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Operation of particle accelerators and correction of unavoidable magnet or alignment errors critically
depend on the assessment of both global and local observables such as tune or resonance driving terms.
With most of the observables being a sum of different error sources, careful disentangling is necessary in
order to establish an optimal correction and allow for smooth operation. In the LHC, linear coupling has
been proven to have a major impact on the beam dynamics and is taken to be one of the main sources of
uncertainty when establishing corrections. In this paper an approach to evaluate the change of the
Hamiltonian terms with linear coupling is presented. The validity of derived equations is demonstrated on a
number of observables and benchmarked against simulations.
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I. INTRODUCTION

Beam-based corrections of linear optics and nonlinear
dynamics in current and future accelerator projects is of
paramount importance to achieve their increasingly ambi-
tious design goals. The evaluation of different error sources
such as misalignment or magnetic field errors is based on
measurements of either global quantities like the tune,
chromaticity, and detuning terms or on local deviation from
model values such as β-beating or resonance driving terms
(RDT). In general, in the early commissioning phase of
an accelerator focus is put on linear optics and coupling
correction, both being major contributing factors in the
performance of both hadron and lepton accelerators.
Correction of linear coupling is usually based on either
minimization of the global impact through reduction of the
minimum possible tune separation or based on linear
coupling RDTs or both.
The global effect of linear coupling is quantified by the

closest tune approach ΔQmin, that is, the minimum achiev-
able distance between the fractional parts of the tunes [1].
More recently, this concept has been extended to include
the effects of octupoles which lead to an amplitude
dependence of the ΔQmin [2,3]. To identify sources of

linear coupling, the coupling RDTs f1001 and f1010 can be
inferred from turn-by-turn data and serve as a basis for a
local coupling correction. The relation between the cou-
pling RDTs and ΔQmin can be found in [4]. While
significant efforts have been made in recent years to
improve measurement and correction techniques for linear
(and nonlinear) coupling [5], the residual coupling left after
corrections still retains an important role when describing
the dynamics in the accelerator.
For example, in the LHC in late 2018, it was observed

that while global coupling was well corrected, an erroneous
local coupling bump in one interaction region had a
significant impact on the beam size and thus on the
luminosity [6,7]. Measurements of the β-function using
the K-Modulation method did however not show any
change in the tune shift generated from modulating the
quadrupole gradient. Currently, no analytical derivation is
available which may explain this insensitivity. A change of
tune is not only used during the K-Modulation method, but
also to determine nonlinear magnetic field errors in the
triplet quadrupoles via feed down to a quadrupole gradient
when changing the orbit in the quadrupoles [8,9].
Linear coupling is also assumed to be the single biggest

source of uncertainty when trying to model the nonlinear
behavior in the LHC. In [10], it was shown how nonlinear
observables like detuning with amplitude are affected by
linear coupling. This effect has been qualitatively demon-
strated in [11] in simulations, where the impact of linear
coupling on amplitude detuning is highlighted and how it
may affect coherent instabilities in the LHC. Measurements
of amplitude detuning are also used to establish corrections
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of nonlinear field errors in the triplet quadrupoles in the
LHC [12]. Suboptimal correction of such may prove
detrimental to beam lifetime and overall performance of
the collider. To establish better corrections, the ability to
determine the contribution of the local coupling to the
measured amplitude detuning thus may prove quite helpful.
It was further shown in [10] that also measured RDTs

change with linear coupling. In [13] it is shown how a skew
sextupole resonance can be driven in the absence of any
skew sextupole sources and away from the resonant
condition due to interplay between the sextupoles and
linear coupling. However, it is not apparent in this case how
coupling would affect for example sextupole RDTs in the
absence of skew sextupoles.
The aim of this paper is to quantify the effect that local

linear coupling has on these global and local observables.
Section II gives a brief introduction into the normal form
formalism, concluding with a description of the particle
motion under the influence of local coupling, as was already
presented in [14]. In Sec. III, the coupled eigenvalues then
allow us to express the effect on global and local observables
under the influence of local coupling. This is then used in
Sec. III A to show the impact on the change of tune during
K-Modulation. The change of amplitude detuning generated
by a single octupole in the presence of local coupling is
treated in Sec. III C. Section III D then showcases the impact
of local coupling on the RDT generated by a given multipole
using as example sextupole RDTs.

II. NORMAL FORM AND RESONANCE DRIVING
TERM FORMALISM

In circular accelerators, the one-turn motion of a single
particle with the 4D coordinates X ¼ ðx; px; y; pyÞ is
described by

XsþC ¼ MsXs; ð1Þ

where Ms is the (sympletic) map of the accelerator lattice.
For the sake of brevity, the dependence of the coordinates
and following quantities on the longitudinal position s is
omitted in the following. For a lattice consisting of W
multipole elements the one-turn map is

M ¼ MWþ1e
∶HW;nW

∶MW…e∶H2;n2
∶M2e

∶H1;n1
∶M1; ð2Þ

where Mw is the linear transfer map of a given element w.
Hw;n is the Hamiltonian for a magnetic multipole as
given by

Hw;n ¼
1

n!
ℜ½ðKw;n þ iKS

w;nÞðxw þ iywÞn�; ð3Þ

with e∶Hw;n∶ being the corresponding Lie-operator and Kw;n

andKS
w;n being the integrated magnetic strength of a normal

and skew multipole, respectively. Here n denotes the order

of the multipole of the element wwith n ¼ 2 corresponding
to a quadrupole. The transverse coordinates at the element
w are indicated with xw and yw.
In the following, the resonance basis

h ¼ ðhx;þ; hx;−; hy;þ; hy;−Þ ð4Þ

is used with the definition

hq;� ¼ q̂� ip̂q ¼
ffiffiffiffiffiffiffi
2Jq

q
e�iψq ; q ∈ fx; yg; ð5Þ

where q̂ and p̂q are the normalized Courant-Snyder
coordinates, defined as

�
q̂

p̂q

�
¼

0
B@

1ffiffiffiffi
βq

p 0

αqffiffiffiffi
βq

p ffiffiffiffiffi
βq

p
1
CA
�

q

pq

�
; ð6Þ

and Jq and ψq the action and angle coordinates, respec-
tively. The subscript w for the coordinates, introduced in
Eq. (3), has been omitted here and in the following as the
information on the element in question is implicitly
specified via the s-dependence of the β-functions.
Following the derivations in [15], the map M from

Eq. (2) can be rewritten as

M ¼ e∶H̃1;n1
∶e∶H̃2;n2

∶…e∶H̃W;nW
∶R; ð7Þ

where R is a rotation matrix. The Hamiltonian H̃w;n of a
given element w of order n expressed in the resonance basis
h is defined by

H̃w;n ¼
Xn¼jþkþlþm

jklm

hw;jklmei½ðj−kÞΔϕw;xþðl−mÞΔϕw;y�

× hjx;þhkx;−hly;þhmy;−; ð8Þ

where Δϕw;x and Δϕw;y are the phase advances from the
element w to an observation point in the horizontal and
vertical plane, respectively. The coefficient hw;jklm is
expressed by

hw;jklm ¼ ℜðilþm½Kw;n þ iKS
w;n�Þ

j!k!l!m!2n
ðβw;xÞ

jþk
2 ðβw;yÞlþm

2 : ð9Þ

Using the Baker-Campbell-Hausdorff formula

eAeB ¼ eAþBþ1
2
½A;B�þ���; ð10Þ

Eq. (7) can be expressed as
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e∶H̃1;n1
∶e∶H̃2;n2

∶…e∶H̃W;nW
∶

≈ e
P

W
w
H̃w;nwþ1

2

P
W
w

P
w−1
v

½H̃w;nw ;H̃v;nv �þ���; ð11Þ

where � � � indicates terms of order 3 and higher. In the
normal form approach, the basis h is then transformed into
the new basis ζ following [16]

ζ ¼ e−∶F∶h; ð12Þ

using a polynomial generating function

F ¼
X
jklm

fjklmζ
j
x;þζkx;−ζly;þζmy;−; ð13Þ

where ζq;� ¼ ffiffiffiffiffiffiffi
2Iq

p
e�iϕq and fjklm denotes the resonance

driving term.
It can be shown that the RDT fjklm in first order is

fjklm ¼
P

whw;jklme
i½ðj−kÞΔϕw;xþðl−mÞΔϕw;y�

1 − e2πi½ðj−kÞQxþðl−mÞQy� ; ð14Þ

where hw;jklm from Eq. (9) is used, which is obtained when
approximating Eq. (11) as

e∶H̃1;n1
∶e∶H̃2;n2

∶…e∶H̃W;nW
∶ ≈ e

P
W
w
H̃w;nw : ð15Þ

The expansion to second order can be found in [13,15].

A. Particle motion under the influence of coupling

Following Eq. (12), the transformation between normal
form coordinates and Courant-Snyder coordinates reads

hq;� ¼ q̂� ip̂q ¼
ffiffiffiffiffiffiffi
2Jq

q
e�iψq

¼ e∶F∶ζq;� ≈ ζq;� þ ½F; ζq;�� þ
1

2!
½F; ½F; ζq;��� þ � � � :

ð16Þ

In [14], it was shown that for the case of taking into account
only linear perturbations such as either β-beating or linear
coupling, a closed form of this transformation exists. In the
case of linear coupling, the generating function F reads

F ¼ f1001ζx;þζy;− þ f1010ζx;þζy;þ
þ f�1001ζx;−ζy;þ þ f�1010ζx;−ζy;−; ð17Þ

where the RDT f1001 drives the difference resonance
ðQx −QyÞ ¼ p and f1010 corresponds to the sum reso-
nance ðQx þQyÞ ¼ p. Notably, this generating function
only accounts for the geometric distortion due to coupling
resonances and not for any change due to terms like f2000
which are excited by second and higher order interplay

between skew quadrupoles. Using Eq. (16) together with
the generating function F from Eq. (17) and

½ζuq;þ; ζq;−� ¼ −2iuζu−1q;þ ; ð18Þ

it is shown in [14] that the components of the resonance
basis h can be expressed as

hx;− ¼ ζx;− cosh 2P − i
sinh 2P

P
ðf1001ζy;− þ f1010ζy;þÞ

hx;þ ¼ ζx;þ cosh 2P þ i
sinh 2P

P
ðf�1010ζy;− þ f�1001ζy;þÞ

hy;− ¼ ζy;− cosh 2P − i
sinh 2P

P
ðf�1001ζx;− þ f1010ζx;þÞ

hy;þ ¼ ζy;þ cosh 2P þ i
sinh 2P

P
ðf�1010ζx;− þ f1001ζx;þÞ

ð19Þ

where 2P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2f1010j2 − j2f1001j2

p
. The particle coordi-

nate q is given by

q ¼
ffiffiffiffiffi
βq

p
2

ðhq;þ þ hq;−Þ: ð20Þ

Using Eq. (19) and Eq. (20) the particles coordinates now
read

x ¼
ffiffiffiffiffi
βx

p
2

½ζx;þC þ ζx;−C þ iζy;þF̂�
yx − iζy;−F̂yx�;

y ¼
ffiffiffiffiffi
βy

p
2

½ζy;þC þ ζy;−C þ iζx;þF̂�
xy − iζx;−F̂xy�; ð21Þ

where the superscript � denotes the complex conjugate and

C ¼ cosh 2P; ð22Þ

F̂yx ¼
sinh 2P

P
ðf�1001 − f�1010Þ; ð23Þ

F̂xy ¼
sinh 2P

P
ðf1001 − f�1010Þ ð24Þ

have been introduced. Equations (23) and (24) represent the
combined coupling RDTs presented in [13] scaled by a
factor sinh 2PP . In case of jf1001j ¼ jf1010j, C and sinh 2P

P reduce
to 1 and 2, respectively. It should be noted that in the
following section for the benchmarking of the derivations,
the coupling RDTs f1001 and f1010 have been evaluated by
expressing them as functions of the coupling matrix, as is
shown in [17]. This way, all orders of the coupling RDTs
are also taken into account and due to the closed form of
the transformation (16), by using the generating function
from Eq. (17), also the transformation is accurate to
arbitrary order.
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III. CHANGE OF OBSERVABLES
DUE TO COUPLING

In [15], contributions to tune and amplitude detuning up
to second order have been derived. Similarly so, in [13],
resonance driving term coefficients up to second order
are presented. In both cases, it is apparent that the first
order contributions from e.g., octupole to amplitude
detuning is not modified in the presence of coupling and
changes stem from other contributions such as skew
octupoles in conjunction with coupling. Yet simulation
work presented in [11] clearly shows that amplitude
detuning generated by octupoles is affected in the presence
of local coupling, also in the absence of other skew
elements.
These findings indicate that the observed effect could

stem from third order contributions or higher. As higher
order expansion become more and more cumbersome, here
an alternative approach is presented, which is specifically
applicable to linear coupling. Using the coupled coordi-
nates from Eq. (21), the Hamiltonian from Eq. (3) can be
expanded leading to

H̃c
w;n¼

1

n!
1

2

�
ðKw;nþiKS

w;nÞ

×

�
ζx;þ

� ffiffiffiffiffi
βx

p
2

C−
ffiffiffiffiffi
βy

p
2

F̂�
xy

�
þζx;−

� ffiffiffiffiffi
βx

p
2

Cþ
ffiffiffiffiffi
βy

p
2

F̂xy

�

þiζy;þ

� ffiffiffiffiffi
βy

p
2

Cþ
ffiffiffiffiffi
βx

p
2

F̂�
yx

�
þiζy;−

� ffiffiffiffiffi
βy

p
2

C−
ffiffiffiffiffi
βx

p
2

F̂yx

��
n

þðKw;n−iKS
w;nÞ

×

�
ζx;−

� ffiffiffiffiffi
βx

p
2

C−
ffiffiffiffiffi
βy

p
2

F̂xy

�
þζx;þ

� ffiffiffiffiffi
βx

p
2

Cþ
ffiffiffiffiffi
βy

p
2

F̂�
xy

�

−iζy;−

� ffiffiffiffiffi
βy

p
2

Cþ
ffiffiffiffiffi
βx

p
2

F̂yx

�
−iζy;þ

� ffiffiffiffiffi
βy

p
2

C−
ffiffiffiffiffi
βx

p
2

F̂�
yx

��
n
�
;

ð25Þ

whereℜðzÞ ¼ zþz�
2

and ζ�q;� ¼ ζq;∓ has been used. Here the
superscript c has been introduced as to distinguish from
the Hamiltonian using the uncoupled basis. Following the
multinomial theorem

ðx1 þ x2 þ � � � þ xmÞn

¼
X

k1þk2þ���km¼n

n!
k1!k2!…km!

Ym
t¼1

xktt ð26Þ

the Hamiltonian is rewritten as

H̃c
w;n¼

Xn¼jþkþlþm

jklm

�
ilþmðKw;nþ iKS

w;nÞ
j!k!l!m!2nþ1

ζjx;þζkx;−ζly;þζmy;−

×
	 ffiffiffiffiffi

βx
p

C−
ffiffiffiffiffi
βy

q
F̂�
xy



j
	 ffiffiffiffiffi

βx
p

Cþ
ffiffiffiffiffi
βy

q
F̂xy



k

×
	 ffiffiffiffiffi

βy
q

Cþ
ffiffiffiffiffi
βx

p
F̂�
yx



l
	 ffiffiffiffiffi

βy
q

C−
ffiffiffiffiffi
βx

p
F̂yx



m
�

þ
�ð−iÞlþmðKw;n− iKS

w;nÞ
j!k!l!m!2nþ1

ζjx;þζkx;−ζly;þζmy;−

×
	 ffiffiffiffiffi

βx
p

Cþ
ffiffiffiffiffi
βy

q
F̂�
xy



j
	 ffiffiffiffiffi

βx
p

C−
ffiffiffiffiffi
βy

q
F̂xy



k

×
	 ffiffiffiffiffi

βy
q

C−
ffiffiffiffiffi
βx

p
F̂�
yx



l
	 ffiffiffiffiffi

βy
q

Cþ
ffiffiffiffiffi
βx

p
F̂yx



m
�
: ð27Þ

It follows that the coefficient hcw;jklm from Eq. (9) in the
presence of coupling can then be rewritten as

hcw;jklm¼
ilþm½Kw;nþiKS

w;n�
j!k!l!m!2nþ1

×
h	 ffiffiffiffiffi

βx
p

C−
ffiffiffiffiffi
βy

q
F̂�
xy



j
	 ffiffiffiffiffi

βx
p

Cþ
ffiffiffiffiffi
βy

q
F̂xy



k

×
	 ffiffiffiffiffi

βy
q

Cþ
ffiffiffiffiffi
βx

p
F̂�
yx



l
	 ffiffiffiffiffi

βy
q

C−
ffiffiffiffiffi
βx

p
F̂yx



m
i

þð−iÞlþm½Kw;n−iKS
w;n�

j!k!l!m!2nþ1

×
h	 ffiffiffiffiffi

βx
p

Cþ
ffiffiffiffiffi
βy

q
F̂�
xy



j
	 ffiffiffiffiffi

βx
p

C−
ffiffiffiffiffi
βy

q
F̂xy



k

×
	 ffiffiffiffiffi

βy
q

C−
ffiffiffiffiffi
βx

p
F̂�
yx



l
	 ffiffiffiffiffi

βy
q

Cþ
ffiffiffiffiffi
βx

p
F̂yx



m
i

ð28Þ

and similar so to obtain fcjklm following Eq. (14). In the
following, only the first order in strength of the natural
source will be used in the evaluation of the Hamiltonian,
however, a higher-order expansion analogously to [13] is
possible as well. It should also be mentioned that by
including a dispersion term Dqδp in the coupled coordi-
nates from Eq. (21), also the behavior of the off-momentum
Hamiltonian can be studied.

A. Impact of local coupling on K-Modulation

As a first application of the previous derivation, the
impact of local coupling on the tune change from a change
in quadrupole is examined. This change of tune is for
example used during K-Modulation to determine the
average β-function in quadrupoles, but has also been used
in the LHC to determine nonlinear field errors in the triplet
quadrupoles by changing the orbit and observing the tune
change due to feed down. In general, the tune shift for a
given Hamiltonian H̃ is
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ΔQq ¼
1

2π

∂hH̃i
∂Jq ð29Þ

where hH̃i is the Hamiltonian average over the phase
variables. As such, only phase-independent terms in the
Hamiltonian will contribute. In the case of a horizontal
(vertical) tune change for a quadrupole, this term corre-
sponds to h1100 (h0011).
Taking the Hamilton from Eq. (27) for the case of a thin

quadrupole (n ¼ 2) together with Eq. (29), the tune shift in
the presence of local coupling is then

ΔQc
x ¼

ΔK2

4π
½βxC2 − βyjF̂xyj2�;

ΔQc
y ¼ −

ΔK2

4π
½βyC2 − βxjF̂yxj2�; ð30Þ

where the subscript w has been omitted as here the case
for only one element is examined. From this equation, it is
apparent that any local coupling will tend to result in a
decrease of the induced tune change.
We note that in the case of no local coupling (f1001 ¼

f1010 ¼ 0), these formulas reduce to the case of a thin
quadrupole excitation

ΔQapprox
x;y ¼ �ΔK2βx;y

4π
; ð31Þ

which is an approximation of

ΔQexact
x;y ¼ −Qx;y þ

1

2π
arccos

�
cos ð2πQx;yÞ

∓ βx;yΔK2

2
sin ð2πQx;yÞ

�
; ð32Þ

the approximation being valid in case of a small excitation
ΔK2 and sufficiently far from the integer and half-integer
resonance [18]. To overcome these limitations, the first part
of Eq. (30) can be replaced by Eq. (32) yielding

ΔQc
x ¼ ΔQexact

x C2 −
ΔK2

4π
βyjF̂xyj2

ΔQc
y ¼ ΔQexact

y C2 þ ΔK2

4π
βxjF̂yxj2: ð33Þ

We note that both Eq. (30) and (33) still only include the
first-order contribution of ΔK2 to tune shift, which is only
exact in case of a thin quadrupole. In [19], a derivation is
presented including the second-order contribution in ΔK2

in case of a thick quadrupole.
To check the validity of the derived formulas and impact

of higher-order contributions, MAD-X simulations were
conducted using the LHC lattice. To mitigate interference
from effects such as changes in the β-function through thick
elements, a lattice composed of thin (zero length) elements
was used.

For the conducted studies the inner triplet of the exper-
imental insertion in LHC Point 1 was used. The location was
chosen as in the LHC the β-function at the interaction point
(β�) is usually inferred from K-Modulation, a method which
allows to calculate the average β-function in a quadrupole by
measuring the tune change ΔQ under a modulation of the
quadrupole gradient ΔK2.
A change of this ΔQ due to local linear coupling at the

location of the quadruple may thus affect the accuracy with
which β� can be reconstructed.
It is also here where due to the large β-function, an

erroneous rotation of a triplet quadrupole around the
longitudinal axis may give rise to a considerable skew
quadrupole component. A closed coupling bump is created
by using the skew quadrupole correctors located between
the second and third quadrupole of the final focus triplet left
and right of the interaction point (IP), as illustrated
in Fig. 1.
Due to the phase difference between the left and right

skew quadrupole corrector being close to 180°, and if
powered with opposite strength, the perturbation of the
first skew quadrupole is canceled by the second one and
ΔQmin is marginally affected. After application of the skew
quadrupole correctors, the tunes were rematched to the
original values ofQx ¼ 0.28 andQy ¼ 0.31 to compensate
for the small second-order contribution of the correctors to
tune. In this configuration however, the two coupling terms
cannot be controlled independently and jf1010j ¼ jf1001j.
The gradient of one slice of the first quadrupole right of

the interaction point was changed to induce a tune change
in the uncoupled case of ≈0.01 in the plane with the larger
β-function. The sign of the gradient change was chosen
such that the tunes drift apart to mitigate any interference of
a possible closest tune approach. A comparison between
both formulas to results from MAD-X simulations is
presented in Fig. 2. We note that Eq. (30) presents an
offset even in case of no coupling. This offset is attributed
to the use of the approximation Eq. (31) in Eq. (30).
Equation (33), which does not rely on this approximation,
does not present this offset anymore and shows good
agreement for the probed levels of coupling. In Fig. 3
the reduction in percent is presented for different ratios
of βx

βy
. Notably, for an amplitude of jf1010j around 0.15,

the change of tune is below 0.1% in both planes with
respect to the uncoupled case.

B. Effect on beam size

In late 2018, it was observed that a strong local coupling
in the interaction point 2 in the LHC, introduced by an
erroneous swap of two corrector settings, lead to a
reduction of the luminosity of about a factor 2 [6,7]. In
the previous section, it was shown that even for a sizable
local coupling, no significant change in ΔQ is observed.
As such, K-Modulation measurements are only weakly
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affected by the presence of local coupling, which has also
been demonstrated in a dedicated experiment in the
LHC [20]. On the other hand, tracking studies presented
in [21] show a drastic increase of the beam size at the IP if
the local coupling bump is introduced, able to explain most
of observed luminosity loss.
In the following, it will be shown how for the same setup

as used for the tune change a significant increase in beam
size can be calculated. The derivations presented here

follow those in [22]. Assuming a centered Gaussian beam
distribution, the second order moment reads

hx2i ¼ σ2x

¼ 1

4π2ϵxϵy

Z
∞

0

Z
∞

0

Z
2π

0

Z
2π

0

x2e−
Jx
ϵx
−Jy
ϵydJxdJydψxdψy

ð34Þ

where ϵx;y is the uncoupled RMS emittance in the hori-
zontal and vertical plane, respectively. Using Eq. (21) one
then obtains

σcx ¼
ffiffiffiffiffiffiffiffi
hx2i

q
¼ ½βxϵxC2 þ βxϵyjF̂yxj2�12: ð35Þ

Note that here the emittance exchange effect on the RMS
emittances, described in [14] using the RDT formalism, is
not taken into account. In a similar fashion, the beam size in
the vertical plane reads

σcy ¼
ffiffiffiffiffiffiffiffi
hy2i

q
¼ ½βyϵyC2 þ βyϵxjF̂xyj2�12: ð36Þ

FIG. 2. Comparison of tune change from quadrupole modula-
tion with coupling to MAD-X simulations. (Top) Tune change
from Eq. (30) compared to MAD-X simulations. (Bottom) Tune
change from Eq. (33) compared to MAD-X simulations.

FIG. 1. Illustration of a LHC interaction region. The optics
presented here corresponds to β� ¼ 25 cm and the strength of
the skew quadrupole correctors (shown in green) was set to
KS

2L ¼ 6.7 × 10−5 m−2.
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Local coupling will not only result in an increase
of beamsize but can also introduce a tilt angle in the
x-y-plane, as shown in [23]. The tilt angle ψ relates to the
elements of the sigma matrix via

tanð2ψÞ ¼ 2hxyi
hx2i − hy2i ð37Þ

where

hxyi ¼
h ffiffiffiffiffiffiffiffiffi

βxβy
q

CðϵxℑF̂xy þ ϵyℑF̂yxÞ
i

ð38Þ

is used.
A comparison of the increase in beam size in the IP

predicted by the formula with the MAD-X tracking
simulations, using the setup described in the previous
section, is presented in Fig. 4. For this tracking studies
10000 particles were tracked for 256 turns using MAD-X.
Notably, for jf1010j in a range where a tune change of below
0.1% is observed, the beam size at the IP can increase by
almost 20% for equal emittances in both planes.
Observing Fig. 1, one can see that due to the jump of

the f1010 coupling RDT and in the following also F̂xy and
F̂yx at the IP, the local coupling leads to a large effect on the
beam size at this position. On the other hand, F̂xy and F̂yx

at the position of the innermost quadrupoles are signifi-
cantly lower, thus explaining the small impact on the
K-modulation measurements.
Based on these formulas, the beam size inferred from

optics measurements can be corrected to accurately

represent the real beam size if local coupling is evaluated
by other means. This could for example be used to correct
the inferred emittance based on beam size measure-
ments provided by instruments such as synchrotron light
monitors.

C. Impact on amplitude detuning
generated by octupoles

A second global observable of particular importance in
the LHC is the detuning with amplitude generated by
octupoles due to its role in damping coherent instabilities.
Previous studies presented in [11] have already shown
how linear coupling may lead to a loss of Landau damp-
ing. However, no analytical relation between local cou-
pling and the decrease in amplitude detuning has been
established.
Similar to the derivation of the change of tune presented

in the previous section, we derive here equations to
describe the impact of coupling on the amplitude detuning
generated by octupoles. The amplitude detuning for a given
Hamiltonian H̃ is calculated by

∂Qq

∂Ju ¼ 1

2π

∂2hH̃i
∂Jq∂Ju : ð39Þ

Using the previous equation together with the Hamiltonian
from Eq. (27) for the case of a thin octupole, the direct and

FIG. 4. Increase of beam size in IP1 as a function of the
absolute value of the coupling RDT.

FIG. 3. Change of the induced tune change from change of
quadrupole gradient with local coupling amplitude.
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cross-plane amplitude detuning terms in the presence of
linear coupling read

∂Qc
x

∂Jx ¼ K4

16π
½β2xC4 þ β2yjF̂xyj4

− 2βxβyC2ðjF̂xyj2 þ 2ðℑF̂xyÞ2Þ�; ð40Þ

∂Qc
y

∂Jy ¼ K4

16π
½β2yC4 þ β2xjF̂yxj4

− 2βxβyC2ðjF̂yxj2 þ 2ðℑF̂yxÞ2Þ�; ð41Þ

∂Qc
x

∂Jy ¼ ∂Qc
y

∂Jx ¼ K4

8π
½β2xC2jF̂yxj2 þ β2yC2jF̂xyj2

− βxβyðC4 − 4C2ℑF̂yxℑF̂xy þ jF̂yxj2jF̂xyj2Þ�; ð42Þ

where again the subscript w has been omitted. Unlike the
previous case for the tune change, here no general tendency
leading to a reduction is observed, with the change being
rather dependent on the ratio of the β-functions. However,
for a case like the LHC where the Landau octupoles are
positioned next to main quadrupoles in the arc and, as such,
the β-function in one plane is significantly larger than that
in the other plane, the direct amplitude detuning term in the
focusing plane of the quadrupole as well as the crossterm
detuning will decrease.
To benchmark the derived formulas, again studies

using a thin LHC lattice as testbed were conducted using
MAD-X-PTC. Similar to studies presented in [11], 4 skew
quadrupoles were installed in the dispersion suppressor left
and right of arc 12 in the LHC to create a closed coupling
bump. This is illustrated in Fig. 5. One octupole next to a
defocusing quadrupole was then powered to three quarter
of its maximum gradient of 6.3 × 104 T=m3 and the
amplitude detuning with and without the coupling bump
was determined. In both cases, all other nonlinear elements
have been turned off to avoid contributions from other
sources. Tunes were rematched to the original values of
Qx ¼ 0.28 and Qy ¼ 0.31 after application of the coupling
bump using quadrupoles located outside of the bump. The
results are presented in Table I showing a good agreement
between the derived formula and MAD-X-PTC. To show
that this effect is caused by the local coupling, the
amplitude detuning generated by another octupole in the
neighboring arc 23 is presented in Table II.
The small change in amplitude detuning generated by an

octupole in arc 23 between the case of no coupling bump
and with a coupling bump applied in arc 12 in Table II
is explained by the second order effect of the skew
quadrupoles on the optics. Here, the β-function at the
octupole in arc 23 changes by 0.15% and −0.09% in the
horizontal and vertical plane, respectively. As for the case
of amplitude detuning generated by the octupole in the

coupling bump shown in Table I, small differences between
the derived formulas and MAD-X-PTC are observed in the
cross term (dQx=dJy) and in the direct term of the
horizontal plane, which is the plane where the β-function

FIG. 5. Illustration of the four corrector coupling bump created
through the arc 12 right of IP1. The position of the octupole is
indicated with a green line.

TABLE I. Amplitude detuning from a single octupole within
the coupling bump in arc 12.

No coupling bump With coupling bump

Formula PTC Formula PTC

dQx=dJx 2.16 × 102 2.16 × 102 1.98 × 102 1.95 × 102

dQy=dJy 6.17 × 103 6.17 × 103 6.05 × 103 6.05 × 103

dQx=dJy −2.31 × 103 −2.31 × 103 −2.19 × 102 −2.20 × 102
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is smaller. Using instead an octupole closer to a focusing
quadrupole (βx ≫ βy), the deviation in the horizontal
amplitude detuning is reduced while it increases for the
detuning with amplitude in the vertical plane. This implies
that formula are more accurate for the leading amplitude
detuning term. In Table III, a comparison between the
analytical derivations and MAD-X-PTC is presented again
for amplitude detuning of an octupole close to a defocusing
quadrupole but with the amplitude of coupling bump being
a factor 5 larger compared to the case presented in Fig. 5.
Here the relative error between formulas and MAD-X-PTC
is larger for all terms compared to the previous case with
again both the cross term and the direct detuning in the
horizontal plane showing a larger relative deviation than
the leading term (dQy=dJy). Notably, for the same level of
local coupling, the relative difference between the derived
formulas and the results from MAD-X-PTC is not affected
by the strength of the octupole. Furthermore, for the given
configuration with the closed coupling bump, the relative
deviation only changes slightly for working points with a
smaller tune separation, suggesting that in the given case
the influence of a possible (amplitude-dependent) closest
tune approach on the tracking results is negligible. Due to
these aforementioned considerations, the derived formulas
represent well the change of amplitude detuning in the
presence of local linear coupling to leading order and
deviation may arise from additional coupling terms which
are not accounted for in the presented derivation.

D. Impact on local RDTs

In [10], it was not only shown that coupling affects
global quantities such as amplitude detuning but also a shift
of the amplitude of measured skew sextupole RDTs is
observed. As derived in [13] this shift could be partially

explained by taking into account second order contribu-
tions from coupling in conjunction with normal sextupoles.
However, from these derivations it is not apparent if the
skew sextupole RDT would change in the absence of
normal sextupoles.
Using the Hamiltonian for a normal sextupole as an

example, in the following it is shown how the generated
RDTs are affected under local coupling in the absence of
other skew multipoles. The coefficients from Eq. (28) in the
presence of local linear coupling for the sextupole RDTs
f3000 and f2100 read

hcw;3000 ¼
Kw;3

48

h
β

3
2
xC3 þ

ffiffiffiffiffi
βx

p
βyCjF̂xyj2

i
ð43Þ

and

hcw;2100 ¼
Kw;3

8

h
β

3
2
xC3 −

ffiffiffiffiffi
βx

p
βyCjF̂xyj2

i
: ð44Þ

In the uncoupled case, both terms stem from the x3 term in
the sextupole Hamiltonian

H3 ¼
K3

3!
ðx3 − 3xy2Þ ð45Þ

whereas in the coupled case an additional contribution from
the xy2 term is observed.
To benchmark the derived formulas, the same setup was

used as in the study for the amplitude detuning. Two
sextupoles with a phase difference of 2π in both planes

TABLE II. Amplitude detuning from a single octupole outside
of the coupling bump in arc 23.

No coupling bump With coupling bump

Formula PTC Formula PTC

dQx=dJx 2.16 × 102 2.16 × 102 2.11 × 102 2.11 × 102

dQy=dJy 6.17 × 103 6.17 × 103 6.20 × 103 6.20 × 103

dQx=dJy −2.31 × 103 −2.31 × 103 −2.29 × 103 −2.29 × 103

TABLE III. Amplitude detuning from a single octupole within
the coupling bump in arc 12 with increased levels of local
coupling.

No coupling bump With coupling bump

Formula PTC Formula PTC

dQx=dJx 2.16 × 102 2.16 × 102 −4.07 × 101 −6.95 × 101

dQy=dJy 6.17 × 103 6.17 × 103 3.54 × 103 3.73 × 103

dQx=dJy −2.31 × 103 −2.31 × 103 5.26 × 101 −2.19 × 102 FIG. 6. Comparison for the sextupole RDT f3000 between
MAD-X-PTC and derived formulas.
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were powered to 3=4 of their maximum gradient to create a
closed sextupole RDT bump. In Figs. 6 and 7, a comparison
between MAD-X-PTC and the analytical formula for the
case with and without coupling is presented.
As also in the case of the amplitude detuning, in general

a good agreement between the derived formulas and MAD-
X-PTC is observed. The difference, which is more pro-
nounced for the RDT f2100, is again thought to stem from
additional coupling terms.

IV. CONCLUSIONS

Equations relating the impact of local coupling on global
and local observables have been presented. While these
effects are thought to come from third and higher order
contributions, here instead of performing the higher order
expansion an alternative approach is presented, using the
coupled coordinates in a first order normal form. To
illustrate the impact of local linear coupling, the reduc-
tion of the amplitude detuning generated by one octupole
has been shown for the LHC case as well as the change
of resonance driving terms generated by sextupoles.
Comparison between the derived analytical formulas and
tracking studies show good agreement in the range of
interest, with the observed deviations from the tracking
code results appearing to stem from additional terms which
are not taken into account in the presented approach. The
presented formulas also allow us to explain why an
erroneous large local coupling in one LHC interaction
point did not affect the K-modulation measurements while
significantly affecting the beam size and subsequently the

luminosity. Given the impact on, e.g., beam size and
subsequently possible luminosity decrease, these formulas
allow us to establish an upper bound for tolerable local
coupling in an accelerator.
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