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Understanding the 3D collective long-term response of beams exposed to resonances is of theoretical
interest and essential for advancing high intensity synchrotrons. This study of a hitherto unexplored beam
dynamical regime is based on 2D and 3D self-consistent particle-in-cell simulations and on careful analysis
using tune spectra and phase space. It shows that in Gaussian-like beams Landau damping suppresses all
coherent parametric resonances, which are of higher than second order (the “envelope instability”). Our 3D
results are obtained in an exemplary stopband, which includes the second order coherent parametric
resonance and a fourth order structural resonance. They show that slow synchrotron oscillation plays a
significant role. Moreover, for the early time evolution of emittance growth the interplay of incoherent and
coherent resonance response matters, and differentiation between halo and different core regions is
essential. In the long-term behavior we identify a progressive, self-consistent drift of particles toward and
across the resonance, which results in effective compression of the initial tune spectrum. However, no
visible imprint of the coherent features is left over, which only control the picture during the first one or two
synchrotron periods. An intensity limit criterion and an asymptotic formula for long-term rms emittance
growth are suggested. Comparison with the commonly used non-self-consistent “frozen space charge”
model shows that in 3D this approximation yields a fast and useful orientation, but it is a conservative
estimate of the tolerable intensity.
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I. INTRODUCTION

Beam intensity in operating or future high intensity
circular hadron accelerators is limited by space charge
effects on resonances [1]. Contrary to low intensity
operation, where resonances are single particle phenomena,
high intensity requires self-consistent treatment with differ-
entiation between incoherent and coherent resonance
effects as well as consideration of Landau damping of
nonlinear coherent parametric resonances. Analytical or
semi-analytical models of the latter do not exist—in
contrast to the rich literature on impedance driven dipole
modes—hence we depend largely on simulation and care-
ful theory-based interpretation.
Long-term space charge effects on synchrotron reso-

nances have been measured in dedicated campaigns (see,
for example, Refs. [1–3]). Comparison with simulation
models is essential for understanding resonant processes

and minimizing their effects on beam quality; but so far—
for cpu and noise related reasons—only non-self-consistent
“frozen space charge models” (FSM) have been employed
in these campaigns, which require modeling of 105…106

machine turns. Such fully self-consistent 3D simulations
using large numbers of simulation particles and many turns
of synchrotron lattices are quite possible. Examples are
long-term studies of the Montague resonance with the
IMPACT code [4], or recent work on parametric Landau
damping using the SYNERGIA code [5].
Recently, coasting beam 2D studies in relatively short

systems (hundreds of cells rather than hundreds of thousands)
have beenused as basis for conjectures on coherent resonance
effects and suggestion of new types of synchrotron resonance
charts based on assumed coherent shifts, with partly con-
troversial conclusions (see Ref. [6], also Refs. [7,8]). The
need for long-term and self-consistent 3D studies to
adequately address these issues becomes obvious.
Historically, Smith [9] first pointed out in the early 1960s

that coherent effects on gradient error resonances should
result in higher intensity; followed by Sacherer [10] who
extended the concept of coherent shifts to nonlinear
resonances in a 1D Vlasov-Poisson study. In the 1990s,
the suggestion by Smith was partly confirmed in relatively
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short-term simulations by Machida [11]; a Vlasov model
presented coherent frequencies in 2D including anisotropy
[12], and a review article by Baartman [13] further
advocated for the coherent shift concept. The distinction
between coherent and incoherent second order resonance
effects was studied experimentally in HIMAC [14] and the
PSR [15].
In high intensity linear accelerators the theoretically

predicted structural space charge resonance effects [16]
got verified experimentally by detailed phase space diag-
nostics [17].
In circular accelerators space charge resonant effects are

known to exist; however, distinguishing them from often
dominating externally driven resonances and other machine
specific effects continues to be a challenging issue for
performance optimization of high intensity synchrotrons
[18–21]. Besides studies in operating linear accelerators
and synchrotrons, compact linear Paul trap devices are
also used to explore—experimentally and theoretically—
incoherent and coherent resonances in periodic focusing
and 2D [22].
For high intensity hadron circular accelerators—different

from linear devices—a main beam dynamics challenge is
self-consistent and long-term 3D modelling including
synchrotron oscillation, which has motivated the present
study. As an exemplary case we choose a simple FODO cell
for transverse periodic focusing and study primarily—with
exceptions in 2D—the space charge induced resonances
above 90°, the so-called 90° stopband of periodic focusing.
It combines a fourth order structure resonance with the
second order parametric resonance—the envelope insta-
bility—and thus allows studying the interplay of incoherent
and coherent resonance.
We proceed with a short theory overview in Sec. II,

followed by a detailed 2D simulation analysis of different
stopbands, Landau damping and incoherent core resonan-
ces in Sec. III. In Sec. IV we compare long-term 2D with
3D PIC simulation; Sec. V discusses the “frozen space
charge modeling” (FSM) in 2D and 3D, Sec. VI discusses
possible applications and Sec. VII presents conclusions and
a brief outlook.

II. THEORETICAL BACKGROUND

In circular accelerators it is common practice to de-
scribe the effect of space charge in terms of an incoherent
footprint on resonance charts, which depends on the
distribution function—besides chromatic and other
effects not in the focus here. Equally wide-spread is the
assumption that resonance analysis should be based on
avoiding major resonance lines—defined in the absence
of space charge—to intercept with this incoherent foot-
print. Such a picture cannot adequately account for self-
consistent and possibly existing coherent resonant response
beyond incoherent behavior. This Section reviews some

basic definitions and notions useful for the further
discussion.
In a periodic and linear focusing lattice—ignoring

bending—the single particle equation of motion in x
(and similar in y, z) along distance s can be written as

x00 þ KxðsÞx −
q

mc2β2γ3
Exðx; y; z; sÞ ¼ 0; ð1Þ

where the electric field from space charge is assumed
nonlinear. For a matched beam it modifies the focusing
and includes the space charge contribution from the whole
ensemble of particles—also due to coherent effects—
subject to self-consistent modeling. It is convenient to
describe the FODO focusing by kxy as single particle
transverse phase advance per FODO cell. It includes the
space charge shift due to the linear part of the electric field,
which reduces the zero-intensity phase advance k0xy, with a
dependence on amplitude due to nonlinear terms in the
electric field. As an example, and using the ring-specific
nomenclature of “tunes,” the SIS18 at GSI includesN ¼ 12
cells of periodic focusing, and a typical vertical k0y ¼ 96°
amounts to a tune of Q0y ≡ Nk0xy=360° ¼ 3.2. In the
remainder of our discussion the variation of focusing
strength per cell is described by phase advances, while
“tunes” is kept in general terms.
For simplicity, we restrict the present discussion also to

symmetric phase advances and emittances in x and y;
machine specific studies relating to a broader range of
parameters and lattice configurations are left to futureworks.
In the remainder of our discussion the usual “tunes” as

phase advances per turn are replaced by the phase advances
per cell, thus emphasizing the focus on the stopband around
90° as well as its higher order counterparts at 60° and 45°.

A. Incoherent and coherent resonance conditions

As transverse incoherent resonance condition—
refraining from coupling—can be written as

mkxy ¼ h360°; ð2Þ

which is used here to characterize space charge driven
incoherent structure resonances. Here m is the resonance
order and h > 1 describes a possible higher harmonic of the
driving lattice structure term (with h ¼ 1 in all following
simulation examples). This is equivalent to mQxy ¼ hN in
circular notation with N cells per turn. The term incoherent
is meant to describe the resonance response as single
particle behavior in the presence of a space charge force
from an assumed matched beam distribution. It is essential
to distinguish the spectral distribution kxy from k̄xy, the
space charge shifted value of phase advances of an rms-
equivalent KV beam. As usual, this shift is described in
rms-equivalence as Δk̄xy ≡ k0xy − k̄xy. In 3D bunches Δk̄xy
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refers to the longitudinal bunch center, i.e., half the
maximum phase advance shift for a Gaussian distribution.
This incoherent shift is also used to characterize the

strength of coherent effects. For the latter, the distribution
as a whole is assumed to deviate from its matched
configuration by adopting a coherent mode structure,
which induces a specific coherent frequency shift Fm.
The question of whether such coherent effects actually exist
for other than KV-distributions will be discussed further
below. Assuming their existence, a coherent structure
resonance condition can be formally written in the form:

mðk̄xy þ FmΔk̄xyÞ ¼
h
2
360°; ð3Þ

where we use the notation of Ref. [23], which is based on
evaluating dispersion relations from the Vlasov model of
Ref. [12] (an alternative definition replacing k̄xy by k̄0xy is
used in Ref. [24], and in analogous manner in Ref. [6]).
Note that the corresponding circular notation is again
obtained by replacing all k by Q and 360° by N. The
resonance order is given by m, which also describes the
order of a coherent mode pattern. The Fm characterize
the extra coherent shift depending on the mode, respec-
tively resonance order, and in general on the ratios of
focusing strengths and emittances. h is an integer as
before, but now h ¼ 2 stands for the fundamental lattice
harmonic, and higher even numbers for multiples thereof.
Of special interest in this study is the case h ¼ 1 (generally
all odd numbers). This coherent half-integer—here also
called 1:2—mode describes the parametric resonances to be
discussed further on.

B. Parametric resonances

These coherent parametric resonances—as a special case
of coherent resonances—have originally been introduced in
the 2D Vlasov perturbation analysis of KV distributions
in periodic focusing in Ref. [25]. They were called
“180-degree” modes describing their half-integer nature
and shown to exist from second to at least sixth order. The
more widely used terminology of parametric resonances
was later suggested in the 1D Vlasov analysis of a water-
bag-type sheet beam of Ref. [26]. Note that the equivalent
term “parametric instability” is also applied here. It is
equally used for the “Mathieu instability” of particles
propagated at 180° phase advance in periodic focusing
[27]—the single-particle analogue to the unstable coherent
modes considered here.
In both cases the exponential growth is enforced by the

periodic focusing force varying at twice the eigenfrequency
of the particle, respectively coherent mode. In the coherent
parametric case the transverse oscillation mode character-
ized by the order m in Eq. (3) determines the oscillation
frequency of the coherent part of the electrical field term in
Eq. (1), which in turn provides the resonance driving term.

The parametric nature of this mechanism materializes
through the periodical modulation of the focusing force,
which pumps energy into the beam eigenmode and results
in exponential growth—as opposed to nonparametric
resonances. The term “instability” actually appears justified
in view of the fact that initially the driving term of order m,
along with an odd h in Eq. (3), exists in the electric field
term only on the noise level. This is different from the
structure space charge resonances with only even h—for
example the m ¼ 4 case in Sec. III A—which require the
presence of a driving term in the initial (matched) beam. In
spite of this physical justification we continue with the
widely used terminology “parametric resonance” in the
remainder of this paper. Obviously this parametric picture
also applies to the m ¼ 2 envelope mode starting from
initial noise or slight mismatch of the h ¼ 1 periodicity;
here we keep the notation “envelope instability as com-
monly used in accelerator literature.
More recently, the 2D KV Vlasov basis was broadened

by generalizing the analysis of Refs. [12,25] to combine the
effects of periodic focusing with different focusing
strengths and emittances in the two transverse planes [28].
These and all other Vlasov models of higher than first

order (dipole) transverse modes have in common the
absence of incoherent tune spread—apparently due to
the mathematical difficulties to handle non-KV distribu-
tions with tune spreads. As a result, none of these analytical
models includes the possibility of Landau damping, and
computer simulation is needed. Nonetheless, results from
KV-based Vlasov perturbation analysis are a useful tool to
interpret simulation results with more realistic beam
models.

III. SHORT-TERM 2D SIMULATION RESULTS

To elucidate the interplay of incoherent and coherent
resonance effects we start from 2D and focus on different
stopbands of structure type resonances driven by space
charge itself [29]. Magnet driven resonances with space
charge are closely related, but left to future studies.

A. Simulation of stopbands

For the 2D simulations we use the TRACEWIN PIC code
[30] with 128.000 particles and Δk̄xy kept constant at 12°.
Waterbag distributions are compared with (uncorrelated)
Gaussian distributions, which are truncated at 3.4σ
throughout this study. Figure 1 shows the relative rms
emittance growth after 300 FODO cells versus k0xy for the
90° stopband. The sharp space charge shifted peak for an
initial waterbag distribution is due to the m ¼ 2 parametric
resonance—the envelope instability—according to Eq. (3)
(see inserts at cell 92 and 296), which coincides with the
peak of the same mode obtained by the KV envelope
equation. The initial Gaussian case shows a similar though
somewhat weaker coherent response. The softer shoulders
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of the stopband reflect in addition an m ¼ 4 incoherent
response according to Eq. (2). It is apparently driven by the
structure type pseudo-octupole term of the space charge
potential as confirmed by the four-fold symmetry in the
inserts: at cell 35 for k0xy ¼ 95.5° at the lower tune side;
and a less pronounced one at cell 11 for k0xy ¼ 102°
(equivalent to k̄xy ¼ 90°). Note that the absence of emit-
tance growth for k0xy < 91° is owed to the truncation of
Gaussian tails.
The 60° waterbag stopband in Fig. 2 gives a weaker

response for the nonlinear m ¼ 3 parametric resonance
with only 40% emittance growth (insert cell 225). For the
Gaussian this mode is entirely absent; instead, a tiny
(< 0.8%) rms emittance growth due to a sixth order m ¼ 6
incoherent resonance driven by the structure pseudodode-
capole of the space charge potential is found (insert cell 41).
The 45° stopband in Fig. 2 shows the m ¼ 4 parametric
resonance (insert cell 245), which reaches an rms emittance

growth of only 2% for the waterbag and no detectable
growth for the Gaussian case.

B. Landau damping of parametric resonances

All in all, in 2D we find parametric resonances of second,
third, and fourth order to exist in the waterbag distribution,
but only the second order mode in the Gaussian case. We
explain this by Landau damping using the tune spectra
extracted from self-consistent TRACEWIN simulations. In
Fig. 3 the working point k0xy ¼ 90° is chosen to obtain
resonance-free spectra f0ðkxyÞ representative for an initial
beam situation at arbitrary k0xy. Particle trajectories over 214

elements (1820 cells with 9 elements per cell) are evaluated
for this purpose. The coherent shifts following Eq. (3)
(divided by m) are determined here from the peaks of
response in the waterbag simulations in Figs. 1 and 2,
indicated in Fig. 3 by colored lines. They can be compared
with the corresponding Fm obtained analytically from the
2D KV-based Vlasov analysis. For symmetric beams
the highest frequency branches yield coherent factors
decreasing with increasing m: F2 ¼ 1

2
;F3 ¼ 1

4
;F4 ¼ 3

16

[23]. These theoretical values for the Fm agree excellently
with the waterbag simulations for m ¼ 2, but are about
30% lower for m ¼ 3, 4.
For Landau damping, an overlap in a region with

∂f0=∂kxy < 0 is a necessity, which enables energy transfer
from the coherent mode to the incoherent spectrum. For the
waterbag beam none of the parametric modes m ¼ 2, 3, 4
satisfies this condition. For the Gaussian the m ¼ 3, 4
modes well satisfy it, which explains their suppression in
Fig. 2. The m ¼ 2 envelope instability overlaps only
marginally—consistent with its instability. It can be
assumed that the trend of decreasing Fm for higher m
continues beyond m ¼ 4, which is supported by analytical
expressions for 1D sheet beams in Ref. [26], and Landau
damping should equally be expected.

FIG. 1. Rms emittance growth versus k0xy for the stopband
above 90° for 2D waterbag and Gaussian distributions after 300
FODO cells. Inserts showing x − x0 phase space at different k0xy
and cells.

FIG. 2. Rms emittance growth versus k0xy for the stopbands
above 60° and 45° for 2D waterbag and Gaussian distributions
after 300 FODO cells. Inserts showing x − x0 phase space at
different k0xy and cells.

FIG. 3. Spectral distributions f0ðkxyÞ (as unnormalized inten-
sity (per bin of kxy) for 2D waterbag (lhs) and Gaussian (rhs)
distributions generated for a fixed k0xy. Also shown are locations
of k̄x and of the m ¼ 2, 3, 4 coherent mode lines (i.e., mode
frequencies divided by m).
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C. Incoherent core resonances

It is helpful to divide the spectra in Fig. 3 into three
spectral tune regions: an inner core with ∂f0=∂kxy ≥ 0; it
transitions to an outer corewith ∂f0=∂kxy < 0 at k̄xy; and a
halo region, where f0ðkxyÞ ¼ 0. For the resonance
response it is essential in which tune region the resonance
condition (here 90°) falls. Applied to Fig. 1: for k0xy from
90…95° this occurs in the halo region; from 95…102° in
the outer core; and from 102…114° in the inner core region.
The main characteristic of the Eq. (2) incoherent reso-

nances is their local excitation in the tune spectrum. Their
existence even in the beam core is verified in Fig. 4 for a
Gaussian distributions and two different working points
k0xy. For k0xy ¼ 102° the 4kxy ¼ 360° resonance condition
(see also insert cell 11 in Fig. 1) coincides with k̄xy—the
transition from outer to inner core. The gap opening up in
the tune spectrum below 90° indicates a drift of particles
toward and across the resonance, which progresses self-
consistently due to the resulting density dilution in the inner
core. We find an overall minor rms emittance growth of
about only 10% over 3000 cells.
In the inner core region illustrated by the k0xy ¼ 108°

case in Fig. 4 the situation differs. We find again a clear
resonance imprint on the tune spectrum, but only negligible
rms emittance growth.

IV. LONG-TERM 2D AND 3D SIMULATION

The 2D results shown in Figs. 1 and 2 suggest that
parametric resonance only matters for the m ¼ 2 mode,
e.g., envelope instability in Eq. (3). This resonance occurs
in the 90° stopband, which is the reason for focusing on this
particular stopband in the following.
The code basis of SixTrackLib [31] and PyHEADTAIL

[32] is used to simulate the long-term behavior with full
3D PIC [33], which also allows 2D simulations for
comparison. The same tools are also used for the FSM
calculations in Sec. V. By employing GPU hardware for
high-performance computation, a high resolution of 4 mil-
lion macro-particles were tracked in only a few hours on a

3D grid of transversely 256 × 256 and longitudinally
64 cells, limiting grid heating effects to below permille level
over the simulations. In order to focus on transverse space
charge effects in a 3D bunch including realistic synchrotron
motion timescales, parameters are chosen such that longi-
tudinal space charge is reduced to a negligible level. The
bunch length is kept small compared to the rf period such as
to remain in the linear synchrotron motion regime.

A. 2D simulation results

Figure 5 shows the rms emittance evolution for working
points above the 90° resonance, with shaded areas relating
to the rms emittance value after the indicated number of
FODO cells. The purple area corresponds to the early short-
term behavior, which reproduces the same features as
observed in TRACEWIN (cf. the green curve in Fig. 1): a
peak around 96° is shaped by the coherent response of the
space charge shifted envelope instability, with shoulders of
incoherent resonance response on both sides.
The following evolution of the rms emittance until 10000

FODO cells reveals limited additional growth for the 2D
problem. In particular, the tune region directly above 90°
remains at weak emittance growth, where only the halo
particles—limited by the truncation of Gaussian tails—are
affected by the incoherent resonance. No particles are fed
into the resonance once the halo region is depleted. We note
that the long-term 2D behavior of coasting beams is thus
mainly characterized by the absence of synchrotron oscil-
lations, which will be contrasted by the next section on 3D
dynamics.

B. 3D simulation results

In elongated 3D bunched beams the additional synchro-
tron oscillation effect is significant [34,35]. It leads to a
periodical crossing of resonance islands through the orbits,
and trapping of particles occurs, if the motion of the island
is slow with regard to the period of revolution around the
fixed point. As shown in Ref. [35] this is more likely to
occur for smaller synchrotron amplitudes, whereas large
amplitudes may result in a sequence of small jumps of the

FIG. 4. Spectral tune distributions for 2D Gaussian distribu-
tions with incoherent 4th order resonances in the beam core.

FIG. 5. Rms emittance growth versus k0xy for self-consistent
2D PIC simulation and different total numbers of FODO cells.
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single-particle emittance (scattering). The relative impor-
tance of trapping or scattering depends on the strength of
the resonance and the synchrotron period.
Note that in this section we assume 3D uncorrelated

Gaussian distributions and use the same lattice and other
parameters as in 2D simulations. Figure 6 shows the rms
emittance evolution at the slowest synchrotron oscillation
in our study—a ratio of 1∶300 for betatron to synchrotron
period. The same contour levels of rms emittance evolution
are plotted like in Fig. 5. As opposed to the latter 2D case,
where only effects related to short-term dynamics are
observed (the upper edge of the violet 150-cells region
almost coincides with the black dotted 10000-cells con-
tour), the 3D case reveals significant long-term dynamics.
In the halo region 90…95°, the emittance growth due to

the fourth-order incoherent resonance is much enhanced
due to the synchrotron oscillation. We argue that due to the
relatively strong space charge resonance the synchrotron
period chosen in our simulation is already slow enough to
have a dominant part of particles in the trapping regime.
This is supported by the observation that a single synchro-
tron period (1200 cells) already shows a substantial
increase of the rms emittance in Fig. 6. A strong growth
is visible already after 150 FODO cells (1=8th synchrotron
period). This effect significantly continues with the number
of FODO cells, while the peak of the emittance growth
curve shifts more and more down toward k0xy ¼ 90°.
The transition from halo to the outer core lies in the

region around 90°þ Δk̄xy=2 ≈ 96°, where the peak of the
envelope instability is encountered in the early evolution
(cf. violet area). Eminent coherent motion in phase space as
well as in the coherent spectrum is identified, which
vanishes after a few 100 turns. At the same time, in all
of the outer core (similar to the halo) particles at large
transverse amplitudes are found to be driven into a four-
fold symmetric island structure: an imprint of the incoher-
ent m ¼ 4 resonance in accordance with 2D in Fig. 4. In
contrast to the halo region, rms emittance growth effec-
tively stops after about 150 turns and the dynamics is
largely independent of the synchrotron motion time scale.

The inner core region beyond the point k0xy ¼ 102° in
Fig. 6, where k̄xy crosses the 90° resonance from below, is
characterized by negligibly small emittance growth. We
noted this important result already in the 2D treatment:
although tunes are observed to accumulate around the
resonance at 90° in the self-consistent simulations, there is
little to no net effect on rms emittance growth.
To confirm the long-term behavior in the outer and inner

core region, selected simulation cases have been run for an
order of magnitude longer: the blue crosses in Fig. 6 mark
the rms emittance growth values after 100000 FODO cells.
Apart from a slightly increased rms emittance owing to the
inherent noise effects of the PIC method such as grid
heating, the blue crosses indeed match the black dots
(marking the evolution after 10000 FODO cells). Therefore
there is no evidence of additional significant resonance
dynamics impacting the rms emittance beyond what is
described above: the rms emittance growth has well
saturated within 10000 turns in both outer and inner core
k0xy regions.
The continuous emittance growth near the resonance

k0xy ¼ 90°, on the other hand, would translate to losing the
resonating particles in the halo region in the aperture of a
real machine. Exact emittance growth figures beyond the
structural behavior described in the 10000 turns here are
thus of less interest.

C. 3D asymptotic emittance growth

We use these observations to postulate an approximate
long-term asymptote for the emittance evolution in the halo
and outer core regions. It is based on the fact that the tune
spread of a space charge dominated beam is inversely
proportional to its rms emittance. Hence a comparison
between the initial and expected final tune spread allows an
estimate of the rms emittance growth factor. The final tune
spread results from a geometrical argument: for k̄xy < 90°
the self-consistent, progressive drift of particle tunes across
kres ¼ 90° results in a final “compression” of tune space to
the available width above resonance, k0xy − kres. The
corresponding initial spread is k0xy − k̄, which allows to
describe the relative growth by the asymptotic formula

�
Δϵ
ϵ

�
final

≈
kres − k̄xy
k0xy − kres

¼ Δk̄xy
k0xy − kres

− 1: ð4Þ

It is applicable as long as kres > k̄xy, or k0xy < kres þ Δk̄xy;
and no growth in the inner core region with kres < k̄xy
consistent with Sec. IV B.
A finite stop-band width would shift the effective kres to

slightly above 90°. This margin can be used for an optimum
fit to the 10000 cells simulation data of Fig. 6 in the range
k0xy ≥ 95°, where saturation is approximately reached.
With an effective kres ¼ 91.2° the resulting hyperbolic

FIG. 6. Rms emittance growth versus k0xy for self-consistent
3D PIC simulation and different total numbers of FODO cells.
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asymptote is represented by the dashed gray line in Fig. 6
with a remarkably good match.
Note that the absence of further parameters in Eq. (4)

suggests a general applicability to long-term resonance
behavior dominated by large space charge tune spreads,
also extending to externally driven resonances and beyond
the 90° stopband, which warrants further study. Obviously,
in a realistic machine the mechanical aperture would turn
the continuous emittance growth for k0xy → 90° into finite
beam loss.
A striking insight from the present long-term study is the

observed absence of eminent isolated emittance growth
peaks relating to coherent resonance conditions, in par-
ticular for time scales as relevant for synchrotrons (i.e.,
beyond 1000 FODO cells).

D. Halo vs core dynamics

The difference between the slow incoherent regime in the
halo k0xy region and the fast coherent regime in the outer
core k0xy region can be illustrated using incoherent tune
footprints. They are acquired via harmonic analysis over
512 FODO cells.
Figure 7(a) shows the halo case for k0xy ¼ 92°: the final

tune footprint at 10000 FODO cells is plotted in black. The
corresponding black histogram projections indicate that
half of the particles have accumulated above the kres ¼ 90°
condition. The incoherent resonance causes a slow drift of
particles across the resonant tune and the overall tune
spread shrinks. The slow pace becomes apparent when
comparing to earlier times in the simulation: the violet
histogram corresponds to the situation after 150 FODO
cells (like in Fig. 6) and shows more than 85% of the
particles situated below 90°. Some particles are resonating

at 90° indicated by the growing peak there. The turquoise
histogram corresponds to 3000 FODO cells where a third of
the particles have moved above 90°.
Figure 7(b) depicts the outer core case at k0xy ¼ 96°. The

black tune footprint at 10000 FODO cells indicates that
most particles have been reallocated to above the reso-
nance, a mere 6% are left below. In contrast to the previous
halo scenario, the now present envelope instability has
carried more than 80% of the particles to above the
resonance already around 150 FODO cells, as can be seen
in the violet histogram. This behavior is illustrated in the
simulation animation published as Ref. [36]. The coherent
resonance mechanism does not distinguish transverse
amplitudes, particles participate in the pumped mode across
all transverse single-particle emittances simultaneously.
Correspondingly, both the rms emittance and the individual
particle emittances grow at the same time. After the
parametric resonance has faded, the remaining particles
at the lower end of the tune footprint (at small betatron
amplitudes in the center of the bunch) are slowly trans-
ported above 90° via the incoherent resonance mechanism.
The two simulation cases in the incoherent halo region as

well as the outer core region with both coherent and
incoherent resonance dynamics agree on the asymptotic
state: the tune spread shrinks—either at slow or fast pace,
respectively—until its lower end is located above the kres ¼
90° condition. This observation illustrates the asymptotic
behavior discussed in the previous section.

V. FROZEN SPACE CHARGE SIMULATION

In the last part we compare the previous self-consistent
PIC computations to FSM, where the initial Gaussian beam
space charge force is kept unchanged and macroparticles

(a) (b)

FIG. 7. Tune footprints in halo and outer core region for 3D PIC simulation.
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are merely treated as test particles not contributing to the
space charge force dynamically, for otherwise identical
parameters as for PIC in Sec. IV. The FSM by definition
generates only incoherent response in all regions without
self-consistent feedback. It thus allows us to single out
incoherent effects, where the full PIC simulation includes
coherent effects as well as the self-consistent change of the
distribution.

A. 2D FSM

Figure 8 presents FSM results for coasting beam con-
ditions. The black dots indicate the emittance growth from
the frozen fieldmap treatment in FSM after 10000 FODO
cells, which is saturated as there is almost no further
emittance growth observed across the final 3000 cells. This
result is to be compared with the 2D PIC simulations from
Fig. 5, where the final contour after 10000 FODO cells has
been added here as a dashed line for reference.
In contrast to the FSM simulation, the self-consistent

PIC treatment delivers strongly enhanced emittance growth
in a tune interval between 94° ≤ k0xy ≤ 105°, where the
m ¼ 2 envelope instability grows significantly. On the
other hand, PIC and FSM predicted emittance growth
matches very well on the left shoulder close to 90°, where
the halo particles increase in amplitude only due to the
incoherent fourth-order resonance driven by the octupole
component of the space charge field from the resonance-
free core.

B. 3D FSM

Figure 9 presents FSM results to be compared with the
PIC simulations in Fig. 6. The PIC simulated 10000 FODO
cells curve is included in dashed for reference.
In the halo region, we find reduced rms emittance growth

due to the missing self-consistent tune drift toward the
resonance in FSM. Over still longer times the dominating
periodic resonance crossing effect through synchrotron
motion appears to provide FSM results closer to the PIC
simulations.

In the outer core region, the absence of coherent effects
in the FSM leads to initially slower developing rms
emittance growth. Final saturation, instead, occurs at a
non-negligibly higher level due to the non-self-consistent
nature of the space charge force in FSM. For synchrotron
design applications, we conclude that the FSM tends to
underestimate the area of working points with low-level
emittance growth compared to PIC.

VI. DISCUSSION

The results of long-term simulations presented here have
a number of implications for the choice of working points
and intensity limits. They also shed light on the confidence
level of FSM simulations, which are often the dominant
simulation tool for evaluating synchrotron beam dynamics
experiments.
The findings of Secs. IVA and IV B suggest as criterion

for negligible rms emittance growth that it is sufficient to
keep the rms-equivalent KV tune above the resonance
condition—here 90°—instead of the more restrictive “con-
ventional” single particle assumption requiring the com-
plete tune footprint above the resonance. This can be
applied, for example, to the SIS18 at GSI with 12 lattice
periods and k0y above 90°, hence Q0y above 3. From the
point of view of the here discussed space charge driven
second and fourth order structure resonances, the choice of
a vertical Q0y ¼ 3.25 would still allow a maximum
incoherent space charge tune spread of −0.5 in the center
of a Gaussian beam—twice as large as assumed by the
single particle arguments. This would similarly apply to the
PS Booster at CERN with its 16 lattice periods.
The 2D comparison between FSM and PIC space charge

modelling in Sec. VA demonstrates that FSM underesti-
mates emittance growth in the outer core region by a large
factor, and by a smaller factor in the inner core region. The
large factor is due to the existence of the envelope
instability in the 90° stopband.
In 3D though, a long lasting emittance growth effect by

this unstable mode is inhibited by synchrotron oscillation,

FIG. 8. Rms emittance growth versus k0xy for different total
numbers of FODO cells and 2D FSM computation, with the 2D
PIC result in dashed for comparison.

FIG. 9. Rms emittance growth versus k0xy for different total
numbers of FODO cells and 3D FSM computation, with the 3D
PIC result in dashed for comparison.
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which itself is also modeled by FSM as shown in Sec. V B.
This qualifies the approximate 3D FSM treatment as a
computationally effective tool for conservative identifica-
tion of emittance conserving working points. On the one
hand, the predicted finite emittance growth for resonance
affected tune regions with FSM deviates quantitatively
from PIC results: according to Fig. 9 FSM underestimates
growth in the halo region, but overestimates it in the inner
core region (at the very right) by more than a factor two. On
the other hand, resonance-free tune regions computed via
the fast FSM also remain resonance-free in the PIC case,
which qualifies 3D FSM as conservative in all regions.

VII. CONCLUDING REMARKS

In summary, incoherent effects are found to play a major
role in the long-term dynamics of bunches—not only in the
beam halo but also in the beam core. Sufficient overlap with
the incoherent spectrum in 2D is found to account for
Landau damping of the m > 2 parametric resonances. In
3D, synchrotron oscillation is expected to even further
enhance Landau damping—in analogy to studies of head-
tail modes [37–39]. On the other hand, very short synchro-
tron periods comparable with betatron periods—as typical
for near-spherical linac bunches—suppress the resonant
mechanism of Landau damping [24,29].
In the halo region, in our example at tunes slightly above

90°, synchrotron motion strongly enhances rms emittance
growth due to incoherent resonance. In the adjacent outer
core region, we stress the importance of the encountered
self-consistent interplay between coherent and incoherent
effects. Incoherent resonances emerge with particle tunes
accumulating at the incoherent resonance condition (in our
example m ¼ 4), and corresponding resonance islands
form in phase space.
Our comparison between the 3D self-consistent and

frozen treatments demonstrates that the early time evolution
of rms emittance growth is largely determined by distri-
bution change and coherent effects. Long-term saturation of
rms emittance growth in 3D, however, is qualitatively
determined by the compression of the entire incoherent
tune footprint into the interval between bare tune and
incoherent resonance condition as described by our asymp-
totic formula.
Thus, over times of long-term bunch storage, we find the

overall rms emittance growth response curves in 3D to be
smooth. Comparison of Fig. 5 with Fig. 6 confirms that
even the strong envelope instability shows no coherent
imprint after few thousand cells of 3D simulation (e.g., few
synchrotron periods). This suggests that introducing para-
metric resonance lines to the synchrotron resonance charts
introduced in Ref. [6] is relevant only for coasting beams in
case of the m ¼ 2 envelope instability; furthermore for
m > 2 parametric resonances and such initial distributions,
which are truncated to the extent that Landau damping does
not work. Instead, we find the criterion that the k0xy region

with non-negligible emittance growth spans from the
resonant 90° to 90°þ Δk̄xy, with final rms emittances
determined by the tune footprint compression effect.
This study is expected to have an impact on future

studies at various accelerators with the goal to extend and
test the applicability of our conclusions to (a) higher-order
resonances driven by space charge and (b) externally driven
resonances in conjunction with space charge.
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