
 

Towards storage rings as quantum computers
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We explore the possible use of particle beam storage rings as quantum computers. More precisely, we
consider creating an ion trap system, in which the same computational basis states can be defined as in a
modern ion trap system, but in which the ions have a constant velocity and are rotating in a circular trap.
The basic structures that we explore are classical and ultracold crystalline beams. What we propose is a
novel method that uses the ion trap quantum computer concept, but puts the ions into a rotating frame of
reference. The benefits of this approach are discussed.

DOI: 10.1103/PhysRevAccelBeams.23.054701

I. INTRODUCTION

A particle accelerator storage ring is an apparatus that
stores charged particle beams. The beams, if not cooled,
can have very high temperatures and can be treated as
classical thermodynamic ensembles of particles confined to
some volume. When stored, either as bunches of particles
or debunched into a uniform longitudinal (temporal) dis-
tribution, the ensemble is in steady state and has constant
entropy. In general, such a beam has no specific structure
and should act like an ideal gas. However, the particles
are necessarily charged and can interact with each other
through intrabeam collisions and other phenomena. These
processes can cause beam heating, increasing the entropy.
In addition, these particle distributions do contain infor-
mation encoded into the behavior of the beams as they
traverse the electromagnetic optics that keep them confined
within the storage ring [1–4].
It has been shown that entropy and beam emittance are

closely related [5,6], so we will use the term emittance from
here on.
To bring a classical particle beam into a regime where

quantum mechanical phenomena can be observed, it
must be cooled to an extremely low temperature [7].
Conventional beam temperature for a particle beam is
defined from the rms single component momentum
deviation of the particle distribution. The four dimensional
x, px, y, py distribution, with px equal to βγm0cx0,
describes a region of space in which the particles are
confined as (u ¼ fx; yg),

ϵu ¼ 4πðhu2ihu02i − huu0i2Þ12; ð1Þ

where ϵu is the horizonal or vertical beam emittance.Wewill
call the transverse beam temperature the temperature asso-
ciated with the transverse emittance. Longitudinally, the
temperature, T, is a function of the momentum spread [8],

1

2
kBT ¼ 1

2
mðδvÞ2; ð2Þ

where δv is the spread in velocity of the ions in the beam. kB
is Boltzmann’s constant. In more practical units, temper-
atures for ion beams can be expressed as,

Tk½K� ¼ 2

kB

�
δp
p0

�
E0½eV� ð3Þ

T⊥u½K� ¼
2

kB

�
ϵu½m − rad�
hβui½m�

�
E0½eV�; ð4Þ

where Tk is longitudinal temperature, T⊥u are transverse
temperatures, E0 is the average ion kinetic energy, and hβui
are the average lattice beta functions. Typically, beam
dimensions are defined in terms of the rms value from a
Gaussian distribution.
There are two basic states of matter that can be created by

cooling the beams down to very low temperatures. The first
is a classical crystalline beam [9], which is defined, per Wei
and Sessler, to be “a cluster of circulating, charged particles
in its classical lower-energy state subject to circumferen-
tially varying guiding and focusing electromagnetic forces
and Coulomb interacting forces” [7]. The second state of
matter is an ultracold crystalline beam, or what wewill refer
to as an ion Coulomb crystal, that has been cooled to the
point where the de Broglie wavelength is greater than or
equal to the particle thermal oscillation amplitude, but not
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to the point of the Lamb-Dicke limit [10,11]. This is
something of a “Goldilocks” regime, where couplings
between internal and external quantum states are not
strongly suppressed and is well above a Bose-Einstein
condensate [10]. In this regime, thermal vibrations are
small enough to distinguish the external quantum modes of
the crystalline structure. The term, ion Coulomb crystal, is
used by some authors in the ion trap literature [12–14] and
is consistent with terms used by other authors [9,15]. We
purposely choose to use this term since we do not want to
imply that we are looking to operate in the quantum
regimes that manifest below the Lamb-Dicke limit.
There are a number of basic quantum properties in a

classical crystalline beam that may be exploited using
standard measurement techniques; the spin states of the
particles, the modes in the crystalline orbit, and the
quantization in the emittance. These quantum properties
cannot be controlled due to the high temperatures of the
beams and therefore, are not useful for computational
purposes. An ultracold crystalline beam is required in
order to access quantum properties that are useful for
computation.
Ion trap systems exploit two quantum properties of the

ions in the trap, external eigenstates, such as the axial
center-of-mass motion of the string of ions in the trap,
and the internal eigenstates of each ion in the string.
When sufficiently cooled, the string of ions in the trap
has properties that can be used to define a set of computa-
tional basis states that can be operated on using laser
excitations [10].
A significant challenge in quantum computing is con-

trolling quantum decoherence [16,17]. However, research
in ion traps has shown that quantum states in trapped ions
can persist for very long times, even on the scale of minutes
[15]. In a storage ring environment we will have to be sure
to eliminate any sources of noise and other forms of energy
that may disrupt the trapped ion quantum states. While we
see this as an interesting problem, it falls beyond the scope
of this paper. A good discussion of this topic is covered by
Wineland et al. [15]. The scaling of the number of qubits
(N), while limited mostly to internal interactions, is related
to the problem of decoherence. It has a unique temporal
component we must consider, since not all ions in the
crystalline beam can be operated on simultaneously. We
will touch on this topic a little more in Sec. VI.
The major problems seen in ion traps remain concerns

for a crystalline beam in a storage ring; spontaneous
transitions in the vibrational motion, thermal radiation,
and instabilities in various systems (i.e., laser power, rf
voltages, and mechanical vibrations).
Inside the storage ring system, groups of smaller

numbers of ions can be isolated from each other, using
longitudinal rf potentials or by separating using velocity
modulation in the cooling systems, creating isolated sets of
qubits that can be operated on independently. The idea of

such a multiplex environment, for ion traps, was discussed
by Kielpinski [18,19]. In the storage ring environment,
there is potential for multiplexing as well as an ability to
work on ions and groups of ions in parallel. A storage ring
could contain thousands of these smaller individual crys-
tals. The many small chains of ions could serve different
purposes, depending on the algorithm being employed. For
example, some ion chains could be used as quantum
memory and some could be used for other purposes, such
as for systematic analysis. Having many ions and ion
chains available opens up many possibilities. In addition,
the length of the ion chains is not limited by the scale of the
device. A chain could even wrap around and have a length
that is longer than one turn of the accelerator. While this
does not seem practical at this time, it illustrates the degrees
of freedom such a structure will allow. What we find
interesting is that having the ability to manipulate larger
numbers of ions and groups of ions opens up interesting
new questions. For example, can we entangle two inde-
pendent groups of ions? Can we create a long chain of
entangled ions and then split the chain, maintaining the
entanglement? Can we reverse that process, take two
shorter chains and connect them? Such manipulations
require control over the axial potentials used to seperate
the ions and surely raise many questions. But before we can
solve a problem, we need to raise the question and imagine
possibilities. Our discussion, for the rest of the manuscript,
will not delve any deeper into these questions. They remain
areas of research we hope to report on in the future.
There are other topics related to this work that are

beyond the scope of this paper. While we discuss the use of
various ions, our choices of ions, such as 24Mgþ and 7Liþ,
are only for illustrative purposes. It is not our intent to
discuss in this work the suitability of any particular ion for
quantum computing. We take our guidance on what is
suitable, to date, from current research in ion traps, but we
do plan to look more deeply into this topic in the future.
From the storage ring perspective, the choice of ion and ion
velocity is a design constraint, only. We also do not go into
the details of how to cool the ions to the sufficient degree
required for quantum computing. We assume that what has
been achieved in ion traps will be a guide to future research
and take current ion trap research as proof that the required
conditions are possible, for given ions. We understand we
need to prove that we can achieve these conditions in a
storage ring environment. This is, in fact, one intent of this
paper, to put forward a concept that will motivate and start a
discussion on methods to cool beams into the micro-Kelvin
regime.
While we briefly discuss other storage ring approaches,

our main focus is on circular radio frequency quadrupoles
[20] (CRFQ) using nonrelativisitic, singly positive charged
ions. This leads to many questions and potential issues, but
we assume low intensity beams only, ignoring any space
charge effects, and do not consider any other interactions,
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such as beam-gas, electron capture, or dissruption from
thermal photons. All of these topics are discussed in other
papers [9,21] and while they create constraints on the
parameter space, we prefer to keep the discussion focused
on a basic design that could act as a starting point for
further analysis.
Finally, we intentionally are trying to keep our discus-

sion as simple as possible. We do not consider complex ion
chains, but only describe linear, one dimensional chains of
ions. We do not consider nonlinear optical effects or
coupling. We do not discuss ion loss mechanisms and
methods for reloading or replacing lost ions. For simplicity
we assume the storage ring is filled to some well defined
extent and that fill lasts long enough to be useful for a
practical amount of computational work.

II. RELATED WORK

In the field of accelerators and beams, the concept of
building a quantum computer using a particle beam storage
ring is novel and has never been attempted. There has been
extensive study of quantum effects in particle beam
dynamics, which we will describe in the next sections.
The creation of crystalline beams has been studied since the
1980s. Such beams represent a new state of matter that has
not been extensively studied experimentally.
In the field of quantum computing, there are many

technologies being studied as platforms for quantum
computing, each of which have their own challenges and
limitations. It is generally expected that a practical quantum
computer be something that is scalable, have means for
initializing qubits, allow operations within decoherence
times, have methods for a universal set of operations, and
allow qubits to be easily read [22].
It is worth noting that in the field of quantum computing,

increasing the number of qubits is not necessarily going to
lead to greater computational efficiency or linear scaling.
This is especially true if one is fighting decoherence or
looking to find ways to “hold” quantum states (e.g.,
quantum cavity). The number of qubits defines the dimen-
sionality in a Hilbert space representing all the possible
states in the quantum system. How to manage the computa-
tional efficiency with large N needs to be understood.
Quantum computers that might be compared to a storage

ring system would be those that attempt to operate at the
atomic level. A trapped ion quantum computer will confine
ions or other charged particles in some free space using
electromagnetic fields [10,23]. The qubits are the quantum
states associated with each ion. Ion trap systems are
scalable, in principle, and hold much promise as quantum
computing systems. A storage ring system is very similar to
an ion trap. A significant difference is the particles will be
confined into a circular electromagnetic guide. Storage ring
ions will have finite average velocities, although velocity is
a free parameter that can be optimized. Ions in a storage
ring can be entangled, as they can in an ion trap. Another

type of system is nuclear magnet resonance (NMR)
quantum computing [24,25], which has been explored
experimentally and is the first system to demonstrate
Shor’s algorithm [26,27]. However, NMR systems have
not been shown to scale beyond a few qubits [28]. A recent
survey of quantum computing technologies was explored
by Gyongyosi and Imre [29].
A number of groups are researching ways to scale and

overcome the difficulties of working with and controlling a
large number of ions. In our work we propose the idea of
placing chains of ions into individual bunches, separated,
for example, by some rf potential. Some groups are looking
at ways of managing despite the problems with controlling
a large number of ions. For example, work has been done in
understanding transverse vibrational states as opposed to
using longitudinal vibrational states to enable quantum gate
operations [30].

III. CLASSICAL CRYSTALLINE BEAMS

A classical crystalline beam is formed by cooling [31]
the beam sufficiently to a point where the charged particles
“lock into” a structure in which repelling Coulomb forces
balance against external forces. This transforms the basic
ideal gas particle beam distribution into a new form of
matter [32,33], a chain of particles locked into a sequence
in much the way atoms get locked into a lattice in a crystal.
These types of beams have been extensively studied
theoretically [34,35] and to some extent experimentally
[36–38].
The separation of the particles in a crystal scales on the

order of ν−2=3eff ξ, where ξ is called the characteristic distance,

ξ ¼ ðq2r0ρ2=Aβ2γ2Þ1=3; ð5Þ

where q is the charge, A is the atomic number, r0 is the
classical particle radius, ρ is the average bending radius in
the storage ring lattice, β; γ are the relativistic factors, and

ν2eff ¼ minðν2y; ν2x − γ2Þ; ð6Þ

where νx and νy are the betatron oscillations resulting from
the focusing structure of the accelerator, in the horizontal
and vertical planes, respectively. Note that this scaling is
just a rough estimation of the distance between the ions of
the crystal. A more precise description of the crystal
structure will be discussed later, using the Wigner-Seitz
radius, which defines the density of the crystal based on the
secular motion of the ions in the crystal.

IV. ION COULOMB CRYSTALS

To control the state of the ions in a classical crystalline
beam would be difficult, since the standard methods,
developed for ion traps, require the vibration states of
the ions to be very small.
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The de Broglie wavelength of a high energy particle is

λdb ¼ ℏ=p⊥ ≤ λc

ffiffiffiffiffiffiffi
β

γϵn

s
; ð7Þ

where λc ¼ ℏc=mc2 is the Compton wavelength. The de
Broglie wavelength, in the beam rest frame, when equal to
the highest phonon frequency, maxðωphÞ ¼

ffiffiffi
2

p
γωβ marks

the point in which external quantum modes become
observable and vibration states become small enough that
internal quantum states can be manipulated.

ℏ
2
maxðωphÞ ≈

kBT
2

: ð8Þ

The beam cooling systems, to get beams to this state, will
need to bring the temperature down by as much as an
additional factor of 104 (e.g., from 100 mK to 10 μK.) To
cool beams down to this level may require additional
systems that remove all sources of noise that can add heat to
the beams, such as cryogenically cooled beam pipes and
vibration compensation systems. Most importantly, though,
the lattice structure of the accelerator will need to be
carefully designed to reduce large perturbations that may
disrupt the crystalline beams or make it too difficult to
reach the right conditions for creating ion Coulomb
crystals.
An ion Coulomb crystal can be described, in a classical

sense, as a string of charged masses acting as simple
harmonic oscillators. Such a structure can be described in
one dimension as masses coupled by springs, where the
motion is small compared to the distances between the ions
and so the spring coefficient, mω2

0, is taken as constant.
Here, ω0 is the fundamental frequency for the chain of ions
and is a function of the Coulomb and other potentials
holding the ions in the chain. In this case, the motion is seen
as modes in the axial motion of the ions. Looking at it in
three dimensions [30], where we have N independent
harmonic oscillators each of charge þ1 and mass m, the
Hamiltonian can be expressed as

H ¼
X
u

XN
j¼1

p2
u;j

2m
þV; where V ¼ V trap þVCoulomb ð9Þ

where u ¼ fx; y; zg. The masses and charges of each ion
are identical. The potential is the sum of applied voltages
and the Coulomb potential of the adjacent ions, or,

V ¼m
2

XN
j¼1

ðω2
xx2j þω2

yy2j þω2
zz2jÞ þ

X
n;j

e2

4πϵ0rn;j
ð10Þ

where rn;j is the distance between ions n and j and ωu is the
center of mass frequency (of the system) along the u

direction. We define d to represent a unitless scale length,
dn ¼ z0n=l, where l3 ¼ e2=ð4πϵ0mω2

zÞ. The potential can be
expanded out as a Taylor series, where the first order is zero
(by definition) and the second order represents a harmonic
approximation of the potential seen by the ions.

V ¼ 1

2

X
ξ;n;j

qξnq
ξ
j

� ∂2V
∂ξn∂ξj

�
ξn¼ξ0n

ð11Þ

where we are expanding around the ion equilibrium
positions, ξ0n ¼ ðx0n; y0n; z0nÞ, such that ξn ¼ ξ0n þ qξn, qξn
representing the position of ion n in the direction ξ. The
potential can now be written as,

V ¼ mω2
z

2

X
ξ;n;j

Aξ
n;jq

ξ
nq

ξ
j ð12Þ

where,

Aξ
n;j ¼ β2ξ þ

XN
p¼1;p≠j

aξ
jdj − dpj3

for ðn ¼ jÞ ð13Þ

Aξ
n;j ¼

−aξ
jdj − dnj3

for ðn ≠ jÞ ð14Þ

and,

βξ ¼
ωξ

ωz
; ax ¼ ay ¼ −1; and az ¼ 2 ð15Þ

the eigenfrequencies are

ωξ;k ≡
ffiffiffiffiffiffiffi
λξ;k

p
ωξ ð16Þ

and eigenvectors bξ;kj are obtained from diagonalization of

Aξ ¼ ½Aξ
n;j�. Then,X

n

Aξ
n;jb

ξ;k
n ¼ λξ;kb

ξ;k
j ð17Þ

substituting,

qξjðtÞ ¼
X
k

bξ;kj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2mωξ;k

s
ðaξ;k þ a†ξ;kÞ ð18Þ

then,

H0 ¼
XN
j¼1

ℏωj

�
a†jaj þ

1

2

�
; ð19Þ

where the annihilation and creation operators for the jth
phonon mode, a†j and aj, are a function of the mass and
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charge of the ions and the potential constraining the ions in
the chain. In this case, the quantized vibrational energy per
mode n, is

En ¼ hnjH0jni ¼
�
nþ 1

2

�
ℏω0: ð20Þ

These phonon modes are extremely important in estab-
lishing a quantum gate. The ions in the chain form
individual qubits, and the quantized phonon modes provide
an additional quantum bit common to all the ions, and thus
serves a special purpose for quantum logic operations that
can be used to entangle the qubits. This is discussed further
in Sec. VI D.
What is clear is that as the number of ions increase, the

number of modes also increases. An ensemble of ions of
size N þ 1 has 3N þ 3 motional degrees of freedom, so as
N become large, cooling and controlling the chain becomes
very difficult. However, in a storage ring, we can imagine
isolating two small ensemble of ions, cooling them inde-
pendently, and then adiabatically merging the two chains,
each already in a ground state. This illustrates one of the
ways a storage ring system could build up larger chains
of ions.

V. EXAMPLE OF CRYSTALLINE ION BEAMS

A practical example of a storage ring for crystalline
beams was explored using the PAul Laser cooLing
Accelerator System (PALLAS) at LMU Munich [37–39].
In the PALLAS experiments, they observed 24Mgþ ion

beams with βc ≈ 10−5 c transition into a crystalline state
for both coasting beams and bunched beams [40]. The
issues in controlling and maintaining the crystalline struc-
ture [41] were related to the modulation of the beam
envelope due to the AG fields and velocity dependent shear
forces. They observed that the coupling driven by the
transverse motion into thermal motion set an upper limit to
the confinement strength. This limit was observed to be a
factor of three greater than the criterion that the lattice
periodicity be greater than 2

ffiffiffi
2

p
νeff . For their choice of ions

and rf parameters, the ratio of the periodicity to the tune
was over 11 and independent of the beam velocity
(although, as will be seen below, both the periodicity
and tune are each velocity dependent.)
An interesting observation is the effect of velocity

dependent shear forces on crystal formation. In principle,
if we could achieve the same normalized phase space for
higher velocity ions that were achieved for lower velocity
ions, then the temperature of the beam should be constant.
Velocity dependent shear is a unique feature of a CRFQ
structure, since the particles at low velocity are well
confined by the transverse rf field. Intuitively, as the
velocity increases, off momentum particles will have larger
deviations from the design orbit if the rf frequency and

voltage are fixed. This can be expressed quantitatively as a
velocity dependence on the dispersion. Even for a constant
temperature beam, the increase in dispersion means there
will be larger orbit deviations for off momentum particles.
Ion trap systems work within a regime in which center-

of-mass vibrational degrees of freedom (phonon states) can
be operated on as a computational basis of states [10]. Ion
trap systems also slow ions down to a point in which each
ion is vibrating in a fixed spatial region in the chain of ions
in the trap [15]. For a storage ring system, we would
establish a similar state, but in a rotating frame. The crystal
would rotate at a fixed frequency with all ions vibrating
within a small region of space in that frame. This means the
spacing of the ions would be fixed and stable, to a level that
a set of laser systems, for example, could excite internal ion
states and external crystal states.
PALLAS and S-LSR [42] were two facilities that have

studied crystalline beams and explored what conditions are
best for creating this state of matter for those given lattices.
They did not explore ultracold Coulomb crystalline beams.
The PALLAS ring was a CRFQ (circular radio frequency

quadrupole) ring [43]. In the following, we will mostly
follow the formalism adopted by Schramm and Habs [21].
The azimuthal motion of the ions is an angular pre-

cession at the frequency,

ω0 ¼ βc=R; ð21Þ

where R is the radius of curvature of the ring. The
alternating focusing period is L ¼ βλ, where λ ¼ c=frf
is the rf field wavelength and β is the relativistic factor.
Transverse motion in a rf quadrupole ring, when the
bending radius is much larger than the aperture, can be
described using the equations of motion for a linear rf
quadrupole trap, where the periodicity is a function of the
velocity,

P ¼ C
L

ð22Þ

where C ¼ 2πR and L ¼ v0=frf . The rf quadrupole con-
figuration has an electric potential,

Φðx̂; ŷ; ẑÞ ¼ Φ0ðtÞ
2r0

ðx̂2 − ŷ2Þ; ð23Þ

where an alternating potential is applied as,

Φ0ðtÞ ¼ Udc − Urf cosðΩtÞ; ð24Þ

whereUrf is the rf voltage andΩ is the rf angular frequency.
The equations of motion can be written in canonical form of
a linear differential equation with periodic, variable coef-
ficients (Mathieu’s differential equation) [21],
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d2u
dξ2

þ ½bu − 2qu cosð2ξÞ�u ¼ 0 ð25Þ

where,

bu ¼ bx̂ ¼ −bŷ ¼
4eUdc

mΩ2r20
; ð26Þ

qu ¼ qx̂ ¼ −qŷ ¼
2eUrf

mΩ2r20
; ð27Þ

and,

ξ ¼ 1

2
Ωt: ð28Þ

We will return to the value of q, which represents the ratio
of the potential to the kinetic energy of the driven motion.
The stable motion in the transverse directions can be
described by the secular frequency,

ωsec;u ¼ βuΩ=2: ð29Þ

The value of βu depends on the trap parameters, qu; bu,
where we choose to be in a region of weak confinement
(q ≪ 1 and b ≤ q), where only the first term in the series of
harmonics of the driving frequency dominates, so

ωsec ≈ qΩ=
ffiffiffi
8

p
: ð30Þ

For axial confinement in a storage ring, a potential is
applied to ring electrodes or by using biased sections at the
ends of the quadrupole electrodes,

Φzðr; zÞ ¼
κUend

r20

�
z2 −

r2

2

�
ð31Þ

where κ is a constant based on the geometry.
Given this description of a CRFQ storage ring, simple

parameters can be defined that describe the general motion
of the ions. The phase advance per cell, in this structure, is

μ ¼
Z

zþL

z

1

ωðsÞ ds ¼
L
ω̄2

¼ 2π
L
λβ

; ð32Þ

where a smooth approximation is assumed in which the
variation of the beam envelope over one focusing cell is
small and the amplitude function, ωðzÞ can be approxi-
mated by a mean value ω̄ and a small modulation (the
micromotion in the rf driven system). The micromotion
corresponds to an oscillation with a short wavelength of the
focusing section,

L ¼ βλ ¼ 2πv0=Ω ð33Þ

where the secular motion is defined as,

ωsec ≡ ωβ ¼ 2πv0=λβ: ð34Þ

λβ is the betatron wavelength. The beta-function and
dispersion function can be exactly replaced by their
mean values, for λβ ≫ L. For a storage ring rf quadrupole,
there is a set of simple relations for describing the lattice
structure [21].

Periodicity P ¼ C=L

Tune Q ¼ C=λβ ¼ ωsecC=2πv0
Beta-function β0 ¼ R=Q ½m�

phase ϕðzÞ ¼ Qz=R

dispersion D0 ¼ R=Q2 ½m�
momentum compaction α ¼ D0=R ¼ 1=Q2

transition energy γtr ¼ Q

ð35Þ

The PALLAS ring was a “table-top” size accelerator,
with a radius, R0 ¼ 57.5 mm. For 24Mgþ beams with
velocities v0 ¼ 1000–2500 ½m=s�, it had cell lengths,
L ¼ 0.16–0.4 ½mm�, respectively, and periodicities,
P ¼ 2272 − 910, respectively. In this range the tunes are
on the order ofQ ≈ 60 and dispersionD0 ≈ 1.6 × 10−4 ½m�.
The periodicity was well above the criterion of P >
2

ffiffiffi
2

p
νeff for the formation of crystalline beams. The

CRFQ ring leads to a highly symmetric lattice with smooth
field variations and, experimentally, was effective in
creating crystalline beams. However, they were not able
to store beams below v0 ¼ 800 ½m=s�. This was due to
residual modulation of the potential seen by the ions in the
ring. Such small potentials could come from small traps in
the vacuum chamber (a change in impedance) or charge
buildup on viewports. The scheme for acceleration
depended on ions remaining trapped in rf potential wells
while initial interaction with the laser beam was performed.
Ion velocities were controlled using the counterpropagating
laser beam kept at a fixed frequency.
The S-LSR ring was a geometric AG storage ring with a

circumference of 22.557 m. It was built for the purpose of
studying methods of cooling ion beams. Such a structure
suffers from “shear heating,” in which momentum
dispersion in the bending magnets causes angular velocity
differences among the ions with different energies. The S-
LSR group studied this problem in great detail. Two
approaches can be used to suppress the shear. A tapered
cooling system using a Wien filter will enable cooling to
take place in a lattice with finite dispersion. Another
approach is to adopt a lattice with no linear dispersion
using a dispersion suppression system. Such a system
creates a cross-field of magnetic and electric fields. An
electric field from a cylindrical electrostatic deflector is
superimposed with the magnetic field, enhancing the radial
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focusing. By adjusting the focusing, the linear dispersion
can be suppressed throughout the lattice.

VI. A STORAGE RING QUANTUM COMPUTER

Cooling a beam in a storage ring into the quantum
regime has never been done. Most systems have studied the
cooling of beams with fairly high velocities. Ion traps cool
beams to stationary steady states.
One important condition is to ensure that for the

ensemble of ions the ratio of the energy of the mutual
Coulomb repulsion to the thermal energy is high enough
that we can establish the condition of Eq. (8). If we express
this using the unitless plasma parameter [21],

Λp ¼ 1

4πϵ0

e2

awskBT
ð36Þ

where, aws is the Wigner-Seitz radius,

aws ¼
�

1

4πϵ0

3e2

2mω2
sec

�
1=3

; ð37Þ

and ωsec is the secular frequency of the beam, given by

ωsec ¼
2eUrfffiffiffi
8

p
mΩr20

; ð38Þ

then we can see that, in addition to cooling to a low
temperature, this suggests we use a beam with lower mass
ions at a high rf potential, to make Λp as large as possible.
To create the ion Coulomb crystal, the temperature needs

to be lowered to the point that thermal vibrations are small
compared to the quantum phonon modes for the crystal.
If we treat the crystal as just a chain of ions with
equilibrium spacings of a, the only force the ions see from
each other is from the Coulomb potential of the neighbor-
ing ions. The potential seen by two adjacent ions separated
by 10 μm is on the order of 3 × 10−4 eV. This Coulomb
potential energy is what determines the spring constant,
K ¼ ðd2U=dr2Þr¼a ¼ mω2

0, between the ions that deter-
mines the axial phonon modes for the crystal. In a classical
treatment, the angular frequency for the phonon modes is,

ωph ¼
ffiffiffiffiffiffiffi
4K
m

r
sinðka=2Þ: ð39Þ

Here, k is the wave number k ¼ 2π=λ, and ωph is a periodic
function of k, symmetric with respect to k and −k with its
first period between k ¼ −π=a and k ¼ π=a. The maxi-
mum frequency will correspond to when sinðka=2Þ ¼ 1.

maxðωphÞ ¼
ffiffiffiffiffiffiffi
4K
m

r
ð40Þ

If we use the Coulomb potential, with ion spacings of
10 μm, we see that for the 24Mgþ crystalline beam,
maxðωphÞ ≈ 3 MHz.
It is important to note that there remains a dispersion to

the spatial proximity of each ion in the crystal [10],

Δzcm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2Nmωph

q
: ð41Þ

Returning to Eq. (8), we know that temperature is
directly proportional to the momentum spread in the beam
and the average kinetic energy of the beam. We now have
an estimate for what temperature is needed in order to
create an ion Coulomb crystal, given the value of maxðωphÞ
for a beam with a ¼ 10 μm. The corresponding temper-
ature is on the order of 2.3 × 10−5 K. This sets the scale
for the range of values for δp=p0 and the velocity of
the ions. From Eq. (3), we see that the product
ðδpp0

ÞE0 ¼ 2.3 × 10−5=2.32 × 104 ≈ 1 × 10−9. A beam with
E0 ¼ 1 ½eV�, corresponding to a velocity of 2818 m=s,
would have to be cooled to have a δp=p0 ¼ 1 × 10−9,
which is very challenging [44]. However, a beam with
E0 ¼ 10−4 ½eV�, with a velocity near 28 m=s, would have
to be cooled to have a δp=p0 ¼ 1 × 10−5. So, making the
beam energy as low as possible seems to improve the
ability to reach the low temperatures needed to make an ion
Coulomb crystal. We do not mean to overemphasis the
importance of the ion’s kinetic energy in relation to cooling.
Our simple observation is that in ion traps, where ions are
stationary, very low temperatures have been achieved,
while for higher energy ions, such as in the PALLAS
experiments, success was limited to some range of ion
velocities. We do not think this is a fundamental limitation,
but a result of choices in a complex parameter space.
In Table I, we have gone through a simple exercise, to try

and understand how to develop parameters that will create
an ion Coulomb crystal. The assumption is we can cool the
beams to a level where the δp=p is 10−7. For this exercise
we recalculate the parameters for a PALLAS-like ring to

TABLE I. Parameters needed to create an ion Coulomb crystal
in a circular rf quadrupole for three different types of ions, where
we assume cooling has achieved δp=p ¼ 10−7, all with a
C ¼ 1 m ring.

Parameter 24Mgþ 9Beþ 7Liþ Units

vmax 276 580 700 m= sec
frf 6.3 12.6 12.6 MHz
L 43 46 56 μm
P 22826 21650 17950
Q 1963 1257 1340
D0 4.1 × 10−8 1: × 10−7 8.9 × 10−8 m
Tmax 22 37 42 μK
maxðωphÞ 3. 4.8 5.4 MHz
Λp 83140 44290 42560
Δzcm;max 5.7 7.3 7.6 nm
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have a circumference of 1 m. There were two basic
constraints we applied; that the value of P=Q be greater
than 8.5 and the achieved temperature would be equal to
that corresponding to the maximum phonon frequency.
This maximum temperature we correlate to a maximum
velocity of the beams, although we note that this is just as a
point of reference. We also note that by increasing the
circumference of the ring from 0.36 m to 1 m, we reduced
the average dispersion by 1=0.36. We have already seen that
the dispersion is velocity dependent, and this can constrain
the ability to create crystals due to the larger orbital
excursions of off momentum particles.
As a matter of reference, PALLAS experiments were

able to cool beams down to the Doppler limit (for their
parameter space), to a temperature of< 3 mK and achieved
a Λp ≈ 500.
In Fig. 1 we look at the range of rf frequencies and

voltages that must be considered to create the conditions
for an ion Coulomb crystal, in the case of 7Liþ with
v0 ¼ 100 m=s, for the C ¼ 1 m ring. Since we know from
the PALLAS experience that P=Qmust be greater than 8.5,
we see that any set of (frequency, voltage) values must fall
in the range above the solid black line.
In Fig. 2 we show the surface of values for the Wigner-

Seitz radius, for the same range of frequencies and voltages,
again for 7Liþ ions with v0 ¼ 100 m=s. As a reference, a
dashed line is shown where the radius is 10 μm and a line is
drawn showing where the corresponding values of
P=Q ¼ 8.5. These are the first set of constraints that will
apply to the design of the storage ring.
Another parameter that affects the crystalline structure is

the amount of transverse spread in the motion of the ions.

This can be expressed as a focusing apparent plasma
parameter,

Λapp;f ∝
P2

λQ2
: ð42Þ

As with Λp, the larger this number the better the conditions
are for an ion Coulomb crystal. So, this suggests a larger
frf , larger r0, and smaller Urf are preferred. There is an
obvious trade-off required on finding the optimal rf voltage.
But, as seen in Fig. 2, pushing voltage too low or frequency
too high will result in larger values of the Wigner-Seitz
radius (lower density ion Coulomb crystal).
In Fig. 3 we show the surface of values for the plasma

parameter (log10Λp is what is plotted) as a function of
momentum spread and rf voltage at an rf frequency of
12.6 Mhz. Drawn on the figure is the contour for
Λp ¼ 40; 000, above which is where ion Coulomb crystals
useful for quantum computing would form. For the v ¼
100 m=s ions we can see the range of δp=p must be less
than 10−5. The lower the voltage the more cooling that is
needed.
Finally, the PALLAS results showed that velocity de-

pendent shear was what limited the formation of crystalline
beams at higher velocities. Again, this can be expressed in
terms of an apparent plasma parameter,

Λapp;s ∝
Q2

λ
: ð43Þ

This is quadratically dependent on velocity and the radius
of the ring, improves quadratically with increasing rf

FIG. 1. The surface of values of P=Q for a range of rf frequencies and voltage for 7Liþ ions with v0 ¼ 100 m=s, r0 ¼ 2.5 mm, and
C ¼ 1 m.
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voltage and frequency, and improves with smaller aperture.
We already explained how off momentum orbital excur-
sions are a function of velocity dependent dispersion. Now
we can see that maximizing these plasma parameters is
basically a method for minimizing those excursions and we
can see how this can be done for a given ion velocity.
In Fig. 4 we show the surface of values for the apparent

plasma parameter (log10Λapp;s is what is plotted) as a
function of ion velocity and rf voltage, for the same
parameters as in Fig. 3. For the 7Liþ parameters in
Table I, the value of Λapp;s is about 75,000. For reference,
a line was drawn on Fig. 4 showing where this value lands
on the surface.

Overall, what the PALLAS experience suggests is that to
get to the quantum regime for crystalline beams in a CRFQ
structure, use of low mass ions, such as 7Liþ or 9Beþ, at low
velocities (e.g., 1≲ v ≲ 100 ½m= sec�) may be important.
The laser cooling will need to reduce the δp=p to less than
10−5. However, these parameters need to be studied much
more carefully, since many other factors play into the
choice of ions and velocity. While the experimental
evidence from PALLAS shows limitations in the range
of velocities, more studies are needed to better understand
these limits. We know that for higher velocities, we need to
remain in the Mathieu’s region of stability [21] (we simply
run into limitations for a structure that uses only electric

FIG. 2. The surface of values of Wigner-Seitz radii for a range of rf frequencies and voltage for 7Liþ ions with v0 ¼ 100 m=s.

FIG. 3. The surface of values of the log10Λp versus momentum spread and voltage for 7Liþ ions with v0 ¼ 100 m=s, at
frf ¼ 12.6 Mhz.
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fields.) But, even keeping the parameter space as simple as
possible and assuming we can scale higher by employing
magnetic bending (ignoring space charge, intrabeam scat-
tering, and other effects), can we scale up in velocity while
maintaining the crystal structure? At lower velocities, can
we develop an extremely low impedance ring and find ways
to prevent or control unwanted potentials from building?
The choice of ions involves consideration of the laser

frequencies and power, coherence times for given excita-
tion states, and other considerations. So while 7Liþ is a
desirable choice from the point of view of its low mass, the
excitation states are not in a convenient range, making it a
less than optimal choice.
Experience with ion traps has shown that achieving a

maximum switching rate for quantum computing, which is
limited by the frequency and duration of the laser pulses,
carefully configured to rotate an ions internal state without
affecting the center-of-mass motional state, places further
constraints on the system. Consider that the extent of the
ground-state vibrational wave function, Δzcm, is limited by
the number of ions being acted upon, or,

Δzcmkz ¼
�
ℏk2cos2ðθÞ
2Nmωz

�
1=2 ≡ ηffiffiffiffi

N
p : ð44Þ

Here, kz ¼ k cosðθÞ is the wave vector component along the
z direction in the trap and η is the Lamb-Dicke parameter
for a single trapped ion. This can be expressed in terms of
the energy of the recoil of an ion after emission of a single
photon,

η ¼ cosðθÞðER=ℏωzÞ1=2; ð45Þ

where ER ≡ ðℏkÞ2=2m. The value for η is a function of the
vibrational states (through ωz) for the harmonic motion of

the trapped ion. Since the ions are trapped in both radial and
axial directions, there is a Lamb-Dicke parameter for radial
confinement and a parameter for axial confinement. Radial
confinement in a trap is stable as long as there is a balance
between the potential and kinetic energy of the driven
motion (q from Eq. (27) is less than 1). Radial micromotion
has a velocity amplitude that is a function of this ratio and
the distance particles deviate from the central axis. The
Lamb-Dicke parameter for radial motion, is

ηr ¼
�
2

ffiffiffi
2

p
ERk2r20
eUrf

�
1=4

ð46Þ

To establish a stable chain of ions, the radial confinement
must be stronger than the axial confinement, requiring ηr to
be much smaller than 1. Likewise, axial confinement must
be balanced and is controlled with a longitudinal potential.

A. Detailed considerations

From a practical perspective, the storage ring needs a
location for injection of the ion beam, locations for beam
cooling, locations to read and write the qubits, locations for
diagnostic instrumentation, and locations to apply rf for
axial confinement.
To achieve ultracold crystalline beams, we want to avoid

large sudden transients in the magnetic field lattice, as the
ions circulate in the storage ring. So, the lattice should be
highly repeatable with no straight sections (e.g., no missing
dipole sections). A highly symmetric lattice, as with the
CRFQ, is required.
Use of longitudinal laser cooling has had success in ion

traps. Transverse cooling through coupling has had some
success, as well. Doppler cooling is limited by the Rabi
frequency for the resonant excitation, which depends on the

FIG. 4. The surface of values of the log10 Λapp;s versus velocity and voltage for 7Liþ ions with frf ¼ 12.6 Mhz.
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transition linewidth, excitation intensity, and the wave
vector. So, another cooling system is needed, such as
Raman transition cooling, to get to very low temperatures.
For a quantum computer we would stay above the Lamb-
Dicke limit, which will influence the amount of coupling
between the internal quantum states and center-of-mass
motion external quantum states [15]. Electron and laser
cooling are highly efficient for longitudinal cooling, but
additional systems are needed to achieve transverse cool-
ing. A number of methods can be found in the literature, but
given the range of parameters we have considered, so far,
all that is clear is we need to research this more deeply. As
an example, we note Eschner, Appasamy, and Toschek’s
research into the use of null detection in ion fluorescence
has been investigated as a way to employ stochastic cooling
of trapped ions [45]. This may not be practical in our case,
but shows the creative methods people are developing.
Employing a system for pre-cooling before injection

may prove useful, since it would enable making a finer
momentum selection during injection. One method is to use
a Zeeman slower/decelerator [46], where a magnetic field
can change the resonance frequency using the Zeeman
effect (splitting the spectral lines) to compensate for the ion
momentum falling out of resonance with the optical
pumping. This does have the effect of lowering the velocity
of the ions.
Cooling crystalline beams as they approach a more

ordered state becomes progressively more difficult.
Using sympathetic cooling or coupling through a syn-
chro-betatron resonance also is problematic as the beams
approach the crystalline state [7]. Tapered cooling is one
method that could provide effective 3D cooling. This
method provides ions with a constant angular velocity,
by causing momentum to be a function of radial displace-
ment [47]. Tapered cooling and Wien filters are an area of
active research [48].
A few other considerations, that are beyond the scope of

this paper, but worth mentioning here, include, heating
rates and how they depend on various parameters (e.g., is
heating a function of velocity? why?), parameters that
determine the laser focus (e.g., overlap of ion trajectory to
laser line of sight), and methods to control or limit the
transverse and longitudinal coupling.

B. Timing and synchronization

Ion crystals in an ion trap are stationary, except for the
small motion due to dispersion. A unique feature of a
storage ring approach is the ions are moving. As seen in
Table I, given the maximum velocities for establishing an
ion Coulomb crystal, each ion will traverse the circum-
ference of the ring in roughly 1.5 msec to over 3 msec. If we
assume that a single set/read operation on a qubit can take
place in 10 μ sec, then in the storage ring an ion will still
travel many millimeters in the time of a single set/read
operation. This may seem to be a problem. However, since

we have a ring, and can place laser beams anywhere we
want, we can be exciting a large number of ions simulta-
neously or the same ion by a well-defined sequence. We
could even design clever mirror schemes, perhaps with
rotating mirrors, to keep the laser pulse on an ion as it
travels past. Techniques to track the ions are already
employed in ion trap systems, since they have to excite
all the ions in the trap. The fact that the ions in a storage
ring are moving means we do have to synchronize the laser
pulses to the arrival of the ions. If we sequence the laser
pulses, we can drive the qubit throughput much higher,
taking advantage of parallelism in the laser arrangment.
As a simple example, if we have a 1 m ring filled with

100,000 ions, with 10 μm spacings and v ¼ 100 m=s, a
laser pulse would have to track an ion over 1 mm to provide
a uniform 10 μ sec pulse of radiation. If we cleverly
distribute 1000 laser pulses around the ring, we can easily
imagine exciting 1 million qubits per second. Since
coherence times much greater then 1 sec are well estab-
lished, it is clear that all ions in the ring can be operated on
while maintaining the 1 Mqubit= sec rate. Of course, this is
with all practicalities aside. It does demonstrate, though, the
potential of such an approach.
As already mentioned, we do have to be concerned with

maintaining the coherence of the quantum states of the
ions. A given ion may be set to a particular state but then
may be ignored for a long period of time while other ions
are being operated on. There will always be far more ions
than lasers to set and read the states. It is always possible
that something will disrupt the quantum state. This is
analogous to a classical bit being upset by some external
noise or radiation. While we offer no solutions here, we
recognize that fault tolerance and error correction methods
need to be developed to ensure the integrity of the quantum
bits, just as such methods had to be developed to ensure the
integrity of classical bits. This is a very active area of
research [49–51] that we will pay close attention to as we
develop a storage ring system. We note, though, that
according to the quantum fault-tolerance theorem [52],
as long as physical error rates are below a threshold,
quantum error correction schemes can be used to suppress
the logical error rate, enabling reliable computation. The
basic idea is to correct errors faster than they occur.
However, practical approaches suggest far more qubits
are needed for the error correction than the actual compu-
tation (on the scale of more than 1000:1).

C. Cooling constraints

Two constraining parameters will determine the effi-
ciency of the storage ring as a quantum computer, switch-
ing rate and number of ions in the ion string (which has an
effective mass, Nm).
As mentioned above, switching rate has to do with how

the ion trap information is processed, through the use of
laser pulses at a set frequency and for a set duration. In the
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case of an ion trap, the ion vibrational states have spatial
extents with a probability distribution that depends on the
standard deviation of those vibration amplitudes [Eq. (41)].
Vibrational state changing transitions are a function of this
probability distribution as well as 1=

ffiffiffiffi
N

p
[Eq. (44)], since

the string is moving as a single mass and must obey
conservation of angular momentum.
The most common and simplest type of laser cooling is

Doppler cooling for free ions. In this process photons excite
transitions that bring the ion’s internal state back to the
ground state. With continued excitations, on average the
vibrational quantum number is reduced. What is important
for this discussion is to note that in ion traps, only a single
ion is operated on by the laser. The string of ions in the trap
are all being influenced, since they are coupled through the
Coulomb force. In a storage ring we can use laser cooling to
control independent strings of ions or to explore cooling
very long strings of ions. As we mentioned in Sec. IV, since
the longitudinal potentials can be operated using different
frequencies we can also explore isolating chains of ions and
then adiabatically merging the chains to create longer
chains. Such rf harmonic gymnastics are routine in storage
rings but not possible in a linear ion trap. Of course, doing
this without heating the beam will be a technical issue.
A number of other cooling methods may improve on the

ability to control the temperature, but a detailed survey of
methods goes beyond the scope of our discussion. Methods
of interest include sympethetic cooling, Sisyphus cooling,
and Raman sideband cooling [53,54]. A significant chal-
lenge is transverse cooling. In an ion trap it is possible to
use techniques such as optical molasses [55], to cool all
degrees of freedom of the ions motional states. In a storage
ring the ions are in the field of the lasers for a relatively long
distance, longitudinally, but for transverse cooling the laser
fields would have to track with the ion’s longitudinal
motion. Exposing the transverse motion to the longitudinal
laser is also not very effective since the cooling will be
reduced by the ratio of v2u=v2 ≈ θ2, where θ is the angle in
some chicane, for example, that exposes the transverse
velocity component. However, a number of methods have
been published that can be explored, such as through
dispersive coupling [31,56].
Raman cooling may be effective, as long as the ions are

not too high in energy (v=c ≪ 1). Raman transitions are
induced by simultaneous absorption and stimulated emis-
sion using two different lasers. For laser frequencies, ωL1
and ωL2, where ωL2 is in the same direction as the ions
trajectory, the condition for coherent resonant excitation
is [55],

ðωL1 − ωL2Þ þ
vion
c

ðωL1 þ ωL2Þ ¼ ω12; ð47Þ

where vion is the ion’s velocity and ℏω12 is the energy
difference between the two quantum levels. This process
has a very narrow line width and so the laser parameters

must be swept in some manner to cool the entire collection
of ions. The technique only operates on ions outside of vion,
since the parameters are selected so that ions with velocities
in a narrow range around vion are never excited. This
technique has worked well for ions with vion ≈ 0, but needs
to be demonstrated (to our understanding) for high velocity
ions. The ramifications of a nonzero velocity fall beyond
the scope of our discussion, but involve what happens when
the doppler shift becomes large relative to a small detuning
range around the quantum levels.

D. Entanglement

Having an ion Coulomb crystal does not mean the ions in
the crystal have entangled states. While they may share a
common phonon state, the internal spin states of the ions
are not in any way entangled.
Entanglement in an ion trap involves exploiting the

coupling of the internal and external quantum states of the
ions. Through these couplings it is possible to create
quantum computer gates. The methods used to create these
couplings involve exciting resonance conditions, in Raman
transitions, for example, that lead to coherent interactions.
In the simplest example, spin state transitions are accom-
panied by motional state transitions. This is done by
selecting a laser frequency that is an upper or lower
sideband of ωph, the frequency for a given external state,
where spin states are separated in energy by ℏωph. There are
a number of methods for mapping from spin qubits to
motion qubits that allow the motional qubit to be used as a
carrier transition to create gates, such as a controlled-not
(CNOT) gate [57]. Details of such schemes are well
documented in the ion-trap literature [15]. In the next
sections we outline some of these basic operations.
It should be noted that extremely cold ion Coulomb

crystals are really only needed if we are trying to exploit the
lower frequency axial phonon modes. Recent work exploit-
ing higher frequency transverse modes [30] promises to
allow scaling to a higher number of entangled ions. Other
techniques, such as using photons that are entangled with
the ion qubits may not require the beams to be cooled so
close to the Lamb-Dicke regime [58].

VII. METHODS TO EXTRACT QUANTUM
INFORMATION

The primary method of establishing a qubit involves
excitation and measurement of hyperfine states [58]. As
described by Wineland et al., using 9Beþ and using the
2S1=2ðF ¼ 2; mF ¼ 2Þ and 2S1=2ðF ¼ 1; mF ¼ 1Þ hyperfine
ground states (denoted j↓i and j↑i, respectively), a prac-
tical qubit can be constructed [15]. A polarized laser beam
is tuned to the j↓i → 2P3=2 transition and by observing the
scattered photons two distinct spin states can be resolved.
With this technique, per Wineland et al., the quantum states
can be determined with almost 100% efficiency [58].
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Another form of quantum information can be observed
in the axial center-of-mass motion of the ions, as discussed
above. This axial motion has a frequency ωz, which is
independent of the number of ions in the trap and is
described by the vibrational eigenstates jni with energy
ℏωzðnþ 1

2
Þ, where n is the vibrational index describing the

number of phonons in the collective harmonic motion. The
axial frequency, ωz, is a function of the trap potential,
the dimensions of the trap, and the charge and mass of the
trapped ion. To create quantum operations, internal energy
eigenstates and center-of-mass motion are employed.
Internal energy eigenstates are measured by observing
the frequency of the radiation resulting from the technique
of quantum jumps [59]. For example, the two internal
energy eigenstates j0; 0i and j1; 0i are separated in fre-
quency by ℏωv. Each of these internal states has an
associated set of vibrational levels for each vibrational
mode. The vibrational energy eigenstates are jn1; n2;
n3;…i, where ni are the excitations of the various normal
modes. The ground state is j0; 0; 0;…i and the first excited
state of the center-of-mass is j1; 0; 0;…i. These then
become the basis of the computation operations.
Observing axial modes in an ion trap is done through
coupling between internal and external vibration states by
stimulated Raman transitions.

VIII. TOWARD A QUANTUM COMPUTER

In Secs. V to VII, we have discussed an example of a
storage ring that was able to create crystalline beams and
the parameters needed to develop ion Coulomb crystals
useful for quantum computing. While many of the ideas
presented are ambitious, our goal has been to explore what
may be possible given we use a storage ring as an ion trap
rather than a traditional linear ion trap.
To actually develop a working quantum computer using

an ion Coulomb crystal in a storage ring, there must be at
least two components to the system; a method to set the
initial states and an ability to operate on the quantum
information [22,60–62].

A. Initialization

An ion trap system is able to set the internal state of the
ions to j↓i by utilizing optical pumping techniques as
described above. Applying this to all ions in the storage
ring may be challenging, due to the large number of ions in
the beam. But, as already discussed, this is something that
can be managed in how the crystals are formed and
controlled.

B. Quantum gates

A gate that acts on i qubits is represented by a 2i × 2i

unitary matrix [63]. A vector representation of a qubit from
an internal spin state is,

u0j↓i þ u1j↑i →
�
u0
u1

�
ð48Þ

A single bit rotation gate, operator Rðθ;ϕÞ transforms
the state of the qubit as,

j↓i → cosðθÞj↓i − ieiϕ sinðθÞj↑i ð49Þ

j↑i → cosðθÞj↑i − ie−iϕ sinðθÞj↓i ð50Þ

This transformation can be realized in a storage ring, for
a single bit rotation gate, by tuning the frequency
(ωL ¼ ω0) and radiating for a time t such that θ ¼ 2Ωjt,
for the jth ion in the string, where Ωj is the Rabi frequency
of j↓ij to j↑ij. In this way an ion first prepared to state j↓i
can be measured in the state j↓i or j↑i.
Realizing quantum gates for a storage ring quantum

computer is largely an independent topic and beyond the
scope of this report. In this section we wished to only
present how the techniques already developed for ion trap
systems would still apply in a storage ring system.

C. Quantum memory

Ion Coulomb crystals are not just useful as computa-
tional objects, but also as memory objects [64]. Since the
states of the qubits can be controlled, states from one
crystal can be written to another crystal. The final state
(either j↑i or j↓i) is known from the fluorescence of the
ions. The rotation angle (θ) and phase information (ϕ)
can be determined from the carrier drive duration and the
difference between the upper band and lower band of the
Raman nonresonant laser pulses. The details of this
technique are well described by Kielpinski et al. [64].
However, the no-cloning theorem [65,66] states that we
cannot keep the original quantum state, we can only
transfer it to another ion. Nevertheless, the ability to
perform this operation is clearly very useful.
Having multiple crystals in the storage ring provides the

potential to choose how each crystal is being utilized. By
having many ion crystals we can start to imagine the one
system being usable as a single large-scale quantum
computational system.

IX. CONCLUSIONS

We have introduced the idea of using storage rings with
crystalline beams as quantum computers. There are a
number of phenomena that could be exploited to produce
quantum bits of information. The challenge in building
such a computer hinges entirely on how effectively particle
beams can be cooled to a sufficient level and on how
quickly and reliably the quantum states can actually be set
and measured. The benefit of this approach is it allows
exploring large numbers of ions and qubits under well
controlled and isolated conditions. Conceptually, such a
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system is the same as an ion trap quantum computer, but
with the ions placed in the rotating frame in the circular
storage ring.
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