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Space charge is typically one of the performance limitations for the operation of high intensity and high
brightness beams in circular accelerators. In the Proton Synchrotron (PS) at CERN, losses are observed for
vertical tunes above Qy ¼ 6.25, especially for beams with large space charge tune shift. The work
presented here shows that this behavior is associated to structure resonances excited by space charge due to
the highly symmetric accelerator lattice of the PS, typical for first generation alternating gradient
synchrotrons. Experimental studies demonstrate the dependency of the losses on the beam brightness and
the harmonic of the resonance, and simulation studies reveal the incoherent nature of the resonance.
Furthermore, the calculation of the resonance driving terms generated by the space charge potential shows
that the operational working point of the PS is surrounded by multiple space charge driven incoherent
resonances. Finally, measurements and simulations on both lattice driven and space charge driven
resonances illustrate the different behavior of the beam loss depending on the source of the resonance
excitation and on the beam brightness.
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I. INTRODUCTION

Space charge effects in combination with betatron
resonances can be one of the main performance limitations
for high brightness beams in circular accelerators. The
space charge force generates an incoherent tune shift that
depends on the line density of the longitudinal beam profile
and the transverse beam size evolution around the machine.
Different tune shifts of individual particles lead to a tune
spread in the transverse tune space. The interplay between
the space charge tune spread and excited resonances was
previously studied on a controlled normal octupole reso-
nance [1–3]. The experimentally observed transverse emit-
tance growth and beam loss was identified to be caused by
the periodic resonance crossing and trapping of individual
particles due to the modulation of the transverse space
charge force through the synchrotron oscillations. More
recently, the same mechanism was studied at a coupled
sextupole resonance [4]. However, in addition to the
induced incoherent tune spread, the nonlinear transverse

space charge potential can also directly excite structure
resonances, as shown in [5–7].
The CERN Proton Synchrotron (PS) provides an exce-

llent test bench for the study of space charge effects due to
its highly symmetric lattice and the long beam storage time
required at low energy in normal operation [8]. Moreover,
space charge is the major performance limitation for high
brightness beams required in the context of the LHC
Injectors Upgrade (LIU) project [9]. The PS consists of
100 combined function main magnets, each divided into a
focusing and defocusing half unit, resulting in a total of
50 cells. The bare tunes of Qx ¼ 6.25, Qy ¼ 6.28 are
determined by the quadrupolar components of the main
magnets. The tunes can be adjusted either using dedicated
quadrupoles or circuits of pole face windings (PFWs) on
the main magnet poles [10]. Each of these two options
comes with disadvantages, namely a large perturbation of
the periodicity of the machine for large tune adjustments
with the dedicated quadrupoles (as they are not placed
symmetrically around the ring), while the tune control
through the PFWs also generates unavoidable higher order
field components. In the usual operation of the PS, the
dedicated quadrupoles are preferred for the tune adjustment
at low energy, while the PFWs are used to control tunes and
chromaticities during the ramp. Even though the 50-fold
periodicity of the bare lattice is slightly perturbed by the
insertion of 20 long straight sections, the optics remain
highly regular and the main harmonic of the lattice is 50, as

*foteini.asvesta@cern.ch
†raymond.wasef@hec.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 23, 091001 (2020)

2469-9888=20=23(9)=091001(20) 091001-1 Published by the American Physical Society

https://orcid.org/0000-0002-3188-7893
https://orcid.org/0000-0002-4251-7118
https://orcid.org/0000-0002-5255-4246
https://orcid.org/0000-0002-2649-6708
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.23.091001&domain=pdf&date_stamp=2020-09-28
https://doi.org/10.1103/PhysRevAccelBeams.23.091001
https://doi.org/10.1103/PhysRevAccelBeams.23.091001
https://doi.org/10.1103/PhysRevAccelBeams.23.091001
https://doi.org/10.1103/PhysRevAccelBeams.23.091001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


can be seen through the optics and the harmonic analysis
of the beam size in Fig. 1. The presence of this strong
lattice harmonic suggests that resonances of the same
harmonic, i.e., mQx þ nQy ¼ 50, where ðm; nÞ are integer
numbers indicating the order of the resonance, can be
driven by systematic errors in the machine and even by
space charge itself.
The maximum incoherent space charge tune shifts for the

operational LHC beams at injection in the PS are ΔQx ≈
−0.19 and ΔQy ≈ −0.24 and the bare tunes are usually set
toQx ¼ 6.20 andQy ¼ 6.24. The need to accommodate an
even higher incoherent space charge tune shift of beams
with even higher brightness in the course of the LIU project
drives the need for detailed resonance and space charge

studies in order not to exceed the allocated 5% emittance
growth and 5% loss budgets.
To guide the choice of the optimal working point for

these high brightness beams, dynamic tune scan measure-
ments were performed using a low brightness beam with
large transverse emittances in order to identify excited
resonances through the recorded losses, as reported in the
past for the PS [11] and the CERN Proton Synchrotron
Booster (PSB) [12]. During the measurements one of the
tunes is kept constant while the other is varied linearly to
cover the available tune space. The procedure is repeated
until the accessible tune space is fully covered, in all
possible directions. Measuring the beam loss rate as a
function of the tune settings allows the identification of
excited resonances as shown in Fig. 2.
Various low order resonances up to fourth order can be

clearly identified. In particular, the strongest resonance
seems to be the sum resonance 2Qx þQy ¼ 19, most likely
excited by skew sextupole errors in the main magnets [13].
However, since the exact error remains unknown no skew
sextupole-like errors are included in the nonlinear PS
optics model. Other sextupole resonances such as the
3Qy ¼ 19 skew resonance as well as the Qx−2Qy ¼−6
normal sextupole resonance appear considerably weaker.
Furthermore, the excitation of the resonances 2Qx þ 2Qy ¼
25 and 4Qx ¼ 25 indicates the presence of octupolar-like
errors. On the other hand, the main region of interest around
the operational working pointQx ¼ 6.20,Qy ¼ 6.24 seems
free of resonances when considering the results from
dynamic tune scans. Therefore, one could expect that
working points above Qy ¼ 6.25 could be suitable for
operating high brightness beams in the PS. However,
experimental studies to explore higher vertical tunes

FIG. 1. Linear optics functions in the PS lattice (top) and the
corresponding beam size (center) calculated using transverse
normalized 1σ emittances εnx ¼ 5.5 μm, εny ¼ 4.5 μm and an rms
momentum spread of Δp=p ¼ 0.52 × 10−3. Harmonic analysis
of the beam size modulation (bottom).

FIG. 2. Beam loss map in the transverse tune space color coded
to the loss rate. Theoretical resonance lines up to fourth order are
plotted, systematic ones in red and nonsystematic ones in blue.
The skew resonances are shown with dashed lines and the normal
resonances with solid lines.
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showed slow losses in the low energy part of the PS cycle as
presented in Fig. 3. It could be argued that the identification
of resonances through dynamic tune scans is not sensitive
enough to resolve relatively weak resonances. Instead, it
was shown that the nonlinear space charge potential excites
a structure resonance at Qy ¼ 6.25 due to the high
periodicity of the PS lattice [14,15]. As shown in the
following sections, a detailed analysis of the space charge
driven structure resonances in the PS reveals that the
operational working point is actually surrounded by several
space charge driven eighth order incoherent structure
resonances, as identified through experimental observa-
tions combined with simulations and analytical studies.
This paper is organized as follows. In Sec. II, the initial

studies leading to the identification of a space charge driven
structure resonance at Qy ¼ 6.25 are described. A detailed
characterization through simulation studies is presented in
Sec. III, clearly highlighting the incoherent nature of this
resonance. With this result, the Hamiltonian resonance
driving terms induced by the space charge potential of a
Gaussian beam are calculated analytically in Sec. IV,
revealing additional space charge driven structure reso-
nances. The resonance excitation is also demonstrated
using the frequency map analysis (FMA) technique in
Sec. V. The expected loss mechanism for bunched beams is
discussed in Sec. VI. Section VII summarizes detailed
experimental and simulation studies performed with low
and high brightness beams, confirming the presence of
various space charge driven structure resonances in the PS.
Conclusions are given in Sec. VIII.

II. EXPERIMENTAL IDENTIFICATION OF
STRUCTURE RESONANCES

The resonance at Qy ¼ 6.25 leading to the losses
observed in Fig. 3 could be driven either by random
octupole-like errors of the PS lattice or by the space charge
potential due to the structure of the lattice. To experimen-
tally identify the source of the excitation a couple of

experiments were designed in order to correlate the
observations to brightness and the 50th lattice harmonic.
The dependence of the losses on the strength of the direct

space charge force is demonstrated by an experimental
study with beams of varying brightness. The beam param-
eters are summarized in Table I, the intensity is given in
particles per bunch (ppb), the momentum deviation is noted
as Δp=p and the normalized transverse emittances as εnx;y.
During the experiment, the horizontal tune was kept at
6.23 and the vertical tune was ramped from 6.24 to 6.30 and
it was kept constant for 300 ms, before ramping it down
again to 6.24. The advantage of such a tune step is that
beam loss starts and ends at precise times and can be clearly
associated to the crossing of the resonance through the
increase of the vertical tune. Figure 4 shows the relative
intensity of the four beams along the cycle and the
evolution of the vertical tune. It can be seen that the beam
loss is directly correlated to the space charge force,
demonstrated by the fact that the beam type 1 (blue) with
the highest tune shift experiences the highest losses.

FIG. 3. Intensity along the PS cycle for different vertical tunes.
The magnetic field along the cycle is plotted on a second axis.

TABLE I. Beam parameters for the experimental results shown
in Fig. 4.

Beam ID 1 2 3 4

Intensity [1010 ppb] 115 80 35 115
Ekin [GeV] 1.4 1.4 1.4 1.4
Bunch length (4σ) [ns] 100 100 100 Coasting
Δp=pðrmsÞ [10−3] 1.8 1.8 1.8 1.8
εnx (1σ) [μm] 1.3 0.77 0.95 1.3
εny (1σ) [μm] 1.6 1.1 0.6 1.6
ΔQx (maximum) −0.22 −0.18 −0.08 −0.01
ΔQy (maximum) −0.40 −0.37 −0.24 −0.01

FIG. 4. Normalized intensity of four beams with different space
charge tune shifts when theQy ¼ 6.25 resonance is crossed (solid
color lines). The dashed line shows the vertical tune step on a
second axis.
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To verify that the resonance is only excited at the 50th
harmonic, an experiment at different integer tunes was
performed to probe the excitation at other resonance
harmonics. The change of the vertical tune by one integer
was achieved using an extra circuit installed in the main
magnets referred to as Figure-of-8-Loop (F8L), which has
the advantage of changing the quadrupolar field component
of the combined function magnets without significantly
exciting higher order field components [16]. The main
limitation of this circuit is that it acts on both transverse
tunes in opposite directions, as it increases the field in one
half unit while decreasing it in the other. Hence, the
experiment was conducted with the horizontal tune
decreased by one integer unit and the vertical tune
increased by one unit, which is referred to as (5,7) optics
according to the integer parts of ðQx;QyÞ. It was verified
that the integer part of the tune was indeed 5 in the
horizontal and 7 in the vertical plane. The measured optics
agreed with the model within 10% beta beating and
dispersion beating [15].
The main measurement consisted of a tune step in which

the horizontal tune was kept constant while the fractional
vertical tune was changed from 0.24 to a plateau value,
where it was kept constant for 500 ms and then changed
back to 0.24. The plateau value was varied between 0.24
and 0.3 in order to see the effect at the different working
points, as shown in Fig. 5 (top). This measurement was
performed in the (6,6) nominal optics and the (5,7) split-
tunes optics. In the case of the nominal optics shown in
Fig. 5 (center), the beam loss clearly increases for higher
working points (since more particles cross the resonance
due to the space charge induced tune shift). On the contrary,
no beam loss was observed for the same range of fractional
tunes in the case of the split-tunes (5,7) optics, as shown in
Fig. 5 (bottom). The change of integer was found to be
effective in mitigating against harmful effects of the
resonance, confirming that the resonance at Qy ¼ 6.25 is
a space charge driven structure resonance. Unfortunately,
the split-tunes optics (5,7) cannot be used in routine
operation, as the available strength of the F8L is not
sufficient to maintain this working point up to extraction
energy. In addition, the impact on the gamma transition
jump scheme [17] due to the change of phase advance
between the special fast quadrupoles would require further
studies.

III. RESONANCE CHARACTERIZATION

The presence of the strong 50th harmonic in the lattice
and the excitation of the resonance at Qy ¼ 6.25 through
space charge was experimentally confirmed. However, the
resonance could be excited either in eighth order as an
incoherent structure resonance 8Qy ¼ 50, or in fourth
order, as a coherent parametric resonance 4Qy ¼ 50=2
[18]. The order of the excitation and hence the nature of the
resonance at Qy ¼ 6.25 can be verified in simulation

studies. For this purpose, the resonance was dynamically
crossed [19,20] using a coasting beam. In particular, the
simulations are performed with two different space charge
models: (1) self-consistent space charge solvers, which take
into account both the coherent and incoherent response of
the beam, (2) frozen model without update using analytical

FIG. 5. Vertical tune steps programmed in the experiments
(top). Normalized intensity along the cycle for the (6,6) nominal
optics (center) and the (5,7) split-tunes optics (bottom).
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solvers for Gaussian distributions based on the Bassetti-
Erskine formula [21], which take into account incoherent
effects only. Comparing the results obtained with these two
simulation models allows to identify the nature of the
resonance. Furthermore, long term tracking simulations are
used to study the agreement of these two models for
bunched beams and long storage times.

A. Simple FODO lattice (coasting beam)

Initially a simplified FODO lattice, i.e., a basic ring
comprising of dipoles and alternating focusing and defo-
cusing quadrupoles, is used in order to study space charge
driven resonances, like the one observed at Qy ¼ 6.25 in
the PS, without taking into account the full complexity of
the PS lattice yet. The FODO lattice used here consists of
50 identical cells, which is similar to the PS lattice, but
without the 20 slightly longer straight sections. It has the
same periodicity, energy and circumference, and therefore
it can be matched to the same working points and excite the
same structural resonances. The optics functions, the beam
size evolution and the lattice harmonics of the FODO lattice
are shown in Fig. 6. The resonance at Qy ¼ 6.25 is
dynamically crossed by varying the tune in the vertical
plane, while the horizontal tune is kept constant at
Qx ¼ 7.2. Note that the horizontal tune is moved to a
different integer in order to avoid the crossing of the extra
space charge driven resonances that will be discussed in
Sec. IV. The lattice is matched in MAD-X [22] and the
tracking simulation is performed with PTC [23] in PyOrbit

[24]. A coasting beam is used in this study in order to avoid
the complexity coming from the longitudinal motion, and
to enhance any possible coherent response of the beam. The
beam is generated with Gaussian transverse distributions.
The space charge force is included in the simulations using
either the fully self-consistent 2.5 D particle-in-cell (PIC)
solver, in which the force is calculated using a Poisson
solver on a grid and weighted using the longitudinal line
density, or an analytic solver in which the space charge
force is evaluated based on a frozen potential calculated
from the lattice functions and the macroscopic parameters
of the beam using the Bassetti-Erskine formula [21]. The
beam parameters are chosen to obtain maximum tune shifts
in the order of ΔQx ≈ −0.24 and ΔQy ≈ −0.34.
Figure 7 summarizes the simulation results. Hardly any

response of the beam is observed when crossing the
resonance from below (top graphs) for both the self-con-
sistent PIC simulation (left) and the frozen model (right).
The core of the beam is unaffected while only some minor
tails in the vertical plane are formed, probably caused by the
scattering of individual particles on the incoherent reso-
nance, which result in a vertical emittance growth of a few
percent. In fact, the phase space does not show any structure
that would indicate the crossing of a strong resonance.
The situation is quite different when crossing the

resonance from above (bottom graphs). A large increase
of the vertical emittance is observed and the phase space

shows the clear formation of eight islands indicating the
excitation of the resonance in eighth order. This explains
the formation of large tails, since particles trapped in the
8Qy ¼ 50 resonance separate from the beam core as the
resonance islands move outwards when the vertical tune is
further decreased. It is worth pointing out that the quali-
tative beam behavior between the fully self-consistent PIC
simulation (left) and the frozen space charge solver (right)
agrees very well. In fact, the main dynamics of the two
models is equivalent, which confirms the incoherent nature
of the resonance since the frozen space charge solver
cannot reproduce coherent effects. However, the emittance
blowup in the frozen model is slightly more pronounced
compared to the self-consistent solver. This quantitative

FIG. 6. Linear optics functions in the simple FODO lattice (top)
and the corresponding beam size (center) calculated using
transverse normalized 1σ emittances εnx ¼ 5.5 μm, εny ¼ 4.5 μm
and an rms momentum spread of Δp=p¼ 0.52×10−3. Harmonic
analysis of the beam size modulation (bottom).
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FIG. 7. Dynamic crossing of the Qy ¼ 6.25 resonance using the simple FODO lattice. The tracking is done using the self-consistent
PIC 2.5 D space charge solver (left) and the frozen model (right). The resonance is crossed as the tune increases from Qy ¼ 6.24 to
Qy ¼ 6.45 (top) and vice versa (bottom). For each solver and crossing direction, the vertical beam profiles are shown as a function of
turns and tune, using a second axis, color coded to the particle density (top). Likewise, the transverse emittances are given as a function
of turns (and tunes on the second axis), while the vertical phase space is shown color coded to the particle density for the turn and tune
corresponding to the vertical line, at 1100 and 2000 turns for the two crossings (bottom).
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difference is due to the fact that the beam parameters used
for the frozen potential are kept constant throughout the
simulation while the change of the particle distribution is
taken into account in the self-consistent PIC simulations.

B. The PS lattice (coasting beam)

A similar study as shown above for the FODO lattice was
repeated using the actual lattice of the PS. The main
difference between the simple FODO lattice and the PS
is that the latter consists of combined function magnets, and
therefore the modulation of the lattice functions along the
machine is less pronounced. In addition, the symmetry of
the PS lattice is slightly modified by the 20 long straight
sections as described in Sec. II. Although extra quadrupole
magnets are installed in the PS, in these simulations the
tune matching was done using only the quadrupolar
components of the PFW to preserve the periodicity as
much as possible. The nonlinear field components intro-
duced by the PFW in the real machine were omitted, in
order not to excite any additional resonances. Hence, only
the linear PS model is considered with space charge as the
only nonlinearity in the lattice. The results for both crossing
directions and the two solvers are shown in Fig. 8.
Similar to the observations for the simple FODO lattice,

the response of the beam as the tune increases from Qy ¼
6.24 to Qy ¼ 6.45 is minimal and no significant vertical
emittance increase is observed (top graphs). On the con-
trary, crossing the resonance in the opposite direction
results in significant vertical emittance growth (bottom
graphs). With both space charge models the vertical phase
space shows particles in the tails of the beam distribution
trapped in eight islands that detach from the core, spread
out and eventually collapse at high amplitudes. The profile
evolution shows this trapping and collapse as the tails
expand to very large amplitudes. The fact that both solvers
demonstrate the same behavior confirms again the inco-
herent nature of this resonance.

C. Long term behavior (bunched beam,
simple FODO lattice)

The simulations of the dynamic crossing have shown that
in both lattices the incoherent response of the beam is by far
dominating, even in the absence of longitudinal motion. In
order to study the long term behavior in the presence of
synchrotron motion, a bunched beam was tracked in the
FODO lattice for 105 turns (corresponding to about 0.2 s
and more than 140 synchrotron oscillations in the PS). The
FODO lattice is chosen, since the PS lattice has signifi-
cantly more elements and tracking with the PIC solver is
unfeasible for so many turns due to the excessive simu-
lation time required. The beam behavior at tunes in the
vicinity of the working point regime of interest is explored,
namely Qx ¼ 6.2 and Qy ¼ 6.24–6.31. The scan is static,
i.e., the tunes are kept constant throughout the simulations

and the initial beam distributions are Gaussian in the
transverse planes while the longitudinal profile was para-
bolic, similar to the operational beams in the PS. For the
simulations with the PIC solver, 4 × 105 macroparticles
were used, while in the simulations with the analytic solver
already 3 × 103 macroparticles were enough to resolve the
beam profiles. To ensure that the analytic space charge
solver is not overestimating the resonance excitation when
the beam is degrading, the beam parameters used for
calculating the space charge kick (intensity, transverse
emittances, longitudinal line density profile and momentum
spread) were updated every 100 turns.
A comparison of the transverse emittance and intensity

ratios (ratio final over initial) between the two solvers is
shown in Fig. 9. The intensity and horizontal emittance
values seem to agree very well between the two models for
all tested working points. However, a disagreement of a few
percent (up to ≈9%) is observed in the vertical emittances,
especially for Qy > 6.29. The larger blowup observed in
the PIC simulations could be partially coming from the
noise on the grid [25], and partially from the fact that the
Bassetti-Erskine formula used in the analytic solver is
describing exact Gaussian distributions. Overall, the agree-
ment between the solvers is very good. The analytic solver
with parameters updated every 100 turns, which is referred
to as adaptive frozen model in what follows, is therefore the
simulation model of choice as it provides good enough
agreement with the PIC model and allows tracking of less
particles and consequently leads to much shorter simula-
tion times.
It should be noted that, besides the agreement between

the solvers, the results of this simulation study hint at the
excitation of additional space charge driven resonances,
indicated by the vertical lines in the graph, which will be
discussed in more detail in the following section.

D. Different harmonic regime (bunched beam,
simple FODO lattice)

The simulations described in the former parts of this
section have shown the incoherent nature of the resonance
atQy ¼ 6.25, and that space charge can be the source of the
excitation. In addition, the simple FODO lattice had a
similar response to the actual PS lattice. In this respect, the
simulation campaign of Fig. 9 was repeated in the split-
tunes regime of (5,7), namely when Qx ¼ 5.2 and
Qy ¼ 7.24–7.30. In this case the resonance of interest is
atQy ¼ 7.25 and the corresponding harmonic is 8Qy ¼ 58.
This harmonic is absent from the FODO lattice (see Fig. 6),
similar to the PS case (see Fig. 1).
The intensity evolution versus the turns is shown in

Fig. 10 for both tune regimes. It is clear that the 50th
harmonic is the only one driven, since in the split-tunes
regime the change of tune does not have any impact on the
beam intensity. This result is in agreement with the
experiment conducted in the PS shown in Fig. 5. It should
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FIG. 8. Dynamic crossing of the Qy ¼ 6.25 resonance using the PS lattice. The tracking is done using the self-consistent PIC 2.5D
space charge solver (left) and the frozen model (right). The resonance is crossed as the tune increases fromQy ¼ 6.24 toQy ¼ 6.45 (top)
and vice versa (bottom). For each solver and crossing direction, the vertical beam profiles are shown as a function of turns and tune,
using a second axis, color coded to the particle density (top). Likewise, the transverse emittances are given as a function of turns (and
tunes on the second axis), while the vertical phase space is shown color coded to the particle density for the turn and tune corresponding
to the vertical line, at 1000 and 2000 turns for the two crossings (bottom). Note the different scale of both profiles and emittance plots
between the top and bottom graphs.
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be noted that a quantitative comparison would not be valid
at this stage as the simulations were conducted with a
simplified lattice and for approximately 200 ms. However,
what is really demonstrated is that the source of the
excitation in all cases is the eighth order incoherent space
charge driven resonance at Qy ¼ 6.25.

IV. RESONANCE DRIVING TERMS

Since the nature of the resonance at Qy ¼ 6.25 is purely
incoherent, as revealed by the simulations discussed
above, its strength can be studied by applying classical

perturbation theory on the nonlinear Hamiltonian of a
stationary beam [26]. In fact, the leading order resonance
driving terms (RDTs) of incoherent space charge driven
resonances can be calculated [5,7] for the perturbation
coming from the space charge potential Vsc of a Gaussian
(bunched) beam, which is given by [27]

Vscðx;yÞ¼
r0Nb

β2γ3
ffiffiffiffiffiffi
2π

p
σs

Z
∞

0

−1þ exp− x2

2σ2xþt
y2

2σ2yþt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2σ2xþ tÞð2σ2yþ tÞ

q dt; ð1Þ

where r0 is the classical particle radius, Nb the bunch
intensity, β, γ, the relativistic factors and σs;x;y the longi-
tudinal, horizontal and vertical beam sizes, respectively.
The evaluation of the above method was implemented in a
PYTHON module [28] to calculate the RDTs and the
nonlinear detuning terms for the potential of Eq. (1).
This code was used to study the eighth order structure
resonances in the PS in the vicinity of the operational
working point, as discussed below. The optics functions of
the PS lattice, required for the calculation of the RDTs,
were obtained from MAD-X. A detailed explanation of the
driving term calculation can be found in the Appendix B.
The RDTs for the eighth order resonances in the full

tune space around the nominal working point of the PS,
namely 8Qy ¼ 50, 2Qx þ 6Qy ¼ 50, 4Qx þ 4Qy ¼ 50,
6Qx þ 2Qy ¼ 50, 8Qx ¼ 50 and 4Qx − 4Qy ¼ 0, were
evaluated for a high brightness beam with the parameters
given in the first column of Table II and the results are
shown in Fig. 11. The coupling resonance 4Qx − 4Qy ¼ 0

is driven in eighth order through the zeroth harmonic and is
the strongest resonance of the ones discussed here. Note
that this resonance is also excited in fourth order, (i.e.,
Montague resonance [29]), but for the purposes of this
study only the eighth order resonance driving term is
shown. The eighth order driving terms for the remaining
resonances increase significantly when the tune values are
set on the 50th harmonic. This harmonic coincides with the
periodicity of the PS optics modulation and, consequently,
the corresponding resonances are excited. On the other
hand, the resonances at harmonics not present in the

FIG. 9. Static tune scan of the simple FODO lattice for 105

turns of a bunched beam with space charge. Transverse emit-
tances and intensity (I) ratios are plotted as a function of the
vertical tune for the self-consistent PIC 2.5 D and the adaptive
frozen space charge solvers with dashed and solid lines, respec-
tively. The vertical lines correspond to eighth order systematic
resonances crossed.

FIG. 10. Static tune scan using the simple FODO lattice for 105

turns of a bunched beam with space charge. The normalized
intensity evolution is shown for different tunes in the (6,6) optics
(left) and the (5,7) split-tunes optics.

TABLE II. Beam parameters used in tune scans, the evaluation
of the space charge RDTs and the FMAs.

Beam Type High brightness Medium brightness

Intensity [1010 ppb] 96 48
Ekin [GeV] 1.4 1.4
Bunch length (4σ) [ns] 80 80
Δp=pðrmsÞ [10−3] 0.52 0.52
εnxð1σÞ [μm] 5.5 5.5
εnyð1σÞ [μm] 4.5 4.5
ΔQx (maximum) −0.15 −0.07
ΔQy (maximum) −0.16 −0.08
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variation of the optics functions of the lattice are not
excited and the respective RDT goes to 0. It should be
emphasized that the strength of the excitation, indicated
by the amplitude of the RDT, is not the same for all
resonances. The 8Qy ¼ 50, 2Qx þ 6Qy ¼ 50 and 6Qx þ
2Qy ¼ 50 resonances appear to be the strongest ones,

while the 8Qx ¼ 50 and especially the 4Qx þ 4Qy ¼ 50

resonances are much weaker. The difference comes
from the different beam sizes in the horizontal and vertical
planes due to the emittances and the presence of
dispersion, and from the different parts of the space charge
potential driving them.

FIG. 11. RDTs computed from the space charge potential of a transverse Gaussian beam for the PS lattice for the 8Qy (top left),
2Qx þ 6Qy (top right), 4Qx þ 4Qy (middle left), 6Qx þ 2Qy (middle right), 8Qx (bottom left) and 4Qx − 4Qy (bottom right) resonances
for various working points. The color code corresponds to the amplitude of the respective driving term. Resonance lines of eighth order
are plotted. Skew in dashed and normal in solid lines, systematic in red and nonsystematic in blue.
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V. FREQUENCY MAP ANALYSIS

The excitation of the space charge driven resonances
can also be studied using the frequency map analysis
(FMA) technique [30] for tracking data including
space charge. The PS lattice is matched using MAD-X

and the tracking is done with PTC in PyOrbit. The space
charge is included using the PyOrbit frozen model
without update. The parameters of the high brightness
beam in the first column of Table II are used for the
calculation of the space charge kicks in the simulations.
For each FMA, test particles with the same longitudinal
action are tracked for two consecutive synchrotron
periods. The tunes of each particle are calculated
applying the PYTHON implementation of the numerical
analysis of fundamental frequencies (NAFF) [31,32] to
the turn by turn data. The indicator for the resonance
excitation is the tune diffusion coefficient [33], which

is defined as d ¼ log10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQx;2 −Qx;1Þ2 þ ðQy;2 −Qy;1Þ2

q
,

where the indices (1),(2) refer to the first and second
synchrotron period, respectively. This procedure has

been followed for both on-momentum and off-
momentum particles.
The resulting FMA for on-momentum is shown in

Fig. 12 (top). The excitation of the structural resonances
is demonstrated by the increased diffusion in the tune and
configuration spaces. The same technique is applied to off-
momentum particles, initialized longitudinally at ≈1.2σ,
and the resulting FMA is shown in Fig. 12 (bottom). In this
case the tunes are modulated through the synchrotron
motion due to the varying space charge potential along
the longitudinal line density profile of the beam and the
chromaticity, which is kept at the natural values. Therefore,
the resonances appear broader compared to the on-
momentum case, since they are crossed by a larger number
of particles through synchrotron motion. The calculated
tune diffusion index for all particles crossing resonances
appears larger. This broadening of the resonance lines, in
terms of diffusion, shows that more particles are likely to
get affected by the resonance leading to chaotic behavior
that is linked to losses. This will be further discussed in the
following section.

FIG. 12. FMA for on-momentum (top) and off-momentum (bottom) particles. Tune diagrams with resonances of third and eighth
order. Systematic resonances are plotted in red and nonsystematic ones in blue. The skew resonances are shown with dashed lines and
the normal resonances with solid lines (left). The initial position of the particles tracked in the configuration space (right). The color
coding represents the diffusion coefficient.
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VI. LOSS MECHANISM

The excitation of the space charge driven resonances
due to the 50th harmonic of the lattice functions (cf. Fig. 1)
has been confirmed in the simulations shown in Fig. 8,
the analytical calculation of the driving terms shown in
Fig. 11 and the FMAs of Fig. 12 as discussed above. To
identify the underlying mechanism that leads to the beam
loss observed in the measurements presented in Figs. 3 and
5, test particles were simulated using the frozen space
charge solver without update. The test particles were
initialized with relatively small horizontal initial ampli-
tudes, x < 10 mm, and varying vertical initial amplitudes
from y ¼ 6 mm to y ¼ 20 mm, i.e., up to 5σ of the beam
size. Longitudinally, all particles were initialized with
the same action and in phase, at ≈1.2σrms

s and dE ¼ 0. The
simulations were performed for a working point above the
8Qy ¼ 50 resonance, namely Qx ¼ 6.18, Qy ¼ 6.28, and
particles were tracked for 2000 turns corresponding to ≈2.5
synchrotron periods.
The turn-by-turn data of the simulations were used to

calculate the tunes of each particle as described in Sec. V.
The tunes were evaluated using a sliding window of 50
turns and their evolution versus the number of turns and
synchrotron period is shown in Fig. 13 (top). The tune
modulation is characteristic of the dependence of the

transverse space charge force on the longitudinal line
density. An additional contribution to the tune modulation
comes from chromaticity, which is kept at the natural
values of Q0

x ≈ −5.7 and Q0
y ≈ −7.6 in the simulations.

Under these conditions the tune modulation is ΔQ ¼
ΔQsc þ ΔQchroma, where the ΔQchroma varies from −0.01
to 0.01 depending on the synchrotron motion. Hence, in the
first half of the synchrotron period the chromaticity gives a
positive tune shift while in the second half a negative one,
similar to space charge, which results in a different tune
modulation depth during the two halves of each synchro-
tron period. Figure 13 (bottom) shows the evolution of the
vertical betatron action for the same test particles using the
same color code. As expected, particles with smaller
amplitude have lower tunes due to the incoherent space
charge tune shift. More interestingly, it turns out that
the “space charge induced periodic resonance crossing,”
which was extensively studied in the context of magnet
driven resonances in the presence of space charge [1–4], is
also the mechanism resulting in losses here: for the chosen
vertical machine tune, the test particles with high amplitude
periodically cross the 8Qy ¼ 50 resonance. In some cases
the crossing of the resonance leads to a rapid diffusion
also referred to as “scattering” of the particle trajectory on
the resonance [3], as can be observed by a change of the
particle’s action. In other cases, the resonance crossing
leads to a trapping of the particle on the resonance islands
so that the particle actions are transported to large
amplitudes.
The trapping can be nicely observed in Fig. 14, which

shows the vertical phase space portrait for the same test
particles using the same color code as before. The phase
space clearly shows the formation of eight islands, similar

FIG. 13. Evolution of the vertical tune (top) and the vertical
betatron action (bottom) of test particles in tracking simulations.
The second axis on top indicates the number of synchrotron
periods.

FIG. 14. Vertical phase space of the test particles shown with
the same color code as in Fig. 13.
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to Fig. 8. Trapped particles follow a spiraling trajectory
with increasing action in phase space, since the position of
the resonance islands is moving to higher amplitudes due to
the increasing space charge detuning when the particle is
approaching the longitudinal center of the bunch during its
synchrotron oscillation. Note that the trapped particles leap
into every second resonance island due to the fractional
tune of 0.25. This simulation was performed without
mechanical aperture limitations in order to illustrate the
particle dynamics. However, in the real machine the
particles trapped on the resonances islands would be lost
when reaching the vertical machine aperture limitation,
which is indicated by the vertical lines in the phase
space plots.
The betatron phase of the particle at the moment of

the resonance crossing determines in which set of
islands a particle is trapped in. Furthermore, beam loss
in the machine will occur continuously, as the particles
have different longitudinal phases, in agreement
with the experimental observations shown in Fig. 3.
It should also be emphasized that, in the absence of any
positive detuning sources such as chromaticity, the
losses due to the 8Qy ¼ 50 resonance occur only for
machine working points with Qy > 6.25, since only
then the particle tunes are shifted towards the resonance
and thus can get trapped and scattered at the resonance
islands due to the space charge induced periodic
resonance crossing.

VII. DETAILED MACHINE STUDIES

Detailed machine experiments were performed in order
to study the space charge driven resonances in comparison
to a fully controlled magnet error driven resonance or other
nonlinearities. The measurements consist of static tune
scans, during which the beam was injected directly on the
matched tunes and stored for 1.2 s at injection energy. The
intensity along the cycle was recorded and compared to
macroparticle simulations using the adaptive frozen space
charge solver.
The tune scan shown in Fig. 4 had already suggested the

correlation of the beam brightness to measured losses,
while other measurements [34,35] suggested the presence
of multiple eighth order structure resonances around the
operational working point of the PS. The present study
aims to clearly show the presence of these resonances [36]
and establish the source of excitation by correlating the
beam loss and the beam brightness not only to the space
charge driven resonances but additional controlled lattice
driven ones.
In this respect, two different types of beams were used

for the measurements, namely a high-brightness and a
medium-brightness beam. The parameters for both beams
are summarized in Table II. It should be emphasized that
the longitudinal parameters as well as the transverse
emittances and consequently the beam sizes were kept

the same for both beams. The change of the bunch intensity
results in a proportional change of the beam brightness and
the space charge force. This choice ensures that the RDTs,
indicating the resonance strength, are only scaled with the
intensity while the relative strength of the excitation
between the resonances remains unaffected. Hence, the
different response of the beams on the space charge driven
resonances can be directly associated to the change in the
space charge force, providing a clear correlation between
resonance strength and brightness. To explore the depend-
ence of the beam losses on the beam brightness on a magnet
error driven resonance, the 3Qy ¼ 19 was excited in a
controlled manner. In fact, the losses along the controlled
resonance can be well predicted and can be used as a gauge
to quantify the losses from space charge driven resonances.
Like this, a different behavior of the losses along the
different resonances with respect to the beam brightness
can help classify the various resonances. As the 3Qy ¼ 19

is naturally excited in the PS as shown in Fig. 2, this
resonance had to be compensated before it could be used as
a controlled resonance. The compensation procedure is
described in Appendix A.
The incoherent space charge tune spreads for both

beams were calculated analytically from the potential [28]
and are illustrated in Fig. 15, together with the tune space
covered in the measurements and the resonances of
interest. The tested working points range from 6.11 to
6.21 in steps of 2 × 10−2 inQx, and 6.24 to 6.37 in steps of
5 × 10−3 in Qy for the high-brightness beam, while for the
medium brightness the scan is extended to even lower tune
values in Qx, i.e., 6.09 to 6.21. The reason for this is that
the medium-brightness beam with its smaller tune shift
could be injected at lower horizontal tunes, while remain-
ing unaffected by resonances at the integer tune of
Qx ¼ 6.0. The beam loss was determined using the
intensity values measured with the beam current trans-
former at 15 ms and at 1115 ms after injection. To keep the
PS lattice as linear as possible, the chromaticity was kept
at the natural values, Q0

x ≈ −5.7 and Q0
y ≈ −7.6, the linear

coupling was corrected using the closest tune approach
method and the transverse damper was used to stabilize
the beam [37] from the head-tail instability on the
injection plateau [38].

A. Tune scans with 3Qy resonance compensated

Figure 16 shows the results of the static tune scans
with the high-brightness and medium-brightness beams
when the 3Qy ¼ 19 resonance was compensated. The
measured total losses over the 1.2 s long injection plateau
are extracted for each measurement and the results are
interpolated on a grid to identify the resonances, as
shown in Fig. 16 (left). Likewise, each experimentally
tested working point was simulated for 5 × 105 turns,
corresponding to the full PS injection plateau, using 3000
macroparticles with the adaptive frozen space charge
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solver in PyOrbit. Figure 16 (right) shows the resulting
losses interpolated on the same grid as before. The PS
model used in the simulations includes systematic normal
higher order field components obtained by matching the
measured nonlinear chromaticity [11]. Since the excita-
tion of the resonance 3Qy ¼ 19 was compensated in the
measurement, no extra skew sextupole-like components
are needed in the PS model.

The measurements with the high-brightness beam show
losses of about 7% along tune values parallel to the eighth
order resonance at 6.25. Losses of similar magnitude are
also observed along a line parallel to the coupled eighth
order resonance at 2Qx þ 6Qy ¼ 50. Note that the offset
between the resonance lines and the machine tunes at which
losses are observed is a typical feature of the space charge
induced periodic resonance crossing mechanism, as also
discussed in Sec. VI. The maximum losses are observed for
large horizontal tunes Qx > 6.18 because the two reso-
nances overlap and the bunch is affected by both of them at
the same time. In addition, losses of similar magnitude are
observed in the vicinity of the antidiagonal line. Since
along this line losses are observed also with the low
brightness beam during the dynamic tune scans discussed
in Fig. 2, and in addition the expected space charge induced
RDT for the 4Qx þ 4Qy ¼ 50 shown in Fig. 11 is weak,
these losses are most likely caused by the fourth order
resonance 2Qx þ 2Qy ¼ 25 excited by octupole errors
present in the ring.
The measurements with the medium-brightness beam

show losses along parallel lines to the space charge
driven resonances 8Qy ¼ 50 and 2Qx þ 6Qy ¼ 50, but in
this case the observed losses of about 3%–4% are about
half compared to the high-brightness beam, suggesting
that the resonances are weaker due to the reduced space
charge force. On the other hand, losses on the resonance
4Qx þ 4Qy ¼ 50 or rather 2Qx þ 2Qy ¼ 25 appear
instead enhanced. This further supports the excitation
of the resonance in fourth order, since lower brightness
beams are more sensitive to magnet error driven reso-
nances. Note also that the losses appear much closer to
the respective resonances, since the incoherent space
charge tune shift is smaller for the medium-brightness
beam.
Comparing the experimental data with the corre-

sponding simulations shows good agreement concerning
the tune offset between the observed losses and the
resonances causing them. Concerning the magnitude of
losses, the space charge driven 2Qx þ 6Qy ¼ 50 reso-
nance is very well reproduced both qualitatively and
quantitatively as in measurements the losses vary from
3%–9%, for the high brightness beam, and in simu-
lations from 3%–10%. In the case of the medium
brightness beam, the loss percentage along the line is
in the order of 2% all along the line in both simulations
and measurements. In the case of the 8Qy ¼ 50 reso-
nance, even though the results agree qualitatively, the
quantitative agreement is not as good as in the previous
cases. Namely, the losses measured in the high bright-
ness beam vary from 5%–9% and in the medium
brightness beam from 2%–4%. In the simulations, the
amount of loss observed is actually higher in the order
of 10% for the high brightness beam and in the order of
8% for the medium brightness. However, the fact that

FIG. 15. Analytically calculated tune footprints at the nominal
working point for the high-brightness (top) and medium-bright-
ness (bottom) beams. The normal eighth order resonances are
shown in red, the third order skew resonance is indicated by the
dashed blue line and the solid blue lines correspond to the integer
resonances. The green markers correspond to the working points
studied in the experiment.
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this difference is mainly concerning the medium bright-
ness beam can also be connected to nonlinearities
missing in the model that would affect more a lower
brightness beam, as discussed below. No losses are
observed in the simulations along the 4Qx þ 4Qy ¼ 50

resonance. This is expected, since the analytic RDT cal-
culation showed that the excitation of the 4Qx þ 4Qy ¼
50 resonance from space charge is weak, and no
octupolar components are included in the model that
could excite the 2Qx þ 2Qy ¼ 25 resonance. The fact
that the modeling of the octupolar components appears
to be incomplete could also affect the resonance at
Qy ¼ 6.25, contributing to the higher losses observed in
the simulations compared to the measurements.
Presently, there are not enough independent octupole
correctors available in the PS to compensate octupole-
like resonances. It should be noted that the resonance

2Qx þ 6Qy ¼ 50 would remain unaffected by such com-
ponents as in fourth order it would be Qx þ 3Qy ¼ 25 and
thus a skew and not a normal resonance.

B. Tune scans with 3Qy resonance excited

The results of the static tune scans with the high-
brightness and medium-brightness beams in the pres-
ence of controlled skew sextupolar components are
presented in Fig. 17. The controlled excitation of the
3Qy resonance is achieved using a skew sextupole,
the “XSK52,” powered at 2 A corresponding to an
integrated normalized skew sextupole strength of
k2Sl ¼ 0.0125 m−2. Two more sextupoles, “XSK10”
and “XSK14,” were always set to the compensation
configuration described in Appendix A. The data ana-
lysis and presentation is identical to the one described
in the previous section and is given in Fig. 17 (left).

FIG. 16. Tune scan with the 3Qy ¼ 19 resonance compensated. Results of the high-brightness (top) and medium-brightness (bottom)
beams in measurements (left) and simulations (right). The color code represents losses after 1.1 s of beam storage. Resonances of third
and fourth order are plotted, systematic in red and nonsystematic in blue. The skew resonances are shown with dashed lines and the
normal ones with solid lines. The resonances of interest are denoted as ðm; nÞ corresponding to the resonance condition
mQx þ nQy ¼ l.
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The simulations shown in Fig. 17 (right) are performed
as discussed in the previous section, but in this case the
sextupole “XSK52” was excited with the same strength
as in the measurements.
The experimental data as well as the simulation

results of both beams show the same behavior as before
for working points close to the space charge driven
resonances, note the different scale of the color code
between Figs. 16 and 17, since their excitation is not
affected by the addition of skew sextupolar components.
Furthermore, the losses related to the fourth order
2Qx þ 2Qy ¼ 25 observed in the experiment are also
not affected by the nonlinearities introduced by the skew
sextupole and as expected the simulations also show no
response on this resonance. In addition, the offset
between the resonances and the tunes at which the
losses are observed remains unaffected as no extra tune
shifts are introduced.

The chosen excitation of the 3Qy ¼ 19 resonance
results in much higher losses compared to the space
charge driven structure resonances. It is worth pointing
out that the relative losses from the 3Qy ¼ 19 resonance
are higher for the medium-brightness beam compared to
the high-brightness beam, by 10% in absolute numbers
both in measurements and simulations, while the space
charge driven resonances 8Qy ¼ 50 and 2Qx þ 6Qy ¼ 50

resulted in higher losses for the high-brightness beam.
The difference of the loss behavior between the two beams
can be understood when the source of the excitation
is considered. The strength of the space charge driven
resonances depends on the beam brightness leading to
larger losses. On the contrary the strength of the controlled
lattice resonance is not affected by the beam, hence as the
tune spread shrinks, for lower brightness, a larger fraction
of the beam interacts with the resonance at a given tune
resulting in larger losses.

FIG. 17. Tune scan with the resonance 3Qy ¼ 19 actively excited. Results of the high-brightness (top) and medium-brightness
(bottom) beams in measurements (left) and simulations (right). The color code represents losses after 1.1 s of beam storage. Resonances
of third and fourth order are plotted, systematic in red and nonsystematic in blue. The resonances of interest are denoted as ðm; nÞ
corresponding to the resonance condition mQx þ nQy ¼ l.
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VIII. CONCLUSION

Structure resonances driven by the space charge potential
and the periodicity of the lattice were identified in the
CERN PS. By means of measurements at different integer
tunes the dependency on the resonance harmonic and thus
the lattice periodicity was verified. Simulation studies of a
simple FODO structure and the PS lattice itself demon-
strated the incoherent nature of the high order space charge
driven resonances and the periodic resonance crossing as
the dominant loss mechanism. Furthermore, the resonance
driving terms of the space charge potential, calculated for
resonances in the vicinity of the operational working
point of the PS, showed the excitation of multiple eighth
order resonances. The presence of the 8Qy ¼ 50 and
2Qx þ 6Qy ¼ 50 resonances was confirmed in a detailed
experimental campaign, where it was demonstrated that
their strength depends on the strength of the space charge
potential and thus on the beam brightness. Moreover, the
difference in the behavior of the losses from the space
charge compared to the lattice driven resonances further
confirms the identification of the eighth order incoherent
space charge driven structure resonances in the PS. The
experiment could be reproduced using the simulation
model of the PS. There are some slight differences between
the measurements and the simulations, in particular con-
cerning the beam loss in the vicinity of the antidiagonal line
not reproduced in the simulation, and the less good
quantitative agreement for the 8Qy ¼ 50 resonance. This
is, however, most likely attributed to the incomplete model
of octupole-like errors in the PS lattice as the beam loss at
those resonances could not be reproduced with the
medium-brightness beam either. The fact that the resonan-
ces in the vicinity of the nominal working point of the PS
are space charge driven justifies the higher injection energy
in the scope of the LIU project as a means to accommodate
higher brightness beams.
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APPENDIX A: RESONANCE
COMPENSATION

The 3rd order skew resonance at Qy ¼ 6.33, which was
used with controlled excitation for the experiment, is
naturally excited in the PS as shown in Fig. 2. However,
this resonance can be compensated using the available

skew sextupole correctors. Figure 18 (top) shows the
strength and phase of the corresponding RDTs for the
four available skew sextupole magnets when powered
individually with the same current. The XSK14 and

FIG. 18. Comparison of the orientation and relative amplitude
of the 3Qy ¼ 19 RDT generated by the skew sextupole correctors
of the PS at same excitation (top). Scan of the currents of the
“XSK14” and “XSK10” sextupoles with losses indicated by the
color bar (centre), where 1A corresponds to an integrated
normalized skew sextupole strength of k2Sl¼ 6.25×10−3 m−2.
Normalized intensity along the injection plateau for the natural
excitation and the correcting configuration of the sextupoles with
the tune evolution indicated on a second axis (bottom).
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XSK10 sextupoles were selected for compensating the
resonance, since their RDT vectors are almost orthogonal.
Therefore, the full RDT space is accessible by powering
them at different strengths in order to determine the best
setting to compensate the unknown skew sextupole com-
ponent in the lattice. The described technique was applied
using the medium-brightness beam so that any effects
connected to space charge would be negligible. The beam
was injected at Qy ¼ 6.38 and the (0,3) resonance was
dynamically crossed from 400 ms to 650 ms, as the tune
was changed to Qy ¼ 6.31, while the currents of the
selected skew sextupoles were varied shot after shot.
The losses as a function of the current configuration of
the two sextupoles are shown in Fig. 18 (centre). The
sextupole XSK10 seems to be more effective, however,
the magnets are identical so this difference is only corre-
lated to the unknown phase and amplitude of the excitation
and the locations of the sextupoles and the errors. The
configuration giving the least amount of losses was used for
the correction, i.e. powering XSK10 with 1A and XSK14
with −3A. The effectiveness of the compensation with the
configuration chosen is demonstrated by the change of the
slope in the intensity from 400 ms to 650 ms for the natural
excitation and after the correction, as shown in Fig. 18
(bottom).

APPENDIX B: CALCULATION OF RESONANCE
DRIVING TERMS FROM SPACE

CHARGE POTENTIAL

The RDTs are derived using the description and code in
[28]. This work is a generalization of the Hamiltonian
description used in [5,7,26] for any ring and any space
charge RDT or detuning term. In [26] the Hamiltonian
description is used for the derivation of RDTs of any
resonance, while the works in [5,7] study fourth order space
charge driven resonances. Reference [5] refers to the
calculation of the resonance width of the 4Qx space
charge driven resonance in the KEK Proton Synchrotron,
and in [7] the RDTs of all fourth order space charge

driven resonances in a FODO lattice with a periodicity of
24 are calculated. A short description of the derivation
follows.
The integrand of Eq. (1) can be expanded, in both x and

y, using Taylor series under the paraxial approximation and
the integral can be evaluated analytically. The analysis of
this paper focuses only on the eighth order of the potential,
which yields

Vð8Þ
sc ¼ KscðṼð0;8Þ

sc þ Ṽð2;6Þ
sc þ Ṽð4;4Þ

sc þ Ṽð6;2Þ
sc þ Ṽð8;0Þ

sc Þ;

where Ksc ¼ r0Nb

β2γ3
ffiffiffiffi
2π

p
σs
, r0 is the classical particle radius, Nb

the bunch intensity, β, γ, the relativistic factors, σs the

longitudinal beam size and Ṽðm;nÞ
sc the part of the potential of

the order ðm; nÞ in ðx; yÞ, which reads

Ṽð0;8Þ
sc ¼ ð5σ3x þ 20σ2xσy þ 29σxσ

2
y þ 16σ3yÞ · y8

6720σ7y · ðσ4x þ 4σ3xσy þ 6σ2xσ
2
y þ 4σxσ

3
y þ σ4yÞ

;

Ṽð2;6Þ
sc ¼ ðσ2x þ 4σxσy þ 5σ2yÞ · x2 · y6

240σxσ
5
y · ðσ4x þ 4σ3xσy þ 6σ2xσ

2
y þ 4σxσ

3
y þ σ4yÞ

;

Ṽð4;4Þ
sc ¼ ðσ2x þ 4σxσy þ σ2yÞ · x4 · y4

96σ3xσ
3
y · ðσ4x þ 4σ3xσy þ 6σ2xσ

2
y þ 4σxσ

3
y þ σ4yÞ

;

Ṽð6;2Þ
sc ¼ ð5σ2x þ 4σxσy þ σ2yÞ · x6 · y2

240σ5xσy · ðσ4x þ 4σ3xσy þ 6σ2xσ
2
y þ 4σxσ

3
y þ σ4yÞ

;

Ṽð8;0Þ
sc ¼ ð16σ3x þ 29σ2xσy þ 20σxσ

2
y þ 5σ3yÞ · x8

6720σ7x · ðσ4x þ 4σ3xσy þ 6σ2xσ
2
y þ 4σxσ

3
y þ σ4yÞ

;

where σx and σy are the horizontal and vertical beam sizes,
respectively.
Each of the above components of the field is Floquet

transformed using xð; yÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βxð;yÞJxð;yÞ

p
cosψxð;yÞ and

gives resonance and nonlinear detuning terms [39]. For

instance the potential Ṽð0;8Þ
sc yields the terms

V̄ð0;8Þ
sc ¼ 5σ3x þ 20σ2xσy þ 29σxσ

2
y þ 16σ3y

6720σ7yðσ4x þ 4σ3xσy þ 6σ2xσ
2
y þ 4σxσ

3
y þ σ4yÞ

· ðβyJyÞ4
1

8
· ð56 cos 2ψy þ 28 cos 4ψy þ 8 cos 6ψy þ cos 8ψy þ 35Þ;

where ψy ¼ Φy þ ϕy −Qy
2pi
C , ðJy;ΦyÞ are the action angle conjugate coordinates, ϕy the phase advance, C the

circumference of the ring and βy the vertical beta function.

The angle independent term of the potential yields the nonlinear detuning, while the angle dependent terms drive
resonances. These terms can be included as perturbations in the nonlinear Hamiltonian and the RDTs of eighth order
resonances conjugate to the action are given as
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Gð0;8Þ ¼
Ksc

16π

Z
C

0

β4y · ð5σ3x þ 20σ2xσy þ 29σxσ
2
y þ 16σ3yÞ

6720σ7yðσ4x þ 4σ3xσy þ 6σ2xσ
2
y þ 4σxσ

3
y þ σ4yÞ

· ejð8ϕyÞds;

Gð2;6Þ ¼
Ksc

8π

Z
C

0

βx · β3y · ðσ2x þ 4σxσy þ 5σ2yÞ
240σxσ

5
y · ðσ4x þ 4σ3xσy þ 6σ2xσ

2
y þ 4σxσ

3
y þ σ4yÞ

· ejð2ϕxþ6ϕyÞds;

Gð4;4Þ ¼
Ksc

16π

Z
C

0

β2x · β2y · ðσ2x þ 4σxσy þ σ2yÞ
96σ3xσ

3
y · ðσ4x þ 4σ3xσy þ 6σ2xσ

2
y þ 4σxσ

3
y þ σ4yÞ

· ejð4ϕxþ4ϕyÞds;

Gð6;2Þ ¼
Ksc

8π

Z
C

0

β3x · βy · ð5σ2x þ 4σxσy þ σ2yÞ
240σ5xσy · ðσ4x þ 4σ3xσy þ 6σ2xσ

2
y þ 4σxσ

3
y þ σ4yÞ

· ejð6ϕxþ2ϕyÞds;

Gð8;0Þ ¼
Ksc

16π

Z
C

0

β4x · ð16σ3x þ 29σ2xσy þ 20σxσ
2
y þ 5σ3yÞ

6720σ7x · ðσ4x þ 4σ3xσy þ 6σ2xσ
2
y þ 4σxσ

3
y þ σ4yÞ

· ejð8ϕxÞds;

Gð4;−4Þ ¼
Ksc

16π

Z
C

0

β2x · β2y · ðσ2x þ 4σxσy þ σ2yÞ
96σ3xσ

3
y · ðσ4x þ 4σ3xσy þ 6σ2xσ

2
y þ 4σxσ

3
y þ σ4yÞ

· ejð4ϕx−4ϕyÞds:
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