
 

Multiobjective Bayesian optimization for online accelerator tuning

Ryan Roussel *

Department of Physics, University of Chicago, Chicago, Illinois 60637, USA

Adi Hanuka and Auralee Edelen
SLAC National Laboratory, Menlo Park, California 94025, USA

(Received 19 October 2020; accepted 30 April 2021; published 2 June 2021)

Particle accelerators require constant tuning during operation tomeet beamquality, total charge and particle
energy requirements for use in awide variety of physics, chemistry and biology experiments.Maximizing the
performance of an accelerator facility often necessitates multiobjective optimization, where operators must
balance trade-offs between multiple competing objectives simultaneously, often using limited, temporally
expensive beam observations. Usually, accelerator optimization problems are solved off-line, prior to actual
operation, with advanced beam line simulations and parallelized optimization methods (NSGA-II, swarm
optimization). Unfortunately, it is not feasible to use these methods for online multiobjective optimization,
since beammeasurements can only be done in a serial fashion, and these optimizationmethods require a large
number of measurements to converge to a useful solution. Here, we introduce a multiobjective Bayesian
optimization scheme, which finds the full Pareto front of an accelerator optimization problem efficiently in a
serialized manner and is thus a critical step towards practical online multiobjective optimization in
accelerators. This method uses a set of Gaussian process surrogate models, along with a multiobjective
acquisition function, to reduce the number of observations needed to converge by at least an order of
magnitude over current methods. We demonstrate how this method can be modified to specifically solve
optimization challenges posed by the tuning of accelerators. This includes the addition of optimization
constraints, objective preferences and costs related to changing accelerator parameters.

DOI: 10.1103/PhysRevAccelBeams.24.062801

I. INTRODUCTION

Accelerator optimization during operation (i.e., “online
tuning”) is a tedious but often necessary part of any
experimental facility’s operation. This severely limits beam
time that is available to experimenters (i.e. “users”) as hours
of tuning time is required to diagnose issues and make
corrections. It would be beneficial to have an automated or
semiautomated algorithm take care of normal beam line
tuning, reducing downtime while also allowing human
experts to tackle more challenging operational problems.
As a response to this, a number of algorithms have been

used to optimize current accelerator facilities. Gradient-based
algorithms, such as robust conjugate direction search (RCDS)
[1], have been used successfully in the past to optimize beam
parameters. Heuristic methods such as the Nelder-Mead
simplex [2] algorithm can also be used to optimize black
box problems, when functional derivative information is not

easily accessible. More recently, BOBYQA has also been
used to optimize accelerators [3–5] by fitting data to a second
order model in a local trust region, which accounts for noisy
observations. However, these methods can struggle to handle
problems with many local extrema and must be restarted
several times to ensure a global extrema is found.
Bayesian optimization [6,7] provides a framework for

global optimization, while significantly reducing the number
of physical observations needed to find solutions, while also
taking into account observational noise. In this method,
physical observations are combined with a kernel, which
describes the overall functional behavior, to create what is
commonly referred to as aGaussian process (GP)model. The
GP model is able to predict the value and uncertainty of a
target function [8]. Using this prediction, an optimizer can
then choose input points that are likely to be ideal, before a
physical measurement is made. Recently, this method was
successfully used to efficiently optimize single objective
problems at LCLS and SPEAR3, with a lower number of
observations needed than Nelder-Mead simplex and RCDS
algorithms [9–12].
These algorithms have been used to optimize a single

beam characteristic, while in reality, accelerator tuning
generally seeks to simultaneously optimize multiple facets
of the beam (“objectives”) at a time. This presents an issue,

*rroussel@uchicago.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 24, 062801 (2021)

2469-9888=21=24(6)=062801(14) 062801-1 Published by the American Physical Society

https://orcid.org/0000-0003-1656-8111
https://orcid.org/0000-0001-9276-0063
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.24.062801&domain=pdf&date_stamp=2021-06-02
https://doi.org/10.1103/PhysRevAccelBeams.24.062801
https://doi.org/10.1103/PhysRevAccelBeams.24.062801
https://doi.org/10.1103/PhysRevAccelBeams.24.062801
https://doi.org/10.1103/PhysRevAccelBeams.24.062801
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


as individual beam characteristics can often be optimized
only at the expense of others. For example, it is difficult to
simultaneously minimize both the bunch length and the
transverse emittance of a low energy electron beam in a
photoinjector due to space charge forces [13]. Solving
multiobjective problems during simulated beam line design
has become a relatively simple task, given the development
of evolutionary algorithms and the availability of comput-
ing clusters, which can run a large number of particle
physics simulations in parallel [13,14].
By contrast, solving multiobjective optimization prob-

lems during accelerator operations presents an extremely
difficult challenge due to several factors. Most notably,
accelerator operators can only evaluate or observe the
objectives for a single set of input parameters at any time
(referred to as “serialized observations”). Thismakes the use
of evolutionary algorithms practically infeasible, due to the
number of observations needed to converge to a solution if
used in a serialized manner. Furthermore, an online opti-
mization algorithm must be able to keep track of con-
straining functions, as well as account for relative objective
preferences specified by the operators. Finally, the optimi-
zation algorithm should take into account the costs of
changing accelerator parameters during optimization.
In this paper, we use the recent development of multi-

bjective Bayesian optimization (MOBO) [15] to extend
online Bayesian optimization of accelerators to solving
multiple objective problems using serialized observations.
We also demonstrate how to extend this algorithm to solve
specific practical challenges associated with online accel-
erator optimization.

II. ONLINE MULTIOBJECTIVE OPTIMIZATION
OF ACCELERATORS

We start with a brief explanation of techniques currently
used to solve multiobjective problems. This serves to
motivate use of the MOBO algorithm for online accelerator
optimization.
A simplistic way of solving a multiobjective optimization

problem is to explicitly weight each objective relative to one
another a priori, and add up the weighted objective values,
in a process known as scalarization [16,17]. This optimi-
zation method results in a solution found only for a single
set of weights (trade-offs), and must be repeated from
scratch to explore different trade-offs between objectives.
Mapping out the full set of optimal trade-offs in an
accelerator is highly desirable, particularly at facilities
which must accommodate a variety of working points, or
when operators wish to benchmark beam simulation results
to experimental realities. In this case, repeating the opti-
mization for a discrete set of weights is relatively inefficient,
even when Bayesian optimization methods are used [18].
By contrast, multiobjective optimization algorithms

attempt to find a set of points, known as the Pareto front
P, that optimally balances the trade-offs between multiple

competing objectives simultaneously (see Fig. 1). The
Pareto front is defined as the set of “nondominated” points
in objective space with respect to a reference point r (which
itself must be dominated by every other observed point).
Points are nondominated if they are as good as any other
observed point for every objective and are better than any
other point for at least one objective. The hypervolume
metricH [19], shown in Fig. 1, is often used to characterize
the quality of the Pareto front, where a larger volume
corresponds to a better solution set. Adding observations
to the current dataset, which dominate over points in the
current Pareto front, leads to an expansion of the hyper-
volume, characterized by the hypervolume improvementHI
(see Fig. 1). Algorithms generally stop once this metric
converges to a maximum as new observations are added,
signifying that a correct approximation to the true Pareto
front has been reached.
A popular set of techniques, known as evolutionary

algorithms, is generally used to solve multiobjective
problems. These algorithms, such as nondominated
sorting genetic algorithm II (NSGA-II) [20] or multi-
objective particle swarm optimization [21–23], are based
on the generation of a large collection of candidate
solutions, which are then observed via simulation or
experiment, usually in a parallelized manner. The results
from each observation are then sorted into nondomi-
nated and dominated subsets. The nondominated subset
of candidate solutions is used to produce the next
“generation” of candidate solutions using a stochastic

FIG. 1. Cartoon of multiobjective optimization where each
objective is to be minimized. Multiobjective optimization at-
tempts to find a set of points known as the Pareto front P that
dominate over a reference point r and any other observed points
in objective space. The Pareto front hypervolume H (shown in
blue) is the axis-aligned volume enclosed by the Pareto front and
a reference point r. Making a new observation y, which
dominates over points in the current Pareto front, leads to an
increase in hypervolume (shown in green), referred to as the
hypervolume improvement HI .

RYAN ROUSSEL, ADI HANUKA, and AURALEE EDELEN PHYS. REV. ACCEL. BEAMS 24, 062801 (2021)

062801-2



heuristic, which are then reevaluated. The process is
repeated over a number of generations until the non-
dominated set of observations converges to a stationary
Pareto front or the hypervolume has converged to a
maximum value. It has been shown that these methods
are well suited for solving accelerator design optimiza-
tion problems [13,14].
Recently, surrogate assisted evolutionary algorithms

have been developed which combine evolutionary algo-
rithms with surrogate models of the objective functions.
A fast executing surrogate model (possibly a Gaussian
process [24] or a neural network [25]) is used to predict
if a candidate solution generated by the evolutionary
algorithm will be Pareto optimal before an observation
is made. This significantly speeds up convergence over
basic evolutionary algorithms by eliminating candidate
observations that are not predicted to improve the Pareto
frontier. The surrogate model is retrained after obser-
vations are made, thus improving the model’s accuracy
as the optimization progresses. This further improves the
convergence speed of the algorithm, as the surrogate
model gains knowledge about the objective functions
and can more adequately identify which candidates will
be nondominated.
However, these algorithms still are not ideal for

online accelerator optimization. Evolutionary algorithms
use the binary classification metric of Pareto dominance
to identify which candidate points to observe. As a
result, this metric does not guarantee optimal expansion
of the Pareto front, as it does not consider the relative
hypervolume improvement (see Fig. 1) of individuals in
the nondominated subset of candidates. This reduces the
observation efficiency of these algorithms, making them
impractical for use in serialized settings.
The multiobjective Bayesian optimization (MOBO)

algorithm [15] achieves maximum efficiency by using
an explicit calculation of the hypervolume improvement
to determine the next candidate for observation.
Each objective is modeled using a Gaussian process
(GP) surrogate model which can be used to predict the
hypervolume improvement as a function of input
parameters. As a result, MOBO can determine a single
point that maximally increases the Pareto front hyper-
volume at every step in a serialized manner, making it
ideal for online accelerator optimization.

III. MULTIOBJECTIVE BAYESIAN
OPTIMIZATION

We begin the explanation of MOBO by first describing
single-objective Bayesian optimization. To maintain con-
sistency with reference texts, we assume that single
objective optimization aims to maximize the objective,
while in the multiobjective case we wish to minimize each
objective. Simply multiplying any objective and its corre-
sponding observed values by −1 allows us to switch the

optimization goal from maximization to minimization or
vice versa.

A. Single objective Bayesian optimization

The goal of our optimization strategy is to maximize the
function fðxÞ using as few observations of f as possible
inside the input domain x ∈ X . Bayesian optimization uses
two components to achieve this.
The first component is the GP surrogate model. A

“surrogate model” in this case refers to a computationally
cheap-to-evaluate predictive model, which acts as a stand-
in for any computationally expensive or difficult to measure
system, and can be either a local or a global model. The GP
surrogate produces both the predicted mean μðxÞ and the
corresponding uncertainty σðxÞ of a random function value
at the point x: fðxÞ ∼ GP½μðxÞ; kðx;x0Þ�, where kðx;x0Þ is
the covariance (kernel) function. The kernel function
represents the covariance between function values f at
two points in input space. For example, we can specify how
rapidly fðxÞ changes as a function of the distance between
two points x and x0 by defining a length scale λ hyper-
parameter. Given a set of observations DN ¼ fðx1; y1Þ;
ðx2; y2Þ;…; ðxN; yNÞg where yi is a noise corrupted meas-
urement of fðxiÞ, yi ¼ fðxiÞ þ ε, we can then calculate the
predicted mean and variance anywhere in input space.
Details on creating and using a GP surrogate model can be
found in the Appendix A and in Ref. [8].
Algorithm 1. Bayesian optimization (BO).

input : input domain X , dataset D, GP prior M0 ¼ GPðμ0; k0Þ,
acquisition function α, noise ε

for i ¼ 1; 2; 3;… do
j xi ← argminx∈XαðxjMi−1Þ; // optimize α
j yi ← fðxiÞ þ ε; // do observation
j Mi ← Mi−1jðxi; yiÞ; // update model

end

The second component of Bayesian optimization is an
acquisition function αðxÞ which codifies the value gained
from potential observation points, based on mean and
uncertainty predictions from the GP model. To find the
global optimum efficiently we wish to search regions of
input space that either take advantage of previously
observed extremum points (exploitation) or have a large
amount of uncertainty (exploration). We choose our
acquisition function such that it is maximized at the point
of most interest, one that properly balances the trade-off
between exploration and exploitation. We can then use a
standard single-objective optimization algorithm to opti-
mize the cheap-to-evaluate acquisition function in order to
propose the next observation location, instead of directly
optimizing the expensive-to-evaluate physical experiment.
Two popular acquisition functions for Bayesian optimiza-
tion are expected improvement (EI) and upper confidence
bound (UCB) [26,27].

MULTIOBJECTIVE BAYESIAN OPTIMIZATION FOR … PHYS. REV. ACCEL. BEAMS 24, 062801 (2021)

062801-3



Expected improvement calculates the average
improvement of a point over the best observed function
value fbest

αEIðxÞ ¼ Efmax½fbest − fðxÞ; 0�g

¼ ½fbest − μðxÞ�Φ
�
fbest − μðxÞ

σðxÞ
�

þ σðxÞϕ
�ðfbest − μðxÞ

σðxÞ
�
; ð1Þ

where Φð·Þ and ϕð·Þ are the probability distribution
function and cumulative distribution function of a
Gaussian distribution respectively.
Upper confidence bound calculates an optimistic func-

tion value, weighted by an optimization parameter β, which
explicitly specifies the trade-off between exploration and
exploitation:

αUCBðxÞ ¼ μðxÞ þ
ffiffiffi
β

p
σðxÞ: ð2Þ

For β ≪ 1 UCB prioritizes exploitation; for β ≫ 1 UCB
prioritizes exploration. This parameter can be increased as
the optimization progresses, to prevent the optimizer from
getting stuck in a local optimum [27]. Combining both the
GP surrogate model and the acquisition function we can
now perform Bayesian optimization using the method
presented in Algorithm 1.

B. Incorporating multiple objectives

We now extend this methodology, following [15], to
incorporate P objectives f ¼ ff1; f2;…; fPg. We assume
that the objectives share the same input domain x ∈ X
and are all observed for each input point such that

D now contains the set of N observations of each
objective, fðx1; f1Þ; ðx2; f2Þ;…; ðxN; fNÞg. Each objective
is then modeled as an independent GP such that
fpðxÞ ∼ GPp½μpðxÞ; kpðx;x0Þ�, where p ¼ 1; 2;…; P, as
seen in Fig. 2(a). Each GP has its own independent kernel
which is trained on corresponding observations by maxi-
mizing the marginal log likelihood [8].
In order to proceed with optimization we must construct

a scalar acquisition function α∶X → R that finds points
which are likely to maximally increase the Pareto frontier
hypervolume. We consider two acquisition functions that
have been developed for this purpose.
The first multiobjective acquisition function, expected

hypervolume improvement (EHVI) [15] seen in Fig. 2(b),
is analogous to single-objective expected improvement.
This acquisition function calculates the average increase in
hypervolume using the posterior probability distribution of
each objective function from the surrogate model. The
EHVI acquisition function is formally defined as

αEHVIðμ; σ;P; rÞ ≔
Z
RP

HIðP; y; rÞ · ξμ;σðyÞdy; ð3Þ

where P is the current set of Pareto optimal points, r is
the reference point, HIðP; y; rÞ is the hypervolume
improvement from an observed point y in objective
space, and ξμ;σ is the multivariate Gaussian probability
distribution function defined by the GP predicted
mean μ and standard deviation σ for each objective. The
hypervolume improvement is defined by the exclusive
hypervolume contribution to the current Pareto front by
adding y to the Pareto set, as seen in the green region in
Fig. 2(b).

FIG. 2. Cartoons showing hypervolume improvement metrics used for MOBO. Blue regions denote the current Pareto front
hypervolume defined by a reference point (upper right) and three observed points. Green regions denote the hypervolume improvement
after adding an observation. (a) Each objective is modeled by an independent GP that predicts the function value and an uncertainty,
which is used by the multiobjective acquisition function to determine the next observation. (b) Expected hypervolume improvement
(EHVI) where the distribution of predicted objective values is given by a probability distribution (orange shading) centered at the black
cross. (c) Upper confidence bound hypervolume improvement (UCB-HVI) where the hypervolume improvement is determined by an
optimistic view of the predicted objective values. (d) Truncated UCB-HVI where we only consider hypervolume contributions within
the unshaded subspace.

RYAN ROUSSEL, ADI HANUKA, and AURALEE EDELEN PHYS. REV. ACCEL. BEAMS 24, 062801 (2021)

062801-4



The reference point r is chosen such that all expected
observations f dominate the reference point. Any predicted
points in objective space that do not satisfy this condition
will not contribute to the hypervolume improvement, and
are thus never chosen as observation candidates. It is also
important to note for optimization purposes that the prior
mean for each objective GP is set to the corresponding
component of the reference point. This ensures that in
regions of input space where observations have not been
made, the mean of the GP model returns to the reference
point. As a result, the acquisition function will never predict
that unobserved regions of input space contribute to the
hypervolume.
The integral in Eq. (3) can become computationally

expensive to calculate, as the objective space must be
decomposed into cells for which the integral has an
analytical form. This is computationally expensive for
high dimensional objective spaces, as a naive decom-
position algorithm scales as OðNPÞ, where N is the
number of points on the Pareto front. Work in the
multiobjective Bayesian optimization field has produced
efficient methods for objective space decomposition,
which improves scaling toOðN logNÞ for 2–3 dimensions
and Oð2P−1NP=2Þ scaling when P ≥ 4 [28]. Regardless,
this computational complexity results in a significant
increase in computation time when used to maximize
the acquisition function.
The second multiobjective acquisition function, upper

confidence bound hypervolume improvement (UCB-HVI)
[15], is similar to the UCB acquisition function for single
objective optimization. This acquisition function describes
an optimistic view of the hypervolume improvement given
the surrogate model prediction,

αUCB-HVIðμ; σ;P; r; βÞ ≔ HIðP; μ −
ffiffiffi
β

p
σ; rÞ: ð4Þ

The simplicity of this acquisition function reduces compu-
tation time relative to EHVI, especially in high-dimensional
objective spaces. This is due to the development of
advanced hypervolume computation strategies, such as
the walking fish group (WFG) algorithm [29] or approxi-
mate hypervolume computation algorithms [30]. These
algorithms can be used to calculate the hypervolume
improvement by projecting points from the Pareto front
onto the subdomain that is dominated by the test point. This
allows calculation of UCB-HVI to be much faster than
EHVI when the number of objectives is large (P > 3),
while still achieving similar optimization performance. As
a result we exclusively use the UCB-HVI acquisition
function as a starting point to perform multiobjective
optimization for the rest of the paper.
We now show how the MOBO algorithm tackles a

simple two-objective optimization problem in 2D input
space, x ¼ ðx1; x2Þ. The problem is stated as

minimize ff1ðxÞ; f2ðxÞg
f1ðxÞ ¼ jjx − 1jj
f2ðxÞ ¼ jjxþ 1jj

xn ¼ ½−2; 2�; n ¼ 1; 2: ð5Þ

The analytical Pareto front for this problem in objective
space lies on the line segment from ðf1; f2Þ ¼ ð0; 2 ffiffiffi

2
p Þ to

ð2 ffiffiffi
2

p
; 0Þ. In input space, Pareto optimal points lie on the

line segment from ðx1; x2Þ ¼ ð−1;−1Þ to (1,1). We start
with a set of five random input points, drawn from a
uniform distribution, which are used to initialize the GP
surrogate model. We choose an isotropic radial basis
function (RBF) for our kernel [see Eq. (A6)] with a
length-scale of λ ¼ 1.0 and a variance of σ2f ¼ 0.5. The
UCB-HVI acquisition function with β ¼ 0.01 is then used
to determine the next point to sample. This value of β is
chosen to heavily weight exploitation since our functions
are unimodal.
Figure 3 shows results after 15 optimization iterations.

We see that the GP prediction for each of the objectives
[Figs. 3(c) and 3(d)] near the observed points closely
resembles the true value of each objective [Figs. 3(a) and
3(b)]. After only 15 observations the Pareto front found by
the UCB-HVI algorithm closely matches the analytical one
seen in Fig. 3(f). We also observe that extrema of the
acquisition function Fig. 3(e) (i.e., the most likely points to
expand the Pareto front hypervolume) are located near the
analytical Pareto optimal region in input space. Each
successive extremum is located in between each previously
observed point due to the increase in uncertainty in between
observations. This means that after the algorithm observes
points along the entire Pareto front at a low resolution, the
algorithm will continually attempt to increase the hyper-
volume by sampling intermediate points in between pre-
vious observations.

C. Adding optimization preferences and constraints

One major advantage of the MOBO approach, is the
ability to specify how the optimizer searches the input
space when considering preferential treatment of objectives
and adding constraints. In the case of preferential treatment,
we wish to specify that the optimizer searches in a given
objective subspace [as seen in Fig. 2(d)], thus optimizing
one objective or a set of objectives over another. To achieve
this, we simply set the acquisition function to zero outside
of the selected subdomain [31]. On the other hand, if we
wish to specify an objective constraint, we require that an
observed objective quantity gðxÞ satisfies gðxÞ ≤ hwhere h
is a constant. In this case, we create a surrogate model for
gðxÞ and use it to predict the probability that the constraint
will be satisfied [32]. We then multiply the acquisition
function by this probability to bias the optimizer against

MULTIOBJECTIVE BAYESIAN OPTIMIZATION FOR … PHYS. REV. ACCEL. BEAMS 24, 062801 (2021)

062801-5



choosing points in a region that will likely violate the
constraint.
While at first glance it seems that these two methods

would result in the same behavior, i.e., limiting the region
where the acquisition function is nonzero, they in fact
produce different results. The addition of a preferential
objective subdomain results in a Pareto front that is only
found within that subdomain, which implies that all
objectives are still minimized at the expense of other
objectives. On the other hand, a constraint loosens this
requirement, allowing any objective value that satisfies the
constraint, which in turn can lead to better solutions for the
other objectives. The subtle difference between these two
methods allows more flexibility during optimization, suit-
ing the different operation requirements for each acceler-
ator. We now look at how to implement each of these
methods in the MOBO framework.
The preferential algorithm specifies both a maximum

and minimum reference point in objective space, as
opposed to a single reference point in normal MOBO. It
then calculates what has been coined as the truncated

hypervolume improvement [31]. If we specify the truncated
domain T ∈ ½A;B� defined by the minimum objective
point A and the maximum objective point B, the truncated
expected hypervolume improvement (TEHVI) is given by

αTEHVIðμ;σ;P;A;BÞ≔
Z
RP∈T

HIðP;y;rÞ ·ξμ;σðyÞdy; ð6Þ

where the Pareto set P is projected onto the truncated
domain. In a similar fashion, the truncated version of the
UCB-HVI is given by

αTUCB-HVIðμ; σ;P; β;A;BÞ

≔
�
HIðP; y;BÞ y ∈ T

0 otherwise;
ð7Þ

where y ¼ μ −
ffiffiffi
β

p
σ.

If we wish to specify an inequality constraint that needs
to be satisfied, we create a GP surrogate model that can be
used to predict the probability of that constraint being
satisfied and modify our acquisition function accordingly.
We assume that we have another observed quantity gðxÞ
that must satisfy gðxÞ ≤ hwhose value is stored in a dataset
Dg and used in a GP to predict the probability distribution
of gðxÞ. The probability of a point x satisfying the
constraint condition is then

PgðxÞ ≔ Pr½gðxÞ ≤ h� ¼
Z

h

−∞
p½gðxÞjDg�dgðxÞ ð8Þ

which is simply a univariate Gaussian cumulative distri-
bution function. This probability can be adapted to suit a
number of different types of constraints by modifying the
limits of this integral. Now we can define a new constrained
version of the acquisition function α̂ðxÞ as

α̂ðxÞ ¼ αðxÞPgðxÞ: ð9Þ

Our acquisition function will be reduced anywhere we
predict the constraint has a high probability of being
violated and remain unchanged where there is a high
probability that the constraint is satisfied. Extra constraints
can be easily added by multiplying the acquisition function
by the respective probabilities of satisfying each additional
constraint.
An example of adding a constraint to the problem

specified in Eq. (5) is shown in Fig. 4. In this case we
add the constraint inequality gðxÞ ≤ 0.5 where gðxÞ ¼ x1,
to stand in opposition of minimizing the first objective.
We see the predicted probability that a point in parameter
space will satisfy the constraint in Fig 4(a). Even though
only a few observed points violate the constraint, we can
clearly see a predicted threshold boundary, consistent with
the stated constraint inequality. Furthermore, the boundary
is best defined in the region of most interest, namely in the

FIG. 3. Optimization results after 15 function observations
using the MOBO algorithm on the problem defined in Eq. (10).
Functions plotted in (a)–(e) are normalized to the range 0 (blue) to
1 (yellow). (a),(b) Ground truth of f1, f2. The green line denotes
the analytical location of Pareto optimal points. (c),(d) GP mean
prediction for f1, f2 respectively. (e) UCB-HVI acquisition
function with β ¼ 0.01. (f) Plot of observation values in objective
space and the analytical Pareto front (green line). (c)–(f) Colored
dots denote observation locations in input and output space,
colored by observation number (blue to pink). Orange crosses
denote the locations of five random, initial observation points.

RYAN ROUSSEL, ADI HANUKA, and AURALEE EDELEN PHYS. REV. ACCEL. BEAMS 24, 062801 (2021)

062801-6



region denoted by the red arrow in Fig. 4(a) where Pareto
optimal points would lie. From Fig. 4(b) we see that as the
optimization progresses the constraint function surrogate
model accuracy is improved, and a smaller fraction of points
which do not satisfy the constraint are sampled. This leads to
a reduction in the number of iterations needed to converge to
a solution, as the constraint reduces the effective input
parameter domain of the optimization problem.

D. Proximal input space exploration

One aspect of accelerator optimization that is often
overlooked when constructing optimization algorithms is
the cost associated with changing input parameters.
Changes to input parameters (magnetic field strengths,
cavity phases, etc.) often take time that scales proportion-
ally to the magnitude of the change. As a result, it is
undesirable or infeasible to make large changes in machine
input parameters frequently. We modify the acquisition
function so that each optimization step travels a small
distance in parameter space during optimization (i.e.,
“proximal exploration”).
We multiply the acquisition function by a multivariate

Gaussian distribution, centered at the most recently
observed point in input space x0 and a precision matrix
Λ, to produce a proximal UCB-HVI (P-UCB-HVI) acquis-
ition function given by

α̃ðx;x0Þ ¼ αðxÞ exp
�
−
1

2
ðx − x0ÞTΛðx − x0Þ

�
: ð10Þ

The precision matrix in this case specifies the cost
associated with changing each input parameter, where
larger elements of the matrix correspond to a higher cost
associated with changing a given parameter. The matrix can
be specified prior to optimization or trained from multiple
optimization runs (Bayesian optimization has been used to
optimize similar hyperparameters for neural network
regression [33]). The addition of this extra term decreases
the acquisition function far away from the most recently
observed point.
With this modification we expect the MOBO algorithm

to sample points along the Pareto front in input space,
provided that the objectives are smoothly varying. This is
almost always the case in accelerator optimization prob-
lems with continuously variable input parameters.
However, since the weighting function is nonzero
throughout the input domain, large jumps to explore
regions of parameter space with high uncertainty are still
allowed, only if the acquisition function αðxÞ is large
enough to overcome the travel distance penalty. This is in
contrast to simply reducing the UCB-HVI parameter β or
restricting the maximum travel distance in input space,
which prevents meaningful exploration when necessary.
The proximal modification maintains the optimization
algorithm’s ability to escape local extrema to explore
regions of unobserved input space, while significantly
reducing the frequency of large jumps.
We demonstrate how this new method effects optimi-

zation by tracking how the UCB-HVI and P-UCB-HVI
acquisition functions explore the input space, while opti-
mizing our test problem Eq. (5). We start with a random
sample of five points and then use UCB-HVI as our
unmodified acquisition function to perform MOBO with
25 iterations, the result of which is shown in Fig. 5(a). We
then repeat the optimization with our modified acquisition
function P-UCB-HVI. We specify Λ ¼ 4I where I is the
identity matrix, the result of which is shown in Fig. 5(b).
The modified acquisition function reduces the average
distance traveled in input space during each optimization
step (L), when compared to UCB-HVI (see Fig. 5 insets).
While normal UCB-HVI seems to quasirandomly explore
the input space, P-UCB-HVI explores the Pareto optimal
region in a disciplined manner. It first travels along the
Pareto optimal space until it reaches the end, then it
explores in the vicinity of the end point to verify it is
indeed the end of the Pareto optimal region. Finally, it
reverses direction and continues exploring the Pareto
optimal space, jumping over regions that have already
been explored.

FIG. 4. (a) Probability map of satisfying the constraint x1 ≤ 0.5
after 50 observations, selected by constrained UCB-HVI, while
optimizing Eq. (5). The red arrow points to where the constraint
probability is most accurate, which is where the greatest number
of observations are located. (b) Average fraction of points
satisfying the constraint over 25 randomly initialized constrained
MOBO optimization runs. Shading denotes one sigma spread.

MULTIOBJECTIVE BAYESIAN OPTIMIZATION FOR … PHYS. REV. ACCEL. BEAMS 24, 062801 (2021)

062801-7



IV. APPLICATION TO ACCELERATOR
OPTIMIZATION

We now demonstrate the MOBO framework on a
multiobjective accelerator optimization problem, namely,
optimizing the parameters of the Argonne wakefield
accelerator (AWA) photoinjector [34]. The AWA photo-
injector uses a cesium-telluride cathode in a normal
conducting radio-frequency cavity, to produce electron
beams with a wide variety of bunch charges for the use in
wakefield accelerator physics experiments. We consider a
case where we can vary a number of parameters inside the
injector and the first linac section, seen in Table I and in
Fig. 6. Our goal is to simultaneously minimize a collection
of beam parameters at the exit of the linac section, also
seen in Fig. 6.
This problem was chosen based on previous work done

towards creating a surrogate model of the AWA

photoinjector [25]. In this previous work, the authors
used the full 3D space charge, particle in cell (PIC) code
OPAL [35] to simulate a large set of randomly generated
input parameters and measure the corresponding beam
parameters at the injector exit. They then created a neural
network based surrogate model, trained on the simulation
dataset. The model can be rapidly queried to retrieve
output beam parameters for a given input parameter set.
The authors then showed that this surrogate model
accurately reproduces results from the 3D PIC simulation.
We use this surrogate model for testing our optimization
algorithm as it reduces simulation time by several orders
of magnitude.

A. Convergence comparison

In our first experiment, we use MOBO to minimize all
seven exit beam parameters as a function of all six input
parameters. We wish to compare the convergence rate of
MOBO with the convergence rates of standard and recently
developed algorithms for solving multiobjective optimiza-
tion problems. All of the input and output values are
normalized to the range ½−1; 1� in order to account for the
widely varying scaling of each parameter. We assume that
the functional form of each objective is smooth, and thus we
choose the standard radial basis function kernel [Eq. (A6)]
with an anisotropic precision matrix Λ ¼ diagðlÞ−2 where l
is a vector that stores an independent length scale for each

FIG. 5. Optimization trajectories in input space after 25
observations of objective functions in Eq. (5) using (a) the
unmodified UCB-HVI acquisition function and (b) the P-UCB-
HVI acquisition function. Insets: Distribution of distances (L)
traveled per step in input space.

TABLE I. AWA input parameters.

Parameter Abbreviation
Minimum
value

Maximum
value Unit

Solenoid 1 strength K1 400 550 m−1
Solenoid 2 strength K2 180 280 m−1
Injector phase ϕ1 −10 0 deg
Cavity phase ϕ2 −10 0 deg
Injector accelerating
gradient

G1 60 75 MV=m

Cavity accelerating
gradient

G2 15 25 MV=m

FIG. 6. Cartoon of the AWA photoinjector and first linac cavity.
Input and output parameters used in optimization are labeled.
Reprinted with permission from A. Edelen et al., Phys. Rev.
Accel. Beams 23, 044601 (2020). Copyright 2020, American
Institute of Physics.

RYAN ROUSSEL, ADI HANUKA, and AURALEE EDELEN PHYS. REV. ACCEL. BEAMS 24, 062801 (2021)

062801-8



input parameter. Initially, a randomly generated Latin-
hypercube distribution of 20 input parameter sets with
corresponding objective observations is used to train each
objective GP. Hyperparameter training is done by maximiz-
ing the log marginal likelihood of the GP model with the
gradient based Adam optimization algorithm [36], with
5000 iterations and a learning rate of 0.001.
Once trained,we use theUCB-HVI acquisition function to

perform multiobjective Bayesian optimization with 500
sequential observations. In this case, empirical testing found
that β ¼ 0.01 gave the fastest convergence. This is likely due
to the unimodal nature of each objective function, which
allows us to aggressively exploit the GPmodel for the global
extremum without worrying about getting caught in local
extrema.
Maximizing the acquisition function is done via particle

swarm optimization, implemented using the PyGMO pack-
age [37] with 64 individuals over ten generations. In order
to account for new information gained from observations
during optimization, we retrain the GP kernel hyperpara-
meters with the accumulated dataset every ten observations,
again using the Adam algorithm with a learning rate of
0.001 but with 1000 steps.
We rerun this optimization procedure 10 times, each with

a different set of 20 randomly generated initial points. After
each observation, we calculate the exact hypervolume of the
Pareto set in normalized objective space, referenced to the
maximum possible value for each objective (in this case 1).
The average and variance of the hypervolume as a function
of observation number after ten optimization runs is shown
in Fig. 7(a).
For comparison, we run the same optimization test, but

with previously used methods for multiobjective optimiza-
tion, evaluated in serial, as would be the case during online
optimization. The first, nondominated sorting genetic algo-
rithm II (NSGA-II) [20], is a popular genetic optimization
algorithm, which has been previously used to solve multi-
objective accelerator design problems [13]. We conducted
ten optimization runs using the NSGA-II algorithm, with a
population of 20 individuals, which matched the input
parameter sets used in the MOBO optimization runs. We
then evolved the population for 200 generations, with a
crossover probability of 0.8 and mutation probability of
0.05. The hypervolume after the first 25 generations (500
function observations) is shown in Fig. 7(a).
The second algorithm, iterated neural network (I-NN)

optimization [25], is a recently developed algorithm
using surrogate neural network (NN) models to
choose future observation locations. In this method,
observations are used to train a NN surrogate model,
which in turn is optimized by the NSGA-II algorithm to
propose a new set of observations that are likely to be
nondominated. We plot the predicted hypervolume from
the NN surrogate model after each batch of measurements
in Fig. 7(a).

From this comparison, we clearly see that MOBO
reaches convergence much faster than both the NSGA-II
and I-NN algorithms. While not shown in Fig. 7(a) it took
about 17,500 NSGA-II observations to reach the same
hypervolume that MOBO reached after 500 observations,
roughly a factor of 35 times slower.
In Fig. 7(b) we show the 2D projected Pareto front on the

energy spread dE and horizontal beam emittance εx

FIG. 7. (a) Average Pareto front hypervolume H of ten multi-
objective optimization runs of the AWA example using MOBO,
NSGA-II and iterated neural network (I-NN) algorithms. Shading
and error bars denote 1 sigma variance. (b) Projected hyper-
volume onto energy spread (dE) vs transverse emittance (εx)
subspace after 200 observations for each optimization algorithm
shown in (a). (c) Projected hypervolume onto dE vs εx subspace
after 100 (light blue), 200 (blue) and 500 (dark blue with orange
outline) observations using the MOBO algorithm. Inset zoom
(i) shows an increase in hypervolume due to increasing the Pareto
front resolution, while inset zoom (ii) shows an increase in
hypervolume due to finding new points that dominate old
observations in projected space.

MULTIOBJECTIVE BAYESIAN OPTIMIZATION FOR … PHYS. REV. ACCEL. BEAMS 24, 062801 (2021)

062801-9



objective space from each of these optimization algorithms
after 200 observations. We observe that the Pareto front
generated by NSGA-II is far from optimal and contains few
points. This is a direct result from NSGA-II’s inefficient
sampling behavior. The points that NSGA-II chooses to
observe are frequently dominated by previous observations
due to the randomized heuristic used to generate observa-
tion proposals. The I-NN algorithm improves over NSGA-
II by including a neural network surrogate model that
directs NSGA-II towards observing nondominated points.
Neither of these algorithms includes a direct calculation of
the hypervolume increase for each proposed observation
point, and thus does not optimally increase the hyper-
volume at each observation step. As a result the Pareto front
generated by MOBO is larger and has a higher resolution
than the Pareto fronts generated by either NSGA-II or I-
NN. Generally, MOBO shows similar improvements in
optimization speed when used in solving a variety of
different optimization problems with varying input and
objective spaces [38,39].
In Fig. 7(c) we show the 2D projected Pareto fronts

generated by MOBO after 100, 200 and 500 observations.
Since the objective space is high dimensional, it takes a
large number of observations (100–200) for the algorithm
to build up a well-defined Pareto front. Once the front is
loosely meshed, the acquisition function can increase the
hypervolume in one of twoways, by either finding points in
objective space in between prior observations, in order to
improve the Pareto front resolution [Fig. 7(c)(i)], or by
finding points in objective space that dominate initial
observations [Fig. 7(c)(ii)]. We see that most of the points
present in the Pareto front after 200 observations remain on
the Pareto front after 500 observations, as the majority of
new observations lie in between prior observations in
objective space. We conclude that in this optimization
run, the algorithm often chooses to sample points on the
true Pareto front, leading to a gain in optimization effi-
ciency. This is in contrast to the heuristic methods we
compare MOBO with, where only a small fraction of the
observed points are actually on the true Pareto front.

B. Constrained optimization

We now investigate the effect of preferential or con-
strained treatment of an objective on accelerator optimi-
zation. First, we consider a case where we want to
optimize the same objectives as the previous problem
but wish to only find solutions where the energy spread
satisfies dE < 0.52 MeV (dE < −0.25 in normalized
coordinates). To judge how this modification effects
optimization, we compare the observed points projected
onto the 2D energy spread dE and horizontal emittance εx
objective space, after 300 iterations in Fig. 8. We see in
Fig. 8(a) projected observations when no constraints or
preferences are added. It is important to note that a large
majority of the observations plotted here are on the 7D

Pareto front, even though only a small fraction make up
the projected front in 2D space. When preferential treat-
ment is added to the acquisition function [Fig. 8(b)], the
algorithm observes almost no points that violate this
preference. Furthermore, since the effective volume of
the objective space is significantly reduced, the optimizer
finds a higher quality 2D Pareto front in the same number
of steps as the unconstrained case.
Second, we consider a case where we relax this prefer-

ence, removing the energy spread minimization objective
entirely and replacing it with the inequality constraint
dE < 0.52 MeV. The resulting distribution of observations
appears significantly different in this case [Fig. 8(c)]. Here,
more observations are made that violate the constraint,
which is necessary to accurately model the constraining
function near the boundary. Furthermore, the optimizer
allows the energy spread to increase up to the constraint
value, instead of attempting to minimize it, in order to
better optimize the six remaining objectives. We see this
effect in Fig. 8(d) where the projected Pareto front for a
different set of objectives, σx and εx, is better when the
energy spread preference is relaxed to a constraint. The 2D
front then improves again when the constraint is completely

FIG. 8. Plots showing energy spread (dE) and horizontal beam
emittance (εx) observations after 300 observations taken by
MOBO algorithms. (a) MOBO with no constraints. (b) MOBO
with an optimization preference of dE < 0.52 MeV. (c) MOBO
with an inequality constraint of dE < 0.52 MeV. (d) Projected
Pareto fronts for σx vs εx for each case above. The dotted lines in
(b) and (c) denote the preference/constraint limit.

RYAN ROUSSEL, ADI HANUKA, and AURALEE EDELEN PHYS. REV. ACCEL. BEAMS 24, 062801 (2021)

062801-10



removed, owing to the fact that dE is allowed to increase
further when all constraints are removed.

C. Proximal optimization

Finally, we demonstrate the use of P-UCB-HVI on
optimizing the AWA problem. We start with the same
set of ten initial sets of observations as in Sec. IVAwith the
same hyperparameter training schedule. However this time
we run MOBO optimization using the P-UCB-HVI acquis-
ition function, with an isotropic precision matrix [see
Eq. (10)] Λ ¼ 4I defined in normalized input space.
Results from these optimization runs are presented in

Fig. 9. We observe that during optimization, when the
UCB-HVI acquisition function is used, the solenoid
strength parameter K1 is wildly varied to increase the
hypervolume as much as possible each step. However,
when the proximal term is added to the acquisition
function, the frequency and amplitude of large jumps in
parameter space are both decreased. While not shown here,
this change in behavior is mirrored in each of the other five
input parameters. Furthermore, the use of P-UCB-HVI
acquisition function over the generic UCB-HVI function
only minimally reduces the overall speed at which

the method maximizes the Pareto front hypervolume
[Fig. 9(c)].

V. CONCLUSION

In this paper we have demonstrated that the MOBO
framework can be used to solve online multiobjective
optimization accelerator physics problems. This method
efficiently finds the Pareto front in a serialized manner,
which makes it viable for use in online accelerator
optimization. The framework also allows the user to
explicitly specify objective preferences and constrain the
objective space through the use of GPs. Finally, we
demonstrated that adding a proximal term to the acquisition
function effectively restricts the MOBO algorithm to
prioritize moving through input space in a proximal,
disciplined manner, which is especially important for
practical use in accelerator facilities.
Our results also demonstrate the reasons why MOBO is

ideal for online multiobjective accelerator optimization.
Optimization takes place after every observation step, as
opposed to methods designed for parallel use, which are not
sample efficient when used in a serialized context. Second,
observation points proposed byMOBO directly incorporate
learned information about the objective function instead of
using a model independent heuristic to generate potential
solutions. As a result, MOBO strategically proposes
solutions which optimally increase Pareto front hyper-
volume and improve Pareto front resolution. While this
comes with an increase in computational complexity, the
extra computation time needed (estimated to be <5 s for
most problems) is small relative to the reduction in
optimization time associated with faster convergence to
the Pareto front.
Practical online multiobjective optimization is useful

primarily as an experimental beam line characterization
tool that can identify accelerator working points. These
working points are often predetermined through con-
ducting multiobjective optimization on simulated versions
of the beam line. However, simulations rarely capture the
full behavior of the beam in the real accelerator. As a result,
any working points produced by conducting multiobjective
optimization on a simulation might not be ideal in reality.
MOBO can be used to find the realistic, ideal trade-off
between given objectives, and identify the input parameters
that are Pareto optimal. Once a trade-off has been selected
by specifying an explicit weighting of the objectives and
the correct input parameters have been determined, single
objective optimization strategies can take over during
regular operation to do local optimization in response to
noise and/or temporal drift. If we wish to scan over a given
objective, such as the longitudinal bunch length in a
photoinjector, we can maintain optimal settings without
repeating optimization, since MOBO characterizes the
entire Pareto front. This assumes that the Pareto front
varies on a sufficiently long time scale that any changes are

FIG. 9. Comparison between UCB-HVI and the
proximal UCB-HVI acquisition functions when used to
perform optimization of the AWA photoinjector. (a) Solenoid
1 strength parameter over 300 observations using UCB-HVI (left)
and corresponding distribution of ΔK1 for each step (right).
(b) Solenoid 1 strength parameter and travel distance distribution
when P-UCB-HVI is used. (c) Average Pareto front hypervolume
of ten optimization runs for UCB-HVI and P-UCB-HVI with
identical random initialization sets. Shading denotes one sigma
variance.

MULTIOBJECTIVE BAYESIAN OPTIMIZATION FOR … PHYS. REV. ACCEL. BEAMS 24, 062801 (2021)

062801-11



negligible. Applying this algorithm towards solving time-
dependent multiobjective optimization problems is a source
of future study. Finally, MOBO can be repeated periodi-
cally to monitor changes in machine performance over time
and benchmark simulated Pareto fronts to experimental
results.
While the goal of this work is to apply the MOBO

framework towards online optimization of accelerators, this
technique can also be applied to solve computational
accelerator physics optimization problems. High fidelity
simulations of particle accelerator physics (beam lines,
cavities, magnets etc.) are also a resource intensive process,
often requiring time on computational clusters which have
limited availability. The recently developed q-expected
hypervolume improvement (qEHVI) [40] algorithm is a
parallelized extension of EHVI. In contrast to EHVI, which
proposes a single point at each optimization step, qEHVI
proposes multiple q points that are likely to increase the
Pareto front hypervolume for each optimization step. These
points can be evaluated in a batched parallel process on a
computing cluster, which significantly reduces overall
optimization timewhilemaintaining the sampling efficiency
advantages of EHVI. Furthermore, multifidelity approaches
to MOBO have also been proposed to reduce optimization
time [41], by incorporating low-cost, approximate simula-
tions as a temporary stand-in for expensive high fidelity
simulations. The application of these methods to solving
computational accelerator problems has the potential to
dramatically reduce resource requirements for those in the
field. Results from using these computational tools can also
be integrated back into an experimentalMOBO algorithm in
order to speed up serialized optimization.

ACKNOWLEDGMENTS

We would like to thank Nicole Neveu for her involve-
ment in the design of the simulation data set we used [25]
and running simulations used to create the data set. This
work was supported by the U.S. National Science
Foundation under Grant No. PHY-1549132, the Center
for Bright Beams and the U.S. Department of Energy,
Office of Science, Contracts No. DE-AC02-76SF00515
and No. DE-AC02-06CH11357, and DOE Office of Basic
Energy Sciences under FWP 100637.

APPENDIX A: GAUSSIAN PROCESS
REGRESSION

A GP regression model works by representing
the function value at a given input point via a random
variable drawn from a multivariate Gaussian distribution
fðxÞ ∼ GP½μðxÞ; kðx;x0Þ�, where μðxÞ is the mean and
kðx;x0Þ is the covariance [8]. We start with a prior belief
that μðxÞ ¼ 0 (without loss of generality) and use Bayes
rule to update this belief to a new one (known as the
posterior), conditioned on the observed dataset D ¼

fðx1; y1Þ; ðx2; y2Þ;…; ðxN; yNÞg and the covariance func-
tion. The prediction of the function at a test point x� is
given by f� ¼ fðx�Þ. This random variable is then drawn
from the conditional Gaussian,

pðf�jDÞ ∼N ðμ�; σ2�Þ ðA1Þ

μ� ¼kT ½K þ σ2nI�−1y ðA2Þ

σ� ¼kðx�;x�Þ − kT ½K þ σ2nI�−1k ðA3Þ

k ¼½kðx�;x1Þ; kðx�;x1Þ;…; kðx�;xNÞ� ðA4Þ

K ¼

2
664
kðx1;x1Þ � � � kðx1;xNÞ

..

. . .
. ..

.

kðxN;x1Þ � � � kðxN;xNÞ

3
775 ðA5Þ

where y ¼ ½y1; y2;…; yN �T and σn is the noise
hyperparameter.
The covariance function kðx;x0Þ is specified based on

prior knowledge of the target functions’ behavior. A
common kernel is the radial-basis function (RBF) given by

kRBFðx;x0Þ ¼ σ2f exp

�
−
1

2
ðx − x0ÞTΛðx − x0Þ

�
; ðA6Þ

where Λ is known as the precision matrix. In the isotropic
case, the matrix is specified by Λ ¼ I=λ2 where I is the
identity matrix and λ is referred to as the length-scale
hyperparameter. This hyperparameter describes the charac-
teristic length scale at which the function varies. For large λ
the function is expected to be smooth; decreasing λ causes
the function to vary quickly over a short distance. In a case
where the function is expected to vary at different length
scales along each input axis we can define an anisotropic
kernel, where the matrix is specified by a length scale vector
l where Λ ¼ diagðlÞ−2 where the diagonal elements specify
a length scale for each input dimension. Further, the entire
precision matrix can be specified via Λ ¼ LLT þ diagðlÞ
where L is an upper triangle matrix to ensure that Λ is
positive self-definite. Generally hyperparameters can be
trained by maximizing the marginal log likelihood, which
optimizes them to best fit the observed dataset while
minimizing the regression’s functional complexity [8].
However, they can also be determined in a localized region
by calculating the function’s Hessian matrix at a given
point [9].

APPENDIX B: CODE AVAILABILITY

This research used only open source Python software
libraries, including GPFlow [42] and TensorFlow [43]. The
algorithms developed are contained in a repository [44].

RYAN ROUSSEL, ADI HANUKA, and AURALEE EDELEN PHYS. REV. ACCEL. BEAMS 24, 062801 (2021)

062801-12



The surrogate model of the AWA photoinjector is available
upon request.

[1] X. Huang, J. Corbett, J. Safranek, and J. Wu, An algorithm
for online optimization of accelerators, Nucl. Instrum.
Methods Phys. Res., Sec. A 726, 77 (2013).

[2] J. A. Nelder and R. Mead, A Simplex Method for Function
Minimization (Oxford Academic, 1965), Vol. 7, pp. 308–
313.

[3] M. J. D. Powell, The BOBYQA algorithm for bound con-
strained optimization without derivatives, Cambridge NA
Report No. DAMTP 2009/NA06, University of Cam-
bridge, Cambridge, 2009.

[4] N. Neveu, J. Larson, J. G. Power, and L. Spentzouris,
Photoinjector optimization using a derivative-free, model-
based trust-region algorithm for the Argonne wakefield
accelerator, in the 8th International Particle Accelerator
Conference (IPAC’17), Copenhagen, Denmark, 2017
(JACOW, Geneva, Switzerland, 2017), pp. 4100–4103.

[5] S. Appel and S. Reimann, Beam line optimization using
derivative-free algorithms, J. Phys. 1350, 012104 (2019).

[6] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N.
de Freitas, Taking the human out of the loop: A review of
Bayesian optimization, Proceedings of the IEEE (2016),
Vol. 104, p. 148.

[7] S. Greenhill, S. Rana, S. Gupta, P. Vellanki, and S.
Venkatesh, Bayesian optimization for adaptive experimen-
tal design: A review, IEEE Access 8, 13937 (2020).

[8] C. E. Rasmussen and . K. I. Williams, Gaussian Processes
for Machine Learning, Adaptive Computation and Ma-
chine Learning (MIT Press, Cambridge, MA, 2006).

[9] A. Hanuka, J. Duris, J. Shtalenkova, D. Kennedy, A.
Edelen, D. Ratner, and X. Huang, Online tuning and light
source control using a physics-informed Gaussian process
Adi, arXiv:1911.01538.

[10] M. McIntire, T. Cope, S. Ermon, D. Ratner et al., Bayesian
optimization of FEL performance at LCLS, in Proceedings
of the 7th International Particle Accelerator Conference
(IOP Publishing, Bristol, England, 2016).

[11] J. Duris, D. Kennedy, A. Hanuka, J. Shtalenkova, A.
Edelen, A. Egger, T. Cope, and D. Ratner, Bayesian
Optimization of a Free-Electron Laser (APS, Maryland,
2020).

[12] J. Kirschner, M. Mutný, N. Hiller, R. Ischebeck, and A.
Krause, Adaptive and safe Bayesian optimization in high
dimensions via one-dimensional subspaces, in Proceedings
of the 36th International Conference on Machine Learning
(PMLR, 2019), pp. 3429–3438, http://proceedings.mlr
.press/v97/kirschner19a/kirschner19a.pdf.

[13] N. Neveu, L. Spentzouris, A. Adelmann, Y. Ineichen, A.
Kolano, C. Metzger-Kraus, C. Bekas, A. Curioni, and
P. Arbenz, Parallel general purpose multiobjective optimi-
zation framework with application to electron beam dynam-
ics, Phys. Rev. Accel. Beams 22, 054602 (2019).

[14] Y. Li, W. Cheng, L. H. Yu, and R. Rainer, Genetic algorithm
enhanced by machine learning in dynamic aperture opti-
mization, Phys. Rev. Accel. Beams 21, 054601 (2018).

[15] M. Emmerich, K. Yang, A. Deutz, H. Wang, and C. M.
Fonseca, A multicriteria generalization of Bayesian global
optimization, Advances in Stochastic and Deterministic
Global Optimization, edited by P. M. Pardalos, A.
Zhigljavsky, and J. Źilinskas, Springer Optimization
and Its Applications (Springer International Publishing,
New York), pp. 229–242.

[16] A. Scheinker, S. Hirlaender, F. M. Velotti, S. Gessner, G. Z.
Della Porta, V. Kain, B. Goddard, and R. Ramjiawan,
Online multiobjective particle accelerator optimization of
the AWAKE electron beam line for simultaneous emittance
and orbit control, AIP Adv. 10, 055320 (2020).

[17] E. Cropp and A. Edelen (to be published).
[18] L.. R. Zuhal, P. Satria Palar, and K. Shimoyama, A

comparative study of multiobjective expected improve-
ment for aerodynamic design, Aerosp. Sci. Technol. 91,
548 (2019).

[19] B. Naujoks, N. Beume, and M. Emmerich, Multiobjective
optimization using s-metric selection: Application to
three-dimensional solution spaces, in 2005 IEEE Congress
on Evolutionary Computation (IEEE, Piscataway, NJ,
2005), Vol. 2, pp. 1282–1289.

[20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast
and elitist multiobjective genetic algorithm: NSGA-II,
IEEE Transactions on Evolutionary Computation, Piscat-
away, NJ (2002), Vol. 6, p. 182.

[21] J. Kennedy and R. Eberhart, Particle swarm optimization,
in Proceedings of ICNN’95—International Conference on
Neural Networks (IEEE, New York, 1995), Vol. 4,
pp. 1942–1948.

[22] X. Huang and J. Safranek, Nonlinear dynamics optimiza-
tion with particle swarm and genetic algorithms for
SPEAR3 emittance upgrade, Nucl. Instrum. Methods Phys.
Res., Sect. A 757, 48 (2014).

[23] X. Pang and L. J. Rybarcyk, Multiobjective particle swarm
and genetic algorithm for the optimization of the LANSCE
linac operation, Nucl. Instrum. Methods Phys. Res., Sect.
A 741, 124 (2014).

[24] X. Huang, M. Song, and Z. Zhang, Multiobjective
multigeneration Gaussian process optimizer for design
optimization, Report No. SLAC-PUB, Menlo Park, 2019.

[25] A. Edelen, N. Neveu, M. Frey, Y. Huber, C. Mayes, and A.
Adelmann, Machine learning for orders of magnitude
speedup in multiobjective optimization of particle accel-
erator systems, Phys. Rev. Accel. Beams 23, 044601
(2020).

[26] D. R. Jones, M. Schonlau, and W. J. Welch, Efficient
global optimization of expensive black-box functions, J.
Global Optim. 13, 455 (1998).

[27] N. Srinivas, A. Krause, S. Kakade, andM. Seeger, Gaussian
process optimization in the bandit setting: No regret
and experimental design, in Proceedings of the 27th
International Conference on International Conference on
Machine Learning, ICML’10 (OmniPress, Madison, WI,
2010), pp. 1015–1022.

[28] K. Yang, M. Emmerich, A. Deutz, and T. Bäck, Efficient
Computation of Expected Hypervolume Improvement Us-
ing Box Decomposition Algorithms (Springer, New York,
2019).

MULTIOBJECTIVE BAYESIAN OPTIMIZATION FOR … PHYS. REV. ACCEL. BEAMS 24, 062801 (2021)

062801-13

https://doi.org/10.1016/j.nima.2013.05.046
https://doi.org/10.1016/j.nima.2013.05.046
https://doi.org/10.1088/1742-6596/1350/1/012104
https://doi.org/10.1109/ACCESS.2020.2966228
https://arXiv.org/abs/1911.01538
http://proceedings.mlr.press/v97/kirschner19a/kirschner19a.pdf
http://proceedings.mlr.press/v97/kirschner19a/kirschner19a.pdf
http://proceedings.mlr.press/v97/kirschner19a/kirschner19a.pdf
http://proceedings.mlr.press/v97/kirschner19a/kirschner19a.pdf
https://doi.org/10.1103/PhysRevAccelBeams.22.054602
https://doi.org/10.1103/PhysRevAccelBeams.21.054601
https://doi.org/10.1063/5.0003423
https://doi.org/10.1016/j.ast.2019.05.044
https://doi.org/10.1016/j.ast.2019.05.044
https://doi.org/10.1016/j.nima.2014.04.078
https://doi.org/10.1016/j.nima.2014.04.078
https://doi.org/10.1016/j.nima.2013.12.042
https://doi.org/10.1016/j.nima.2013.12.042
https://doi.org/10.1103/PhysRevAccelBeams.23.044601
https://doi.org/10.1103/PhysRevAccelBeams.23.044601
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147


[29] L. While, L. Bradstreet, and L. Barone, A Fast Way of
Calculating Exact Hypervolumes (IEEE Transactions on
Evolutionary Computation, New York, 2012), Vol. 16,
p. 86.

[30] W. Tang, H.-L. Liu, L. Chen, K. C. Tan, and Y.-M. Cheung,
Fast hypervolume approximation scheme based on a
segmentation strategy, Inf. Sci. 509, 320 (2020).

[31] K. Yang, A. Deutz, Z. Yang, T. Back, and M. Emmerich,
Truncated expected hypervolume improvement: Exact
computation and application, in 2016 IEEE Congress on
Evolutionary Computation (CEC) (IEEE, Piscataway, NJ,
2016), pp. 4350–4357.

[32] J. R. Gardner, M. J. Kusner, Z. E. Xu, K. Q. Weinberger,
and J. P. Cunningham, Bayesian optimization with inequal-
ity constraints, in ICML (2014), Vol. 2014, pp. 937–945.

[33] J. Snoek, H. Larochelle, and R. P. Adams, Practical
Bayesian optimization of machine learning algorithms,
edited by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, Advances in Neural Information Processing
Systems 25 (Curran Associates, Inc., Red Hook, NY,
2012), pp. 2951–2959.

[34] M. E. Conde, S. P. Antipov, D. S. Doran, W. Gai,
Q. Gao, and G. Ha, Research Program and Recent Results
at the Argonne wakefield Accelerator Facility (AWA) (IOP
Publishing, Bristol, England, 2017), p. 3.

[35] A. Adelmann, Ch. Kraus, Y. Ineichen, S. Russell, Y. Bi,
and J. J. Yang, The object oriented parallel accelerator

library (OPAL), design, implementation and application, in
Proceedings of the 23rd Particle Accelerator Conference,
Vancouver, Canada, 2009 (IEEE, Piscataway, NJ, 2009).

[36] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, arXiv:1412.6980.

[37] F. Biscani and D. Izzo, A parallel global multiobjective
framework for optimization: PAGMO, J. Open Source
Software 5, 2338 (2020).

[38] D. Zhan and H. Xing, Expected improvement for expensive
optimization: A review, J. Global Optim. 78, 507 (2017).

[39] R. Allmendinger, M. T. M. Emmerich, J. Hakanen, Y. Jin,
and E. Rigoni, Surrogate-assisted multicriteria optimiza-
tion: Complexities, prospective solutions, and business
case, J. Multi-Criteria Decision Analysis 24, 5 (2017).

[40] S. Daulton, M. Balandat, and E. Bakshy, Differentiable
expected hypervolume improvement for parallel multi-
objective Bayesian optimization, arXiv:2006.05078.

[41] S. Belakaria, A. Deshwal, and J. R. Doppa, Multifidelity
multiobjective Bayesian optimization: An output space
entropy search approach, arXiv:2011.01542.

[42] A. G. de G. Matthews, M. van der Wilk, T. Nickson, K.
Fujii, A. Boukouvalas, P. León-Villagrá, Z. Ghahramani,
and J. Hensman, GPFlow: A Gaussian process library using
TensorFlow, J. Mach. Learn. Res. 18, 1 (2017).

[43] M. Abadi et al., TensorFlow: A system for large-scale
machine learning, arXiv:1605.08695.

[44] https://github.com/roussel-ryan/Accelerator_MOBO.

RYAN ROUSSEL, ADI HANUKA, and AURALEE EDELEN PHYS. REV. ACCEL. BEAMS 24, 062801 (2021)

062801-14

https://doi.org/10.1016/j.ins.2019.02.054
https://arXiv.org/abs/1412.6980
https://doi.org/10.21105/joss.02338
https://doi.org/10.21105/joss.02338
https://doi.org/10.1007/s10898-020-00923-x
https://doi.org/10.1002/mcda.1605
https://arXiv.org/abs/2006.05078
https://arXiv.org/abs/2011.01542
https://arXiv.org/abs/1605.08695
https://github.com/roussel-ryan/Accelerator_MOBO
https://github.com/roussel-ryan/Accelerator_MOBO

