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Generating nonclassical states in macroscopic systems is a long-standing challenge. A promising platform
in the context of this quest are novel hybrid systems based on magnetic dielectrics, where photons can couple
strongly and coherently to magnetic excitations, although a nonclassical state therein is yet to be observed.
We propose a scheme to generate a magnetization cat state, i.e., a quantum superposition of two distinct
magnetization directions, using a conventional setup of a macroscopic ferromagnet in a microwave cavity. Our
scheme uses the ground state of an ellipsoid shaped magnet, which displays anisotropic quantum fluctuations
akin to a squeezed vacuum. The magnetization collapses to a cat state by either a single photon or a parity
measurement of the microwave cavity state. We find that a cat state with two components separated by ∼5h̄ is
feasible and briefly discuss potential experimental setups that can achieve it.

DOI: 10.1103/PhysRevB.103.L100403

Introduction. Superposition is a cornerstone of quantum
theory, a paradigmatic example of which is a “cat state”
referring to, loosely speaking, a system which exists in a quan-
tum superposition of two quasiclassical states. Besides their
important historical link to Schrödinger’s famous gedanken
experiment, their insensitivity to particle loss noise [1] means
that cat states find useful application as carriers of information
(qubits) in quantum computation [2–4] or as sensors in quan-
tum metrological tasks [5–8]. The robustness of a cat state
increases with its size, i.e., how “distinct” the two quasiclas-
sical components are. Experimental realizations of cat states
include photon states at optical [9–11] and microwave [12]
frequencies with a size of up to 3 and 100 photons, respec-
tively, and a spin-state with size ∼2h̄ composed of ∼3000
atoms [13]. However, nonclassical states are notoriously dif-
ficult to generate in macroscopic systems due to the lack
of long-enough coherence lengths. Considerable advances on
this front were obtained in optomechanical systems (in which
light couples to acoustic excitations [14]) [15–18]; however,
cat states have not yet been realized in this platform [19,20].

Over the past few years, a new kind of hybrid quantum
system has emerged as a promising platform for quantum ap-
plications, where photons are coupled coherently to magnetic
excitations (magnons) in macroscopic magnetic materials
[21]. The dielectric ferrimagnet yttrium iron garnet (YIG) is
the material of choice in current experiments, owing partly
to its extremely low magnetic dissipation [22]. Coherent and
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strong magnon-microwave coupling using sub-mm spheres of
YIG was realized [23–25] and used to mediate the coupling
between magnons and superconducting qubits [26]. Magnons
also coherently couple to optical photons [23,27–30], phonons
[31,32], and electrons [33–35], pointing to the possibility
of magnon-based quantum transducers [36,37]. Moreover,
a Bose-Einstein condensate of magnons showing macro-
scopic coherence was demonstrated in YIG thin films [38,39].
These developments together with the recent demonstration of
single-magnon detection in YIG spheres [40,41], has opened
prospects for studying and manipulating microwave magnetic
excitations in a quantum coherent manner. Creating nonclassi-
cal states of the magnetization is crucial for future applications
in what is denominated “quantum magnonics” [21]. Theoret-
ical proposals include all-optical heralding of magnon Fock
states [42] and generation of entangled states [43–45].

Here we propose a setup to prepare a cat state of a macro-
scopic number of spins (>1018) that can be achieved by
employing state-of-the-art microwave cavities with an embed-
ded magnet of anisotropic shape, see Fig. 1(a). The protocol
relies on the anisotropy of the magnet enforcing a magnetic
ground state analogous to the squeezed vacuum in quantum
optics, plus the concomitant entangled spin-photon ground
state when the magnet is coupled to the cavity. In contrast
with the case of photons, squeezing in magnetization does not
require an external excitation, so does not decay [46,47]. We
show that in a YIG sample, cats with a size ∼5h̄ are feasible.

Model. A well-established protocol to generate cat states
in quantum optics is to add a photon to a squeezed optical
vacuum [9,48,49]. In order to accomplish this analogously
in a ferromagnet, we first require a squeezed magnetization
state [46], i.e., a minimum uncertainty state with anisotropic
zero-point fluctuations. This is realized via the ground state
of a magnet with an anisotropic shape, such as an ellipsoid.
Notably, the degree of squeezing of the magnetic ground state
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FIG. 1. (a) Setup: A ferromagnetic ellipsoid (green) with magne-
tization M couples to microwaves in a cavity via Zeeman coupling
to the cavity magnetic field B. An external applied field H0 saturates
the magnetization along one of the short axes (‖ z). (b) Probability
density [Husimi Q function, Eq. (9)] of the quasiclassical magneti-
zation’s state as a function of its components in units of the isotropic
zero point fluctuations MZPF Eq. (1). Ground state: The squeezed
magnetization vacuum [see Eq. (10)] with anisotropic fluctuations.
The inset shows the nonsqueezed (isotropic) case, valid for spherical
magnets. Heralded state: The magnetization state after detecting a
microwave photon [see Eq. (20)] showing features of a cat state.
Such features are absent when there is no squeezing (inset). The
magnetization is in a pure state after heralding, so these features
cannot be due to a classical probability distribution.

is tunable by an external magnetic field. The second step is to
add an excitation, i.e., to “flip” on average one spin which is
delocalized in space, see Fig. 1(b). We show that this can be
achieved by coupling the magnetization to a microwave cav-
ity [23–25] and performing a measurement of the latter. For
low-enough temperatures either a single-photon measurement
[50,51] or a parity measurement can be employed [52]. We
discuss these steps in detail below.

The proposed setup is shown in Fig. 1(a) where a fer-
romagnetic ellipsoid is kept inside a microwave cavity. The
magnet is assumed to be slender and prolate, i.e., Ly � Lx =
Lz, where Li is the length in ith direction. In the absence of
external magnetic fields, the magnetization would align with
the longest axis. A sufficiently large field, here H0z, aligns
the magnetization to z with quantum (zero-point) fluctuations
largely along y [46], see Fig. 1(b). For comparison, spherical
magnets have isotropic zero point fluctuations MZPF given by

M2
ZPF = γ h̄Ms

2V
, (1)

where V is the volume of the magnet and γ is absolute
value of the gyromagnetic ratio. The fluctuations are a con-
sequence of the Heisenberg uncertainty relations, embodied

by the spin commutation relations [Sx, Sy] = ih̄Sz (note that
M = γ S/V , where S is the macrospin). Flipping a (delocal-
ized) spin pushes the magnetization away from the origin. In
the presence of shape anisotropy, the resulting state has the
characteristic features of a cat state involving a superposition
of two sufficiently distinct semiclassical states, see Fig. 1(b).

In macrospin limit, the classical Hamiltonian density for
the magnetization is

Hmag = μ0

2
MÑM − μ0MzH0, (2)

where M is the total magnetization and Ñ is the demagnetiza-
tion tensor. The magnitude |M| = Ms is a constant of motion
[53], where Ms is the saturation magnetization. For spheroids,
Ñ is diagonal with Nx = Nz = NT and Ny = 1 − 2NT [53,54].
We assume a sufficiently large magnetic field, H0 > Ms/2,
such that the classical ground state is M = Msz. Due to a
difference in energy cost, the fluctuations in My are larger than
that in Mx, leading to a squeezed vacuum [46]. We model the
quantum fluctuations using the Holstein-Primakoff approxi-
mation [53,55],

Mx − iMy

2MZPF
→ ŝ, (3)

valid for |Mx,y| � Mz with MZPF defined in Eq. (1). Mz is
found by the constraint |M| = Ms. Using Eq. (3) and retaining
only quadratic terms in ŝ, the magnetic Hamiltonian density
(2) integrates to

Ĥmag

h̄
= ω0ŝ†ŝ + ωs

2
(ŝ2 + ŝ†2), (4)

where

ωs = (3NT − 1)
γμ0Ms

2
, ω0 = γμ0H0 − ωs. (5)

The bosonic operator ŝ flips a spin from +z to −z, satisfies the
canonical commutation relation [ŝ, ŝ†] = 1, and annihilates
the classical ground state corresponding to all spins pointing
along −z (the spins are antiparallel to the magnetization),
ŝ|0〉 = 0. For spheres, NT = 1/3 implying ωs = 0 and hence
ŝ (ŝ†) is the annihilation (creation) operator of elementary
excitations of the magnet, i.e., magnons. Below, we consider
the case of a slender prolate spheroid with NT ≈ 1/2 where
the ground state is not |0〉 because of the term ∝(ŝ2 + ŝ†2).

Squeezed magnetic vacuum. The Hamiltonian (4) diago-
nalizes to Ĥmag = h̄ωmm̂†m̂ by a Bogoliubov transformation
m̂ = cosh rgŝ + sinh rgŝ†, with

ωm =
√

ω2
0 − ω2

s = γμ0

√
H0

(
H0 − Ms

2

)
. (6)

The parameter rg characterizes the degree of squeezing and is
given by

erg =
√

ω0 + ωs

ωm
=

(
1 − Ms

2H0

)−1/4

. (7)

The ground state of Ĥmag, defined via m̂|g〉 = 0, is given by
[46,56] |g〉 = Sŝ(rg)|0〉, where

Sx̂(r) = exp

[
r(x̂2 − x̂†2)

2

]
(8)
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is the squeezing operator. It has a nonzero number of “flipped
spins”, 〈g|ŝ†ŝ|g〉 = sinh2 rg.

The characteristics of the ground state |g〉 can be visualized
in terms of semiclassical magnetization states |α〉, defined as
the ones with an average magnetization Mx − iMy = 2MZPFα

and minimum fluctuations [cf. Eq. (3)]. These are given
by coherent states [57], satisfying ŝ|α〉 = α|α〉, defined by
|α〉 = D̂(α)|0〉 where the displacement operator is D̂(β ) =
exp [β ŝ† − β∗ŝ]. For a general state |ψ〉, the Husimi Q
function

Q(α, |ψ〉) = 1

π
|〈α|ψ〉|2 (9)

can be interpreted as the probability density of |ψ〉 being near
the semiclassical state |α〉. For the ground state |g〉, defined
above, we find

Q(α, |g〉) = 1

π cosh rg
exp

[
−α2

Rerg + α2
I e−rg

cosh rg

]
, (10)

where α = αR + iαI . This is shown in Fig. 1(a) demonstrating
that fluctuations in My are larger than that in Mx by a factor
e2rg , indicating a squeezed vacuum. For H0 � Ms/2, rg ≈ 0
and the fluctuations are isotropic as expected. The degree of
squeezing, Eq. (7), becomes arbitrarily high as H0 → Ms/2.
In this limit ωm → 0 and the system goes toward an insta-
bility signaling a significant change in classical ground state
and a consequent failure of the linearization used in Eq. (3).
In practice, however, the frequency ωm is bounded by the
temperature limitations of the refrigerator. Considering an
experimentally feasible limit of T > 5 mK, corresponding to
a magnon’s frequency of ωm > 2π × 100 MHz, we obtain
erg < 5, corresponding to a <80% squeezing, where we used
γμ0Ms = 2π × 5 GHz for YIG [53]. This requires a magnetic
field H0 slightly higher than Ms/2 = 70 kA m−1.

Coupling to a microwave cavity. The classical Hamiltonian
density for a hollow cavity reads

Hcav = ε0|E(r)|2
2

+ |B(r)|2
2μ0

. (11)

We assume that the cavity consists of a single mode
since the generalization does not change the qualitative fea-
tures. The quantization B(r) → B0(r)â + B∗

0(r)â†, where B0

is the mode profile and â is the annihilation operator of the
cavity mode [and analogously for E(r)], diagonalizes the cav-
ity Hamiltonian Ĥcav = h̄ωaâ†â. The magnetization couples
to microwave fields via Hcoup = −M · B(r) inside the mag-
net and Hcoup = 0 outside. For magnets much smaller than
microwave’s wavelength ∼ cm, the magnetic field is nearly
constant inside the magnet. From Eq. (3), we get

Ĥcoup

h̄
= (g∗

−ŝâ† + g−ŝ†â) + (g∗
+ŝ†â† + g+ŝâ), (12)

where we ignored a tertiary term ∝ŝ†ŝâ with a coefficient
smaller than g± by a factor ∼MZPF/Ms. The beam-splitter
(g−) and parametric-amplifier (g+) coupling strengths are
given by

g± = −VMZPFB0±(rmagnet ), (13)

where B0± = B0x ± iB0y and rmagnet is the position of the mag-
net inside the cavity. Below, we consider circularly polarized

photons with B0+ = 0 (hence g+ = 0) and define g− ≡ g. The
results below are not significantly affected by polarization. By
changing the phase of photons, if necessary, we assume g > 0.
Depending on the experimental setup, g is tunable up to a large
fraction of the cavity’s frequency [58,59].

Results. The total Hamiltonian is

Ĥ

h̄
= ω0ŝ†ŝ + ωs

2
(ŝ2 + ŝ†2) + ωaâ†â + g(ŝâ† + ŝ†â). (14)

Throughout what follows we assume ωm, g � ωs, ωa imply-
ing a large spin squeezing [cf. Eqs. (6,7)], whereas the exact
results are given in Sec. II in the Supplemental Material
[60]. The Hamiltonian has two eigenmodes at frequencies
{	m,	a}, where 	a ≈ ωa and

	m ≈
√

ω2
m − 2g2ωs

ωa
(15)

is dispersively shifted from the bare magnon’s frequency ωm.
For large couplings, g > ωa(ω0 − ωs), the system becomes
unstable. In the ground state |vac〉〉, the photons and spins are
squeezed and correlated as opposed to the classical ground
state |0〉〉 (defined by ŝ|0〉〉 = â|0〉〉 = 0) [60]. In the disper-
sive limit ωm, g � ωa, the number of photons is small, so we
expand

|vac〉〉 ≈
(

1 +
√

P
ŝ†â†

cosh re

)
Sŝ(re) |0〉〉, (16)

where S is defined in Eq. (8). The component with no photons
represents a squeezed vacuum of spins with effective magne-
tization squeezing re given by

e2re ≈ 2ωs

	m
. (17)

For g = 0, this reduces to re = rg. The probability of finding
the cavity in a single photon state is

P ≈ g2ωs

2	mω2
a

. (18)

The ground state consists of a nonzero number of spin-flips,
〈ŝ†ŝ〉 ≈ e2re/4, and photons, 〈â†â〉 ≈ P, where the averages
are taken with respect to |vac〉〉. In the limit of infinite squeez-
ing, 	m → 0, the number of spin flips (and photons) diverges.
For more realistic squeezing (ere ∼ 5 see discussion above)
and g � ωa, the number of photons in |vac〉〉 is small and
Eq. (16) holds.

Projecting the ground state |vac〉〉 to a single-photon state,
we find that the magnetization collapses to the state

|C〉 = 1

cosh re
ŝ† Sŝ(re)|0〉, (19)

which corresponds to flipping a spin from the squeezed vac-
uum Sŝ(re)|0〉. To visualize |C〉, we consider the probability
density defined by Husimi Q function Eq. (9),

Q(α, |C〉) = α2
R + α2

I

π cosh3 re
exp

[
−α2

Rere + α2
I e−re

cosh re

]
, (20)

for α = αR + iαI . This is plotted in Fig. 1(b) showing two
regions of high probability. Specifically, we separate the upper
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FIG. 2. Cat size rcat and probability (inset, logarithmic scale) of
finding the cavity in a single-photon state P as a function of applied
field H0 and spin-photon coupling g for ωs = ωa = 2π × 1.25 GHz
(valid for YIG [53]). The white region contains the parameter space
where either the system is unstable or the magnon’s frequency is too
low, 	m < 2π × 100 MHz.

and lower lobes, |C〉 ∝ |C+〉 − |C−〉, where

|C±〉 ∝
∞∑

m=0

(±1)m
√

m!


(m/2 + 1/2)

(− tanh re

2

) m−1
2

|m〉, (21)

with 
 being the gamma function. Explicit calculations show

〈C−|C+〉 ≈ 8e−3re

3π
, (22)

where we ignored terms higher order in e−re , so the two
components are nearly orthogonal for ere ∼ 5, showing that
|C〉 is a superposition of two nearly-orthogonal semiclassical
states, i.e., a cat state. Q(α, |C〉) has two peaks at α = ±ircat/2
with cat size

rcat =
√

2(e2re + 1) ≈ 2
√

ωs

	m
, (23)

where the approximation holds for ωs, ωa � 	m � g2/ωa

[61]. The maxima are found by noticing that, for a fixed |α|,
Q is maximized at α being purely imaginary. Thus, we put
αR = 0 and differentiate with respect to αI to find the peaks.

In Fig. 2, we plot the cat size rcat and heralding proba-
bility P as a function of external magnetic field H0 (which
controls the parameter re via its dependence on ωm) and spin-
photon coupling g. The plots are generated using the exact
expressions given in the Supplemental Material [60] [Eqs.
(36) and (37)], instead of the approximate ones discussed here.
We have only plotted for the parameter regime where 	m >

2π × 100 MHz, corresponding to a cryogenic temperature
T = 5 mK, as lower frequencies put a harsh requirement on
refrigerators. There is a wide range of parameters where rcat ∼
5–7 with heralding probability P > 0.01. The plots show a
trade-off: The maximum achievable probability increases with
increasing g, as expected, while cat size decreases. A larger
coupling g puts a lower limit on the bare magnon’s frequency

[cf. Eq. (15)] and consequently an upper limit on magnetiza-
tion squeezing [cf. Eq. (7)].

Single photon detection in microwave cavities typically in-
volves long protocols and significant errors [50,51]. However,
in the limit of small photon numbers, zero and one photon
states can also be distinguished by their parity, which can be
measured with a high accuracy by coupling the cavity to a
qubit [52]. Projecting onto the odd-parity photon state, the
density matrix of the spins is given by a partial trace over the
photons

ρ̂p = Trâ

[
I − (−1)â†â

2
|vac〉〉〈〈vac|

]
. (24)

To compare ρ̂p with |C〉, we use the fidelity measure [62,63]
F = 〈C|ρ̂p|C〉 interpreted as the probability of finding the
magnetization in the state |C〉 (19). When ωs, ωa � 	m �
g2/ωa, we find 1 − F ∼ P2. As P < 0.1 (see Fig. 2), we get a
high fidelity F > 0.99, implying that our results can be used
with parity measurements as well.

Experimental considerations. A range of different ap-
proaches can be envisaged for experimental design of the
above setup. The maximum dimension of the YIG sample
employed is set by the maximum length over which coherence
can be maintained which, in high-purity monocrystalline YIG,
is expected to be over 100 μm [40,41,64]. In order to perform
a microwave measurement, the sample must be installed in
a microwave cavity coupled to a Josephson junction-based
qubit. Here, the main decision to be made is whether to
employ a planar or three-dimensional (3D) cavity. In a 3D
cavity, the field-sensitive qubit can be spatially separated from
the small bias field required to saturate the magnetic sample.
Moreover, such systems were already used to demonstrate a
range of important results in the context of quantum measure-
ments on magnon systems [40,41]. However, 3D cavities are
typically much larger (∼ cm) than the magnet (∼100 μm),
implying a bad mode matching and a fundamental limit on
the achievable coupling (we require ∼100 MHz). Conversely,
with a planar (quasi-one-dimensional) geometry the system
has the advantage that the microwave mode is strongly con-
fined to a volume that can be as much as 6 orders of magnitude
smaller than in the 3D case (λd2 ∼ 1 cm × 1 μm × 1 μm ∼
10−6λ3, where d is the resonator width), although separating
the bias field from the qubit is difficult. Accordingly, we
suggest that an elegant way to herald the cat state would be to
use the now classic methodology first proposed by Schuster
et al. [65]. A relatively simple microwave quantum circuit
could be constructed in which the YIG ellipsoid sits in the di-
electric gap of a planar superconducting resonator coupled to
a judiciously positioned transmon qubit. Spectroscopy would
be performed on the system and the herald photon number
measured via the occupancy-dependent Stark shift of the
qubit.

The cat state can dissipate into the impurities in the YIG
sample and into the cavity, with a total rate κeff = κm +
g2κa/ω

2
a, where κm and κa are linewidths of magnons and pho-

tons, respectively. For YIG, κm ∼ 10−4ωm = 2π × 10 kHz
[66]. We require g/ωa ∼ 0.1 (see Fig. 2), and expect κa ∼
2π × 10 MHz [24,25], giving κeff ∼ 2π × 100 kHz and a life-
time of 2π/κeff ∼ 10 μs.
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Conclusions. We proposed a setup to generate a magne-
tization cat state in a spin-microwave hybrid system. The
scheme relies on adding a quanta to a squeezed vacuum
of magnetization that is realized as the ground state of an
anisotropic magnet [46]. We showed that cat states with the
two components differing by rcat h̄ ∼ 5h̄ can be generated
in sub-mm YIG samples, comfortably within the precision
range of current quantum measurements of magnetization
[40,41]. The size of the cat state is larger when the cav-
ity is measured to be in higher photon numbers [Fig. 1 in
Ref. [60]], although the heralding probabilities are much
smaller. The lifetime of the cat states is ∼10 μs dominated
mainly by indirect dissipation via cavity. Our analysis is

valid when the system is in its ground state giving exper-
imentally feasible temperature restrictions T < 5 mK. This
setup could be adapted for generating nonclassical states
of the magnetization asymptotically via feedback control
over continuous optical measurement [67–70]. We envision
our results to expand the field of quantum magnonics and
applications of ferromagnets as quantum transducers and ul-
trasensitive magnetic field sensors, and to pave the way for
protocols involving truly nonclassical macroscopic states of
magnetization.
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