41) by including the function R, (to
be precise, R, [2x2 ~o(z+y)]]'; the presence of
R, will change the dependence on ~ of .this integral,
so in turn an -integral for l& = l+ 2 will also differ
from Eq. (3. 41), and so forth. The reason for
this complication is the coupling between the lth
momentum shell and shells for la &l. The expecta-
tion value (s-,) cannot be determined until this
coupling is taken into account and the only way this
can be done is by integrating the shells with larger
la.

For an. order-of-magnitude calculation, we shall
substitute R, (0) for R, (z).and not carry out subse-
quent integrations involving R&. This substitution
would be invalid if R, (z) were to change by orders
of magnitude fI'0111 RI(0) oveI' tile 1'allge of z 'that

i p t t b eq ti t gr t' . I th
calculations of this paper R, (z) does not change
drastically over the important range of z. How-
ever, it is a nontrivial assumption that R, (z) does
not change drastically- and:. one must check this as-
sumption every time it is used.

Now one can write down the order-of-magnitude
formula for g(k). If k lies in momentum shell I
then [from Eqs. (2. 16), (S. 5), and (S. 8)] g(k)
= (so,). Replacing R, (z) by R, (0), one gets

g(k)= no' ' 'nl I(KIPo/2) RI(0) . (S. 55)

%ith all n's equal to 2 and E,= K this gives

g(k)-2 'R, (0) (3. 56)

(dropping all constants which do not depend on I).
A consequence of this formuIa is that if Q, (y) -Q, (y)
at tbe critical point then g(k)- 2 ' when Ik I- 2
i.e. , g(k)-11 . This ls ill contradicbon witll tile
previous analysis neglecting coupling terms, which
gave a different critical exponent for dimension
d &4. In the analysis for d &4 neglecting all cou-
pling terms, it was found that the term proportion-
al to s-, was negligible compared to the s-, term.3

ThiS was true provided l was large and one was at
the critical temperature. In the present analysis

2
the s-& term has become the explicit y term in the
integral for I,(z) while the s-, term has been re-
placed by tbe Q, (y 1z) terms. The yo term would
be negligible too if the function Q, (y) were to in-
crease rapidly with y so as to make R, (0)«1.
This does not happen in practice, which 1s fortu-
nate. If one could neglect the y~ term at the crit-
ical point, there would be no need for its presence.
But the absence of the y term, for all l, would
mean the Vs (x)~ Vs (z) term is absent in the original
interaction. Then one could set K= 0; K also
appears in I'(s) but there any change in K can be



KR h/H E TH C. NLr 80N

compensated for by chxuiging» . SO if the y' term
is neg/igibie at the critical point, one could get
cx'itic5, 1 blba6oi Oven in th8 5bse5de 6f spin-spin
coupling, simply by choosing t' suitably.

80 f61' Oi8 Qi'868fit L58LlIsi8 t@

make sense the y' term cannot be negligible at the
critical point. Tllis discussion shows that the
fix"evious snlysis neglecting s,ll cedphrig termS
cannot be equi'tent, hikes kddptding to tbe yi'edciu8
analysis one could get cxitical behavior neglecting
the spin-spin lntei action tsrxns.

Accox'ding to: the present analysis //(k) behaves
as k "I at the criticlsl yrNiN fo|; wy di~ension 4,
whereas other ca/culations give//(k)-h"»" lvith

/~ 0. 25 f@r tAre di&858i658 nd g ~0.08 ih thx'ee
dimensions. ' However, the present analysis is
only quahtative. It will be shown later that some
Of tbsp t'ai'i@8 58gieCtd ifi the pi'854Iit a5$Ligli8
cht1 i@ad to 4 nahklp6 g. Shee th8 Negicted t@i'ms
are isupposed to be sinall, they ihouid lead to a
small g. This is aensistent with the e~eeted num-
berS 0. 85 and Q. 08.

W. Sot.UNIONS 05 RECURSrobt PORMUiAS

A. Expeetatighs

It iQ 18 useful t0 ha'v0 Sciiri@ 484tations a5ottt
the solution of the recux'sion fornlulas foi' Q&(z}.
These exxpectations will be checked latex against
nuxnerical solutions of the recursion forlnulas.
one is above the cxitical tempel'atllre then g(k)
should be finite for k-0 This .retluires that //, (0)
(see Sec.

Illa')

behaves aS 8"x' for lax'ge enough /.
If one goes back to the analysis neglecting all cou-
pling terms, one predicts that (extcept at the cl'iti
cal Point) the interaction becomeS Gsuesian for
lax'ge /. If this is 80'thell Qi(z) must b8 propor~
tional to 8z'zx for large / in order that //, (0) be-
have as 8 '. At the cx'itical point one hopes that
g, (z) approachea a limit q, (z). Temperatuxes be-
low the criticQ teapot'h6ir@ ill not be dise@ssed
in detail. Near the critical temperatuie one san
use @ linearised foxm of the i 0eux'lien formulas
si&ilax' to tbe linehz'ised tenrwLSshtiori-gtill
ex/uattons discussed in I. If Q~(z) Q»(z) is small
then one exxpects Q&,l(z)- Q, (z) tb be a lixleer func-
tional of f/'(z)- Q»(z)], namely,

0i. (8) 4/, (z) f.-."7'(z,y)ff/(&)- ~.(y)]
(4 i)

Prom kt/s. (8. 4l) and (8.48) one can get an exxplicit
formula fnr 7' in terms of the ftinction Q, . Ilet Z

be R&8~Ixz; then

zz d/8+ I .
8 cine solvis the nonhnear recursion formulas

for Q, (z) for temperatures slightly above critical
and no magnetic field, then one expects that

@~( ) ™(K.-K)8'"'q(z)+ Q.(z},

where E, is th@ critical value of E and there are
the following restrictions: (i) q(z) is suitably nor-
malised to eliminate a constailt of proportionality;
(ii) / must be large enough to eliminate initial
t|'arisient tax'nis Corresponding to exponentially de-
ci'eading sdlutions of the linearized recursion for-
mula (see I); (iii) / must not be so large that Q, (z)- Q, (z) is large. For K near K, and very large /,

Q, (z}is no longer near Q, (z), so Q, (z)- g»(z) is no

longer a solution of the linearized recursion for-
mula. For very large l one expects

(4. 7)

Q, (z) f(K, K)28'z (4. 8)

where f is a function to be detex'mined. Now for
intex'mediate values of /, for winch Eq. (4. 7) holds,
oh4 bas a translational symmetry, namely,

%here 1»(z) is /, (z} calculated fox Q, (y) -=Q,(y). As
discussed in i, the hgearifed recux'sion formula
shouM have doe exponi|tially growing solution re-
flecting the instability Of the fixed point to changes
in teniyeiature, and a second exyonentially grow-
ing solution deflecting the instability to adding a
mhyi@tic Geld. An e~onentially growing solution
corx'ely6nding to the temperature instability should
hRV8 tike forfn

@i(z)- @»Iz}=8'"'q(z) (4 8)

where iiz is a constant. [The / dePendence is writ-
ten 8'"~ becauSe 2' is equivalent to the variable L
of I so 8'"z is eciuivalent to L "z and Eg. (4. 8) is
analogous tc Eg. (8) of I. Here the symbol y» is
used for the exxponent to distinguish it from the
integration variable y» ] The function q (z) must be
Rn eigenfunction Of 'E:

2"zq(e)= f„T(z,y)q(y)dy . (4. 4)

$'roA Syrhnietg'y Q.rguments one would expect the
temyetatux'e instabihtg to be a,ssociated with an
eigenfunction q(z) 8'ven in z, while the magnetic
i|@id instbility would have an odd eigenfunction.

The magnetic unstable solution can be given ex-
plicitljr; it is

e, ( )-e.( )=(8'"")z, (4. ~)

&ik S)=88» exxpf- (y-z)'.-. »Q. (&)-. »Q»(8z-, y.)l
/, (z} Q(,x(z, K» K) ~pi(zi 8 "(K»-K)}. (4. 9)

exxp[-. & -. »@ (y),-.xe (-y..)]. 3
&,(0) /'

This ~6 Of symmetry is yrdsex'ved by the non-
h5ear i'eaux Sion formula so it should held also for
very large /; from Exi. (4. 8) one gets
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4f(K, K-) =f(2. &(K~ K—)) . (4., 10) ,I,(g) = m'::~ ~(l+ r, )
'~ e "", (4, 19)

Ol

(4. 14)

(4. 15)

The correlation length is usually written P
- e " so

one expects v= 1/yr.
In summary, one has three exponents which can

now be determined, namely, q (already found to
be zero), y, and v. There are others one wouM
U.ke to obtain but they mill:not be discussed here,
because this paper is already too long. .

B. Gaussian Model

Now solutions of the recursion formula for Q,(y}
mill be discussed. First consider the Gaussian
model. In this case Q(y) has the, form

(4. 16)

The solution of this equation is

f(~)=~ "fi(~), (4. 11)

with f~(e) periodic in Inc with period yr ln2; in
other words f~(e) is determined for small e if it is
known for q™1,which me'ans that for order-of'-
magnitude purposes

f(g) ~3~"1f (4. 12)

One can nom get the dependence of the magnetic
susceptibility X on c =K, -K. The susceptibility
is the correlation function g(k) evaluated for
k=O. This means, qualitatively, X is 2"R,(0) in
the limit I ~. In this limit, using the form (4. 8)
for Q, (z), one gets

y.
- I/f(~) . (4. ia}

-'»srTherefore X behaves as & . One generally .

writes the behavior of X as 6, so this analysis
gives y as 2/yr.

The correlation length ( can be" defined qualita-
tively as the inverse of the value-of k below which

g(k) is of order g(0). This means that $- 2 "where

/„ is the lowest value. of I- for -which the large-l, ap-
proximation (4.8) holds. If there is not a large gap
between the breakdown of the linear approximation
(4.7) and the onset of the large-I approximation
(4. 8), then I„is given qualitatively by the value, of
I for which Q,(z) —Q,(z) is of order 1, namely,

Fquation (3.43) now gives

(4..20)

So one has

(4. 21.)

To comI te the correlation function one must com-
pute R,(0); from Eq. (3. 54) this is

1 1
R,(0) =

From Eq. (3.56) the correlation function is

1 1 1g(k}-
I, 1„/~

t

(for given 0= I k I, . I is determined by the require-
ment 2 '- k). ,This is the expected form of the:
correlation function for the Gaussian model. ;The
critical point occurs at r0=0. For r0=0, Q, (y)
approaches a fixed function Q,(y) for I:-~, in fact
Q, (y) —= Q,(y) for all I. The function Q,(y) =-0 for
all y. This functi6n defiries a fixed point of the re-
normalization group which will be called the Gaus-
sian fixed point. [The requirement ro= 0 determines
the critical value of the spin-spin coupling constant
K to be r/d, from Eq. (4. 1V). ]

The exponentially growing solution near the
fixed point corresponding to the temperature insta-
bility is given by Eqs. (4. 18)and (4. 21), which in tui n
give y~=2. Therefore y=1 and v=O.'5 these are
the exact exponents for the Gaussian model.

(4. 23)

C. Pertuibations of Gaussian Model

The next step is to look at small departures from
the Gaussian model. Consider first the:addition
of a small quartic term. Then Q(y) has the form

Qb) = roy + ~oy (4.24)

where X «0r 0[In terms of the original quartic
constant X, , Ao is (2/Kpo) mX. ] Calculation shows,
that to second order in Xo, Q~(y) is also quartj. c:.

Ql (y) = r1 y + ~1 y (4. 25)

where x& and X& depend on xo and Xo.: More geheqal-
ly, one has

(4. 26)

where, from Eqs. (3.12) and (3.2V),

ro = (2/Kp0) (r -Kd) (4. iv)

provided-one calculates the recursion formula for
Q, only to second order in X,.q. Given a Q,(y) of
this form one has, to order X»

and K and w are the coefficients in the original lat-
tice model [Eq. (l. 2)]. Given that Q(y) is quadratic
in y, it is easily seen that Q, (y) is also quadratic:

Qg(y) = r)y '(4. 18)

This gives

I,(s) =f dy [I —x, (y'+ 6z~y') + —,'i~(y'+ 6g2y~)3 ]

&exp ( —.y —rgy —r)z. —X)s } . (4. 27)

Let q, =(1+r,) . Then one ha,s
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I,(z) =(qp) 1 —x, —q, +- q,z
1/2 2 6 2

2 105 4 12&15 3 2 36&3+~)
2 gg+ /gal + Q)z

2
&i.~ =~r —@~ ~ (4. 35)

For small ~„),changes slowly with l and it is a
good approximation to rewrite this recursion for-
mula as a differential equation:

x exp( —r,z —X,z ) .2 4 (4. 28)
dx

r 9)„
dg

(4. 36)

From Eqs. (4. 28 and (3.43) one obtains a quartic
form for Q„~(y), neglecting terms of order x„
with

The solution of this equation is

X(= Xp(l+ 9lh.p) (4. 3V)

rl+1 = 4(ri + 3q
&

~ r
9—q i ~'l )

X(,~ ——16x2 (X) —9q(X)) .
(4. 29)

(4. 30)

r, = —3x,(l —4& 2 ") ' .
This equation, for l=0, can be rewritten

(4. 32)

r-Kd= —3(1 —4x2 ) '(2/Kpp)goy . (4. 33)

This equation determines the critical value of K,
to first order in X.

In four dimensions the recursion formula for g,
is

2 2
~)+g ~$ 9~1~1 ' (4. 34)

In this case X, decreases with l, but rather slowly.
One still finds that r, is small at the critical point,
in fact Eqs. (4. 32) still holds, so one has

Consider first the recursion formula for X„&. For
dimension 3 or less, x„& is larger than X, (if A, is
small enough). This means the Gaussian fixed
point is unstable to non-Gaussian perturbations; if
one starts with a small term ~oy', the correspond-
ing term ~,y increases with l until a perturbation
expansion in X, no longer makes sense. In this
case the Gaussian fixed point is analogous to the
doubly unstable point discussed in I in the presence
of an irrelevant variable. In this case the Gaussian
fixed point is relevant to the critical behavior of
the model (l. 2) only if x= 0. On the other hand,
for 5 dimensions or higher, g, decreases with l
so that if one starts with small but finite ~, the
quartic term disappears as l increases: One ap-
proaches the Gaussian fixed point as l- ~. To be
precise, to approach the Gaussian fixed point re-
quires that ~, and r, both go to 0 as l- ~. This is
automatic for X„ if d&5. For r, -0 also one must
choose ro correctly. From the requirement that

r, -0 for l- ~ one can compute r, for finite l from
the recursion formula (4. 29) rewritten to give r,
in terms of r„~. In particular this allows one to
compute ro and therefore to determine the critical
value of K. If one computes only to first order
in ~„one obtains

4 -(n-f) (4. 31)
a= l

If $ f is small for all l then so is r„so q, = 1. Then

so z, goes to zero as l"~ .
Thus one confirms the analysis neglecting all

coupling terms in that the critical behavior of the
model with a small quartic term is the same as
the critical behavior of the Gaussian model in 5
dimensions and higher. 0 In four dimensions the
critical behavior is close to that of the Gaussian
model, but the persistence of the quartic term
leads to some departures which will not be dis-
cussed here. In three dimensions or less, one
has to look for a non-Gaussian fixed point to de-
scribe the critical behavior of non-Gaussian mod-
els.

D. Numerical Solution for Three Dimensions

To find the critical behavior in three dimensions
for the non-Gaussian model, the recursion formula
for Q, (z) was calculated numerically. The function

Q, (z) was calculated on a uniformly spaced mesh
with 41 points from z = 0 to s = 4. Linear interpola-
tion was used to compute Q, (z) for points in between
the mesh points. For z&4, Q, (z) was approximated
by the form

(4. 38)

The exact form used for ~&4 did not seem to affect
the calculation much. The integral over y was cal-
culated by neglecting the region y& 3. 2 and dividing
the region —3. 2 &y& 3. 2 into 30 equally spaced in-
tervals. In each interval the integral was calcu-
lated using the two-point Gaussian integration for-
mula. ' All calculations were performed in double-
precision arithmetic on the Wilson Synchrotron
Laboratory PDP-10 computer.

The initial function Q(z) was chosen to have the
form of Eq. (4. 24); Xp was fixed at 0. 5 and rp was
varied to locate the critical point. It was not dif-
ficult to locate the critical value of r, for ro. For
rp& r, the values of Q, (z), for fixed z, went rapidly
'to + on as l On; for rp &r, the values of Q, (z) were
erratic. In practice, r, was found by finding the
sequence of values r„ for which the lth function
Q, (z) satisfies Q, (1.5) =0. This sequence appeared
to be converging rapidly with increasing l: The
differences r„-r, as computed numerically are
shown in Table II. The value of r, was found to be
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The quantjg rvalues of &Ql
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TABLE II.

value of r for w xcdefined as the va ue
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2
3
4
5
6
7
8

0.024
0.015
0.0046
0.0015
0.00047
0.00015
0.000048
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TABLE III. Values of A)=2 ~ IQt0'. 5) Qc~l. 5)ll
(~-~,) and B&=2 '(r-~~) ~ Q&0..5) vs /, for ~-x~
=0.00005 and x-r~=0. 000033. The value chosen for yz
is l.65. One expects A& to be constant and independent
of x for intermediate values of l while B, should be con-
stant for large l.

y —g~= 5 x10 ~—g, =3.3 x lo-'

I
3

6
7
8
9

10
11
12
13
14
15

A,
—18.3
—0.28

1.' l4
1 37
1.41
1.43
l.49
1.63
1.89:
2. 31
2. 90
3.67
4. 68

By
—1720
—412
—100
—23
-4.3

0.1:
0. 98
1.08
l.05
1.01
l.00
0.99.
0.98

Ag
—28. 5
-' l.15

1.00
l.35
l.40
1.42
l.46
1.57
1.78
2. 14
2. 66
3.37
4. 28

B
—2855
—686
—168
—40
—8.3

0.81
0.82
l.07
1.06
1.02
1.00
0.99
0.98

hopefully the present paper is an adequate introduc-
tion to the phase-space cell method of analysis.

There are six loose ends to be mentioned. One
is the problem of an external field. A term hgs&
in the original interaction cannot be written in
terms of the phase-space cell variables s, - because
g zsz corresponds in momentum space to o~ with
k=0.. The point k=0 is excluded from all the rno-
mentum shells-with finite l. So to accommodate
this term one must redefine the momentum-space
division to have only a finite number of shells,
with the innermost shell replaced by a sphere.
That is, the variable l has a maximum l and the
momentum-space cell for l = l is the sphere lk!
—2&&2 . There are two ways to justify this re-
definition. One way is to put the system in a box
of volume V, in which case no momentum-space
cell can have volume less than V '. Then l is
(roughly)

- 2&&max

The other way to justify a finite l is if the system
has a finite correlation length $; then one can
choose l by

2&max )(
This is possible because when 2 & &, the position-
space.boxes associated with shell l are larger than
the correlation length and coupling between these box-
es should be small. Hence there is no need to restrict
the momentum k to a shell instead of a sphere in
order to, reduce the coupling between these boxes.
Sigce ( depends on K and h, this means the allow-
able. ..vglgyg of, )~~, .@lg,o.depend on K and h. This
cogjp3iqa)es. the @na4gsis:!vghkch!is .gaby. only. ': (the;

case h = 0 was discussed in detail in this paper.
The second problem is the question whether q

will be different from zero in more accurate cal-
culations. One correction that could change q
arises as follows. In the integral of P [s (x)] over
the box m one replaced s'(x/2) by s'(mao/2). A
better calculation would replace s'(x/2) by a Tay-
lor's series about mao/2:

s'(x/2)= s'(mao/2)+ p(x —map) Vs'(mao/2)+ . ~ .
(5 3)

If the terms involving Vs'(mao/2), etc. , are kept
one has the possibility of generating extra terms
proportional to [Vs'(mao/2)] in calculating the
integral over s~. This would change the recursion
formula for K... [Eq. (3. 40)]; one can show that
changes in this recursion formula lead ultimately
to possible changes in g.

The third problem is the question of what hap-
pens in two dimensions. The author was unable
to get sensible results from the recursion formula
in two dimensions. The reason is that the recur-
sion formula has a stabilizing feature in three di-
mensions and higher which is absent for two dimen-
sions. The stabilizing feature is that in three di-
mensions and. higher 2&&2 " z is less than z. As
a result, Q„,(z) for z large is determined by the
behavior of Q, (y) for y &z [cf. Eqs. (3.41) and

(3.43)]. Hence the asymptotic behavior of Qp(y)
for large y has little influence on the functions

Q, (z) for large I and fixed z. This is no longer
true in two dimensions, and this makes the solu-
tions of the recursion formulas be erratic in two
dimensions. Hopefully this situation can be cured
by taking into account terms which make q nonzero;
this could restore stability. The author has not
checked this hypothesis in detail.

The fourth problem. is why there is no discussion
here of low temperatures (T & T,). There are two
reasons for this. One is that for low temperatures
the initial nearest-neighbor coupling constant K is
larger than the critical coupling; as a result it may
no longer be'legitimate to neglect the coupling be-
tween different position-space boxes in the phase-
space cell analysis. Another reason is that, below
the critical temperature, numerical calculations
indicate that the functions Q, (y) become sharply
peaked as l increases. As a result the crude
square-wave approximation to g-, (x) may no longer
be adequate; the approximation of replacing s'(x)
by a constant may also be poor. (I thank G. Golner
for discussion on this point. )

The fifth problem is whether the Vfidom-Kadanoff
sealing laws are valid for the qualitative analysis
of this paper. In I it was shown that these scaling
laws could be derived from the renormalization
group equations. However, in I it was assumed
that the renormalization-group equations are exact
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even away from the critical point. The analysis
of this paper is, so far, restricted to zero mag-
netic field above the critical temperature, and this
is not Sufficient for deriving the scaling laws. It
may be that one can extend the analysis sufficiently
to be able to establish the scaling laws, but this
the author has not done.

Finally, there is the question why the momentum
shells were chosen to include exactly a factor-of-2
range in momentum. Nhy not a fa.ctor 1.5 or 3
instead'P The factor 2 represents a compromise
between two conflicting desires. Gn the one hand
one wishes to make the factor aa small as possible
to reduce the coupling between neighboring boxes
in position space. If one keeps all moments below
the limit 2x 2 ', i. e. , replaces the sheQ by a
sphere, then the coupling is critical (so long as
2' «$}. So it seemed that a minimum reduction
would be to remove half the range 0 —k & 2 &2'
givingthe she112 ™k—2X2; i. e. , the factor 2

is an upper bound to what one can accept. On the
other hand one wants the position-space boxes
associated with shell l+ 1 to be as large as possible
relative to the boxes for shell l to justify neglect-
ing the x dependence of s'(x/2) over the 1th box.
Again a factor of 2 in size seemed the minimum
acceptable, but this means the radius of the (1 + 1)th,
momentum shell has to be no more than ha, lf the
radius of the 1th shell. 8o the factor of 2 is a lower
bound. I cannot argue that 1.9 or 2. 1 would be
worse than 2, but it is ridiculous to substitute i..9
or 2. 1 for 2 in an analysis as crude as this. The
author has not tried varying this factor in the nu-
merical calculations.

VI. CONCLUSIONS

The phase-space ceQ analysis of this paper ex-
tends the Kadanoff block picture 3 in several re-
spects. First, it was possible to obtain explicit
exponents from the phase-space cell analysis
(v=0. 61, y=1. 22, and y=0; with mox'e effort one
could derive the other exyonents}. These exyonents
are not exact, but their errors from the expected
values for the Ising model are small. The small-
ness of the error may mell be fortuitous, but even
so there is much to be learned from the analysis of
this payer. Secondly„one sees how one can moti-
vate the existence of block Ha,miltonians. In this
paper the block Hamiltonian with block size L arises
as a result of integrating the components of the
spin with momenta above L, '. The intel'pretation
of the resulting effective interaction as a block
Hamiltonian is a qualitative interpretation. T'he
block Hamiltonian is not truly a, function of blocks
of syins with sharp boundaries; instead, itis a
function of an effective spin field sx(x) which has
fluctuations only for distances of order I or larger,
Thirdly, the block Hamiltonians ar'e not effective

Ising models with only toro parameters R'& ~d It, L,;
the effective intern, coons of this payer have the
Landau-Ginsberg form and contain an unrestricted
function 2'x(s) which is etiuivalent to an infinite
number Of ps, ramet@rs. %'hue the Kadhnoff picture
has been genera, limed t@ allow for a continuous spin
variable and for 8, more gener al farm of intex'ac-
tion. Still, the basic quahtative features of the
Kadihnoff picture are maintained in this gener'alits. -
tion. The r8cui'sion foi india conhecting 'C& to X„,
(which is etiuivalent to doubling the block siss) is
analytic, just as the Kadanoff yictux'e predicts (see
I). At the critical temyexature the effective inter-
action approaches a fixed point of the recursion
formula, )ust as %as predicted from the Kadanoff
yicture (although this prediction was not guaranteed
to worix in the presence of irrelevant variables).
The critical exponent@ ate related to solutiotil of
the linearised form of the recursion formula, just
as was the case for the Kadanoff yit!ture.

The importance ef the phase-syace cell analysis
is that it provides an overview of the px'oblem of
how critical behavior arises fram the partition
function examined in this paper. Sy studying the
phase-syace ceil analysis one gets many ideas on
how One has to set up an approximate calculation
of the partition function in ordei' to get h. reasonable
approximation 40 its critical behavior. The model
calculation of this payer is not, itself, a satisfaetoz'y
approximation bdcause one cannot trust the as
sumytions made in deriving the model. . But maybe
one can leh.rn enough from tMs model. So that one
can Set up sensible 8nd reliable ayproximations
that Can be trusted.

Vifhat are some of the ideas that one learns fx'oN
the phase-space ce11 aodelV

First, there is the idea. of inti'oducing the mo-
mentum shells and then separating th calculation
of the partition functidn into integk. ations over the
spins o'& for e8,ch xnomentum she1, i,. The advantage
of this is that the integration over a single momen-
tum shell gave analytic results, so it is x'hasonable
to introduce approximations in the cslcu1htion of
these integrals. Along with the momentum-shell
division, it is crucial that one makes the SLnie ap-
proKmations for every momentuim shell, at les.st
for momenta in the range $ «4 «1. That is, the
recursion formula that one gets froin integratirig
out a pa.rticulax' momentum shell / should b~ in
dependent of l. Other'vise it is hard to set up the
formal theox'y of the fixed yoint and the relition of
the critical exponents to departures fram the fixed
point. It was natural, in our anu, lysis, to make
the same approximations for' aQ momentum shells.
This as tru, e because the degree of freedom 8~,-
were defined so that there wex'e seysx'ate degrees

'of. fx'eedom for es,dh momentum shell l, and be-
cause the degre@8 of fr88doiii for. diff8rbnt Sh8118
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wex'e related by a scale transformation. Thus once
the. recursion formulas were derived for one mo-
mentum shell, only. a rescaling was needed- to get
the recursion formulas for aQ momentum sheGs.

It is evident from the phase-. space cell analysis
that one must approximate reasoriably well all the
momentum-shell integrations with $ '&0 &l. Any

serious error for any momentum in this range will
disturb the process by which the interaction K,
[i.e. , Q, (z)] first approaches the critical interac-
tion and then (for large enough I) goes away from
the critical interaction as one iritegrates down to

In a renormalization-group approach one
treats all momentum shells uniformly and so one' s
approximations are uniformly good (or bad) for all
sheQs. If one does not separate the, degrees of
freedom for different momentum shens, it is quite
likely that one's approximations will favor some
momentum shells over others, resulting in a poor
description of critical behavior.

A second idea in the phase-space eel analysis
is that of reducing the interactions between degrees
of freedom to a manageable level by appropriately
defining the degrees of freedom. . What is a man-
ageable level~ In the model of this paper the cou-
plings between degx'ees of freedom have been sim-
plified so that when one integrates over a parti. cular
variable s-„only one parameter s;need be specified
[as in the integral for I, (z), Eq. , (3.41)]. This is
clearly a manageable level. In the original form
of the partition function [Eq. (l. 2)], if one tries
to integrate successively a11the spine sz, one will find
that after the first few integrations earth remaining

SI is coupled to many other spins. It is then hopeless
to do any further integration because each integral
will involve a large number of other spins, and the
integral over any given spin must be computed as
a function of all the other spins involved. The way
the simplification was achieved was to reduce the
coupling between adjacent position-space cells at
the price of introducing separate momentum shells
and thereby having couplings between these shells.
The momentum-apace shell couplings (after some
simplification) turned out to be manageable. For
a more precise calculation the couplings between
position-space cells would have to be considered
but hopefully these would be taken into account in
a perturbation expansion. In any case one has to
arrange the calculation of the partition function so
that any given integral involves only 1 or 2 other
variables; an integral involving 5 or 10 or more
other variables is unmanageable. The hardest
challenge in developing a quantitative formulation .

of the renormalization group is to meet this re-
quirement. A renox malization- group framework
helps one to meet this requirement in that if one
can design the calculation for one momentum shell
to meet the requirement, . then the calculation for

all other momentum shells will also meet the re-
quirement.

The phase-space cell analysi. s provides an explic-
it answer to the question raised at the beginning of
I. Namely, given that the partition function is
simply a set of integrations over an analytic func-
tion of K and h, how can the partition function (or,
to be precise, the free energy) be singular in these
variables'? One finds in the phase-space cell anal-
ysis that any particular integration produces analy-
tic results; that is, the function Q„,(y) appearing
in the interaction X„,depends analytically on any
parameters appearing in Q, (y). The nonanalyticity
in the partition function arises because there are
an infinite riumber of momentum shells to be in-
tegrated over so 'one has to iterate the recursion
formula an infinite number of times to calculate
the partition function. The recursion formula is
analogous to a time translation over a uriit time in-
terval for a classical particle in a well-behaved
potential. The position of the particle after one
unit of time is an analytic function of its iriitial
position; but if one has to repeat:the time transla-
tion an infinite number of times, the analyticity
can be lost. This was explained in detail in I.

To conclude thi. s paper the term "renormaliza-
tion group" mill be explained. It is not necessary
to understand the meaning of this term: It may be
regarded as simply a code name for the transfor-
mations discussed in these papers. But one can
see that this term does make sense. When one
replaces the spin variable s,(x) by the scaled vari-
able s„(x)one renormalizes the spin by the factor
2 oo o, q [see Eq. (3. 50)]. This is where
renormalization is involved in a literal sense. Fig-
uratively, field theorists use the term renormal-
ization to mean also the changes that take place in
an interaction when one changes a cutoff; analogous
to this are the changes in the effective interaction
K, which result from changing the block size (i. e. ,
changing I). The group is the group of transforma-
tions generated by iterating the recursion formulas.
These formulas can be thought of as defining a
trarisformation T on a function space of functions
of one variable Q(y). Iterating the recursion for-
mulas defines the transformations T, 7.', ete. If
the renormcQIzatlon gx'oup is defined ln terms of an
infinitesimal transformation, as in I, it is easy
enough to define the inverse transformation T
(corresponding to decreasing the block size by a
factor 2). In this paper it is not clear that an in-
verse transformation exists. It does not matter
since we had no need to use the inverse tx'ansforma-
tion.
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