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The output power of a free electron laser (FEL) has extremely high variance even when all FEL
parameter set points are held constant because of the stochastic nature of the self-amplified spontaneous
emission (SASE) FEL process, drift of thousands of coupled parameters, such as thermal drifts, and
uncertainty and time variation of the electron distribution coming off of the photo cathode and entering the
accelerator. In this work, we demonstrate the application of automatic, model-independent feedback for the
maximization of average pulse energy of the light produced by free electron lasers. We present
experimental results from both the European x-ray free electron laser at DESY and from the Linac
Coherent Light Source at SLAC. We demonstrate application of the technique on rf systems for
automatically adjusting the longitudinal phase space of the beam, for adjusting the phase shifter gaps
between the undulators, and for adjusting steering magnets between undulator sections to maximize the
FEL output power. We show that we can tune up to 105 components simultaneously based only on noisy
average bunch energy measurements.
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I. INTRODUCTION

Free electron lasers (FEL) are incredibly powerful
scientific tools for studying physics at previously inacces-
sible length (nanometers) and time [femtoseconds (fs)]
scales for high energy physics, biology, chemistry, material
science, and accelerator physics experiments [1–3]. FELs
can produce extremely short (∼fs) coherent X-ray bursts
with tunable wavelength which are many orders of magni-
tude brighter than traditional sources such as synchrotrons.
For example, the Linac Coherent Light Source (LCLS) FEL,
the first hard x-ray FEL, provides users with photon energies
ranging from 0.27 keV to 12 keV based on electron bunches
with energies from 2.5 GeV to 17 GeV. Operating electron
bunch charge can range from 20 pC to 300 pC and the bunch
duration from 3 fs to 500 fs to suit experimental needs [4–6].
The European X-Ray FEL (EuXFEL), one of the newest and
most advanced FELs in the world, is capable of producing
27000 pulses of bright, coherent light per second utilizing
electron bunches with energies of up to 17.5 GeV, with

charges ranges from 0.02 to 1 nC per bunch, and photon
energies from 0.26 keV up to 25 keV [7–9]. Precise control
of bunch lengths, current profiles, and energy spreads of
increasingly shorter electron beams at femtosecond resolu-
tion is extremely important and challenging for both the
LCLS and the Eu-XFEL [10,11].
The extremely bright and short x-ray bursts that make

FELs such powerful instruments also makes them incred-
ibly challenging to control. High power FELs are driven by
few kilometer long high power particle accelerators com-
posed of thousands of interacting electromagnetic compo-
nents including radio frequency (rf) accelerating cavities
and magnets. The performance of all of these components
is susceptible to drift, e.g., such as thermal drifts. Timing is
a critical issue because for certain pump-probe experi-
ments, the flashes of light themselves are only tens of fs.
Novel techniques have been developed to achieve ∼10 fs
timing synchronization of FELs [12,13] and this work
continues.
Another challenge is the FEL lasing process itself, self-

amplified spontaneous emission (SASE) is stochastic in
nature and extremely sensitive to the beam’s initial con-
ditions including charge density and energy spread, there-
fore there is a large variance in the output power of
FEL light even when all machine set points are fixed
and properly timed because of uncertainty in and time
variation of the electron distribution coming off of the
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photo cathode and entering the accelerator. Therefore, the
output power of an FEL is a highly nonlinear, time-varying,
noisy and analytically unknown function of all of the
FELs thousands of components. Traditional model-based
approaches are severely limited by such uncertainties and
time variation of both the accelerated beam’s phase space
distribution and the accelerator’s components as well as
misalignments, thermal cycling, and collective effects such
as space charge forces, wakefields, and coherent synchrotron
radiation emitted by extremely short high current bunches.
One example of such difficulties is the process of

reconfiguring the LCLS to a low charge mode to provide
3 fs bunches, a process which may require many hours of
expert hands on tuning. These difficulties will only grow
for future facilities, such as the LCLS-II [14] for complex
schemes such as multi-color operation [15], multi-stage
amplification [16] or self-seeding [6,17]. Plasma wakefield
accelerators (PWFA) are another class of particle accelerators
which require extremely intense, high current and sometimes
extremely short charged particle buncheswith complex beam
dynamics and phase space manipulations and could benefit
from the type of automatic tuning performed in this work
[18–20]. For example, the facility for advanced accelerator
experimental tests (FACET-II) is being designed to provide
custom tailored current profiles for various experiments with
bunch lengths as low as 1 or 2 fs [21,22].
The challenges described above make the FEL an inter-

esting candidate for optimization and tuning via model-
independent feedback. Of particular interest is the use of
automated algorithms for: 1. Initial tuning, in order to achieve
SASE, following an outage or major readjustment of any
accelerator settings. 2. Maximizing output power/energy per
pulse once SASE is established. 3. Maintaining optimal
SASE despite time-varying drift of the beam and accelerator
settings.
In this work we demonstrate a general adaptive feedback

algorithm for automatic accelerator tuning with in-hardware
demonstrations on both the LCLS FEL and the European
XFEL for laser pulse energy maximization [23–27].
Previously, this method has been combined with neural
networks for the automatic tuning and control of the
longitudinal phase space of electron bunches in the LCLS
FEL [28]. We demonstrate application of this technique
on RF systems for automatically adjusting the longitudinal
phase space of the beam, for adjusting the phase shifter gaps
between the undulators and for adjusting steering magnets
between undulator sections to maximize the FEL output
power. We show that we can tune up to 105 components
simultaneously.

A. Main results

Our main results can be summarized as: 1. We have, for
the first time demonstrated in-hardware tuning of an order
of magnitude increase in the number of parameters (>100
vs ∼5). 2. We have demonstrated that this method can aid

operators and beam line physicists in establishing initial
SASE on various components. 3. We tuned the longitudinal
phase space of the EuXFEL (5 parameters) and the LCLS
(6 parameters) to maximize SASE power. 4. We tuned
phase shifter gaps (up to 21 simultaneously) to optimize for
proper phase shift for constructive superposition of emitted
light in the multi-segment undulators to occur. 5. We tuned
aircoils (up to 84 simultaneously) to optimize the beam
orbit through the undulator sections to maximize FEL light
energy. 6. We tuned both aircoils and phase shifter gaps
simultaneously (105 parameters) to help in initial SASE
setup. 7. We demonstrated that all of these methods were
robust to time-variation of the accelerator, the beam, and
to noisy readings. 8. We implemented this method in the
OCELOT accelerator tuning package with an automatic tune
setup for nonexperts in the control room to use with a push
of a button.

II. TUNING ALGORITHMS

Recently, many advanced controls approaches have been
developed toward automatic tuning, control, and optimi-
zation of particle accelerators [29]. In this section we
briefly review several families of approaches to automatic
accelerator tuning, before describing the procedure imple-
mented in this work.

A. Genetic algorithms

For the problem of tuning coupled components which
have a deterministic effect on the particle beam, there is a
large family of optimization schemes which take place
offline [30]. Genetic algorithms (GA) and multiobjective
genetic algorithms (MOGA) have been successful for the
design and optimization of radio frequency cavities [31],
photoinjectors [32], damping rings [33], storage ring
dynamics [34], lattice design [35], neutrino factory design
[36], simultaneous optimization of beam emittance and
dynamic aperture [37], free electron laser linac drivers [38]
and various other accelerator physics applications [39].
Multiobjective particle swarm optimization, an extension
of MOGA, has recently been demonstrated for emittance
reduction, with convergence rates exceeding those of
MOGA approaches [40].
Genetic algorithms search over a large parameter space

and result in global optimization, however, model-based
results are optimal only relative to the chosen model. Once
a machine is actually built, further tweaking is required due
to imperfect models and finite precision of construction.
Recently, the GA method has been demonstrated on-
line, successfully minimizing the vertical beam size of
the SPEAR3 storage ring [41]. Another optimization
method is Robust conjugate direction search (RCDS), a
local (may be trapped in local minima) model-independent
algorithm which is able to optimize many parameter
systems [42,43]. RCDS and particle swarm have also been

ALEXANDER SCHEINKER et al. PHYS. REV. ACCEL. BEAMS 22, 082802 (2019)

082802-2



used for online optimization of nonlinear storage ring
dynamics [44]. Both the GA and RCDS approaches are
best suited for time-invariant systems, an RCDS method for
dealing with slowly drifting systems is under consideration,
but further development is needed.

B. Machine learning

Recently, powerful machine learning (ML) techniques
have been studied for various particle accelerator appli-
cations. ML-based tools, such as neural networks (NN),
can be trained to automatically tune and control large
complex systems such as particle accelerators [45–48].
ML tools are being developed to provide fast and accurate
surrogate models to create diagnostics that enable feed-
back control and tuning of accelerators [49]. A NN model
has been designed to predict the resonant frequency of the
radio frequency quadrupole (RFQ) in the PIP-II Injector
Experiment (PXIE), to be used in a model predictive
control scheme [50]. In a preliminary simulation study for
a compact THz FEL, a NN control policy was trained to
provide suggested machine settings to switch between
desired electron beam energies while preserving the match
into the undulator and a fast surrogate model was also
trained from PARMELA simulation results in order to
facilitate the training of the control policy [51].
Powerful NN tools have also been developed for

ML-based longitudinal phase space prediction of transverse
deflecting cavity readings in particle accelerators, which
are some of the most important diagnostics that exist
for measuring a beam’s longitudinal phase space [52,53].
A novel Bayesian optimization framework that uses sparse
online Gaussian processes has been applied for quadrupole
magnet tuning in an FEL [54]. Bayesian optimization
methods have also been developed for maximizing FEL
pulse energy [55]. Various ML tools, including clustering
for identifying faulty beam position monitors (BPM) using
outlier detection andMLmethods for optics corrections has
been developed and performed at CERN [56–60]. For more
examples and details the reader is referred to [47,48] and
the references within.
One limitation of ML is that ML alone, especially

supervised learning techniques, may be insufficient for
particle accelerator systems because they are time-varying
and their learned characteristics are drifting. This is
particularly true for linacs, FELs and PWFAs, such as
LCLS, the Eu-XFEL, FACET, and the Los Alamos Neutron
Science Center, and may less critical for storage rings.
The ML tool must also be able to interpolate between
training points, which is more difficult for complex,
many-parameter systems. Recently, the adaptive model-
independent method utilized in this work was combined
with ML methods for the automatic tuning and control of
the longitudinal phase space of electron bunches in the
LCLS FEL [28], with the ML performing approximate
global tuning and the adaptive algorithm zooming in on

and tracking optimal component settings despite noise
and time varying drifts.

C. Model-independent feedback

Several automatic model-independent feedback methods
have been under development at various accelerator facili-
ties. At FERMI an automatic tuning method has been
utilized to maximize FEL output energy, tuning between 1
and 5 components simultaneously [61,62]. OCELOT, an
accelerator simulation and optimization toolbox has been
developed for implementing various automatic tuning
algorithms in accelerators [63,64]. OCELOT has been
implemented in the EuXFEL for dispersion minimization,
orbit distortion compensation with aircoils, beam loss
minimization and photon pulse energy maximization via
the Nelder-Mead simplex method.
In this work, we utilize a local, model-independent

extremum seeking (ES) algorithm, whose convergence
can also suffer due to local minima, but whose simplicity
and speed of convergence allows for real time tracking of a
many parameter time-varying nonlinear system. We utilize
a recently developed, bounded adaptive feedback technique
which is applicable for open-loop unstable many parameter
noisy systems and critically, can handle unknown time-
variation of the system dynamics [23–25]. This general
method has been studied for controlling autonomous
torque-actuated unicycle vehicles [26], for creating non-
invasive longitudinal phase space diagnostics at FACET
[27]. This algorithm is currently being added to the family
of optimizers available in the OCELOT framework.
Application of the algorithm requires a user-defined cost

function, which may be analytically unknown, but which
depends on accelerator parameter settings and must be
maximized or minimized. An example of such a function is
the average pulse energy at the output of the FEL, which
depends on all of the FEL parameters, such as rf systems
and magnet settings. Mathematically, we represent the
analytically unknown, time-varying cost function to be
maximized by Cðp; tÞ and its noise-corrupted measurement
as Ĉðp; tÞ ¼ Cðp; tÞ þ nðtÞ, where p ¼ ðp1;…; pnÞ are the
parameters being tuned, such as, for example, quadrupole
magnet field strengths.
Our simple algorithm adjusts the parameters pj accord-

ing to the dynamics

dpj

dt
¼ ffiffiffiffiffiffiffiffi

αωj
p

cos½ωjt − kĈðp; tÞ�; ð1Þ

where ωj ¼ ωrj and rj ≠ ri for i ≠ j. The term α > 0 is the
dithering amplitude and can be increased to escape local
minima. Once the dynamics have settled a parameter pj

will oscillate around a local minimum with amplitudeffiffiffiffiffiffiffiffiffiffi
α=ωj

p
. The term k > 0 is the feedback gain. For mini-

mization, instead of maximization, we simply choose
k < 0. For large ω, the dynamics of (1) are given, on
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average, by the simple dynamics [23–25] (see the
Appendix):

dp
dt

¼ kα
2
∇pCðp; tÞ; ð2Þ

a gradient ascent, with respect to p, of the actual,
analytically unknown function Cðp; tÞ although the feed-
back is based only on the noisy measurements Ĉðp; tÞ.
See the Appendix and the references for more details.
Intuitively, the reason behind this convergence is that by

dithering each parameter at a unique frequency the evolu-
tion of the parameters has been made orthogonal in Hilbert
space in the form of the L2½0; t� inner product:

lim
ω1;ω2→∞

Z
t

0

cosðω1τÞ cosðω2τÞdτ ¼ 0: ð3Þ

The resulting averaged dynamics maximize a noisy,
analytically unknown, time-varying function. Advantages
of this approach include (1) An ability to continuously,
dynamically tune many parameters of unknown, non-
linear, and open-loop unstable systems, simultaneously.
(2) Robustness to measurement noise and external dis-
turbances and ability to track fast time-varying parame-
ters. (3) Analytically guaranteed constraints on parameter

update rates: j dpj

dt j ¼ j ffiffiffiffiffiffiffiffi
αωj

p cosðωjtþ kyÞj ≤ ffiffiffiffiffiffiffiffi
αωj

p , even
when operating on noisy and analytically unknown
systems, an important safety feature for in-hardware
implementation.
The procedure for digitally applying (1) is an iterative

method in hardware via the finite difference approximation
of (1) given by:

pjðnþ 1Þ ¼ pjðnÞ þ Δ ffiffiffiffiffiffiffiffi
αωj

p
cos½ωjnΔ − kĈðpðnÞ; tnÞ�

ð4Þ

which is an accurate approximation of the derivative in (1)
for Δ < 2π

maxfωjg ≪ 1. Here tn represents the actual time at
which the iterative update takes place. From now on, for
simplicity, we will simply write CðnÞ in place ofC½pðnÞ; tn�
to emphasize that it is the cost function measurement at
iterative step n. Implementation begins by setting param-
eter values to some initial conditions, pð1Þ, recording the
cost function Cð1Þ, and then performing the update:

pjð2Þ ¼ pjð1Þ þ Δ ffiffiffiffiffiffiffiffi
αωj

p
cos½ωjΔ − kĈð1Þ�; ð5Þ

and continuing, according to (4) for n ¼ 2; 3;…. The
update rate, that is the time between setting parameter
values from pðnÞ to pðnþ 1Þ is chosen depending on
how fast the physical components being tuned can change
and how fast that change can be detected in the noisy
cost function ĈðnÞ. When dealing with a large family of
parameters whose values span many orders of magnitude,
limits are defined for all parameters and then they are all
normalized to in a range of �1. The parameter updates are
then carried out on the normalized values which are then
unnormalized to physical set points for implementation in
the accelerator. The experiments carried out at the LCLS
and at the Eu-XFEL, for maximizing average photon pulse
energy, as described in the following sections demonstrated
the robustness of the algorithm to noise as the shot-to-shot
pulse energy at both facilities sometimes varied by as much
as 10% even when all parameter values were held constant.
This is particularly clear in Fig. 5 where the parameters
were all held constant during the first and last 200 pulse
energy measurements and can be seen to jump within a
∼100 μJ which is a ∼25% variation at the low energy range
of ∼300 μJ and ∼10% variation at the higher energy range
of 1000 μJ.

III. EUROPEAN XFEL

The European XFEL is one of the newest and most
advanced FELs in the world with a capability of running
27000 pulses per second to three separate undulators,
with plans to expand to five undulators in the future.
A simplified view of the EuXFEL is shown in Fig. 1.
Successful achievement of SASE and subsequent maximi-
zation of the FEL output power is a lengthy, iterative
process which requires tuning the entire machine from the
injector up to the undulator parameters. At the EuXFEL,
we demonstrated our technique on various combinations
of accelerator components in order to develop tools that
can aid the operators in achieving SASE setup. We have
incorporated our algorithm into the OCELOT framework
so that it is available as a tool for operators, having the
freedom to choose any combination of components to
tune based on the objective function of their choice (usually
energy maximization), with an autotuning feature that is
described in Sec. V.

Undulators

Injector

BC1 BC2

L2-linac L3-linac

BC1 BC2

L2-linac L3-linacInjector

Undulators

L1-linacL1-linac

BC0BC0

FIG. 1. A layout of the European XFEL is shown. The electron pulse enters on the left end, is accelerated to high energy and then used
to create light at the right end at any one of three undulators. The laser’s output energy per bunch is measured after each undulator at the
end of the machine.
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A. Longitudinal phase space

The rf systems control the longitudinal phase of the
beam [65]. The longitudinal dynamics depend on a highly
coupled set of rf-parameters. For longitudinal phase space
tuning we simultaneously tuned five parameters, p ¼
ðp1;…; p5Þ which are shown in Fig. 1. 1. The Injector
chirp (I1 chirp), which controls the compression and peak
current of the beam in the bunch compressor BC0.
2. Injector curvature (I1 curvature), which helps produce
symmetric beam profiles without spikes. 3. Injector third
derivative (I1 third derivative), which does not influence
the core of the beam distribution, but helps to optimize
RF parameter sensitivity. 4. The Linac 1 chirp (L1 chirp),
which controls the compression and peak current of the
beam in the bunch compressor BC1. 5. The Linac 2 chirp
(L2 chirp), which controls the compression and peak
current of the beam in the bunch compressor BC2. In
addition, it should be pointed out that the complexity of
the problem is increased by the fact that all upstream
parameters influence the downstream peak currents. The
chirp affects the peak current, the curvature influences

the shape of current profile and the third derivative has an
influence on the spikiness of the beam.
The results of one rf tuning experiment are shown in

Fig. 2, where a 10 point moving average of the average
bunch energy was utilized as the cost function being
maximized. rf parameters were adjusted at a rate of
∼1 Hz and the beam average bunch energy is seen to
grow from ∼700 μJ to ∼1000 μJ over the course of
30 seconds. Although the SASE in the EuXFEL can reach
much higher energy per bunch with additional tuning
of various components, such a procedure was found to
be useful during the initial SASE startup phase to find
reasonable parameter settings. This is especially useful
because the actual rf read-backs suffer from slow drift
throughout the accelerator and therefore even once proper
set points are established for the rf system, drift requires
periodic phase scans to reestablish new proper set points.
This is especially problematic at start up when the machine
might initially be very far from the required optimal rf
conditions. The method demonstrated here not only helps
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FIG. 2. Tuning 5 rf components to maximize average bunch
energy.
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FIG. 3. Tuning 15 phase shifter gaps to maximize average
bunch energy. Although the energy signal is extremely noisy and
exhibits large excursions due to other accelerator setting drifts
and changes, to which the algorithm is robust.
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to initially find a good neighborhood of the rf settings, but
can also be run all of the time to continuously readjust rf
settings in order to track optimal conditions despite
uncertain time variation of the machine.
Furthermore, in some ways the FEL’s output power is

sensitive to and influenced by any variation in the rf system
in terms of its influence on beam orbit. Although there are
orbit feedbacks along the accelerator that keep the orbit
as measured by beam position monitors (BPM) constant,
there may be cases where even though feedbacks maintain
a constant orbit (BPM measures the center of gravity of the
bunch), the lasing slice may have a different orbit due to the
CSR kick, and this slice offset may depend on rf settings.
This couples the effect of the phase shifter gap settings, air
coil settings, and the rf system on the average pulse energy.

B. Phase shifter gaps

The EuXFEL has multisegmented undulators consisting
of 5 m long modules with phase shifters, orbit correctors,
and quadrupoles in between. The phase shifters are
permanent magnet systems in which the gap size between

magnet poles controls the beam’s path length, thereby
adjusting the phase shift between the beam and the light
which has been produced by the SASE process. We
adjusted these gaps in order to maximize the constructive
superposition between the beam and the emitted light in
order to maximize average pulse energy. The phase shifter
settings are sensitive to the beam orbit, which is influenced
by many slowly drifting accelerator systems including the
rf system. Hysteresis is one of the nonlinear effects that
require additional tuning of the phase shifter gaps. The
magnetic field can differ from the theoretical strength when
the gaps are changed from open to closed. Larger beam
deviations from the center trajectory in the undulator,
especially in vertical plane can have an effect that can
be corrected with phase shifters. On top, “wrong” k-values
of the single undulator cells (e.g., due to “wrong” taper
settings) can be compensated with the phase shifters as
well. In the first two experiments we tuned 15 phase shifters
demonstrating that we could increase average bunch energy
despite relying on a very noisy signal and despite other
drifts throughout the machine.
In Fig. 3 we show the evolution of 15 gap settings and

the difference between initial and final gap positions
following tuning. We left the gaps fixed for the first
and final 100 steps of the process, to show the extremely
high natural variance of the signal. In Figure 4 we show
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FIG. 4. Average bunch energy is increased despite large
random jumps and extremely high variance of the noisy signal.
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FIG. 5. As the machine slowly drifts, the algorithm continues to
adjust 5 phase shifter gaps to maximize average bunch energy.
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the evolution of the noisy average bunch energy and its
steady increase over the course of ∼16 minutes as this
procedure was iteratively performed at a rate of ∼1 Hz
utilizing a 5x moving average of the bunch energy signal.
One can see that the pulse energy has many dramatic
drops, which were due to fast machine transients.
However, looking at the gap position evolution, we see
that the gap adjustments did not suffer from any dramatic
jumps, as expected, because this method is robust to
random noise and because we have analytically guaran-
teed bounds on parameter update rates as well as hard
constraints on all parameter settings.
In Fig. 5 we show a second experiment in which we

more than doubled the average bunch energy and only
relied on 2x averaging of the very noisy bunch energy
signal. We left the gaps fixed for the first and final 100
steps of the process, to show the extremely high natural
variance of the signal. Here we see the algorithms ability
to respond to machine transients and dramatically readjust
gaps to make up for rf/beam energy fluctuations during
the tuning process.
Finally, in Fig. 6 we demonstrate the methods robustness

as it begins to optimize output energy and then responds to

a large step change in rf settings to continue to reoptimize
the gap settings. We left the gaps fixed for the first 100 steps
of the process, to show the extremely high natural variance
of the signal.

C. Air coils

For each undulator section there are 4 air coils which
control the beam orbit, directly before the section
(CAX and CAY), in both the vertical (y) and horizontal
planes (x) and directly after the section (CBX and CBY).
The beam orbit is sensitive to rf system settings, launch,
undulator and phase shifter gaps, and quadrupole offsets.
Figure 7 shows the result on an experiment in which 84
air coils were tuned, 21 x and y before and after each
undulator section. This experiment was performed when
the SASE level was extremely low and was just initially
being set up. The algorithms is seen to converge to a
local maximum, after which subsequent tuning of other
accelerator settings would take place before returning to
the air coils again. Initial and final air coil settings are
shown in Fig. 8. One interesting point to note in this
experiment is that the beam shut off at around step 325 of
optimization. As expected, the air coils did not experience
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FIG. 6. During tuning, a large step change in the rf system
causes a sudden drop in the average bunch energy. The adaptive
algorithm is seen to automatically begin readjusting the gaps to
compensate for this.
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FIG. 7. Tuning 84 air coils to maximize average bunch energy.
When the beam is turned off, the aircoils no longer have any
influence on the average bunch energy, and reach steady state
oscillations about their current operating points, a robustness
feature of this algorithm.
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any significant shift in values when this happened, but
instead settled to oscillate about equilibria points, as they
no longer had any influence on the cost function, as

analytically predicted by the algorithm, again demonstrat-
ing the robustness of this approach.

D. Air coils and gaps

As a final demonstration of the usefulness of this
approach for finding and tuning the initial SASE setup,
and its ability to handle multiple parameters simultane-
ously, we tuned all 84 air coils and 21 phase shifter gaps
simultaneously with no averaging, using only single shot
measurements. The result is shown in Fig. 9, a slow, steady
increase in average pulse energy is seen.

IV. LCLS

At the LCLS we demonstrated the algorithm’s ability to
tune the longitudinal phase space of the beam by adjusting
the rf phase and bunch compressor settings. A simplified
view of the LCLS FEL is shown in Fig. 10, locations of
parameters being tuned labeled in green.
For energy maximization we simultaneously tuned the

following six parameters, p ¼ ðp1;…; p6Þ: 1. The Linac 1
(L1S) phase set point has influence on both electron bunch
energy and the length change due to bunch compressor
BC1. L1S drifts continuously due to temperature and
periodically has to be corrected via lengthy, invasive phase
scans. 2. The Linac 1 X-band (L1X) linearizing cavity
phase set point linearizes the electron bunch, compensating
for energy offsets introduced by L1S. 3. The bunch
compressor 1 (BC1) energy set point determines the
amount of longitudinal compression of the bunch and
provides feedback for the L1 amplitude set point. 4. The
Linac 2 (L2) phase set point controls a group of multiple
klystrons, effects bunch length, and suffers from the same
drifts as L1. 5. Bunch compressor 2 (BC2) energy set point.
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FIG. 8. Initial and final settings of 84 air coils which were tuned to maximize average bunch energy.
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FIG. 9. Tuning 84 air coils and 21 gaps to maximize average
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evolution.
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BC2 is a second stage of compression at higher energy.
6. Linac 3 (L3) phase set point. L3 is another multiklystron
system with phase and amplitude drifts.
To maximize the noisy/stochastic FEL output power,

Ĉðp; tÞ, we tuned our parameters iteratively according to
the finite difference approximation of (1):

piðnþ 1Þ ¼ piðnÞ þ Δ
ffiffiffiffiffiffiffiffi
αωi

p
cos½ωinΔ − kĈðnÞ�: ð6Þ

For each of our parameters, we chose upper and lower
bounds, pi;max and pi;min and normalized our parameter
values to within the bounds ½−1; 1�. We then performed the
ES update (6) on normalized parameter values, before un-
normalizing and entering the physical parameter quantities
into the accelerator control system. Normalization was
useful in this case because the various parameters have
order of magnitude differences in the ranges of their values.
During a limited beam time we were able to conduct two
experiments in which we optimized the FEL’s output
power.

A. Experiment 1

We began by gently tuning the parameters with small
values of k ¼ 1 and α ¼ 1 in (6) with ω0 ¼ 2000, fωig¼
fω1;…;ω6g¼fω0;…;1.75×ω0g, and Δ ¼ 2π

20×maxfωig. The
values of ω are chosen to span the range ½ω0; 1.75 × ω0� so
that each component evolves with an independent fre-
quency, so that the frequencies are within a relatively close
range of each other resulting in all parameters evolving
with similar rates, and to avoid any one parameter evolving
with an integer multiple frequency of another so that
nonlinearities in the system do not cause overlap in
parameter evolution in the frequency domain. Our cost
function was a 40× averaged value, that is, we would set
parameter values and record 40 consecutive FEL output
pulses at a rate of 10 Hz to obtain a cleaner measurement of
the output power. We would then perform one parameter
update. The results of the first experiment are shown in
Fig. 11. ES was able to tune all 6 parameters simultaneously,
increasing the average power by 31%. The convergence was
very slow because of the small controller gains and the large
number of averages.

B. Experiment 2

In the second experiment we wanted to demonstrate

was only a 2× averaged value of the output power, that
is, we would set parameter values and record only 2
consecutive FEL output pulses at a rate of 10 Hz to obtain
a cleaner measurement of the output power. We would
then wait 1 second, to allow the physical parameters to
settle to their new ES-based set points after performing
each parameter update. The parameters were tuned more

L1S
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BC1 BC2

L2-linac L3-linacL1S

L1X

BC1 BC2

L2-linac L3-linac

Injector

Undulator

FIG. 10. A layout of the LCLS FEL is shown with the parameters being tuned highlighted in green. The electron pulse enters on the
left end, is accelerated to high energy and then used to create light at the right end. The laser’s output power is measured after the
undulator at the end of the machine.
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FEL parameter values.
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aggressively with values of k ¼ 10, α ¼ 20, and fωig and
Δ as before. The results of the second experiment are
shown in Fig. 12. Again ES was able to tune all 6
parameters simultaneously, and this time at a much faster
rate, increasing the average power by 20%. For this
second experiment we started at a higher power and
did not have sufficient time to study the faster scheme any
further, whose optimization would have likely continued
to higher power.

V. AUTOTUNE

An autotuned version of the algorithm has been devel-
oped as described here. The goal is to choose gains, kj, or
dither frequencies, ωj, so that the parameters converge to
their optimal values. The choices depend on the sensitivity
of the cost function Cðp; tÞ relative to the parameters pj.

We do this according to the following calculations. For
parameters being tuned according to

dpj

dt
¼ ffiffiffiffiffiffiffiffi

αωj
p

cos½ωjtþ kjCðp; tÞ�
¼ ffiffiffiffiffiffiffiffi

αωj
p

cos½θjðp; tÞ�; ð7Þ

we are interested in the rate of change of the angle
θjðp; tÞ ¼ ωjtþ kjCðp; tÞ, which is

dθj
dt

¼ ∂θj
∂t þ

Xn
i¼1

∂θj
∂pi

∂pi

∂t

¼ ωj þ kj

�∂C
∂t þ

Xn
i¼1

∂C
∂pi

∂pi

∂t
�
: ð8Þ

As discussed above, this algorithm results in average
parameter dynamics of the form:

dp̄j

dt
¼ −

kjα

2

∂C
∂p̄j

: ð9Þ

Plugging (9) into (8), and assuming ∂C
∂t is slow relative to

parameter dynamics, we get

dθj
dt

≈ ωj −
kjα

2

Xn
i¼1

ki

�∂C
∂pi

�
2

: ð10Þ

We then conjecture that the best choice of kj is one such
that dθj=dt ≈ 0, so that when the cost function is decreas-
ing the parameter continues to move in the correct direction
without changing direction. Therefore we want to solve:

0 ¼ ωj −
kjα

2

Xn
i¼1

ki

�∂C
∂pi

�
2

: ð11Þ

There are 3 possible ways to proceed: (1) Choose values for
each kj first and then solve each of the Eq. (11) for ωj.
(2) Choose values for each ωj first and then numerically
solve the entire system of equations (11) for all of the kj
simultaneously. (3) Choose values for each ωj first and then
further simplify by assuming that ki ≈ kj for all i and j in
(11), from which we get

0 ¼ ωj −
k2jα

2

Xn
i¼1

�∂C
∂pi

�
2

: ð12Þ

and solving for kj, we get

kj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωj

α
P

n
i¼1 ð∂C∂pi

Þ2
s

: ð13Þ
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FIG. 12. The evolution of the output power (arbitrary units) and
its 2-point moving average is shown alongside the normalized
FEL parameter values.
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Although it is not necessary to make the assumption
ki ≈ kj, these calculations are all approximations and this
simplifies the implementation.
In all of the methods above, in order to calculate partial

derivatives with respect to parameters one begins optimi-
zation by making small changes in each parameter pj one at
a time and recordingΔpj as well asΔC at each step, to then
get a numerical approximation ∂C

∂pi
≈ ΔC

Δpj
.

Note that there are many problems and limitations with
this autotuning approach: (1) If the system is noisy, then
these single parameter changes for a derivative estimate
must be repeated multiple times and averaged to get useful
values, furthermore, in a very noisy case one must be
careful to make large enough changes Δpj, so that a
measurable difference is seen in the cost function, ΔC,
above the noise floor, in order to estimate ∂C

∂pi
; (2) If there are

many parameters being tuned this can be a very lengthy
process; (3) This result will hold only locally and must be
re-calculated as one moves through time and parameter
space and the shape of the function Cðp; tÞ changes.
This feature was added to the OCELOT autotuning code in

the form of utilizing Eq. (13) to determine initial kj values
and this was applied in the EuXFEL. Despite its limitations,
this method was found to be useful on several occasions,

as shown in Fig. 13 in which the method was applied twice
for automatically tuning 4 air coils, resulting in a doubling
of average bunch energy over ∼14 minutes. The time
required for pulse energy maximization is specific to any
particular tuning operation and depends on things such as
specific machine configuration, starting energy, and the
choice of parameters being tuned. Despite this variation, a
doubling of energy by tuning 4 parameters in a matter of
14 minutes, as demonstrated above, is relatively fast for an
operation that, when carried out manually can take up to an
hour, especially if 4 parameters are tuned one at a time by
an operator.

VI. CONCLUSIONS

We have demonstrated a robust, model-independent
method for tuning coupled particle accelerator components
for maximizing extremely noisy energy measurements in
time-varying, drifting free electron lasers, demonstrating
the approach in-hardware on two FELs. We have developed
a tool for an automatic autotune setup of the algorithm which
was successfully demonstrated in the EuXFEL control room
for tuning families of 5 parameters. The major strength of
this approach is that it is model independent, robust to noise,
and can tune many coupled parameters simultaneously.
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The next step in this work will be to make the autotuning
procedure more robust to extremely noisy signals. It was
found that when the measured cost function variance was
very high and slowly moving, the auto-tune procedure had
difficulty, partly due to an inability to distinguish between its
effect on the system and that of random, large, slow drifts.
Towards this goal we will have to conduct further analytical
studies and perhaps couple this algorithm with machine
learning tools to utilize some knowledge of machine
parameter sensitivities and long term drift characteristics.

APPENDIX: TUNING ALGORITHM
MATHEMATICAL BACKGROUND

We provide mathematical results from [23–25] which is
applicable to time-varying, nonlinear systems, not affine in
control.
Theorem 1: [25] Consider the system

_p ¼ fðp;u; tÞ; ðA1Þ

Ĉ ¼ Cðp; tÞ þ nðtÞ; ðA2Þ

where f, x, u ∈ Rn, Cðp; tÞ ∈ R is an analytically
unknown function, and Ĉ is a noise corrupted measurement
of C. We consider nonlinear time-varying systems where
each component fi of f is an odd polynomial in ui of the
form

fiðp; ui; tÞ ¼ fi0ðp; tÞ þ
Xmi

j¼0

fijðp; tÞu2jþ1
i ; ðA3Þ

and the control components are given by

ui ¼ ðαωiÞ
1

2ð2miþ1Þ cosðωit − kĈðx; tÞÞ; ðA4Þ

where ωi ¼ ω0ri with ri ≠ rj. Consider also the average
system with component dynamics:

_̄pi ¼ fi0ðp̄; tÞ þ kαlif2imi
ðp̄; tÞ ∂Cðp̄; tÞ∂p̄i

; ðA5Þ

where li > 0 is a constant which depends on fi (see [25] for
details). Then, for any given compact set K ⊂ Rn, for any
pð0Þ ∈ K, for any time interval ½t0; t1�, and for any δ > 0,
there exists ω⋆, such that for all ω0 > ω⋆, the trajectory
pðtÞ of (A1)–(A4) and the trajectory p̄ðtÞ of (A5) satisfy the
bounds:

sup
t∈½t0;t1�

kpðtÞ − p̄ðtÞk < δ: ðA6Þ

Remark 1: Note that the form of (A5) guarantees that
the trajectory xðtÞ will approach and track a local maxi-
mum of the analytically unknown function Cðp; tÞ, despite

only having access to its noise-corrupted measurement
Ĉ ¼ Cðp; tÞ þ nðtÞ, if kα > 0 is sufficiently large. For
minimization, instead of maximization, we simply choose
k < 0.
Corollary 1: Consider a system of parameters, p ¼

ðp1;…; pnÞ, an analytically unknown cost functionCðp; tÞ,
and its noisy measurement Ĉðp; tÞ ¼ Cðp; tÞ þ nðtÞ. If the
parameters are tuned according to the dynamics:

dpi

dt
¼ ffiffiffiffiffiffiffiffi

αωi
p

cosðωit − kiĈðp; tÞÞ; ðA7Þ

then, for large ωi, the parameter dynamics are, on average,
given by:

dp̄i

dt
¼ kiα

2

∂Cðp̄; tÞ
∂p̄i

; ðA8Þ

resulting in maximization of Cðp; tÞ despite only having
access to noisy samples.
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