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Beam breakup instability is a potential issue for all particle accelerators and is often the limiting factor
for the maximum beam current that can be achieved. This is particularly relevant for energy recovery linacs
(ERLs)with multiple passes where a relatively small amount of charge can result in a large beam current.
Recent studies have shown that the choice of filling pattern and recirculation scheme for a multipass energy
recovery linac can drastically affect the interactions between the beam and rf system. In this paper, we
further explore this topic to study how filling patterns affect the beam breakup instability and how this can
allow us to optimize the design in order to minimize this effect. We present a theoretical model of the
beam-rf interaction as well as numerical modeling and show that the threshold current can vary by a factor
of 5, and potentially, even more, depending on the machine design parameters. Therefore a judicious choice
of filling pattern can greatly increase the onset of beam breakup, expanding the utility of future ERLs.
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I. INTRODUCTION

In the 2020 European Strategy for Particle Physics [1],
superconducting energy recovery linacs (ERLs) [2] were
identified as a key accelerator technology requiring priority
research and development to underpin the future anticipated
needs of the community. Applications in particle physics
cover bothERL-based colliders, such as LHeC [3,4], PERLE
[5], FCC-ee [6] and beam coolers for hadron colliders,
notably EIC [7]. ERLs are also seen as a promising option, in
both academic and industrial contexts, for future free-
electron laser light sources [8,9] and for nuclear physics
throughboth direct beam internal target experiments [10] and
through secondary production of narrowband gammas via
inverse Compton scattering [11,12].
One common theme in these future applications is the

requirement of high average beam power, with GW being
an aspired-for reasonable midterm goal. This is three orders
of magnitude beyond that achieved to date, namely by the

JLab FEL upgrade [13,14], indicating the importance of
addressing this as a priority for ERL research.
A well-known limitation on the current one can support

in an ERL is a particular incarnation of so-called beam
breakup (BBU) instabilities. BBU has the potential to occur
where the beam interacts with a higher order mode (HOM)
of an rf structure that it traverses and becomes deflected.
There are two general classes of BBU, cumulative, [15–20]
and regenerative [21,22]. Cumulative is where the deflec-
tion builds up over multiple structures and is not the subject
of this study. Regenerative BBU is that of primary concern
in recirculating and energy recovery linacs where there are
multiple passes of the same bunch through each rf structure.
This constitutes a feedback loop between the beam position
offset and the HOM voltage.
Bunches passing through the cavity will excite a trans-

verse HOM whose amplitude is dependent on the trans-
verse offset of the passing bunches. In turn, the HOM
voltage will deflect the subsequent bunches and increase
their offsets. If the beam current is at a certain threshold,
Ith, then the magnitude of the HOM voltage and bunch
offsets will reach an equilibrium, below this the HOM
voltage will tend to zero, above it will cause the HOM
voltage and bunch offsets will grow exponentially until
beam loss occurs. This defines the BBU instability [23,24].
While studies have been undertaken to investigate BBU
instabilities for ERLs [25–31], no studies have yet con-
sidered the impact of different beam filling patterns and
beam line topologies on the beam loading transients

*s.saitiniyazi@lancaster.ac.uk
†r.apsimon@lancaster.ac.uk
‡peter.williams@stfc.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 24, 061003 (2021)
Editors' Suggestion

2469-9888=21=24(6)=061003(10) 061003-1 Published by the American Physical Society

https://orcid.org/0000-0002-5903-8930
https://orcid.org/0000-0001-6346-5989
https://orcid.org/0000-0002-8987-4999
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.24.061003&domain=pdf&date_stamp=2021-06-23
https://doi.org/10.1103/PhysRevAccelBeams.24.061003
https://doi.org/10.1103/PhysRevAccelBeams.24.061003
https://doi.org/10.1103/PhysRevAccelBeams.24.061003
https://doi.org/10.1103/PhysRevAccelBeams.24.061003
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


imparted on the cavities and bunches. This becomes
important when considering multipass ERLs which, having
now been demonstrated experimentally [32], feature in
many designs for future ERL facilities due to the obvious
advantage of providing higher beam energies without a
concomitant increase in the number of accelerating struc-
tures. The effect of the filling pattern, which describes the
order in which bunches are injected into the ERL over
subsequent turns, has in a previous publication [33] been
shown to have a major impact on the stability of the rf
system. Just as the fundamental mode and rf power are
affected differently by our choice of beam line topology
and filling pattern, the threshold current of regenerative
BBU is also dependent on these parameters. In the
following section, we show that the impact on BBU is
somewhat more complex than it is for the fundamental
mode due to the asynchronous nature of the HOM mode
relative to the beam, as well as the transcendental relation-
ship between the HOM voltage and the bunch offsets.
For regenerative BBU, the HOM mode has a sufficiently

high Q-factor that the mode persists for a relatively long
timescale. As the bunches pass through the structure they
are given a transverse kick, while also contributing to the
excitation of the HOM due to their off-axis trajectories. On
recirculation they pass back through the structure with a
larger offset, further exciting the mode. This feedback loop
can grow exponentially until beam loss occurs.
Filling patterns are used to describe the order in which

bunches are injected into a ring on subsequent turns, here
we use the concept (introduced in [33]) of intrapacket
blocks to describe the position they occupy on each turn.
For example, for a 6-turn ERL (3 accelerating passes and 3
decelerating), the filling pattern [1 2 3 4 5 6] indicates that
the first bunch goes to the first intrapacket block, the second
bunch goes to the second block, and so on. The intrapacket
block also fixes how many rf cycles are between bunches,
as in the general case bunches are not necessarily injected
into every rf cycle, illustrated in Fig. 1. These bunches form
a packet and multiples of such packets fill up the ring as
shown in Fig. 2. Similarly, the filling pattern [1 3 2 4 5 6]
indicates that the first bunch goes to the first block, the
second bunch goes to the third block, and so on. These
filling schemes are called FIFO (first in first out) as the
bunches maintain their order in the packet, however, their

turn number changes turn by turn. One can also generate a
packet where the turn number in the packet doesn’t change
turn by turn by and consequently the cavity always see the
same packets passing thorough. Such a scheme is called
sequence preserving (SP) scheme and denoted with curly
brackets to be differentiated from square brackets of FIFO
schemes. For example, SP pattern f142536g describes the
first bucket is always occupied by a bunch at the first turn,
the second bucket is always occupied by the bunch at the
fourth turn, and so on. The key differences are that in FIFO
schemes, bunches remain in the same rf block and bunch
turn numbers change, while in SP schemes the arc length
for each turn of the ERL is specifically designed such that
the bunches transition between rf blocks on each turn such
that the sequence of bunch turn number in a packet remains
constant on each turn; hence the name sequence preserving.
The number of possible filling patterns increases as

ðN − 1Þ!, where N is the number of recirculation passes of
the ERL. The filling patterns are dependent on the bunch
injection and recombination schemes. FIFO and SP pat-
terns are merely the most simple subsets of all possible
schemes that can be generated, this will be further studied
in a future work employing a group-theoretic classification
technique. In this work, we focus on SP schemes to show
that BBU is affected by the filling pattern. There are several
factors in multi-turn ERLs that can affect BBU, which are
not present in circular machines: bunches at different turns
have different energies so under the same HOM voltage
higher energy bunches are deflected less than low energy
ones; bunches transitioning from accelerating phase to
decelerating phase need to be delayed by at least half an
rf cycle and thus have a changed revolution time; bunches
accumulate offset and kicks within the recirculating process
which become amplified as the bunch energy decreases,
this is termed adiabatic antidamping. All these effects must
be taken into account when determining filling pattern
dependent BBU threshold currents.
In Sec. II, we present an analytical derivation for the

threshold current and its dependence on filling patterns and
beam line topology and consider how it drives BBU. Due
to the transcendental relationship between HOM voltage
and beam trajectories, the analytical approach is unable to

FIG. 1. Intrapacket blocks. rf cycles are shown within the linac.
Each block is colored differently. The red/blue bunches are on the
peak/trough and being accelerated/decelerated.

FIG. 2. Bunch packets in the ERL. Bunches at the third turn go
through a transition arc where there is at least an extra half rf
cycle delay.
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provide a simple calculation of the threshold current,
however, we are able to exploit it to provide insight into
the behavior of BBU under certain conditions. In Sec. III,
we provide the results of numerical simulations from
Matlab in order to determine the threshold current for
different filling patterns for the SP schemes. These numeri-
cal simulations allow us to look at the frequency depend-
ence of the threshold current for different filling patterns as
well as to determine the threshold current for all filling
patterns as a frequency-averaged threshold current. From
this, we are able to show that with the correct choice
of filling pattern, the threshold current can be increased
significantly with appropriate optimization.

II. ANALYTICAL MODEL

In this section, we derive an analytical expression for the
threshold current to allow us to understand how the filling
pattern and recirculation scheme of the ERL affect the
threshold current. We start by following the standard
derivation described in other works, such as [22,25,26].
Then we augment this initial expression for the threshold
current, casting it in terms of a generic beam filling pattern.
BBU can be a long and/or short-range effect and is

caused by transverse offsets of the bunch centroids exciting
deflecting modes, which are usually dipole fields, which
then give a transverse kick to the bunch on the next turn.
For short-range BBU, the HOM mode excited has a small
loaded Q-factor (QL), and as such the mode is sufficiently
attenuated before the bunches return in order to prevent a
significant transverse kick to the bunch after it has
completed one revolution, but it can have a significant
effect on bunches directly behind the driving bunch. From
the Panofsky-Wenzel theorem [34], we relate the transverse
voltage of the HOM mode in terms of the transverse
variation in longitudinal voltage as:

V⊥ ¼ −
ic
ω

VzðxÞ
x

eiϕ: ð1Þ

It can also be shown that a bunch of charge qbunch excites
this HOM mode and increases the transverse voltage as

δV⊥ ¼ −i
qbunchω

2

�
ωx
c

��
R
Q

�
⊥
eiϕ ð2Þ

wherex is the transverse offset from the electrical centre of the
cavity, c is the speed of light,ω is the angular frequency of the
HOMmode, ðRQÞ⊥ is the transverseR=Q andϕ is the phase of
the beam with respect to the peak of the HOM voltage. A
derivation of this beam loading can be found in [35].
For a recirculating ERL, the energy of the bunches will

vary from one turn to the next and therefore, we need to
consider the one-turn map for each turn, taking into account
the energy variation of the bunch during the turn.
Furthermore, we also need to factor in the deflection from

the HOM on each turn, which will depend on the bunch
energy. In general, we can write a simple first-order one-
turn map as

�
xn
x0n

�
¼
 
RðnÞ
11 RðnÞ

12

RðnÞ
21 RðnÞ

22

!�
xn−1
x0n−1

�
þ
 

δxðnÞHOM

δx0ðnÞHOM

!
ð3Þ

where RðnÞ
ij is the i, j matrix element for the one-turn map

for turn n, xn and x0n are the position and angle trajectory of
the bunch on turn n and δxðnÞHOM and δx0ðnÞHOM are the position
and angle deflection from the HOM mode. From Eq. (3),
we have a means of determining all the bunch positions if
the transverse HOM voltage is known. In addition, from
Eq. (2), we can write an expression for the collective beam
loading of the HOM mode due to k bunches, taking into
account the QL of the mode and the phase shift between
bunches as

δV⊥;k ¼ −i
ω2

2c

�
R
Q

�
⊥
eð−

ωTkþ1
2QL

þiϕ0ÞXk
j¼1

qjxje
ωTjð 1

2QL
þiÞ: ð4Þ

In Eq. (4), we define without loss of generality that

Tkþ1 ¼ 0, hence e−
ωTkþ1
2QL ¼ 1. The stored energy in a cavity

is given as

U ¼ jV⊥j2
ωðRQÞ⊥

; ð5Þ

from Eq. (5), we can determine the rf power transferred by
the beam as

δU
δt

¼ 2jV⊥j
ωðRQÞ⊥

jδV⊥j
δt

: ð6Þ

By substituting Eq. (4) into Eq. (6) and assuming that the
bunch charge is either constant for all bunches or periodic
such that the mean bunch charge is bounded, thenP

k→∞
j¼1

qj
δt ¼ Ibeam, then we obtain:

dUbeam

dt
¼ Ibeam

ωjV⊥j
c

����Xk
j¼1

xje
ωTjð 1

2QL
þiÞ
����: ð7Þ

We also know that when the cavity HOM voltage is at
equilibrium,

dUcav

dt
¼ dUbeam

dt
þ Pc ¼ 0; ð8Þ

where Pc is the ohmic power dissipation in the cavity,
given as

Pc ¼
jV⊥;k−1j2
2ðRQÞ⊥QL

: ð9Þ
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The threshold current is defined as the maximum
allowed beam current before the HOM voltage grows
exponentially, thus it is the limit of stability for the
accelerator. At the threshold current, the HOM voltage is
at steady state at some value, below it, the HOM voltage
will decay exponentially. Thus the only solutions to Eq. (8)
are the trivial case where jV⊥j ¼ 0, or when Ibeam ¼ Ith,
where Ith is the threshold current. We can obtain the
threshold current from Eqs. (8) and (9) as

Ith ¼ Ibeam ¼ −
jV⊥jc

2ðRQÞ⊥ωQLj
P

k
j¼1 xje

ωTjð 1
2QL

þiÞj
: ð10Þ

From here on, it is convenient to introduce some defi-
nitions as the beam loading will be periodic over several
timescales. We define a bunch packet as an ensemble of N
consecutive bunches for an N-turn ERL, such that each
bunch has completed a different number of recirculating
passes. Furthermore, it is assumed that on a given turn, each
bunch packet is equivalent. Finally, we know that from
Eq. (3) that if the bunch offsets are dominated by the kicks
from theHOM, then xjwill depend on theHOMvoltage,V⊥,
which in turn will depend on the bunch charge, qj. If we
assume that the variation in qj is small, then it can be
approximated as a constant. Thus if V⊥ and xj both depend
on the bunch charge, then the overall charge dependence is
canceled in the threshold current. As we shall see further on
in this section, the threshold current will have a charge in the
equation, although as we know that the charge dependence
cancels, we can take q ¼ 1C for conveniencewithout loss of
generality.
From [33] it is known that for any choice of bunch filling

pattern and recirculation scheme, the filling pattern will
repeat every N turns, or in some cases an integer divisor of
N. Additionally, in [33] the concept of a sequence pre-
serving (SP) scheme is discussed, whereby for a given
filling pattern, a recirculation scheme can be chosen such
that the sequence of bunch turn numbers in a packet is the
same on each turn. For SP schemes, we see that the bunch
packets are equivalent for all turns and so we can also
trivially see that this will indeed be periodic over N turns.
To aid in the following derivation, we shall define a form
factor for a single bunch packet (fn;k), a single turn (Fn;k),
and N-turns (hFki) respectively as

fn;k ¼ e−
ωTNþk
2QL

���� XNþk−1

j¼k

xje
ωTjð 1

2QL
þiÞ
����

Fn;k ¼ e−
ωTMNþk

2QL

���� XMNþk−1

j¼k

xje
ωTjð 1

2QL
þiÞ
����

Fk ¼ e−
ωT

MN2þk
2QL

���� XMN2þk−1

j¼k

xje
ωTjð 1

2QL
þiÞ
����; ð11Þ

where k is the bunch number in the packet, n is the turn
number. These form factors are a convenient means of
quantifying the effect on HOM voltage from the bunches
over different timescales. These form factors depend
explicitly on the filling pattern and recirculation scheme.
As we assume that the bunch structure is periodic over a

bunch packet and also periodic over N turns, then it is also
convenient to define the duration of a bunch packet as
Tpacket and the mean revolution period of the ring as
Trev ¼ MTpacket. Based on this, we can express the 1-turn
and N-turn form factors in terms of the bunch packet form
factor as

fn;k ¼ e−
ωðTpacketþTkÞ

2QL

���� XNþk−1

j¼k

xje
ωTjð 1

2QL
þiÞ
����

Fn;k ¼
����XM−1

m¼0

emωTpacketð 1
2QL

þiÞ
����fn;k

Fk ¼
����XM−1

m¼0

emωTpacketð 1
2QL

þiÞ
����XN
n¼1

fn;ke
ðn−NÞωTrev

2QL : ð12Þ

We note in Eq. (12) that the summations for the 1- andN-
turn form factors are finite geometric sums that can easily
be evaluated. From Eq. (10) it is convenient to convert the
summation in the denominator into a more appropriate
form and we shall do so by exploiting the N-turn form
factor from Eq. (12) and will consider the summation in
Eq. (10) to tend to infinity.

����X∞
j¼k

xje
ωTjð 1

2QL
þiÞ
���� ¼ Fk

����X∞
n¼0

e−nωTrevð 1
2QL

þiÞ
����

¼ Fke
NωTrev
4QLffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

coshðNωTrev
2QL

Þ − cos ðNωTrevÞ
q :

ð13Þ

Next, we shall evaluate the HOM voltage from Eq. (10)
and for this, we shall assume that the cavity is at a steady
state, thus over a single turn, the HOM voltage amplitude
will be periodic over each bunch packet, however for
convenience, we shall determine the HOM voltage from all
the bunches in a single turn. Thus we can say that the
condition for convergence is given as

V⊥¼V⊥e−ωTrevð 1
2QL

−iÞ

− i
ω2

2c

�
R
Q

�
⊥
e−

ωTrev
2QL eiϕ0

XMNþk−2

j¼k−1
qjxje

ωTjð 1
2QL

þiÞ: ð14Þ

We can rearrange Eq. (14) and solve for V⊥, but we also
only need the magnitude of this. We shall once again
assume that the bunch charge is constant, thus we can
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consider the mean bunch charge and we can also express
the summation as the 1-turn form factor from Eq. (13)
to obtain

jV⊥j ¼
hqi ω2

2c ðRQÞ⊥e
−ωTrev

4QL Fn;k−1ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðωTrev

2QL
Þ − cos ðωTrevÞ

q : ð15Þ

We can now substitute Eqs. (13) and (15) into Eq. (10) to
obtain

Ith¼−
hqiω
4QL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðNωTrev

2QL
Þ−cosðNωTrevÞ

coshðωTrev
2QL

Þ−cosðωTrevÞ

vuut Fn;k−1e
−ðNþ1ÞωTrev

4QL

Fk
:

ð16Þ

It should be noted that in general, the 1-turn form factor
changes turn by turn, therefore this implies that the
threshold current is time-dependent as a result of this.
We also have that the form factor in the numerator is
counting from the ðk − 1Þth bunch, whereas in the denom-
inator it is counting from the kth bunch. We can express the
1- and N-turn form factors in terms of the bunch packet
form factors and sum the threshold current overall bunches
and turns to give the following general expression for the
average threshold current

hIthi ¼ −
α

N2

hqiω
4QL

XN
k¼1

P
N
n¼1 fn;k−1P

N
n¼1 fn;ke

nωTrev
2QL

α ¼ e
ðN−1ÞωTrev

4QL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðNωTrev

2QL
Þ − cos ðNωTrevÞ

coshðωTrev
2QL

Þ − cos ðωTrevÞ

vuut : ð17Þ

In Eq. (17), hqiω
4QL

is essentially the most basic possible
estimate for the threshold current, α is an enhancement
factor that depends on the HOM frequency, mean revolu-
tion period and a number of recirculation turns in the ERL.

A. Worked example: SP schemes

As previously mentioned and also discussed in more
detail in [33], SP schemes have the property that the
sequence of bunch turn numbers in a packet does not
change from one turn to the next. It can be shown that all
filling patterns will have a unique recirculation scheme to
form an SP scheme, but the converse is not necessarily true.
We can use the properties of SP schemes to find a special
case form of Eq. (17) because the filling pattern and
therefore bunch packet form factors are independent of
turn number.

hIthi ¼ −
α0

N
hqiω
4QL

XN
k¼1

fk−1
fk

α0 ¼
sinhðωTrev

2QL
Þ

sinhðNωTrev
2QL

Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðNωTrev

2QL
Þ − cos ðNωTrevÞ

coshðωTrev
2QL

Þ − cos ðωTrevÞ

vuut : ð18Þ

The ratio of form factors needs to be determined
numerically due to the cyclic dependence between jV⊥j
and the transverse offset of the beam [Eqs. (3) and (15)],
resulting in a transcendental equation for the cavity voltage.
Figure 3 shows α0 vs ωTrev for different numbers of
recirculation turns (N) where we have assumed that
QL ¼ 1000. This shows that we expect the mean threshold
current to decrease with increasing N, placing a constraint
on the feasibility of designing arbitrarily many turn ERLs.
Furthermore, it shows that α0 tends to a series of Dirac δ-
functions in the limit that N → ∞. As expected, α0 is
maximal whenωTrev ¼ 2nπ, where n is an integer, and also
α0 ≈ 0 when ωTrev ¼ ð2nþ 1Þπ.

B. Properties of the bunch packet
form factor, f n;k

From Eqs. (17), we note that the threshold current
depends on both fn;k and fn;k−1. This is because jV⊥j at
some moment in time depends on the cumulative beam
loading of all previous bunches; which depends on fn;k−1.
However, the threshold current also depends on the effect
this voltage has on the next bunch passing through; which
depends on fn;k. It would therefore be beneficial to
understand the relationship between the form factor evalu-
ated over different bunches as well as to gain some insight
into the structure of the form factor. Starting from Eq. (12),
it is useful to express the form factor in a nonmodular form.
Starting with the modular part, we can rewrite it as

FIG. 3. α0 vs. ωTrev=2π for SP schemes for different numbers of
recirculation turns, with QL assumed to be 1000.
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���� XNþk−1

j¼k

xje
ωTjð 1

2QL
þiÞ
���� ¼

���� XNþk−1

j¼k

xje
ωTj
2QLeiωTj

����: ð19Þ

We can now remove the modular form since jzj2 ¼ zz�,
and in addition, we can write the multiple of two summa-
tions as a double-summation instead to obtain

���� XNþk−1

j¼k

xje
ωTjð 1

2QL
þiÞ
����
2

¼
XNþk−1

j¼k

XNþk−1

l¼k

xjxle
ωðTjþTlÞ

2QL eiωðTj−TlÞ:

ð20Þ

From Eq. (20), we can split the double summation
into two separate parts, the first where j ¼ l will
become a single summation and for the case where
j ≠ l, due to the symmetry of the equation, when knowing
that fðj; lÞ ¼ fðl; jÞ, thus without loss of generality, we can
take double the summation and impose the constraint that
j > l to obtain

���� XNþk−1

j¼k

xje
ωTjð 1

2QL
þiÞ
����
2

¼
XNþk−1

j¼k

x2je
ωTj
QL þ2

XNþk−1

j¼kþ1

Xj−1
l¼k

xjxle
ωðTjþTlÞ

2QL cosωðTj−TlÞ:

ð21Þ

Equation (21) can be substituted back into Eq. (12) to give
a convenient means of calculating the form factors without
needing to compute complex numbers. Furthermore, in this
form, we can explore the relationship between fn;k and
fn;k−1 by understanding how each summation over k − 1

relates to the summation over k. We shall assume that the
ERL is stable and periodic over a bunch packet, thus xNþk ¼
xk and also TNþk ¼ Tpacket þ Tk. From the single summa-
tion, we can express it as

XNþk−2

j¼k−1
x2je

ωTj
QL ¼

XNþk−1

j¼k

x2je
ωTj
QL − 2x2ke

ωTk
2QLe

ωTpacket
2QL sinh

ωTpacket

2QL
:

ð22Þ

Applying the same to the double summation, we obtain

XNþk−2

j¼k

Xj−1
l¼k−1

xjxle
ωðTjþTlÞ

2QL cosωðTj − TlÞ

¼
XNþk−1

j¼kþ1

Xj−1
l¼k

xjxle
ωðTjþTlÞ

2QL cosωðTj − TlÞ

− r
XNþk−2

j¼k

xjxke
ωðTjþTkÞ

2QL cosðωðTk − TjÞ þ ψÞ: ð23Þ

where

r ¼
ffiffiffi
2

p
e
ωTpacket
4QL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh

�ωTpacket

2QL

�
− cosωTpacket

s

and

ψ ¼ tan−1
 

sinωTpacket

cosωTpacket − e−
ωTpacket
2QL

!
: ð24Þ

Substituting Eqs. (21)–(24) into Eq. (12), we obtain
where

f2n;k−1 ¼ e
ωðTk−Tk−1Þ

QL

�
f2n;k

− 2x2ke
−
3ωTpacket

2QL sinh

�
ωTpacket

2QL

�
− 2rxke

−
ωTpacket

QL

×
XNþk−2

j¼k

xje
ωðTjþTkÞ

2QL cosðωðTk − TjÞ þ ψÞ
	
: ð25Þ

Equation (25) now provides us with an explicit relation-
ship between fn;k−1 and fn;k that can be used to with the
computation of hIthi.

III. SIMULATION

A. ERL BBU code with filling pattern

As the concept of filling patterns for ERLs is relatively
new, none of the existing BBU simulation codes are
currently able to incorporate this into their calculations.
We have adapted the ERLBBU algorithm [22,25,26] to
include the calculation of BBU with filling patterns by not
assuming a constant bunch spacing. These modifications
describe the arrival time and energy of each individual
bunch. Benchmarking against the experimental results
presented in Table 5.1 of Ref. [26] provided consistent
results when applying the same bunch pattern assumed in
the literature. Our modified script predicted a threshold
current of 2.39 mA, which is slightly closer to the
experimental results than other codes and analytical esti-
mates due to these corrections. The ERLBBU algorithm
starts with a test current and an initial HOM voltage (which
for the following simulations is assumed to be 10 kV
transverse voltage). Bunches are injected with small,
Gaussian distributed, transverse offsets. This simulation
estimates if the cavity voltage increases or decreases over
time under the test current, as shown in Fig. 4, and
generates a new test current accordingly and repeats the
process until the threshold current is determined within a
user-defined tolerance range. As seen in Fig. 4, when the
threshold current of 2.39 mA is reached, the cavity HOM
voltage has converged to an equilibrium value. The
assumed parameters are given in Table I. The magnitude
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of the transverse offset of the bunches also increases or
decreases in a similar fashion to the HOM voltage as shown
in Fig. 5.

B. Simulation initial parameters

The scan is performed for a 6-turn ERL with 3 accel-
erating and 3 decelerating turns. To start with we used
similar simulation parameters to those used in Ref [26] as
summarized in Table. I. The transitioning bunch is that
moving from the accelerating to decelerating phase. The
transition is achieved by delaying the bunch by at least half
an rf cycle. Therefore, the revolution period of the
transitioning bunch is half an rf cycle longer. The injected
bunches are 7.3 MeVand they gain/lose 39 MeV in each in
accelerating/decelerating turn. We simulated 3 injection
frequencies, which are of 1

1
st, 1

5
th, and 1

10
th of fundamental

mode frequency f, i.e., bunches are injected in every 1, 5
and 10 rf cycles Trf, respectively. The horizontal injection
offsets are set 10 times of the vertical as bunches are bent in
the horizontal plane and would be dominated by horizontal
jitters. Here we do not need to be exact on the initial
parameters like HOM voltages and offset jitters as we are
looking at the trend (growth or decline) to decide whether
the test current is above or below Ith.

C. Frequency dependence

The results show the threshold current is frequency
dependent. First, the simulation results show the threshold
current is periodic over the HOM frequency range of
1.24 MHz as shown in Fig. 6. The blue, red, and green
colors each indicate 1 period of the curve. Such periodicity
is expected from the general form of the threshold current
equation [26]

Ith ¼
−2Ebeam

e ωH
c ðRQÞHOMR12 sinðωHTrevÞ

ð26Þ

where Ebeam is the beam energy in electron Volt, e is the
electron charge, c is the speed of light in vacuum, ωH is the
HOM angular frequency, ðRQÞHOM is geometric shunt
impedance of the HOM, R12 is the transfer matrix element
relates the angular kick to the off-set after one recirculation
and Trev is the revolution period. Note that this equation
only applicable for estimating threshold current for simple
2-turn ERL. Nevertheless, we can use it to explain
periodicity. The period arises from periodicity of the term
sinðωHttrÞ. Given the revolution period is 802 ns, the period
Pf;HOM is 1=Trev ¼ 1.24 MHz. Second, we see that the
periodicity is not exact but the threshold current slowly
decreases as the HOM frequency increases. Such relation
can be also seen from the Eq. (26).

D. Filling pattern dependence

We performed ERL BBU tracking simulations and
estimated threshold current for different sequence pre-
serving filling patterns, where the cavity will always see
the same sequence of bunches passing through. The scan
is over a frequency range of 2.1054 and 2.1066 GHz,
which covers one full aforementioned Pf;HOM ¼ 1.24 MHz
period. As the ERL is 6 turn, 6 bunches form a packet. Such
packets are repeated multiple times to fill up the circular
accelerator ring.
The scan results for 5Trf spacing are as shown in Fig. 7.

The threshold currents as a function of HOM frequencies
are given for different patterns. As can be seen, each pattern

FIG. 4. HOM voltage when test current Itest is above (black),
below (red), and at (blue) the threshold current.

TABLE I. 6-Turn ERL BBU simulation parameters.

Parameter Unit Value

fundamental mode frequency f MHz 1497.0
HOM frequency fHOM MHz 2105.4–2106.6
HOM loaded Q-factor QL;HOM 6.11 × 106

HOM geometric shunt impedance ðRQÞHOM Ω 29.9
revolution period for non-transitioning bunches Trev ns 801.67
revolution period for transitioning bunch Trev;t ns 802.01
bunch energies at turn 1–6 MeV 7.3, 46.3, 85.3, 124.3, 85.3, 46.3
bunch spacing Trf 1, 5, and 10
injected beam RMS offset σx;offset=σy;offset μm 10=1
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indeed drives BBU instabilities differently and have differ-
ent threshold currents for the same frequency. We do see
similar patterns have close Ith at some frequencies, as can
be seen from the subfigure (a) for patterns No. 1–3. In the
case of subfigure (b), however, we see patterns No. 59
(f1 4 3 6 2 5g), 60 (f14 3 6 5 2g), and 61 (f1 4 5 2 3 6g) have
mostly different Ith.

E. Averaged threshold current

We performed threshold current scans for the 120 SP
patterns. The simulated frequency range is 1 period,
Pf;HOM, for each pattern. The threshold currents are
averaged over 1 Pf;HOM and results are plotted as shown
in Fig. 8 for the case phase advance μ is 1.5π. As can be
seen, pattern number 48 has the highest threshold current at
2.5 Awhen bunches are injected in every rf cycle, which is
about 5 times the lowest threshold current. Clearly, some
patterns are better than others in the terms of lowering BBU
instabilities. Overall, the 1Trf bunch spacings have larger
threshold currents as can be seen from Fig. 8 and Table II.

The relationship between threshold current and filling
patterns is complicated as several parameters (like bunch
arrival times, energies, and orders) change simultane-
ously when the filling pattern is changed, consequently
the average threshold currents appear to be random for

FIG. 6. Threshold current periodicity over HOM frequency.
Different period colored differently. The filling pattern used is
f1 2 3 4 5 6g and the phase advance μ ¼ 1.5π.

FIG. 7. Filling pattern dependence of the threshold current:
(a) filling pattern No. 1–3; (b) filling pattern No. 59–61. The
bunch spacing is 5Trf .

FIG. 8. Frequency averaged threshold current 120 SP patterns
for μ ¼ 1.5π. The black, red, and blue curves are the results with
1Trf , 5Trf , and 10Trf bunch spacings, respectively.

FIG. 5. Particle x-position (in the cavity) when test currents Itest
is above (black), below (red), and at (blue) the threshold current.
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different filling patterns. The analytical model fails to
predict the threshold current of such a complicated system
and one has to rely on numerical simulation tools only.
Another observation is that the spacing of the bunches

has a big effect on the threshold currents for some patterns
but not others. In pattern number 12 for example, both 5Trf

and 10Trf spacings have similar threshold current, while
pattern number 43 for example does not. We also compared
frequency scans of these two patterns, as shown in Fig. 9.

F. Phase advance dependence of threshold current

A scan of threshold currents with the two different phase
advances of 1.5 and 2π with 10Trf bunch spacing is shown
in Fig. 10. When the phase advance is integer times π,
bunches enter the cavity with minimum offset and hence
the BBU instability is minimized. Consequently, the thresh-
old currents are increased greatly. We see when the tune
changed, the dependence of the threshold current on the
patterns has changed as well.
The BBU threshold current is dependent on many

parameters that interact in a complicated manner, making
it difficult to choose the best pattern with the highest
threshold current using the analytical approach. We have
however demonstrated that one can find the best filling
pattern for a given set of parameters by performing pattern
scans with numerical simulations.

IV. CONCLUSION

We have investigated the impact of filling pattern choice
in a multipass ERL on the regenerative BBU instability. We
find analytically that the mean threshold current decreases
with increasing ERL turn number, placing constraints on
the feasibility of designing arbitrarily many turns. In [27]
states a scaling rule of Ith with the number of turns as
1=ðNð2N − 1ÞÞ, which differs slightly from our own form
given as α and α0 in Eq. (17) and (18), which provides a
more generalized expression for this scaling law, although
it is also clear that the scaling law will depend on the
recirculation scheme. We demonstrated filling pattern
dependence of the regenerative BBU instability threshold
current. For example, we observed a factor of 5 difference
in the threshold current between worst and best patterns for
SP schemes. The threshold current and best filling pattern
depend on many parameters interacting in a complex
manner. We constructed a new ERL tracking code to
numerically scan for the best filling pattern to maximise
the threshold current. This tool will assist in the design of
future ERL projects.

TABLE II. Maximum, minimum, and average Ith for 1Trf,
5Trf , and 10Trf bunch spacings when μ ¼ 1.5π.

Threshold currents Pattern number Values (mA)

Ith;1Trf;max 48 2488
Ith;1Trf;min 103 524
Ith;1Trf;ave … 1214
Ith;5Trf;max 12 2028
Ith;5Trf;min 108 727
Ith;5Trf;ave … 1102
Ith;10Trf;max 36 1914
Ith;10Trf;min 112 544
Ith;10Trf;ave … 1053

FIG. 9. Threshold currents as function of HOM frequency
pattern number 12 and 43 at two bunch spacings. In (a) they
similar and in (b) different threshold currents.

FIG. 10. Average threshold current 120 SP patterns with
different phase advances with 10Trf bunch spacing. Threshold
currents are higher when phase advances are integer times of π
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