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Optical drives at terahertz and midinfrared frequencies in quantum materials are increasingly used to reveal the
nonlinear dynamics of collective modes in correlated many-body systems and their interplay with electromag-
netic waves. Recent experiments demonstrated several surprising optical properties of transient states induced
by driving, including the appearance of photo-induced edges in the reflectivity in cuprate superconductors (SCs),
observed both below and above the equilibrium transition temperature. Furthermore, in other driven materials,
reflection coefficients larger than unity have been observed. In this paper we demonstrate that unusual optical
properties of photoexcited systems can be understood from the perspective of a Floquet system, a system with
periodically modulated parameters originating from pump-induced oscillations of a collective mode. These
oscillations lead to an effective Floquet system with periodically modulated parameters. We present a general
phenomenological model of reflectivity from Floquet materials, which takes into account parametric generation
of excitation pairs. We find a universal phase diagram of drive-induced features in reflectivity which evidence
a competition between driving and dissipation. To illustrate our general analysis, we apply our formalism to
two concrete examples motivated by recent experiments: A single plasmon band, which describes Josephson
plasmons (JPs) in layered SCs, and a phonon-polariton system, which describes upper and lower polaritons in
materials such as insulating SiC. Finally, we demonstrate that our model can be used to provide an accurate fit
to results of phonon-pump–terahertz-probe experiments in the high-temperature SC YBa2Cu3O6.5. Our model
explains the appearance of a pump-induced edge, which is higher in energy than the equilibrium JP edge, even
if the interlayer Josephson coupling is suppressed by the pump pulse.

DOI: 10.1103/PhysRevB.105.174301

I. INTRODUCTION AND OVERVIEW

A. Motivation

Nonequilibrium dynamics in quantum materials is a
rapidly developing area of research that lies at the interface
between nonlinear optics and quantum many-body physics
[1,2]. Indeed, a panoply of experimental results highlights
the ability of ultrafast optical techniques to interrogate and
manipulate emergent states in quantum materials. This in-
cludes photo-augmented superconductivity [3–6], unveiling
hidden states in materials proximal to the boundary of an
insulator-to-metal transition [7,8], and manipulating topolog-
ical states [9–11]. The terahertz to midinfrared spectral range
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is especially important as numerous phenomena in quan-
tum materials manifest at these energies, including phonons,
magnons, plasmons, and correlation gaps [12–14]. Access
to this spectral range enables preferential pump excitation
of specific degrees of freedom and probing of the resultant
dynamics that are encoded in the dielectric response (and
hence the reflectivity or transmission). Therefore a particular
challenge is to decode the optical reflectivity dynamics which
typically requires developing models that can be related to the
underlying microscopic states. In short, it is crucial to develop
a consistent framework for interpreting experimental results
to aid in identifying emergent universal properties of driven
states and to take full advantage of the plethora of “properties-
on-demand” exhibited by quantum materials [12,15].

A common way of understanding pump and probe ex-
periments has been based on the perspective of a dynamic
trajectory in a complex energy landscape, where “snapshots”
track the evolution of the slowly evolving but quasistation-
ary many-body states [1,2,16]. Within this approach temporal
evolution of spectroscopic features is interpreted using the
conventional equilibrium formalism, and measured parame-
ters serve as a fingerprint of the underlying instantaneous
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state. In particular, this approach has been applied to analyze
c-axis terahertz reflectivity of the cuprate superconductors
(SCs). In equilibrium, the Josephson plasma (JP) edge ap-
pears only below Tc indicating coherent c-axis Cooper-pair
tunneling. Interband or phononic excitation along the c axis in
several distinct cuprates (including La1.675Eu0.2Sr0.125CuO4,
La2−xBaxCuO4, and YBa2Cu3O6+δ) resulted in the appear-
ance of edgelike features in the terahertz c-axis reflectivity at
temperatures above the equilibrium Tc [3–5,17]. These exper-
iments were interpreted as providing spectroscopic evidence
for light-induced modification of interlayer Josephson cou-
pling. The central goal of this paper is to develop an alternative
framework for interpreting optical responses of photoexcited
materials. Our model focuses on features unique to nonequi-
librium systems, in particular to photoexcited collective
excitations which provide parametric driving of many-body
systems. While we do not argue that this mechanism explains
all experimental results on pump-induced changes in reflec-
tivity, we believe that this scenario is sufficiently ubiquitous
to merit detailed consideration. We provide universal expres-
sions for driving induced changes in the reflectivity, which can
be compared with experimental data, in order to examine the
relevance of the parametric driving scenario to any specific
experiment.

Before proceeding to discuss details of our model, it is
worth reviewing several experiments that have already re-
vealed pump-induced dynamics that cannot be interpreted
from the perspective of equilibrium systems. Particularly
striking are recent observations of light amplification of re-
flectivity in the photoexcited insulator SiC and the SC K3C60

above its equilibrium Tc [18–20]. Furthermore, in the case
of pumped YBa2Cu3O6+δ discussed above, strong experi-
mental evidence has accumulated indicating that an effective
photo-induced edge arises from parametric amplification of
Josephson plasmons (JPs) rather than a modification of the
effective coupling [21,22] (see discussion in Sec. IV of this
paper). Prior work also demonstrated higher harmonic genera-
tion from Higgs and other collective modes [23–25], nonlinear
effects including parametric amplification of superconducting
plasma waves [26–29], and time-resolved ARPES measure-
ments of photoinduced Higgs oscillations in a charge-density
wave [30]. A cursory understanding of these experiments can
be obtained from the perspective of nonlinear optics deriving
from coherent dynamics of order parameters and associated
degrees of freedom such as phonons. However, several quali-
tative differences between collective mode optics and standard
nonlinear optics deserve a special mention. First, in systems
that we consider, a nonlinear response of the probe pulse
persists at delay times well beyond the duration of the pump
pulse. Hence one cannot apply theoretical approaches based
on the expansion of optical nonlinearities in powers of the
electric field, such as χ (2), and χ (3) [31]. Instead, it is im-
perative to analyze the interaction of the electromagnetic field
of the probe pulse with matter degrees of freedom excited by
the pump pulse. Second, it is important to properly account
for the role of the surface, since the probe wavelength can
be comparable or even larger than the penetration depth of
the material. Thus common assumptions of nonlinear optics,
including the slowly varying envelope approximation [31] and
phase matching, need to be replaced by the explicit solution
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FIG. 1. Phase diagram of optical reflectivity of an interacting
Floquet material as a function of the parametric drive amplitude
and dissipation. We identify four regimes with qualitatively different
types of reflectivity: (I) Weakly driven underdamped modes in the
stable regime where dissipation, γ , is sufficient to prevent a las-
ing instability. The line shape is a square Lorentzian dip given by
Eq. (1). (II) Weakly driven overdamped modes in the stable regime.
The resonance feature is an edgelike line shape given by Eq. (30).
(III) Crossover regime on the boundary of the stable and unstable
regions with a double dip structure. (IV) Unstable region, strong
driving overcomes dissipation and may even lead to parametric
amplification.

of Maxwell equations coupled to dynamical equations for
matter.

B. Overview of results and organization of the paper

The primary goal of this paper is to present a general
phenomenological formalism for discussing optical properties
of driven states following a resonant excitation of a collective
mode. We analyze the problem from the perspective of Flo-
quet matter in which a collective mode excited by the pump
provides temporal modulation of microscopic parameters of
the material. This results in parametric driving of the system
and Floquet-type mixing of frequencies. When the system is
driven homogeneously in space (i.e., with wave-vector k = 0)
and frequency �d , a parametric resonance occurs whenever
two collective excitations that are IR-active have the op-
posite wave vector, k1 = −k2, and frequencies that add up
to to the drive frequency, ω1 + ω2 = �d . Naively, one ex-
pects parametric resonances to always lead to enhancement
of reflectivity, with sharp peaks corresponding to parametric
resonance conditions [32,33]. We find that the situation is
far richer and may include the appearance of edges, dips,
and electromagnetically induced transparency (EIT)-type [34]
structure in the reflectivity (see Fig. 1). Physically, this comes
from oscillation-induced mixing between light-matter fields
of different frequency components. In this paper, we focus
on the case of oscillations with a small amplitude and/or
strong dissipation, in which case analysis can be limited to
the mixing of only two frequencies commonly referred to
as the signal and idler frequencies. They are defined such
that the signal frequency ωs is equal to the frequency of the
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probe pulse, whereas the idler frequency ωid. is equal to the
difference between the drive frequency �d and ωs. Interfer-
ence between the signal and the idler frequency components
is reminiscent of Fano-type phenomena in scattering theory
and optics, where interference between two channels can
result in nontrivial energy dependence of the reflection and
transmission coefficients [35]. Describing the driving only in
terms of signal and idler mixing corresponds to a degenerate
perturbation theory in the Floquet basis [20,36,37].

What determines whether interference phenomena will
dominate over parametric amplification of reflectivity is the
competition between parametric driving and losses. We find a
universal dynamical phase diagram of the optical response as
a function of the strength of the drive and dissipation. Remark-
ably, we find that the entire breadth of these responses can
be specified using only a few effective (phenomenological)
parameters. One of the main achievements of this paper is to
derive analytical formulas for the shape of these resonances in
Sec. II C in the case of strong dissipation where perturbation
theory is valid; see Regimes I and II in Fig. 1. In Regime I,
corresponding to the case of underdamped collective modes,
we obtain a Lorentzian square shape:

Rdriven = Rs

(
1 + αRe

{
1

(ω − ωpara. + iγ )2

})
, (1)

where Rdriven is the reflectivity in the Floquet state, Rs is the
reflectivity in equilibrium, α is a frequency-dependent param-
eter that depends on dispersion of the IR collective modes
of the material, ωpara. is the frequency at which parametric
resonance condition is satisfied, and γ the dissipation in the
system. Notably, in Regime I, we can use the Floquet drive
to directly extract the dissipation in the system on parametric
resonance. In Regime II, corresponding to overdamped col-
lective modes, the resonance peak has the form

Rdriven = Rs

(
1 + βRe

{
eiθ 1

ω − ωpara. + iγ

})
, (2)

where β and θ are frequency-dependent parameters that
depend on the dispersion of IR collective modes. In this
case, the shape is a linear combination of a real and imagi-
nary Lorentzian function resulting in an effective “edge”-like
feature.

For clarity, in this work we simplify our analysis by in-
cluding Floquet modulation at a single frequency. When the
finite lifetime of the collective mode is taken into account,
this should be analyzed as a multitonal drive. Our analysis can
be generalized to this situation. However, in the current paper
we will only comment on the main changes that we expect in
this case. We postpone a detailed discussion of the multitonal
Floquet-Fresnel problem to a future publication [38].

It is worth noting conceptual connections between our
Floquet approach and previous work on the phenomenon of
optical phase conjugation (OPC) [39,40]. What makes our
analysis different is that we focus on terahertz phenomena,
which correspond to much longer wavelengths than optical
phenomena considered in the context of OPC. It is important
for our discussion to take into account that nonlinear processes
take place near the material boundary rather than in the bulk,
which is why our starting point is the Fresnel formalism of
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FIG. 2. Examples of dispersion relations (a), (b) and their cor-
responding reflectivity spectrum (c), (d). (a) Dispersion relation of a
plasmon in a SC (black) and dispersion relation of light in air (green).
The corresponding equilibrium reflectivity in (c) shows perfect re-
flection below the gap for ωs < ωpl., and a minimum in reflectivity
appears when the dispersion of light in air crosses the dispersion
of the plasmon in the material, a condition called phase matching.
(b) Dispersion relation of phonon-polariton (black) and dispersion
relation of light in air (green). The corresponding equilibrium reflec-
tivity in (d) shows perfect reflectivity inside the reststrahlen band
and plasma edge when the dispersion of light in air crosses the
dispersion of the upper polariton similarly to (c). The red dots in
(a) and (b) show the driving frequency, while the arrows depict the
parametrically resonant processes resulting from the Floquet drive.
This leads to features in the reflectivity predicted by our theory at
the parametrically resonant frequencies both for strong and for weak
drive relative to dissipation.

reflection of electromagnetic waves. This can be contrasted to
phase-matching conditions used in most discussions of OPC,
which essentially assume that nonlinear processes take place
in the bulk of the material.

This paper is organized as follows. Section II presents a
general formalism for computing the reflectivity of Floquet
materials. With a goal of setting up notation in Sec. II A, we
remind the readers regarding the canonical formalism of Fres-
nel’s solution of light reflection from an equilibrium material
with an index of refraction n(ω). In Sec. II B we discuss how
to generalize this approach to study light reflection from a
material subject to a periodic drive. We show a universal form
of frequency dependence of reflectivity from such systems,
which we summarize in the phase diagram presented in Fig. 1.
We show that this frequency dependence can be deduced
from the dispersion of collective modes and frequency of the
periodic drive without developing a full microscopic theory.
Thus the Floquet-Fresnel equations allow for the same level of
conceptual understanding as the standard equilibrium Fresnel
problem. To make our discussion more concrete, in Sec. III
we apply this analysis to two paradigmatic cases: (i) A single
low-frequency plasmon band and (ii) the two band case of a
phonon-polariton system with dispersions shown in Fig. 2.
These two cases are not only exemplary but also provide
accurate models for real materials, such as the lower JP of
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YBa2Cu3O6+x [case (i)] and a phonon-polariton system in
SiC [case (ii)].They are reviewed in Secs. III A and III B,
respectively. We note that most cases of parametric resonance
in pump and probe experiments can be reduced to these two
examples, since the usual formulation of parametric resonance
involves generating pairs of excitations and the resonance
can be described by including up to two bands. However, in
some cases there may be additional features in the reflectivity
arising from the singular behavior of matrix elements. We
provide a concrete example of this in Sec. III B for the case
of phonon-polariton model in SiC. Finally, we demonstrate
that our theory enables a quantitatively accurate fit to the re-
sults of pump and probe experiments in YBa2Cu3O6.5. These
experiments demonstrated the appearance of a photo-induced
edge both below and above the superconducting transition
temperature at frequencies close to the lower plasmon edge.
We demonstrate that these observations can be accurately de-
scribed by the Floquet-Fresnel model developed in this paper.

II. GENERAL FORMALISM OF FLOQUET-FRESNEL
REFLECTION

A. Equilibrium reflectivity

We begin our discussion by presenting coupled dynamical
equations for light and matter, assuming that the material
has an infrared active collective mode, such as a phonon or
a JP. Information about the collective mode is included in
the frequency dependence of the linear electric susceptibility,
χ (ω, k), which determines the index of refraction n(ω):

∇ × B = μ0∂t D, (3a)

∇ × E = −∂t B, (3b)

D = ε0E + P, (3c)

where the dynamics of the polarization P contain all optically
active collective modes inside the material, E is the electric
field, and ε0 and μ0 are the electric permittivity and magnetic
permeability in vacuum, respectively. The polarization in fre-
quency and momentum space, P(ω, k), is given in terms of
the electric field through the linear susceptibility, P(ω, k) =
ε0χ (ω, k)E (ω, k). Due to the high speed of light, c, consid-
erable hybridization between the collective mode and light
occurs only at very small momenta, k ∼ ω

c . As a result, for
optical reflection problems we can take the susceptibility to
be dispersionless, χ (ω, k) ≈ χ (ω, k = 0) ≡ χ (ω) to a good
approximation. Combining the Maxwell equations with the
susceptibility we find the dynamics of the electromagnetic
transverse modes in frequency and momentum space to be
given by a wave equation with a solely frequency-dependent
refractive index n(ω):

(
n2(ω)ω2

c2
− k2

)
E (ω, k) = 0. (4)

Collective mode dispersion relations are found as solutions to
the equation (k2 − ω2n2(ω)

c2 ) = 0. The above description is very
general and any dispersion relation inside the material can be
captured by an appropriate choice of n(ω).

1. The case of a plasmon

In SCs the Anderson-Higgs mechanism gives rise to the
gap in the spectrum of transverse electromagnetic fields equal
to the plasma frequency; see Fig. 2(a). The plasmon excitation
can be captured by a refractive index of the type [41]:

n2
SC(ω) = ε∞

(
1 − ω2

pl.

ω2

)
, (5)

where ωpl. is the plasma frequency and ε∞ is a constant back-
ground permittivity. Such a refractive index when substituted
in Eq. (4) leads to the dispersion relation for the electromag-
netic field inside a SC to be:

ω2
SC(k) = ω2

pl. +
c2

ε∞
k2. (6)

We note that plasmon modes can have very different fre-
quencies depending on light polarization. In particular, in
the case of layered systems, such as YBa2Cu3O6+x SCs,
the plasma frequency is small for electric-field polarization
perpendicular to the layers. In layered metals one can also
find low-energy plasmon modes, although they typically have
stronger damping than in SCs.

2. Phonon-polariton systems

Another ubiquitous example is the case of phonon-
polaritons. In this paper we will primarily use SiC for
illustration, which features an IR-active phonon at frequency
close to 30 THz with a large effective charge [18]. Another
related material that is currently under active investigation is
Ta2NiSe5, which has an additional complication that multiple
phonons need to be included in the analysis.

In the case of a single IR phonon the dispersion relation of
the phonon-polariton system is depicted in Fig. 2(b). It can be
captured by substituting in Eq. (4) the refractive index [37]:

n2
phonon(ω) = ε∞

(
1 − ω2

pl.,phonon

ω2 + iγω − ω2
ph.

)
, (7)

where ωpl.,phonon is the plasma frequency of the phonon mode,
ωph. is the transverse phonon frequency, and γ is a dissipative
term for the phonon.

3. The case of multiple IR modes

In the case when multiple IR-active collective modes need
to be included in the analysis (phonons, plasmons, etc.), it
is common to use the Lorentz model which parametrizes the
contribution of each collective mode to the refractive index by
a Lorentzian [42]:

n2(ω) = ε∞

(
1 −

∑
i

ω2
pl.

ω2 + iγiω − ω2
i

)
, (8)

where ωi is the bare frequency of the ith collective mode,
ωpl.,i is the plasma frequency which characterizes the strength
of the coupling to light, γi is the dissipation, and ε∞ is an
effective static component to the permittivity arising from
high-energy modes not included in the sum. The above dis-
cussion illustrates that Eq. (4) is very general, and in any case
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an appropriate n(ω) can be chosen to capture the dispersion
relation of optically active bands.

4. Fresnel equations

We begin by reviewing the Fresnel light reflection prob-
lem at the interface between air and material in equilibrium.
While this is textbook material, we present it here with the
goal of establishing notations for subsequent discussion of
the nonequilibrium case. We consider an incoming beam with
frequency ωs at normal angle of incidence

Es = E0ei ωs
c z−iωst , (9)

where z is the direction perpendicular to the interface and
the interface lies at z = 0. The reflected and transmitted
waves at the signal frequency are expressed through reflection
and transmission coefficients, Er = rsE0e−i ωs

c z−iωst and Et =
tsE0eiksz−iωst . The momentum ks corresponds to the mode in-
side the material oscillating at ωs and using Eq. (4) is given by
ks = ωsn(ωs )

c . Matching the electric field across the boundary at
z = 0 gives rise to the boundary equation:

1 + rs = ts. (10)

For nonmagnetic materials, the magnetic field is also con-
served across the surface. Using the homogeneous Maxwell
equation, ∂t B = −∇ × E , we calculate the magnetic field in
the two regions. Matching the two regions at z = 0 gives rise
to the second boundary equation:

1 − rs = n(ωs)ts. (11)

Solving for the reflection coefficient, we find the standard
expression for reflectivity in terms of the refractive index:

Rs = |rs|2 =
∣∣∣∣1 − n(ωs)

1 + n(ωs)

∣∣∣∣
2

= (1 − n′)2 + (n′′)2

(1 + n′)2 + (n′′)2 , (12)

where n′ and n′′ correspond to the real and imaginary parts of
the refractive index, respectively.

In equilibrium, reflectivity can be deduced, at least qual-
itatively, from the form of collective mode dispersion inside
the material. This is depicted in Figs. 2(a)–2(c) for a SC
and in Figs. 2(b)–2(d) for a photon-polariton system. In the
case of a SC, at probing frequencies below the plasma gap
ωs < ωpl., no bulk modes exist to propagate the energy and
ks is purely imaginary corresponding to an evanescent wave.
In this situation, we have near perfect reflectivity. As soon as
the probing frequency becomes larger than the plasma gap,
transmission is allowed and reflectivity drops abruptly, reach-
ing a minimum at the frequency where the light cone crosses
the plasma band. The minimum in reflectivity or equivalently
the maximum in transmission occurs when the incoming and
transmitted waves are “phase matched,” a condition that is
satisfied when the light cone in air crosses a new band inside
the material, i.e., n′(ωs) = 1 in Eq. (12). The sudden drop in
reflectivity appearing whenever a new optically active band
becomes available is called in the literature a “plasma edge.”
Similar reasoning can be used to determine qualitatively the
reflectivity of a phonon-polariton system from its dispersion
relation alone: At frequencies within the gap of the disper-

sion, ωph. < ωs <
√

ω2
ph. + ω2

pl.,phonon, called the reststrahlen

band, only evanescent waves are allowed, and reflectivity is
expected to be close to one. On the other hand, for probing

frequencies ωs >
√

ω2
ph. + ω2

pl, when the light cone crosses

the upper polariton branch, a plasma edge appears.

5. Dissipation

Finally, we comment on the effects of dissipation on light
reflection. While in principle Eq. (4) is completely general, it
is sometimes helpful to add dissipation explicitly through the
conductivity of the normal electron fluid which obeys Ohm’s
law and modifies Eq. (4) to(

n2(ω)ω2 + i
σn

ε0
ω − c2k2

)
E = 0, (13)

where σn is the normal electron fluid conductivity. Such a term
provides a natural way of including increased dissipation in
the pumped state discussed below as a result of the presence
of photo-excited carriers. In the equilibrium case, dissipation
acts to smooth out sharp features in reflectivity such as the
plasma edges.

B. Floquet reflectivity

1. Floquet eigenstates

Our goal in this section is to introduce a simple model for
Floquet materials and discuss special features in reflectivity
that appear in this model close to parametric resonances. In
the next section we will demonstrate that features discussed
in this section are ubiquitous and can be found in more ac-
curate models [22,37]. We model the Floquet medium by
assuming that the presence of an oscillating field inside the
material results in a time periodic refractive index, n2

driven(t ) =
n2(ω) + δn2

drive cos(�dt ). In this simple model, the origin of
the oscillating refractive index is the modulation left in the
material after photo excitation of a certain collective mode;
hence its lifetime can exceed the duration of the driving field.
The equations of motion in frequency space for the elec-
tric field in the presence of the time-dependent perturbation
becomes:(

k2 − ω2n2(ω)

c2

)
E (ω, k)

+ Adrive(E (ω − �d , k) + E (ω + �d , k)) = 0, (14)

where Adrive is the mode coupling strength related to the
amplitude of the time-dependent drive, which in this sec-
tion we assume to be constant although, in principle, it may
be frequency dependent (see, e.g., Sec. III B). Generally,
equations of the type (14) should be solved simultaneously
for many frequency components that differ by integer multi-
ples of the drive frequency. However, to capture parametric
resonances in the spectrum, it is sufficient to limit analysis
to mixing between only two modes, which are commonly
referred to as the signal and idler modes [43]. The signal
frequency is taken to be the frequency of the probe pulse,
whereas the idler frequency is chosen from the condition that
the sum of the signal and idler frequency is equal to the drive
frequency. There may be other resonant Floquet conditions,
such as ω1 − ω2 = �d , which do not correspond to parametric
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generation of excitations by the drive but instead correspond
to resonant rescattering. We postpone discussion of such cases
to subsequent publications. Thus we consider

E (t, z) = (Ese
−iωst + E∗

id.e
+iωid.t )eikz. (15)

Truncating the eigenmode ansatz to only signal and idler com-
ponents corresponds to using Floquet degenerate perturbation
theory approximation [36]. The inclusion of higher harmonic
contributions will give rise to subleading perturbative correc-
tions. With the ansatz in Eq. (15), the equations of motion take
the form: (

k2 − k2
s Adrive

Adrive k2 − k2
id.

)
·
(

Es

E∗
id.

)
= 0, (16)

where k2
s (ωs) = ω2

s n2(ωs )
c2 and k2

id.(ωs) = ω2
id.n

2(ωid. )
c2 are the mo-

mentum of the eigenstate oscillating at the signal frequency or
idler frequency, respectively, in the absence of the parametric
drive Adrive. The renormalized eigenvalues are given by:

k2
± = k2

s + k2
id.

2
±

√(
k2

s − k2
id.

2

)2

+ A2
drive, (17a)

and the corresponding Floquet eigenstates are:

E∗
id,± = α±Es,±, (18a)

α± = k2
s − k2

id.

2Adrive
∓

√(
k2

s − k2
id.

2Adrive

)2

+ 1. (18b)

2. Floquet-Fresnel equations

The eigenstates in Eq. (18) represent two transmis-
sion channels for the case where the Floquet material
is probed at the signal frequency, E±(t, z) = t±E0(e−iωst +
α±e+iωid.t )eik±z. Similarly, the transmitted magnetic field is
given by B±(t, z) = k±t±E0( 1

ωs
e−iωst − α±

ωid.
e+iωid.t )eik±z. To

find the reflectivity, we need to satisfy boundary conditions
corresponding to matching of magnetic and electric fields
across the boundary oscillating at the signal and idler fre-
quency separately:

1 + rs = t+ + t−, (19a)

1 − rs = ck+
ωs

t+ + ck−
ωs

t−, (19b)

rid. = α+t+ + α−t−, (19c)

rid. = ck+
ωid.

α+t+ + ck−
ωid.

α−t−, (19d)

where rid. is the coefficient of the light reflected at the idler
frequency. The Fresnel-Floquet problem in Eq. (19) together
with Eqs. (17) and (18) form a closed set of equations that can
be solved to determine the reflectivity R = |rs|2.

3. Perturbation theory for large dissipation

In order to elucidate the physics of photo-induced res-
onances, it is instructive to work perturbatively in the
parametric driving strength, away from parametric resonance.
Since ks = kid. corresponds to the parametric resonance con-
dition, the small parameter is chosen to be ξ = 2Adrive

k2
s −k2

id.

. In the

limit of small ξ , the two solutions can be safely separated into

a mostly signal solution and a mostly idler solution. These
correspond to expansions of k2

± to linear order in ξ

k̃2
s ≈ k2

s + Adriveξ

2
+ O(Adriveξ

3), (20a)

k̃2
id. ≈ k2

id. −
Adriveξ

2
+ O(Adriveξ

3), (20b)

where k̃s and k̃id. are the renormalized momenta. The corre-
sponding transmission channels are given by expanding α± to
leading order in ξ :

E1 = tsE0

(
e−iωst −

(
ξ

2
+ O(ξ 3)

)
e+iωid.t

)
eik̃sz (21a)

E2 = tid.E0

((
ξ

2
+ O(ξ 3)

)
e−iωst + e+iωid.t

)
eik̃id.z, (21b)

where the eigenmodes have been rescaled in perturbation the-
ory in order to interpret E1 as the channel oscillating primarily
at the signal frequency with a perturbative mixing of the term
oscillating at the idler frequency, while E2 is the channel
oscillating primarily at the idler frequency with a perturba-
tive mixing of a term oscillating at the signal frequency. By
integrating out the idler transmission channel, the Floquet-
Fresnel equations can be reformulated through an effective
renormalized refractive index (see Appendix A for details):

1 + rs = ts, (22a)

1 − rs = tsñ, (22b)

where ñ is given by:

ñ = neq.

(
1 + Adriveξ

4k2
s

+ ξ 2

4

ck̃s − ωid.

ck̃id. − ωid.

(
k̃id.

k̃s
− 1

))
, (23)

where neq. is the equilibrium refractive index. Unlike equi-
librium, the dressed Floquet refractive index is allowed to
be negative giving rise to parametric amplification of the re-
flected signal. Equation (23) has two perturbative corrections
to second order in the mode coupling strength’s amplitude,
Adrive: One of order ξ and the other of order ξ 2. The term linear
in ξ comes from the renormalization of the transmitted wave-
vector k̃s, while the quadratic term results from integrating out
the idler channel and therefore originates from interference
effects between signal and idler mode.

On parametric resonance within the same band, the phase-
matching condition between signal and idler |Re(ks)| =
|Re(kid.)|, implies ωs = ωid. = �d

2 , while the sign of each
wave vector is fixed by causality as we show below. The
perturbation theory developed above is valid even on reso-
nance provided that the dissipation is high enough. To show
this we expand around the parametrically resonant frequency,
ωs = ωpara, with a finite dissipation that we include in a causal
way through the substitution ωs → ωs + iγ . The expressions
for the signal and idler wave vectors are then given by:

ks = k′
s,0 + ωs − ωpara + iγ

vg(ωpara )
, (24a)

kid. = −k′
s,0 + ωs − ωpara + iγ

vg(ωpara )
. (24b)

In Eq. (24), vg(ωpara ) is the group velocity on parametric
resonance, and k′

s,0 the real part of the ks wave vector on
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t t

ω ωid. s

12

Einc. rs

t t12

rid.

Ωd

dΩ

FIG. 3. Schematic depiction of counterpropagating transmission
channels inside a Floquet material. In the presence of a Floquet drive,
signal and idler frequency components are mixed giving rise to two
transmission channels, t1 and t2, propagating in opposite directions.
Since the idler component is counteroscillating compared with the
signal, the Floquet drive, which mixes signal and idler effectively,
acts as a wall reflecting each transmission channel and changing its
propagation direction. The two channels are coupled at the interface
through the boundary conditions. The picture explains schematically
the physical mechanism of parametric amplification: In the presence
of a drive, solutions of the Fresnel equations exist which propa-
gate from inside the material toward the surface, amplifying the
reflectivity.

parametric resonance. Boundary conditions require that the
transmitted light vanishes at large distances inside the material
or equivalently Im{k} > 0. As a result, the real part of kid. is
negative and counterpropagates with respect to the mostly sig-
nal transmission channel inside the material. This situation is
shown schematically in Fig. 3. Using Eq. (24), the parameter
ξ is given by

ξ ≈ Adrive

2(ωs − ωpara + iγ )
k′

s,0

vg(ωpara )

(25)

and has a Lorentzian peak structure. The resonant form of ξ

is responsible for resonances in the reflectivity. In the case of
multiple bands, the above result can be generalized by consid-
ering that the phase-matching condition between signal and
idler wave can occur at different signal and idler frequencies
ωpara.,1 + ωpara,2 = �d . In this situation we have:

ks = k′
s,0 + ωs − ωpara,1 + iγ (ωpara,1)

vg(ωpara,1)
, (26a)

kid. = −k′
s,0 + ωid. − ωpara,1 + iγ (ωpara,2)

vg(ωpara,2)
, (26b)

where the group velocity and dissipation can be different for
the different bands at ωpara,1 and ωpara,2. However, the pertur-
bative parameter ξ for multiple bands takes a form similar to
the single band case:

ξ = 2Adrive

k2
s − (kid.)2

≈ Adrive

2(ωs − ωpara,1 + iγeff ) × k′
s,0

veff

(27)

where 2v−1
eff = v−1

g (ωpara,1) + v−1
g (ωpara,2) and γe f f . = ve f f .

2 ·
( γ (ωpara,1 )
vg(ωpara,1 ) + γ (ωpara,2 )

vg(ωpara,2 ) ). Equation (27) demonstrates that for

small driving strength the resonant behavior of parametric
driving within the same band and in between different bands
is the same.

C. Floquet-Fresnel phase diagram

Based on our analysis, resonant features in the reflectivity
can be classified into four regimes as shown in Fig. 1. Regimes
I and II are in the stable region where dissipation is stronger
than the parametric drive. For these cases we can obtain an-
alytic expressions for the changes in reflectivity. To second
order in Adrive we find two contributions to the refractive index
given in Eq. (23). Band renormalization gives rise to a linear
contribution in ξ , while interference between signal and idler
gives rise a term proportional to ξ 2. Their relative strength is
given by δnlinear

δnquadratic
∝ γ

vgks
on parametric resonance, |Re(ks)| =

|Re(kid.)|, c.f. Eq. (23). Interference phenomena dominate for
underdamped photon modes for which γ < vgks while for
overdamped modes interference phenomena are suppressed
and band renormalization is dominant. The corresponding
changes to reflectivity are calculated by expanding the reflec-
tivity to linear order in δn

ñ = neq. + δn, (28a)

r̃s = 1 − ñ

1 + ñ
≈ rs,eq. − 2δn

(n + 1)2
, (28b)

R̃s ≈ Rs,eq. − 4Re

{
δn

(n + 1)2
r∗

s

}
. (28c)

1. Regime I

For the usual case of underdamped modes and a single
band, we can take r∗

s,eq and neq. to be real. Moreover, the

constant, A = ck̃s−ωid.

−ck̃id.+ωid.
(1 + −k̃id.

k̃s
), can be expanded around

parametric resonance to give A = 2 n−1
n+1 = 2rs. Under these

assumptions, interference of signal and idler gives rise to a
double Lorentzian dip in reflectivity and is reminiscent of EIT.

R̃s ≈ Rs,eq.

(
1 − 2

(n + 1)2
Re

{
C

(ωs − ωs,para + iγ )2

})
,

(29)

where C = v2
g A2

drive

4k2
s

is a constant proportional to the driving
intensity.

2. Regime II

In the opposite limit of overdamped dynamics in a single
band, the dominant term comes from the linear in ξ term and
the reflectivity takes the form:

R̃s ≈ Rs,eq. + C′Re

{
eiθ 1

ωs − ωs,para + iγ

}
, (30)

where C′eiθ = − 1
(n+1)2

A2
drivevgc
4k3

s
. This feature appears as a

plasma edge induced by the drive from a featureless over-
damped background as reported in Ref. [21].

3. Regimes III and IV

These regimes are not perturbative; however, in many cases
we can use our simple theory of parametric resonance between
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two bands to capture the reflectivity of real experiments by
solving Eqs. (19a)–(19d). In particular, Regime IV corre-
sponds to a lasing instability regime where we expect a strong
peak in the reflectivity due to parametric amplification and
can even be a discontinuous function (as it was also shown in
Ref. [37]). Regime III is an intermediate region where on res-
onance there is amplification. However, away from resonance
perturbation theory still holds giving rise to an interesting
double dip structure.

III. EXAMPLES OF MANIFESTATIONS OF PARAMETRIC
RESONANCE IN REFLECTIVITY

In the previous section, we investigated general aspects of
Floquet resonances while being agnostic about microscopic
details of the system. In this section, we discuss toy models
of realistic dispersion. Pump-induced features in these toy
models in the different regimes of the pump-induced phase
diagram can be used to build intuition for more complicated
multiband dispersions.

A. Driven plasmon band

The simplest case of an optical system that we discuss is
a single plasmon band, which describes electrodynamics of
metals and SCs. The equilibrium reflectivity in such systems
was discussed in Sec. II A. Maxwell’s equations in a SC can
be written as [41]:(

ω2 − ω2
pl. + i

σn

ε0
ω − c2k2

)
E = 0, (31)

where σn represents the ohmic part of the conductivity and
provides dissipation, while the photon obtains a mass given
by the plasma frequency. At ω = 0 Eq. (31) can be solved
with k = iωp, which corresponds to the skin effect in metals
and for SCs can also be understood as the Meissner effect. The
dissipation term with σn in Eq. (31) can be present in SCs due
to quasiparticles [44]. The above equations of motion can be
represented by the complex refractive index:

nSC(ω) = ω2 − ω2
pl

ω2
+ iσn

ε0ω
. (32)

We model the Floquet material as a system with time-periodic
modulation of the plasma frequency ωpl at frequency �d . We
assume that the modulation frequency is higher than twice the
frequency of the bottom of the plasmon band, so that the drive
can result in resonant generation of plasmon pairs. Taking
the amplitude of modulation to be Adrive we obtain Eq. (14)
introduced previously.

Reflectivity spectra in the different regimes of the para-
metric driving-induced phase diagram are plotted in Fig. 4 by
tuning the dissipation through the normal conductivity σn and
the amplitude of periodic oscilations Adrive.

B. Floquet-Fresnel reflectivity in a phonon-polariton system

We now want to demonstrate that the four regimes pre-
sented in Fig. 1 are universal and not limited to a single
optical band model. To this end we consider a system that fea-
tures two branches of optical excitations: A phonon-polariton
system corresponding to light coupling to a single IR-active

(a) (b)

(c) (d)

Equilibrium
Floquet

FIG. 4. Reflectivity spectra of a plasmon band driven at �d =
3ωpl in the four different regimes of the phase diagram of Fig. 1.

(a) Regime I: σn
ε0

= 0.064ωpl , Aampl. = 3
ω2

pl

c2 ; (b) Regime II: σn
ε0

=
2ωpl , Aampl. = 60

ω2
pl

c2 ; (c) Regime III: σn
ε0

= 0.1ωpl , Aampl. = 6
ω2

pl

c2 ;

(d) Regime IV: σn
ε0

= 0.064ωpl , Aampl. = 6
ω2

pl

c2 . Notice that dissipation
suppresses parametric driving effects and a larger oscillation ampli-
tude is needed to produce an appreciable effect in the reflectivity
spectra. Notably, in (b), which corresponds to an overdamped sys-
tem, parametric driving gives rise to an interesting structure from a
featureless background with a dip on resonance.

phonon mode. The Hamiltonian describing such a model can
be written as

Hph = ZEQ + Mω2
ph

Q2

2
+ �2

2M
, (33)

where Q is the phonon coordinate, � is the momentum con-
jugate to Q, ωph. is the transverse phonon frequency, M is the
ion mass, and Z is the effective charge of the phonon mode.

Solving the equations of motion corresponding to Eq. (33)
together with Maxwell’s equations we obtain two hybrid
light-matter modes corresponding to the upper and lower po-
laritons. In equilibrium the dispersion and typical reflectivity
is given by Figs. 2(b)–2(d). The dispersion is modeled by
taking the refractive index given by Eq. (7) written here for
convenience:

n(ω)2 = ε∞

(
1 + ω2

pl.,phonon

−ω2 − iγω + ω2
ph.

)
,

where in terms of our Hamiltonian parameters the plasma
frequency of the phonon is given by ω2

pl.,phonon = Z2

ε0M .
The bottom of the upper polariton branch is at frequency

ωL =
√

ω2
ph + ω2

pl,phonon.

A new feature of the two band system is the possibility of
interband parametric resonances. The simplest type of optical
pump corresponds to resonantly exciting the upper polariton
branch at k = 0, which then results in the parametric drive
of the system at frequency �d = 2ωL [18] (for details see
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(a) (b)

(c) (d)

FIG. 5. Reflectivity spectra of a phonon-polariton system driven
by �d = 60 THz through exciting the upper phonon-polariton at
30 THz. The four regimes of the phase diagram are presented
for different parameters of the phonon dissipation and oscilla-
tion amplitude. The values were chosen such that the transverse
phonon is at ωT = 25 THz and the longitudinal phonon is at ωL =
30 THz. (a) Regime I: γ = 0.5 THz, B = 2.7 × 107 THz4

c2 ; (b) Regime

II: γ = 5 THz, B = 9 × 107 THz2

c2 ; (c) Regime III: γ = 1 THz, B =
70002 THz4

c2 ; (d) Regime IV: γ = 0.5 THz, B = 8.1 × 107 THz4

c2 . In
Regime IV, apart from the expected parametrically resonant instabil-
ities, we find a Fano-type feature associated with divergences in the
the strength of the phonon-mediated parametric drive. This occurs at
�d − ωT = 35 THz.

Appendix B). This is the situation that we will primarily
focus on in this section. As shown in Fig. 2(b), in this case
one finds a resonant process in which the drive produces one
lower and one upper polariton at finite momentum. This pro-
cess satisfies both momentum and energy conservation. This
resonance leads to singularities in the reflectivity shown in
Fig. 5 at 20 and 40 THz. Another case of parametric resonance
corresponds to the drive creating two upper polaritons at zero
momentum. This leads to the singularity at ωL = 30 THz in
Fig. 5(d).

Another small peak in Fig. 5(d) (strong drive regime) can
be seen at the frequency of 35 THz. This feature arises from
the singularity of the matrix element that mixes the signal and
idler frequency components that we pointed out in Sec. I B. In
Appendix B, we consider nonlinearities in the phonon system
of the type

Hnon−linear = uQ4 (34)

and demonstrate that the matrix element Adrive, introduced in
Eq. (14), can be written as

Adrive(ωs) = Adrive,0

+ B(
ω2

s + iγωs − ω2
ph.

)(
ω2

id. + iγωid. − ω2
ph.

) .

(35)

The last equation shows that Floquet mixing is dramatically
enhanced when either the signal or the idler frequencies are
equal to ωph. It is also useful to present this result in terms of
the effective change of the index of refraction (at the signal
frequency) after integrating out contribution of the idler com-
ponent [see Eq. (23)]. In the phonon-polariton case we obtain
correction to the index of refraction

δnphonon ∝ 1(
ω2

id. + iγωid. − ω2
ph.

)(
ω2

s + iγωs − ω2
ph.

) , (36)

which shows resonant enhancement around ωs = ωph. and
ωs = �d − ωph.. We remind the readers, however, that
Eq. (36) is based on the perturbative treatment of the signal-
idler mixing and is not quantitatively accurate in the vicinity
of singularities in the reflection coefficient.

IV. BLUE-SHIFTED EDGE IN BILAYER HIGH Tc
CUPRATE YBa2Cu3O6.5

An experimental realization of the driven single plasmon
edge comes from terahertz pump and probe experiments in
YBa2Cu3O6.5 [45]. In equilibrium, YBa2Cu3O6.5 is a bilayer
SC with a JP at 0.9 THz. The low-energy optical response for
light polarized along the c axis of the material is captured by
the equations of motion [41]:(

n2
0

(
ω2 − ω2

pl.

) + i
σn

ε0
ω − c2k2

)
E = 0, (37)

where σn represents the conductivity of the normal state elec-
tron fluid which provides dissipation for the JP, ωpl is the
Josephson plasma frequency, and n0 is the static refractive
index inside the material. This photon dispersion is shown in
Fig. 2(a) with a gap ωJP ∼ 0.9 THz leading to a JP edge at that
frequency in the equilibrium optical reflectivity. Equivalently,
the equations of motion can be represented by the refractive
index:

nSC(ω) = n2
0

(
ω2 − ω2

pl.

ω2
+ i

σn

ε0n2
0ω

)
, (38)

substituted in Eq. (4).
We use our model to fit experimental data presented in

Ref. [45] (reprinted here with the author’s permission). Pa-
rameters used in this section to produce the figures are
tabulated in Appendix C. We consider first a low-temperature
state in the superconducting regime, T = 10 K , and model
pumping as parametrically driving JPs [21,22]. Using our
simple model, we find excellent agreement with experiments
shown in Fig. 6 and interpret the edge at ∼1 THz to be a
consequence of parametric resonance from a drive at ∼2 THz,
corresponding to the intermediate Regime IV in the phase
diagram. To fit the data, we need to assume that the normal
state conductivity, σn, is increased in the pumped state by
photo-excited quasiparticles but also that ω2

pl , which is pro-
portional to the superfluid density, is decreased. Remarkably,
our simulation shows that even if we assume a suppressed
superfluid density, we still find a blue-shifted edge as a result
of internal oscillating fields parametrically driving JPs. To fit
the photo-induced edge above Tc, we model the pseudogap
phase as a SC with overdamped dynamics and a reduced
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(a) (b)

FIG. 6. Optical reflectivity spectra of YBa2Cu3O6.5 extracted
from Ref. [45], replotted with the permission of the authors and
fitted with the theory presented in this paper. The photo-induced
reflectivity edge is well captured by our simple model and suggests
that JPs are parametrically driven by a coherently oscillating mode.
(a) Reflectivity spectra at T = 10 K (below Tc) shows a dip peak
structure around 1 THz corresponding to Regime (I) of our phase
diagram. (b) Reflectivity spectra at T = 100 K (above Tc) is fitted
with our theory assuming an overdamped JP edge in the pseudogap
regime. Parametric driving produces changes in reflectivity consis-
tent to Regime (II) of our phase diagram. Fitting parameters are
reported in Appendix C.

plasma resonance frequency. In Fig. 6(b) we are able to fit
the data assuming parametric driving at the same frequency as
the low-temperature data. Our theory suggests that reflectivity
data from pump and probe experiments in the pseudogap
phase of YBa2Cu3O6.5 correspond to Regime II of our phase
diagram, which shows that a photo-induced edge appears as a
result of parametric driving of overdamped photon modes.

V. DISCUSSION AND OUTLOOK

In this paper we developed a theory that allows to
compute optical reflectivity of materials with oscillating
collective modes. We demonstrated that by using only a
few phenomenological coefficients, which parametrize the
frequency-dependent refractive index, as well as the frequency
of the oscillations driving the system, it is possible to predict
the position of the photo-induced resonances associated with
parametric resonances. To obtain the shape of the resonant
feature, one also needs to include information about the am-
plitude of the drive and dissipation of collective modes. In
particular, we found that when dissipation dominates over
parametric drive, the system develops a Lorentzian-shaped
dip, which arises from the interference of signal and idler
transmission channels. At stronger drives the dip turns into
a peak and reflectivity can exceed one, indicating parametric
amplification of the probe pulse. We also discussed interesting
double dip crossover behavior between the overdamped and
the amplification regimes. Our results should be ubiquitous in
strongly driven systems where the excitation of a well-defined
collective mode can act as the external periodic drive.

Our analysis demonstrates that parametric resonances pro-
vide a general universality class of reflectivity features from
which both dynamical and static properties of the system can
be extracted. This puts them in the same category as previ-
ously studied Fano resonance features and EIT [35]. Despite
the simplicity of our model, the resulting reflectivity spectrum
can be quite rich, as shown in the phase diagram in Fig. 1. Our

results provide a tool for analyzing a variety of photo-induced
features that have been observed in experiments but have not
been given theoretical interpretation until now. We show that
photo-induced features, such as a photo-induced edge, can
serve as a reporter of a long-lived collective mode excited
in the material during pumping and a precursor of a lasing
instability that can occur in the system at stronger drives.
As a concrete case study we analyzed experimental results
of the pump-induced changes of reflectivity in a layered SC
YBa2Cu3O6.5 at frequencies close to the lower JP edge. We
find that we can obtain an accurate fit to the experimental
data if we include strong renormalization of the equilibrium
parameters, such as enhancement of real conductivity due to
the photoexcitation of charge carriers during the pump.

A natural generalization of the above framework is the in-
clusion of time-dependent drives at several frequencies. This
is important, for example, for analyzing Floquet drives with
finite spectral width or including finite lifetime of collective
modes. In this case different oscillating modes are expected to
compete with each other, leading to a inhomogeneous broad-
ening of the dip/peak features predicted in this work.
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APPENDIX A: DERIVATION OF FLOQUET REFRACTIVE
INDEX IN THE STABLE REGIME

In this section we derive the Floquet refractive index shown
in Eq. (23). Using Eqs. (20) and (21) we derive the perturba-
tive Floquet-Fresnel equations:

1 + rs = ts + ξ

2
tid., (A1a)

1 − rs = ts
ck̃s

ωs
+ ξ

2

ck̃id.

ωs
, (A1b)

rid. = −ξ

2
ts + tid., (A1c)

rid. = −ξ

2

ck̃s

ωid.

ts + ck̃id.

ωid.

tid. (A1d)

We can integrate out the effects of the idler channel by
using Eqs. (A1c) and (A1d): We wish to use the boundary
conditions oscillating at the idler frequency to solve for tid. in
terms of ts:

tid. = ξ

2

ck̃s − ωid.

ck̃id. − ωid.

ts. (A2)
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These lead to the boundary conditions:

1 + rs = ts

(
1 + ξ 2

4

ck̃s − ωid.

ck̃id. − ωid.

)
, (A3a)

1 − rs = ts
ck̃s

ωs

(
1 + ξ 2

4

ck̃s − ωid.

ck̃id. − ωid.

k̃id.

k̃s

)
. (A3b)

After rescaling the transmission coefficient ts, the above
equation can be cast in the familiar form:

1 + rs = ts, (A4a)

1 − rs = tsñ, (A4b)

allowing us to encode the effects of driving into an effective
renormalized refractive index. In fact, the possibility for the
dressed refractive index to be negative is what gives rise to
phenomena such as parametric amplification of reflectivity.
The renormalized refractive index is found to be:

ñ ≈ ck̃s

ωs

1 + ξ 2

4
ck̃s−ωid.

ck̃id.−ωid.
· k̃id.

k̃s

1 + ξ 2

4
ck̃s−ωid.

ck̃id.−ωid.

, (A5a)

ñ ≈ neq.

(
1 + Adriveξ

4k2
s

+ ξ 2

4

ck̃s − ωid.

ck̃id. − ωid.

(
k̃id.

k̃s
− 1

))
(A5b)

as reported in Eq. (23).

APPENDIX B: IR PHONON-MEDIATED DRIVE

The equation of motion for the phonon given by the Hamil-
tonian in Eqs. (33) and (34) is(

∂2
t + γ ∂t + ω2

0 + 4uQ2
)
Q = ZE . (B1)

Using a Gaussian ansatz for the phonons we can linearize the
above equation as:

(
∂2

t + γ ∂t + ω2
ph. + 12u〈Q2〉)Q = Z

M
E . (B2)

The phonon mode appears in the Maxwells equations as:

(
1

c2
∂2

t − k2

)
E = −Z∂2

t Q. (B3)

Oscillating collective modes inside the material will affect the
above linear system through oscillations of 〈Q2〉 = 〈X 2〉0 +
A(ei�d t + e−i�d t ). Such a term can arise by pumping the sys-
tem on resonance with the upper polariton, such that 〈Q〉 =
A′ cos ωLt , where ω2

L = ω2
ph. + Z2

M , the frequency of the upper
polariton at k = 0. Alternatively, for a pumping protocol at
high frequencies, the upper polariton fluctuations, 〈Q2〉, can
be driven linearly by a Raman process. In both cases, the driv-
ing frequency would be twice the upper plasmon frequency
�d = 2ωL. However, in general, �d can also correspond to
a different frequency not included in our model. Absorbing
〈Q2〉0 in the definition of ωph. and expanding in Eq. (B2) Q
in signal and idler components, Q = Qse−iωst + Qid.eiωid.t we
have

(
Qs

Qid

)
=

( Z
ω2

s +iγωs−ω2
ph.

0

0 Z
ω2

id.+iγωid.−ω2
ph.

)
·
(

Es

Eid

)
+ ZA(

ω2 + iγω − ω2
ph.

)(
ω2

id. + iγωid. − ω2
ph.

)(
Eid

Es

)
. (B4)

Substituting Eq. (B4) in Maxwell’s equation we find the equa-
tions of motion for the signal and idler component to be:

(
n2

eq.(ωs)

c2
ω2

s − k2

)
Es + Adrive,s(ωs, ωid )Eid = 0, (B5a)

(
n2

eq.(ωid.)

c2
ω2

s − k2

)
Es + Adrive,id (ωs, ωid )Eid = 0, (B5b)

where the signal and idler driving amplitude, Adrive,s and
Adrive,id is given by:

Adrive,s

= Z2Aω2
s(

ω2 + iγω − ω2
ph.

)(
ω2

id. + iγωid. − ω2
ph.

) , (B6a)

Adrive,s

= Z2Aω2
id(

ω2 + iγω − ω2
ph.

)(
ω2

id. + iγωid. − ω2
ph.

) , (B6b)

justifying the resonant structure presented in Eq. (35).

APPENDIX C: FITTING PARAMETERS FOR YBa2Cu3O6.5

DATA

As mentioned, equilibrium is modeled via the equations of
motion of photons in a SC:

(
ω2 + i

σn

ε0
ω −

(
ω2

pl. +
c2

n2
k2

))
E (ω) = 0. (C1)

Driving is taken into account by mixing signal and idler
frequency contributions arising from a periodic drive at �d :

(
ω2

s + i
σn

ε0
ωs −

(
ω2

pl. +
c2

n2
k2

))
E (ωs, k)

+ AdriveE (−ωid., k) = 0, (C2a)(
ω2

id. + i
σn

ε0
ωid. −

(
ω2

pl. +
c2

n2
k2

))
E (−ωid., k)

+ AdriveE (ωs, k) = 0. (C2b)
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To fit the data, we first fit the parameters {ωpl., σn, n} to the
equilibrium reflectivity and then fit the driving frequency �d

and driving amplitude Adrive to match the driven reflectivity
spectra.

1. Below Tc

The experimental data taken at 10 K, with pumping fre-
quency of 19.2 THz with a width of 1 THz and electric-field
amplitude 1MV/cm. The equilibrium is fitted with ωpl. =
0.9 THz, σ/ε0 = 2.7 THz, n = 4.2. In the driven state we use
�d = 2.1 THz, Adrive = 8.4 THz2

c2 , ωpl. = 0.6 THz and σn/ε0 =
5.5 THz. From our fit we predict that dissipation has increased
due to pumping but also the interlayer Josephson coupling has

decreased during the pump. We see that the edge appears even
if the Josephson coupling is suppressed.

2. Above Tc

The experimental data taken at 10 K, with pump-
ing frequency of 19.2 THz with a width of 1 THz
and electric-field amplitude 3MV/cm. Equilibrium
is found to be overdamped with ωpl. = 0.1 THz,
σ/ε0 = 25.8 THz, n = 5. The pumped reflectivity is fitted
with �d = 3.8 THz, Adrive = 64 THz2

c2 , ωpl. = 0.1 THz and
σn/ε0 = 54 THz.

Finally, both signals where convoluted with a Gaussian
broadening function, with standard deviation 0.05 THz.
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