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Efficient microwave spin control of negatively charged group-IV color centers in diamond
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In this paper, we provide a comprehensive overview of the microwave-induced manipulation of electronic spin
states in negatively charged group-IV color centers in diamond with a particular emphasis on the influence of
strain. Central to our investigation is the consideration of the full vectorial attributes of the magnetic fields
involved, which are a dc field for lifting the degeneracy of the spin levels and an ac field for microwave
control between two spin levels. We observe an intricate interdependence between their spatial orientations,
the externally applied strain, and the resultant efficacy in spin-state control. In most studies to date the ac and
dc magnetic field orientations have been insufficiently addressed, which has led to the conclusion that strain is
indispensable for the effective microwave control of heavier group-IV vacancies, such as tin- and lead-vacancy
color centers. In contrast, we find that the alignment of the dc magnetic field orthogonal to the symmetry
axis and the ac field parallel to it can make the application of strain obsolete for effective spin manipulation.
Furthermore, we explore the implications of this field configuration on the spin’s optical initialization, readout,
and gate fidelities.
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I. INTRODUCTION

For many quantum information applications [1] such as
quantum sensing [2], quantum networks [3,4], and quantum
computing [5], key requirements include ultrahigh fidelity ini-
tialization, both single- and two-qubit gate operations, as well
as readout. Notably, the execution of quantum algorithms that
offer a quantum advantage [6] demand near-perfect operations
within the coherence time of the system. In particular, the
fidelity of single-qubit gates now consistently exceeds 99%
across diverse platforms, including superconducting qubits
[7], quantum dots [8], trapped ions [9], and ultracold atoms
[10].

An emerging class of optically active spin-1/2 systems
for quantum information applications is found in negatively
charged group-IV color centers in diamond (G4Vs) [11],
including silicon (SiV), germanium (GeV), tin (SnV), and
lead vacancy center (PbV). G4Vs exhibit notably high optical
efficiency, with a Debye-Waller factor of 60–80% [12–14]),
in contrast to the 3% Debye-Waller factor observed in the
negatively charged nitrogen vacancy center [15]. Moreover,

*These authors contributed equally to this work.
†Corresponding author: tim.schroeder@physik.hu-berlin.de

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

they display lower sensitivity to electric noise [16], render-
ing them highly suitable for integration into nanostructures
[3,17], which is crucial for efficient coupling to a precisely de-
fined optical mode [18]. Furthermore, G4Vs exhibit excellent
spin coherence times, with, for example, the GeV showing
T2 = 20 ms [19].

This paper primarily focuses on the theoretic analysis of
single-qubit gates acting on the electronic spin, which operate
in the microwave regime. In the first studies demonstrating
coherent microwave control of the SnV [20,21] a consensus
has emerged, which asserts that strain is an essential pre-
requisite for manipulating the spin of the heavier implanted
group-IV elements such as tin and lead, owing to their in-
creased spin-orbit coupling in comparison to lighter elements
like silicon and germanium. Consequently, we are particularly
interested in the interplay of strain and spin-orbit coupling in
the investigation of coherent control of the spin qubit.

Interestingly, we discovered a magnetic field configuration,
for which strain is not only unnecessary but actually hampers
the efficiency of the coherent control. We will demonstrate
that the efficiency depends on the orientation of the static field
Bdc, which is necessary to lift the spin degeneracy, and the
oscillating field Bac(t ), responsible for driving the electronic
spin [see Fig. 1(a)].

This paper is structured as follows: We first provide a brief
overview of the static contributions to the systems Hamilto-
nian, such as the spin-orbit coupling, the Jahn-Teller effect,
the interaction with internal and external strain as well as the
static magnetic field Bdc. We then introduce the influence of
Bac(t ) and explain how such a field generates single-qubit
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FIG. 1. Illustration of the physical system. (a) Group-IV color
center with the respective angles of the dc magnetic field Bdc and
the ac driving field Bac relative to the symmetry axis. (b) Level
scheme of the ground and excited states of the color center (for
details see Sec. II). For Bdc = 0, the ground and excited states are
spin degenerate. The dc magnetic field lifts the spin degeneracy. The
qubit driven by Bac is composed of the states |1〉 and |2〉 with a level
splitting of �g. �e is the splitting between the first two excited state
levels.

gates acting on the two energetically lowest lying qubit states
|1〉 and |2〉 [see Fig. 1(b)].

We find a closed approximate expression for the qubit’s
Rabi frequency � as a function of total strain acting on the
G4V, the spin-orbit coupling, and the magnetic fields Bdc and
Bac. The Rabi frequency � is a key performance metric for
the driving efficiency: Increasing � independently from the
magnetic field strength Bac renders the magnetic control more
efficient as it reduces the need for microwave power, resulting
in lower levels of heating and, in broader terms, a decrease in
the experimental overhead needed for spin control. Notably,
for the most efficient choice of control parameters, i.e., for
perpendicular Bdc, strain reduces the efficiency independent
of the G4V as can be seen in, for example, Figs. 6(c) and 6(d)
(see below), where the Rabi frequency decreases, for both the
SiV and SnV for increasing values of strain.

Finally we analyze initialization and readout based on the
master equations in Lindblad form for various configurations
of the magnetic field, and find that for the most efficient
control regime, both are possible.

II. MICROWAVE GATES

We decompose the total magnetic field at the position of
the SnV into a static dc and time-dependent ac part B(t ) =
Bdc + Bac(t ), where Bac is either the near-field of an alter-
nating current passing through a stripline in close proximity
to the defect, or the far field of a microwave source. In this
paper, irrespective of the generation Bac(t ) is referred to as
the microwave drive of the system.

Based on the decomposition of the magnetic field we split
the Hamiltonian generating the time evolution of the system
into a dc and ac component,

H (t ) = Hdc + Hac(t ), (1)

where Hdc generates the free evolution and Hac is the interac-
tion of the system with Bac(t ). We assume that Bac(t ) drives

the system for some finite gate time TG. The single-qubit gate
operating on the electronic spin is then given by

U (te, ti ) = Te
i
h̄

∫ te
ti

H (t )dt
, (2)

where TG = te − ti and T is the time-ordering operator. We
will confirm that indeed any desired single-qubit gate U ∈
SU(2) can be constructed with a suitable series of control
pulses associated to H (t ). In the following we detail the in-
teractions contributing to Hdc and Hac. We separate Hdc into

Hdc = Hint. + Hext., (3)

where Hint. contains all the terms that are intrinsic to the
diamond system and Hext. contains terms such as external
strain or the static field Bdc.

The intrinsic components are

Hint. = H0 + HSO + HJT + Hint. strain, (4)

where H0 describes the unperturbed effective single-particle
system. The general structure of all contributions to Hdc/ac

can be deduced from group theory and the D3d symmetry of
the unperturbed system associated to G4V defects [24]. HSO

is the spin-orbit interaction and HJT describes the Jahn-Teller
effect. Finally, Hint. strain is the internal strain, by which we
mean distortions of the carbon lattice due to the implanted
ion. It is often combined with the Jahn-Teller contribution.
The intrinsic components of the Hamiltonian are identical for
all color centers of the same kind.

The extrinsic components to Hdc are

Hext. = Hext. strain + HBdc . (5)

The dc component of the magnetic field lifts the spin degen-
eracy through the Zeeman term and therefore makes the spin
degree of freedom accessible to microwave control. External
strain described by Hext. strain can have many causes, such as
the displacement of lattice atoms by interstitial crystal impuri-
ties [25], lattice vacancies such as mono-, di- or multi-vacancy
complexes [26], lattice dislocations [27], or it can be applied
externally [22].

In the following we describe the explicit structure of the
interaction terms. Following [24] a basis for an explicit rep-
resentation of the interactions can be chosen using group
theoretic arguments based on the D3d symmetry. For the dis-
cussion of the microwave control we focus on the ground-state
manifold, which is spanned by the four states

|egx ↑〉, |egx ↓〉, |egy ↑〉, |egy ↓〉, (6)

which are energetically degenerate eigenstates of H0 belong-
ing to the E irreducible representation. The two-orbital states
labeled with egx/gy have even symmetry and are twofold
spin degenerate. Due to the degeneracy we can drop the H0

contribution to the Hamiltonian and focus on the represen-
tation of the other internal and external contributions to the
Hamiltonian. From [24] the representations of the various
contributions are in the above basis (6),

HSO =
(

0 −iλ
iλ 0

)
⊗

(
1 0
0 −1

)
(7)
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where λ is the spin-orbital coupling. Note that compared to
[24] we absorbed the 1/2 into λ,

HJT =
(

ϒx ϒy

ϒy −ϒx

)
⊗

(
1 0
0 1

)
(8)

where ϒx and ϒy are the Jahn-Teller coupling strengths.
The external and internal strain contributions are

HS =
(

dEx 2dεxy

2dεxy −dEx

)
⊗

(
1 0
0 1

)
(9)

where

Ex = εxx − εyy, (10)

εxx, εyy, and εxy are the strain tensor elements representing
uniaxial stress and d is the spin-strain coupling strength. For
Hint. strain and Hext. strain we discriminate between E int.

x , εint.
xy and

E ext.
x , εext.

xy . For the sake of brevity, we drop the superscript
from the external contribution. The degeneracy of the four ba-
sis states (6) is lifted due to HSO, HJT, and Hint. strain resulting in
two spin-degenerate levels as shown in Fig. 1(b) for Bdc = 0.

The static magnetic field Bdc lifts the spin degeneracy,
which is required to turn the long lived spin states into a qubit
that is amenable to microwave control. Magnetic fields couple
to the vacancy according to [24]

HB = H‖ + H⊥

= f γLBz

(
0 i
−i 0

)
⊗

(
1 0
0 1

)

+ γS

(
1 0
0 1

)
⊗

(
Bz Bx − iBy

Bx + iBy −Bz

)
(11)

where the magnetic field is B = (Bx, By, Bz ), and the z di-
rection is aligned with defect’s symmetry axis. Furthermore,
f = 0.15 is a coupling constant and

γL = γS = μB

h̄
, (12)

where μB is the Bohr magneton. In general γL 	= γS due to
the difference between the gyromagnetic ratios, however, here
γL = γS due to the factor 1/2 in the spin-1/2 Pauli operators.
Both the Bdc and Bac(t ) fields couple to the system through
Eq. (11). In Fig. 1(a), we illustrate the field orientations with
respect to the defect’s symmetry axis. In Fig. 1(b) we show
the G4V energy levels including the excited states. The eigen-
states of Hdc are then comprised of the four ground states
(|1〉–|4〉). For the sake of completeness, we also included
the four excited states (|4〉–|8〉). Structurally, the Jahn-Teller
interaction and strain Hamiltonian are identical, which makes
it impossible to separate the Jahn-Teller effect from internal
strain experimentally. For that reason in experiments Hint. strain

is always combined with the contribution of HJT. In our theo-
retical analysis, we refer to zero strain when Hext. strain = 0.

As an example, we show in Fig. 2 the energy levels of the
SnV’s ground states as a function of strain at Bdc = 1T (we
use 1 T to enhance the visibility of behaviors), orthogonal to
the symmetry axis. Strain increases both the splitting between
the orbital branches |1〉, |2〉 and |3〉, |4〉, which can lead to
increased spin coherence times as thermal decoherence chan-
nels are reduced [29]. The inset shows the splitting � between
|1〉 and |2〉, which is ∝ Bdc. In Table I we present established

FIG. 2. The relative energies of the ground-state orbital branches
|1〉, |2〉 and |3〉, |4〉 of the SnV as a function of strain in the presence
of Bdc = 1 T oriented perpendicular to the symmetry axis. The value
of 1 T is used to enhance the visibility of the splitting. The inset
shows the splitting �g between |1〉 and |2〉 for Bdc = 0.1 T and 1 T.
The dashed-vertical line marks a comparatively large but experi-
mentally realistic strain value [22]. For Bdc > 0.1 T the ground-state
splitting �g > 1/τrad, where τrad = 4.5 ns is the radiative lifetime of
the SnV [23].

model parameters for the light G4V (SiV and GeV) and the
heavy G4V (SnV and PbV).

Having set up a full model of the physical systems
under consideration, we can now analyze the interplay of
strain and the implementation of microwave enabled gates
acting on the spin degree of freedom. For that purpose
we begin with diagonalizing Hdc and writing HBac(t) in
terms of the eigenstates of Hdc (see Appendix A). The
diagonalization of Hdc is done in two steps: First we
diagonalize H = Hint + Hext.strain, for which we find two
twofold spin degenerate eigenstates with energies

e±,↓↑ = ±
√

λ2 + ξ 2, (13)

where ξ 2 = υ2
x + υ2

y , υx = (dEx + ϒx ), υy = (2dεxy + ϒy),
Ex = E int

x + E ext
x , and εxy = εint.

xy + εext.
xy . We then reexpress

HBdc in the energy eigenbasis |e−,↓〉, |e−,↑〉, |e+,↓〉, |e+,↑〉.
The detailed expressions can be found in the Appendix A. We
can remove the states |e+,↑↓〉 through adiabatic elimination
as long as 2e+,↓ is bigger than any other energy in the problem

TABLE I. Parameters used in this paper for the unstrained SiV
[22,28], GeV [11], SnV [21,23], and PbV [11]. λ is the spin-orbital
coupling, ϒx and ϒy are the Jahn-Teller coupling strengths, f is the
quenching factor of γL , and d is the spin-strain coupling constant.
The SiV and GeV are categorized as light color centers, while the
SnV and PbV are designated as heavy color centers.

2λ (GHz) ϒx (GHz) ϒy (GHz) f d (PHz/strain)

Ground states

SiV 49 2 3 0.10 1.3
GeV 207 NA NA NA NA
SnV 815 65 0 0.15 0.787
PbV 4385 NA NA NA NA

Excited states

SiV 257 12 16 0.10 1.8
GeV 989 NA NA NA NA
SnV 2355 855 0 0.15 0.956
PbV 6920 NA NA NA NA
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[30]. This reduction places certain limits on the magnetic field
strengths and strain regimes for which the approximation is
valid.

The reduction of the system results in

Heff = −�g

2
σz − S · μ̂ · Bac(t ), (14)

where

�g = 2γs

√
sin(x)2

(
B2

x,dc + B2
y,dc

) + �(Bz,dc)2, (15)

�(Bz,dc) = −Bz,dc

(
f
γl

γs
cos(x) + 1

)
, (16)

and the 3 × 3 matrix μ depends on Bdc = [Bx,dc, By,dc, Bz,dc]
as well as ξ (see Appendix A for details). We also use S =
σ/2, σ = (σx, σy, σz ) (σi are the Pauli matrices) and tan(x) =
ξ/λ.

In the case of Bac(t ) = b(t )Bac cos(ωt ), where b(t ) changes
on timescales that are slow compared to the other timescales
in the problem, Heff in Eq. (14) can be treated in the rotating-
wave approximation as (see Appendix C)

HRWA
eff = b(t )�n · σ (17)

where n = [(μ̂ · Bac)x/2, (μ̂ · Bac)y/2, 0]/�. If we further in-
troduce

Bdc/ac = Bdc/ac

⎡
⎢⎣

cos(φdc/ac) sin(θdc/ac)

sin(φdc/ac) sin(θdc/ac)

cos(θdc/ac)

⎤
⎥⎦ (18)

we find

� = γsBac�, (19)

� = sin(x)

√
�(φ, θac)2 + χ (φ, θdc, θac)2

sin(θdc)2ζ (x)2 + cos(θdc)2
,

(20)

where

�(φ, θac) = sin(φ) sin(θac), (21)

χ (φ, θdc, θac) = sin(θdc) cos(θac)

− cos(φ) cos(θdc) sin(θac). (22)

ζ (x) = sin(x)/[ f cos(x)/2 + 1] and φ = φdc − φac. The cou-
pling strength � provides analytical insight into the most
efficient microwave control regime.

HRWA
eff can handily be interpreted as a Hamiltonian that

generates rotations around the n axis on the Bloch sphere. The
gate defined in Eq. (2), then becomes in the rotating frame

U (te, ti ) = e
i
h̄ θn·σ, (23)

where θ = �
∫ te

ti
b(t )dt . Any element in SU (2) (i.e., any rota-

tion on the Bloch sphere), can be constructed by composing
U = Rx(α)Ry(β )Rx(γ ), where Rx/y(α) are rotations around
the x or y axis on the Bloch sphere by an angle α [31]. Both
rotational axis are accessible by either adjusting the phase
of the ac driving field Bac(t ) → f (t )Bac cos(ωt + ϕ) or by
changing the orientation of Bac to switch between x and y
axis [see e.g., Eq. (17)]. We comment on numerically obtained

gate fidelities of U (te, ti ) without any approximations after
discussing the control efficacy of the SiV and SnV.

III. EFFICIENT MICROWAVE CONTROL

The most efficient regime for microwave control can be
determined by � given in Eq. (20). Having a closed ex-
pression for � allows us to make some general statements
about the efficiency of control for different strain regimes and
orientations of Bac/dc. We first analyze general properties of
� as a function of x and then discuss �′s dependence on the
orientations of Bdc and Bac.

Notably, Eq. (20) only depends on the difference of the
azimuthal angles φdc − φac, the polar angles θdc, θac, and the
dimensionless variable x ∈ {0, π/2}. The fact that ξ solely
enters through its comparison with the spin-orbit interaction
λ is another interesting feature of Eq. (20), which allows for
a general discussion of the interplay of strain, the Jahn-Teller
effect, and the spin-orbit interaction, completely independent
of the G4V.

With very little effort we can assert that � = 0 for Bac

parallel Bdc, which is in line with physical intuition: no driving
of the spin-qubit is possible in the absence of spin mixing.
Before investigating the local extrema of �, we analyze the
limits ξ → 0 and ξ → ∞, which correspond to x = 0 and
x = π/2, respectively.

For small values x → 0, we expand � in leading orders of
x,

lim
x→0

� = f (φ, θac, θdc)x + O(x)2 (24)

where f (φ, θac, θdc) can be found in Appendix D.
It would appear that � = 0 for x = 0, corresponding to an

absence of the Jahn-Teller interaction, as well as internal and
external strain. Interestingly, as we will explain in the next
paragraphs, this is not true for all directions of the magnetic
field so that � 	= 0 for x = 0 under certain conditions.

For x → ∞, we find that

lim
ξ→∞

� = g(φ, θdc, θac) (25)

where g(φ, θdc, θac) only depends on the magnetic fields’ ori-
entations (see Appendix D), sometimes referred to as the free
electron limit [20]. Notably, this is the case for either ξ → ∞
or λ → 0, which means that as long as the strain outcom-
petes the spin-orbit coupling, the efficiency of the driving will
purely depend on the relative orientation of Bdc and Bac.

Local extrema of � as a function of φ, θdc and θac can
be found analytically. The first extremum of interest is φ =
0 deg, θdc = 0 deg and θac = 90 deg, which corresponds to
Bdc being parallel to the main symmetry axis of the G4V, and
Bac being oriented in the xy plane. For this combination of
angles �1 = sin(x).

For infinite strain, i.e., x = π/2, the coupling is maximized
�1 = 1 and �1 = 0 for zero strain and zero Jahn-Teller in-
teraction, which is in accordance with previous reports on
microwave control [20,21]. In the case of ξ < λ we can repro-

duce the finding in [32], where � = γsBac

√
υ2

x + υ2
y /λ. One

can show that this extremum is a saddle point as a function
the two polar angles of the magnetic fields (see Fig. 3), which
means there exist orientations that allow for more efficient
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(b)(a)

FIG. 3. � as a function of the magnetic field angles θdc and θac unstrained (a) and strained (Ex = 0.2 × 10−3) (b) for the SnV, Bdc =
100 mT.

control. The difference of the azimuths φ has little impact on
the steepness of the saddle point, which means that changing
the azimuthal orientation of the fields will have little impact
on the driving efficiency.

The second notable local extremum is given by φ =
0 deg, θdc = 90 deg, θac = 0 deg, which corresponds to Bdc

lying in the xy plane and Bac being oriented in parallel to the
symmetry axis of the system. For this field configuration

�2 = sin(x)|1/ζ (x)|
= f cos(x)/2 + 1, (26)

which is maximized for x = 0, meaning for either ξ � λ or no
contribution from either the Jahn-Teller interaction or internal
and external strain. At x = 0, �g = 0, meaning the spin qubit
is energetically degenerate, which would make the spin qubit
optically inaccessible. This, however, is not physical, since
there will always be a Jahn-Teller contribution so that �g 	= 0.
Additionally, for �2, �g = 2γs| sin(x)|Bdc, the splitting can be
increased by increasing Bdc.

Contrary to �1, �2 is a global extremum as a function
of both φ and the polar angles of the fields. This means that
for the most efficient microwave control �2 is the optimum.
Their relative magnitude is given by �2/�1 = f cot(x)/2 +
1/ sin(x). Depending on x the magnetic field configuration
responsible for �2 can be arbitrarily more effective for con-
trolling the spin qubit.

We observe that to leading order limx→0(� − �2) ∝
−(λ4/ξ 4)θ2

dc for θac = constant, which means that the slope
close to �2 becomes infinitely steep for vanishing ξ . For
emitters with λ < ξ , the local extrememum is therefore less
pronounced. Because λSnV, λPbV � λSiV more strain should
lead to a more forgiving parameter regime for the magnetic
fields for efficient spin control of the SnV and PbV. The
narrow extremum for larger values of λ is also the most likely
explanation why �2 so far has evaded experimental detection.
The steepness is bound by the Jahn-Teller contribution to ξ

and therefore ξ 	= 0 for any of the G4V. For the SnV � is
shown in Fig. 3. We discuss an optimal control regime in the
next section.

Note that � > 1 due to the contribution of the orbital Zee-
man effect when Bdc is aligned perpendicular to the symmetry

axis and Bac is aligned parallel to it. We show the magnitude
of the amplification in Appendix B.

IV. OPTIMAL CONTROL REGIME

The question of which orientation of the magnetic fields are
optimal is highly dependent on the system’s intended use in an
application. For most quantum applications, such as the use of
the electronic spin as a memory [3], as a nuclear spin interface
[33] or as a mediator of entanglement between photons [34]
the electronic spin has to be optically addressable, initialized,
controlled, and readout with high fidelity. Another important
aspect is the spin qubit’s coherence time, which also depends
on the dc magnetic field orientation [35]. If the dc magnetic
field axis is fixed for a given application, then all of these
factors have to be considered. In this section we provide a
brief discussion of the important quantities that impact the
optimal choice of orientation of the magnetic field.

Optical addressability depends on the difference of � =
|�e − �g|, where �g and �e are shown in Fig. 1. They can
be calculated by replacing λ → �e,g in (15). We adopt the
convention in [3] that optically addressability requires � > �,
where � is the faster radiative decay rate of the two transitions.
This rate depends, of course, on external parameters such as
the local density of electromagnetic modes and can be highly
influenced by the presence of, for example, a surface boundary
or a cavity [36].

Here we assume lifetime-limited linewidths, which is rea-
sonable for the SnV at 4 K and the SiV at 200 mK. In the
presence of homogeneous broadening due higher tempera-
tures [29] or inhomogenous broadening due to fluctuations in
the charge environment [37,38] the above condition has to be
modified: � > γlw, where γlw now is the broadened linewidth
of the respective transition.

The splitting is maximized for the θdc = 90 deg orientation
and nontrivially depends on the strain, see Fig. 2. As long as
the splitting does not vanish, it can always be increased by
increasing the strength of the magnetic field.

The ability to initialize the system is highly dependent on
the details of the initialization scheme. Here we briefly discuss
two approaches to the spin initialization: spin pumping [35]
and cavity scattering [3]. Spin pumping requires the spin
initialization rate γinit � 1/T1, where T1 is the spin-relaxation

115409-5



PIEPLOW, BELHASSEN, AND SCHRÖDER PHYSICAL REVIEW B 109, 115409 (2024)

(a)

(b)

FIG. 4. Spin-state initialization rate of the SnV defect. (a) Level
scheme showing the optical (red) and phononic (light blue) relax-
ation processes γi j . The transition 1 ↔ 5 is resonantly driven by
a laser �L . (b) Initialization rate γintit. as a function of strain. For
most Ex values, the highest initialization rates are achieved for Bdc

(Bdc = 100 mT) oriented slightly away from the plane orthogonal to
the symmetry axis.

time of the qubit [35]. For resonant spin pumping we can
calculate γinit as a function of the relevant spontaneous emis-
sion rates and phononic decay processes, as shown in Fig. 4.
We use a rate model in the regime of strong pumping �L �
γ15 + γ25 + γ35 + γ45, where the rates γi j are illustrated in
Fig. 4 and �L = |〈1|p · E|5〉|/2h̄ and E is the electric field
strength of a laser driving the system at the frequency that is
resonant with the transition energy h̄ω3↓,1↓. �L encodes the
cyclicity, which is important for the spin readout. From the
rate equations corresponding to Fig. 4(a) (see Appendices F
and G) we find the quasistationary solution in the strong
pumping limit

ρ11 = e−γinitt/2, (27)

ρ22 = 1 − e−γinitt/2, (28)

where

γinit = γ25

2

(
1 + γ35/γ25

1 + γ13/γ23
+ γ45/γ25

1 + γ14/γ24

)
(29)

and we assume that the initial state is the mixed state ρ =
1
2 (|1〉〈1| + |2〉〈2|). The expression for γinit shows that if
the spin nonconserving transitions vanish initialization is no
longer possible, which is true when Bdc is parallel to the
defect’s symmetry axis. For spin pumping to be efficient, an
off-axis field is required, so that γ25, γ45, γ23, γ24 	= 0. For Bdc

orthogonal to the symmetry axis, this is always the case. We
show the angular and strain dependence in Fig. 4(b).

Spin initialization using a cavity scattering scheme was
shown to be successful in [3], for both parallel and orthogonal
orientation of Bdc. If it comes to initialization there is thus no
fundamental reason to not choose the orthogonal orientation
of Bdc, when it comes to spin initialization.

Resonant single-shot readout schemes [39] work best,
when there is a spin-conserving transition, that can be cycled
continuously, without inducing a spin flip. The finite branch-
ing ratio γ52/γ51 for the orthogonal configuration of Bdc, is
therefore not ideal for a resonant single-shot readout, and
then becomes highly dependent on, for example, detection
efficiencies of an optical setup. The cavity scattering scheme
does not have these issues but requires a cavity-color center
system in a specific coupling regime to function [4].

Decoherence due to electron-phonon interactions may
present a challenge for the most efficient magnetic field
orientations, because the qubit state levels can be directly
coupled through these interactions. A dependence of the spin-
relaxation time on the dc magnetic field orientation has been
observed in [35], dramatically decreasing T2 = 2.4 ms to T2 =
3.4 µs. However, these measurements have been conducted
at high temperature >4 K were the phonon’s thermal occu-
pations is significantly increased at the relevant energies. To
address this concern, we calculated (see Appendix E) that
within an orbital branch, for example |1〉 and |2〉, the electron-
phonon coupling is comparatively small and restricted to the
εxy phononic mode. At low temperatures or an adequate de-
sign of the surrounding nanostructure featuring a phononic
band gap, the εxy can be minimized. On the other hand, an
increased coupling to phononic modes can also be used to
engineer an efficient mechanical interface [32,40].

V. MICROWAVE CONTROL OF THE SiV AND SnV

In this section we present some concrete values for the
obtainable Rabi frequencies for the SiV and the SnV, two
vacancies for which microwave driving has been shown to
work experimentally. For both vacancies’ parameters we use
Table I. For the case of Bdc parallel to the symmetry axis,
Fig. 5 shows the dependence of the Rabi frequency � as
a function the microwave field strength and the externally
applied strain for the SiV and SnV. The strain direction εxy

shows a stronger effect in Fig. 6 due to the factor 2 in Hstrain

[Eq. (9)].
Remarkably, for the chosen values of Bac = 1 mT and

Bdc = 100 mT as well as zero strain, the SnV exhibits an
increased �SnV = 16.1 MHz compared to the SiV �SnV =
15.3 MHz, when Bdc is perpendicular and Bac parallel to the
symmetry axis. This configuration allows for more efficient
control of the SnV compared to the SiV, which is notable
given the contrasting behavior observed when Bdc aligns with
the symmetry axis.

As has been noted in previous studies [20,21], increasing
the Rabi frequency requires increased strain. As predicted by
Eq. (20), the Rabi frequency saturates as a function of strain at
around �max = 14.0 MHz for Bac = 1 mT and Bdc = 100 mT.
Due to the reduced λ for the SiV, we observe the same be-
havior as for the SnV except that Rabi frequency increases
faster with more strain and more quickly saturates, as shown
in Fig. 5.
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(a)

(c)

(b)

(d)

FIG. 5. Rabi frequency � dependence on strain component Ex (and εxy = 0) and microwave field strength for SiV [(a),(c)] and SnV
[(b),(d)]. (a) and (b) depict the configuration where Bdc is parallel and Bac orthogonal to the symmetry axis, while (c) and (d) depict the
configuration where Bdc is perpendicular and Bac is parallel to the symmetry axis with Bdc = 100 mT.

(a)

(c)

(b)

(d)

FIG. 6. Rabi frequency � dependence on strain contributions Ex and εxy for SiV [(a),(c)] and SnV [(b),(d)]. (a) and (b) depict the
configuration where Bdc is parallel and Bac orthogonal to the symmetry axis, while (c) and (d) depict the configuration where Bdc is perpendicular
and Bac is parallel to the symmetry axis with Bdc = 100 mT. The highest color axis values for the parallel configuration [(a),(b)] is � = 28 MHz,
which is the lowest value for the perpendicular configuration [(c),(d)].

115409-7



PIEPLOW, BELHASSEN, AND SCHRÖDER PHYSICAL REVIEW B 109, 115409 (2024)

FIG. 7. Rabi frequency as a function of θdc and strain component
Ex(and εxy = 0) with Bdc = 100 mT.

Figure 7 shows the dependence of � on the polar angle
of the magnetic field (Bac is parallel to the symmetry axis).
For larger values of strain the system is less sensitive to
misalignment of θdc.

Finally, we numerically calculate microwave qubit gate
fidelities for the SiV and SnV. We use an averaged gate fidelity
(see, for example, [41]), which we define as

F = 1

4π

∫
S

Tr(V |ψ〉〈ψ |V †U |ψ〉〈ψ |U †)dψ (30)

where V is the target gate and U the numerically exact gate,
calculated by numerically integrating Schrödinger’s equation.
Here we consider rotations around the x axis.

In (30), |ψ〉 = cos( θ
2 )|1〉 + eiφ sin( θ

2 )|2〉, for which θ ∈
[0, π ] and φ ∈ [0, 2π ]. The integral is calculated by integrat-
ing over the surface of the Bloch sphere S , using the surface
element dψ = sin(θ )dθdφ. Gate durations are 1

�
for a π

rotation and 1
2�

for π/2 rotation. The infidelities 1 − F for
SiV and SnV rotation gates are given in Table II.

Orbital splitting in group-IV vacancies is mainly due to the
spin-orbital interaction and the additional strain contribution.

TABLE II. Infidely 1 − F of π/2 and π gate for the SiV and
SnV at zero strain and without considering decohering processes and
without experimental control imperfections. The values are shown
for both configuration (Bdc‖ and Bdc⊥ ) for Bdc = 200 mT. Bac is the ac
magnetic field strength, � is the Rabi frequency, Tπ/2 and Tπ are the
duration of π/2 and π rotation around the x axis on the Bloch sphere,
respectively. For both the SiV and SnV �g � 1/τrad at Bdc > 0.1 T,
where τrad > 4.5(1.7) ns is the radiative lifetime of the SnV [23] (SiV
[42]).

Bac (mT) � (MHz) Tπ/2 (ns) Tπ (ns) 1 − F

SiV

Bdc‖ 3.7 12.9 19.3 38.6 <10−5

Bdc⊥ 3.7 56.4 4.4 8.9 <10−4

SnV

Bdc‖ 1.0 2.2 113.4 226.8 <10−7

Bdc⊥ 1.0 16.1 15.6 31.1 <10−8

The approximations leading to Eq. (19) require that �g is
much smaller than the orbital splitting. This condition does
not hold for SiV in the case of zero strain as SiV spin-orbital
coupling is only one order of magnitude bigger than �g.
Using the gate duration derived from Eq. (19) therefore leads
to slightly decreased gate fidelities. We choose to optimize
Bac and therefore the gate duration to minimize the π and
π/2 rotation infidelities for the SiV shown in Table II. We
checked that the addition of strain to the SiV, which increases
the splitting of the orbital branches, drastically improved the
fidelities without any optimization. Such an optimization was
also unnecessary for the SnV, due to the already much larger
spin-orbit interaction. In conclusion, Table II demonstrates
that achievable fidelities are limited only by operational errors
and experimental imperfections.

VI. CONCLUSIONS & DISCUSSION

In this paper we theoretically identified and analysed the
most efficient regime for microwave control in the presence
of different strain regimes for G4V color centers in diamond.
We demonstrated that, independent of the specific system
parameters of the type of G4V, orienting Bdc perpendicular
to the symmetry axis of the vacancy and driving the system
with Bac oriented in parallel is the most efficient configuration
independent of the magnitude of the strain. This is extremely
advantageous for controlling the heavier element color centers
such as the SnV and the PbV, which suffer from a bigger
penalty in terms of efficiency for a nonperpendicular field
orientation of Bdc, requiring higher microwave power, which
can potentially increase heating of a sample and have other
technical disadvantages. Our analysis also implies that, as far
as microwave control is concerned, strain tuning is not neces-
sarily required, greatly reducing experimental overheads.

In conclusion we presented ahighly efficient path for con-
trolling G4V independent of strain and the spin-orbit coupling
that is compatible with all the required quantum information
processing building blocks, such as initialization, coherent
control, and readout.
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APPENDIX A: DERIVATION OF EFFECTIVE
HAMILTONIAN

We perform the adiabatic elimination using the formalism
that can be found in [30]. The Hamiltonian H (t ) = Hdc +
Hac(t ) is grouped according to

H =
(

ω �/2
�†/2 �

)
, (A1)

where ω operates on |−,↓↑〉, � operates on |+,↓↑〉 and �

connects the two sectors. We do not detail the components
here. They are straightforward to calculate using the descrip-
tion in the main text. Formally, the elimination is performed
according to

Heff = ω − �
1

4�
�†. (A2)

We furthermore neglect �(1/4�)�† leaving us with Heff =
ω, which is appropriate as long as � only weakly couples the
states |−,↓↑〉 and |+,↓↑〉 and is small compared to �. The
latter assumption works better for the SnV, due to the larger λ

(see Table I).
After the adiabatic elimination the effective Hamiltonian

becomes

Heff = H eff
Bdc

+ H eff
Bac(t) (A3)

where

H eff
B = γs[�(Bx, By)σx + �(−By, Bx )σy + �(Bz )σz],

(A4)

�(Bx, By)

= 1

ξ 2

(
Bxυ

2
y + Byυyλ + λυx√

λ2 + ξ 2
(−υyBy + λBx )

)
,

(A5)

�(Bz ) = −Bz

(
λ f γl

γs

√
λ2 + ξ 2

+ 1

)
, (A6)

where σi are the Pauli matrices. To understand the inter-
play of strain and microwave control we express the above
Hamiltonian in terms of the energy eigenstates of H eff

Bdc
. Fi-

nally, we can express HBac(t) in terms of the new eigenbasis
to calculate the effective Hamiltonian in Eq. (14) for which
we introduce B⊥,dc = (Bx,dc, By,dc). The interaction with the
time-dependent magnetic field in Eq. (14) is then mediated by

μ̂ =
⎛
⎝μxx μxy μxz

μyx μyy μyz

μzx μzy μzz

⎞
⎠, (A7)

μxx = 4γ 2
s sin(x)

Bx,dc�(Bz,dc)

B⊥,dc�g
, (A8)

μyx = 2γs sin(x)
By,dc

B⊥,dc
, (A9)

μzx = 4γs sin(x)2 Bx,dc

�g
, (A10)

μxy = By,dc

Bx,dc
μxx, (A11)

FIG. 8. The strain dependence of � is shown for Bac oriented
parallel to the symmetry axis and Bdc orthogonal to the symmetry
axis for three values of f to demonstrate the amplification effect due
to the orbital Zeeman interaction.

μyy = −Bx,dc

By,dc
μyx, (A12)

μzy = By,dc

Bx,dc
μzx, (A13)

μxz = −4γs sin(x)
B⊥,dc�(Bz,dc)

Bz,dc�g
, (A14)

μyz = 0, (A15)

μzz = 4γ 2
s

�(Bz,dc)2

Bz,dc�g
. (A16)

APPENDIX B: AMPLIFICATION EFFECT

In the perpendicular magnetic field configuration � > 1,
which means there is an amplification effect. This effect, as
shown in Fig. 8, arises from the orbital Zeeman interaction.

APPENDIX C: ROTATING WAVE APPROXIMATION

Heff = −�g

2
σz − S · μ̂ · Bac(t ). (C1)

The first term in Eq. (C1) is the free evolution of the system.
We can eliminate this term in a rotating frame defined by the
transformation

|�̃〉 = U |�〉, (C2)

U = e−i
�g
2 tσz . (C3)

The new Hamiltonian in this rotating frame is then given
by

H̃ = UHeffU
† − iUU̇ †. (C4)

In the rotating frame the Hamiltonian becomes

H̃ = b(t )

(
0 �̃(1 + e−2i�gt )

�̃∗(1 + e2i�gt ) 0

)
, (C5)

where rotating wave approximation states entails neglecting
the terms e±2i�gt , which is justified as long as �g is greater
than any other energy scale in the system. In Eq. (C5) the
complex �̃ can be inferred from Eq. (17).
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APPENDIX D: EFFICIENT CONTROL

The two functions f (φ, θac, θdc) and g(φ, θdc, θac) can be found by taking the respective limits lim �x→0,π/2. We find

f (φ, θdc, θac) =
√

sin(φ)2 sin(θac)2 + [cos(φ) sin(θac) − cos(θac) tan(θdc)]2, (D1)

g(φ, θdc, θac) =
√

�(φ, θac)2 + χ (φ, θdc, θac)2. (D2)

APPENDIX E: ELECTRON-PHONON INTERACTION

The thermal phonon bath in diamond interacts with the
color center and causes decay and decoherence. This inter-
action can be modeled by interpreting phonons as dynamical
strains deformations [43]

He−p = dExLEx + 2dεxyLεxy , (E1)

where Ex and εxy are now dynamical fields. LEx = |egx〉〈egx| −
|egy〉〈egy| and Lεxy = |egx〉〈egy| + |egy〉〈egx|. The operators LEx

and Lεxy determine the levels coupled by electron-phonon in-
teraction.

Decay rates due to electron-phonon interaction can be
computed using Fermi’s golden rule

γi j = 2πρ|〈i|L̃| j〉|2, (E2)

where ρ is the density of phononic states and L̃ = L̃Ex , L̃εxy is
given by

L̃ = P†LP. (E3)

P is a basis transformation, which allows us to restate L in the
eigenbasis of Hdc appearing in Eq. (1). To compute γinit we
only need the matrix elements of L̃, because only the ratios
between the decay rates enter Eq. (29). When numerically
computing L̃ for θdc = 90 deg we find

L̃Ex = a(|4〉〈4| − |2〉〈2|) + b(|3〉〈3| − |1〉〈1|)
+ ic(|4〉〈1| + |3〉〈2| − |1〉〈4| − |2〉〈3|), (E4)

L̃εxy = a′i(|1〉〈2| − |2〉〈1| + |4〉〈3| − |3〉〈4|)
+ b′(|1〉〈3| + |2〉〈4| + |3〉〈1| + |4〉〈2|). (E5)

where a, b ≈ 10−1, a′ ≈ 10−3 and c, b′ ≈ 1. From these re-
sults we conclude that Ex (εxy) phonon mode primarily
couples orbital levels with opposite (same) spins, while εxy

very weakly couples opposite spin levels of the same orbital
branch.

APPENDIX F: RADIATIVE SPONTANEOUS EMISSION

Group theory allows us to determine the nonzero matrix
elements of the transition dipole moments but not their mag-
nitudes. This was discussed in [24] including the relative
magnitudes of the dipole moments quoted as

px =
(

0 1
1 0

)
⊗

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ , (F1)

py =
(

0 1
1 0

)
⊗

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 −1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ , (F2)

pz = 2

(
0 1
1 0

)
⊗

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠. (F3)

Based on the Wigner-Weisskopf approximation [44] we
find the spontaneous emission rate of G4Vs,

γi j = nw3
i j (|〈i|dx| j〉|2 + |〈i|dy| j〉|2 + |〈i|dz| j〉|2)

3πε0 h̄c3
(F4)

where n = 2.42 is the refractive index of diamond, ε0 is the
vacuum electric permittivity, wi j is the frequency splitting
between the two levels |i〉, | j〉, and d = eη(px, py, pz ) is the
transition dipole operator, which includes a scaling factor α

that we seek to determine.
The total decay rate from the lowest lying excited state

can be decomposed into the zero phonon line (ZPL) and
phonon sideband emission rates γtotal = γZPL + γPSB. For the
SnV the emission into the ZPL is given by γZPL = 60%γtotal

[14]. Given the excited state lifetime of SnV, τ = 4.5 ns at 4 K
[23], we find η = 8.67635 × 10−10.

APPENDIX G: RATE EQUATIONS

We calculate the rate equations for the populations in the
strong pumping limit starting with the system’s Hamiltonian
in the rotating wave approximation, where we neglect contri-
butions from higher lying excited states. The Hamiltonian in
rotating frame is

HRWA =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 �

0 �1 0 0 0
0 0 �2 0 0
0 0 0 �3 0
� 0 0 0 0

⎞
⎟⎟⎟⎟⎠ (G1)

where �i = Ei − ωL, Ei is the energy of the ith eigenstate |i〉
of the Hamiltonian in Eq. (3) referenced to the energetically
lowest lying ground state and ωL is the pumping laser’s fre-
quency. We only include the energetically lowest lying excited
state |5〉.

The rate equations in the quasistationary limit generated by
this Hamiltonian can be calculated from the master equation in
Lindblad form

ρ̇ = − i

h̄
[HRWA, ρ] +

∑
α

γα

(
LαρL†

α − 1

2
{L†

αLα, ρ}
)

, (G2)
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where ρ is the density matrix, the Lα ∈
{L15, L25, L35, L45, L13, L23, L14, L24}, and Li j = |i〉〈 j|.
We can calculate the optical spontaneous emission rates
γ15, γ25, γ35, γ45 using Eq. (F4). The calculation of the
phononic spontaneous emission rates γ13, γ23, γ14, γ24 is
explained in Appendix E.

After evaluating Eq. (G2), we can find the rate equa-
tions for the quasistationary state by assuming that ρ̇i j = 0
for i 	= j. We find after eliminating ρ51 and ρ15, using the
previous assumption

˙ρ11 = γ13ρ33 + γ14ρ44 + γ15ρ55 + 4(ρ55 − ρ11)�2

γ15 + γ25 + γ35 + γ45
,

(G3)

˙ρ22 = γ23ρ33 + γ24ρ44 + γ25ρ55, (G4)

˙ρ33 = −(γ23 + γ23)ρ33 + γ35ρ55, (G5)

˙ρ44 = −(γ14 + γ24)ρ44 + γ45ρ55, (G6)

˙ρ55 = −(γ15 + γ25 + γ35 + γ45)ρ55 + 4(ρ11 − ρ55)�2

γ15 + γ25 + γ35 + γ45
.

(G7)

We further eliminate ρ33 and ρ44 by formally integrating
Eqs. (G5) and (G6),

ρ33 = e−(γ13+γ23 )tρ33(0)

+e−(γ23+γ23 )t
∫ t

−∞
e(γ13+γ23 )τ γ35ρ55(τ )dτ (G8)

≈ e−(γ13+γ23 )tρ33(0) + γ35

γ13 + γ23
ρ55, (G9)

ρ44 = e−(γ14+γ24 )tρ44(0)

+e−(γ14+γ23 )t
∫ t

−∞
e(γ14+γ24 )τ γ45ρ55(τ )dτ (G10)

≈ e−(γ14+γ24 )tρ44(0) + γ45

γ14 + γ24
ρ55, (G11)

where we assumed that ρ55(τ ) has no memory and is quasista-
tionary. Inserting the integrated equations back into Eq. (G3)
allows us to integrate Eqs. (G3), (G4), and (G7). In the limit
of strong pumping we find the relevant equations for the
populations shown in Eqs. (27) and (28).
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