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Particle storage rings are a rich application domain for online optimization algorithms. The Cornell
Electron Storage Ring (CESR) has hundreds of independently powered magnets, making it a high-
dimensional test-problem for algorithmic tuning. We investigate algorithms that restrict the search space
to a small number of linear combinations of parameters (“knobs”) which contain most of the effect
on our chosen objective (the vertical emittance), thus enabling efficient tuning. We report experimental
tests at CESR that use dimension-reduction techniques to transform an 81-dimensional space to an
8-dimensional one which may be efficiently minimized using one-dimensional parameter scans. We also
report an experimental test of a multiobjective genetic algorithm using these knobs that results
in emittance improvements comparable to state-of-the-art algorithms, but with increased control over
orbit errors.
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I. INTRODUCTION

Despite the great care taken in accelerator design and
fabrication, inevitable magnet misalignments, calibration
errors, and drifts will result in suboptimal beam properties.
Since the exact nature of these errors will not be known
in advance, it is necessary to correct them using online
techniques, i.e., operating directly on the real machine.
Time spent tuning the machine is time that it is unavailable
for its intended use, and so it is desirable that any correction
procedure be fast, especially in the case of multipurpose
facilities. Light sources and future colliders, such as the
International Linear Collider (ILC) [1], have hundreds to
thousands of magnets, so an optimizer must be able to
search these high-dimensional spaces in a reasonable time.
To make tuning of such problems feasible, low-dimensional
approximate models can be combined with empirical data
to speeduponline optimization. This paper reports the results
of testing the performance of candidate algorithms in both
experiment and simulation on the Cornell Electron Storage
Ring (CESR). These results are of interest to optimal control
theorists, demonstrating real-world success with a high
dimensional test case, and to the accelerator community,
as a working solution to a problem of ever greater practical
importance.

An ongoing project at CESR is to determine efficient
ways to minimize vertical emittance. Vertical emittance,
being important for accelerator performance and sensitive
to global magnet misalignments and strength errors, is an
apt metric for evaluating online optimization algorithms.
The method for tuning vertical emittance now deployed at
CESR, described in [2,3], is to measure causes of vertical
emittance, such as the coupling and vertical dispersion, and
then to make corrections using Levenberg-Marquardt least-
squares minimization. The reach of this method is limited
by the finite resolution of CESR’s beam position monitors
(BPMs) and therefore leaves residual vertical emittance,
which is discernible in our high-resolution beam size
measurements. Independent component analysis (ICA)
[4], dispersionfree-steering (DFS) [5], and a low-emittance
tuning (LET) algorithm [6] have also been tried at other
accelerators, but these too suffer from reliance on accurate
dispersion measurements for proper operation. Scanning
magnet settings to tune directly on vertical emittance can
yield further improvements. Researchers at the Swiss Light
Source (SLS) have had success in reducing vertical emittance
by varying the strengths of useful correctors randomly and
observing the resulting emittance [7]. Unguided searches are
time-inefficient, and Huang et al. have improved upon this
method by introducing the robust conjugate direction search
(RCDS) algorithm [8,9].
The RCDS method makes use of simulation to obtain

the Hessian matrix for the merit function with respect to
corrector magnets and makes corrections to the real
machine using the eigenvectors of this matrix. These
eigenvectors are conjugate directions, and have the prop-
erty that optimizing along one direction does not require

*wfb59@cornell.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW ACCELERATORS AND BEAMS 22, 054601 (2019)

2469-9888=19=22(5)=054601(11) 054601-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevAccelBeams.22.054601&domain=pdf&date_stamp=2019-05-06
https://doi.org/10.1103/PhysRevAccelBeams.22.054601
https://doi.org/10.1103/PhysRevAccelBeams.22.054601
https://doi.org/10.1103/PhysRevAccelBeams.22.054601
https://doi.org/10.1103/PhysRevAccelBeams.22.054601
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


retuning of another direction, insofar as the simulation is
correct and nonlinearities in the merit function are small.
It then makes one-dimensional scans of each search
direction and uses a quadratic fit to determine the mini-
mum. As the algorithm moves in the space of machine
states, it adjusts the search directions based on acquired
data. The RCDS method requires tuning a number of knobs
equal to the number of independently tunable parameters,
and so the time to execute a full optics correction grows
linearly with the number of available independent magnet
groups.
Researchers at SLAC applied genetic algorithms to the

SPEAR3 storage ring [10,11] and judged performance to
be unacceptable because of the time for convergence and
influence of measurement errors. However, such algorithms
have been successfully applied to the nine-dimensional
problem of optimizing the beam transmission through one
of the GSI beamlines [12].
High-dimensional models are sloppy if their predictions

are accurately captured by low dimensional approxima-
tions. It is an ongoing research program to investigate the
common features of sloppy models that explain why, and
for which set of problems, dimension reduction is success-
ful [13]. This research motivates the application of
dimension-reduction techniques to the problem of accel-
erator tuning. Evidence suggesting the effectiveness of such
techniques includes the observation by Marin et al. that in
the course of designing correction schemes for the final
focus system for the Compact Linear Collider only a
handful of the knobs proved useful for corrections [14],
although no special emphasis was placed on this phenome-
non at the time. These ideas also appear in orbit-correction
techniques, where one often uses only the first few singular
vectors of the singular value decomposition (SVD) when
constructing the pseudoinverse of the orbit response matrix
in order to filter out noise or avoid singular behavior
[15–17]. As a tool, dimension reduction promises to widen
the scope of optimization algorithms that are feasible for
high-dimensional systems.
We use an SVD to extract 8 effective knobs from the

81-dimensional space of useful corrector magnets at
CESR and test the utility of these new knobs as part of
two very different tuning algorithms. Running the RCDS
algorithm with this reduced set of knobs, we obtain beam
sizes comparable to what we obtain with our standard
tuning based on direct measurement and correction of
dispersion and coupling. We also use the knobs as the genes
in a multiobjective genetic algorithm aiming to fix both the
vertical beam size and the orbit near the narrow-aperture
undulators. Although there are more convenient techniques
for minimizing both objectives, our purpose is to develop a
technique applicable to the wider range of optimization
problems that arise in accelerator operation, and it is useful
to test new algorithms in regions where proven methods
already exist. We find in simulation that such algorithms

show improved rates of convergence when varying the
8 effective knobs found by the SVD, as opposed to the
81 raw magnet values. In experiment, we obtain beam sizes
comparable to the results of directly measuring and
correcting the dispersion and coupling.
Our approach differs significantly from the use of SVDs

in orbit-correction: in the latter case, one has a Jacobian
matrix and signed measurements, so it is possible to
determine how far and which way to turn the knobs
without further measurements. For that case, the primary
use of the SVD is to construct the pseudoinverse and avoid
issues arising from noise and overconstrained or under-
constrained problems. In our case, we are minimizing a
positive-definite scalar (the emittance), and so have no
directional information from the Hessian matrix. We must
instead do a search of parameter space with many inter-
mediate measurements, in which case it is very useful to
reduce the dimensionality of the space. Our approach is
complementary to ICA and other techniques making use of
auxiliary measurements, since our method does not rely on
those measurements and so may be applied in cases where
one has reached the limit of their accuracy or even when
such diagnostics are lacking altogether.
The structure of the paper is as follows. In Sec. II, we will

introduce sloppy models and their relation to dimension-
reduction techniques. In Sec. III, we will provide an
overview of the layout of CESR. In Sec. IV, we will apply
the sloppy-model-based dimension-reduction to single-
objective tuning of the vertical emittance in both simulation
and experiment. In Sec. V, we will discuss multiobjective
genetic algorithms and show the results of applying them
along with the knobs found by sloppy-model-based dimen-
sion-reduction to minimize beam size and orbit errors in
both simulation and experiment. In Sec. VI, we summarize
our results and present future directions.

II. SLOPPY MODELS

In using simulation to guide online tuning of the real
machine, we reduce the dimensions of the accelerator
parameter space, motivated by the concept of sloppy
models, which has been successfully applied to a large
variety of systems [18–22]. This concept posits that the
system behavior is effectively described by a set of
“eigenparameters,” combinations (typically, nonintuitive)
of original control parameters, and is in many ways similar
to principal component analysis [23]. These eigenpara-
meters, or knobs, have the useful property that when
ordered in terms of the size of their effect on the objective,
subsequent eigenparameters are exponentially less impor-
tant than prior ones. Using only the first few so-called
“stiff” eigenparameters (corresponding to larger eigenval-
ues) to describe the system therefore retains most of the
information contained in all the parameters. There is
generally no sharp cutoff between the more and less useful
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eigenparameters, so that the choice of how many to actually
use is somewhat arbitrary.
Although sloppy systems and underdetermined systems

are often related, neither is a subset of the other; sloppy
systems may exist where the number of measurements used
to characterize the system is greater than the number of
parameters in the model, as shown in the Robertson model
in [21], and having an underdetermined system only
implies a zero eigenvalue for each parameter greater than
the number of measurements, but does not necessarily
imply that the nonzero eigenvalues decrease exponentially
in importance. In addition to the linear case discussed
in this paper, research in the area of sloppy models has
also been effectively applied in highly nonlinear systems.
Researchers have noted that in many systems certain
parameter combinations can be taken to infinity with little
alteration of the model predictions, permitting a reduction
of dimensions even in nonlinear cases [22].
To obtain the eigenparameters, one may construct the

Hessian matrix to express the second derivatives of the
objective with respect to all pairs of parameters, and then
take the SVD to obtain the eigenvalues and eigenvectors
[24]. A very similar procedure is used for the generation of
the RCDS knobs, and so the knobs we obtain are also
conjugate directions. Our main focus, however, is its ability
to reduce the number of relevant dimensions of the
problem, permitting tuning in what would otherwise be
an infeasibly large search space.
In our case, we computed the Hessian matrix for the

vertical emittance from our BMAD model [25] of CESR in
the 81-dimensional space of control parameters that com-
prise CESR’s 57 vertical kickers and 24 skew quadrupoles,
since these were the magnets which had significant effects
on the vertical emittance [26]. Expressing the vertical
emittance to second order near its minimum, we have
ϵðx⃗Þ ≈ ϵðx⃗0Þ þ 1

2
ðx⃗ − x⃗0ÞTHðx⃗ − x⃗0Þ, where x⃗ is a vector of

corrector magnet strengths, x⃗0 is the vector of corrector
magnet strengths which gives us the minimum vertical
emittance, ϵðx⃗Þ is the vertical emittance given some
corrector magnet strengths, and H is the Hessian matrix.
If H has normalized eigenvectors h⃗i and eigenvalues ϵi,
we may express the emittance as ϵðx⃗Þ ≈ ϵðx⃗0Þþ
1
2

P
iϵiðh⃗i · ðx⃗ − x⃗0ÞÞ2. Improvements obtained using the

ith eigenvector are therefore proportional to the corre-
sponding eigenvalue, assuming that all eigenvectors are
displaced by the same amount from their optimal values.
In the presence of noise in the emittance measurement of
characteristic size σ, and if one expects the magnet strengths
to require tuning of amplitude y, the above equation implies
that knobs with corresponding ϵi < 2σ=y2 will not provide
any visible emittance improvement. As is shown in Fig. 1,
the eigenvalues decay exponentially, confirming the sloppi-
ness assumption.
It is also interesting to study the magnets used in the

eigenvectors to see if there is any underlying structure.

Figure 2 shows the relative strengths of the 57 vertical
kickers used in the first eigenvector as a function of their
vertical betatron phase in the storage ring. They have a
periodic structure with a total number of crests (9) close to
the vertical betatron tune of 8.79, and, in general, the first
several knobs have the appearance of a global wave when
plotted in this way. This would make sense, since a
coordinated shift in kickers with the same betatron phase
should have the strongest effect on machine optics. Knobs
with smaller eigenvalues have more varied structures, with
very high-frequency and/or highly localized components.
The skew quadrupoles did not have large components in the
first several knobs, although we believe that this is at least
partially due to the different scales of the magnet strengths.

FIG. 1. The spectrum of eigenvalues obtained from the Hessian
matrix of the emittance, normalized so that the first eigenvalue
is equal to one. Note the logarithmic vertical scale. The Hessian
matrix and its spectrum are available as Supplementary
Material [27].

FIG. 2. The relative strengths of the kickers used in the first
eigenvector as a function of their vertical betatron phase in CESR.
Their arrangement in the shape of a betatron wave is readily
apparent. The vertical tune is 8.79, nearly matching the 9 crests of
the wave.
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Corresponding plots for all eigenvectors are available as
Supplemental Material [27].

III. CESR OVERVIEW

CESR is a storage ring that operates at 5.3 GeV with
counterrotating electrons and positrons as a light source,
and at lower energies as a test bed for future accelerators.
For our experiments, we use the multibunch, two-beam
lattice typical of CESR’s operation as a light source [28].
The design horizontal and vertical emittance in this lattice
are 97 nm-rad and 37 fm-rad, respectively, although, due to
inevitable magnet misalignments, in practice we measure
vertical emittances of roughly 20 pm-rad. All of CESR’s
magnets are independently powered, giving us flexibility in
how we apply corrections. Additionally, it has approxi-
mately 100 beam position monitors (BPMs) distributed
about its circumference, enabling measurements of orbit,
dispersion, coupling, and other optics functions. It also has
various beam size monitors, although our studies have been
carried out exclusively with the visible synchrotron light
beam size monitor (VBSM) [29]. Parameters of this ring
are shown in Table I.
For all experimental tests, we choose beam parameters

that maximize the sensitivity of diagnostic instruments and
minimize the influence of collective effects, storing a single
bunch with a modest current of 0.75 mA. To eliminate
spurious sources of emittance, we disable the electrostatic
separators and multibunch feedback, and attenuate the
feedback kicker amplifier [2,3].

IV. SINGLE-OBJECTIVE TUNING

A. Simulation

To test the stiffness of our knobs in simulation, we
generate 1000 configurations of the ring guide field with
random magnet misalignments and strength errors consis-
tent with our measurement tolerances. Details of the
assumed magnet errors may be found in the Appendix
of [3]. The knob-based tuning starts with the most
important eigenvector and makes a one-dimensional search
to find the value of that knob which minimizes the vertical
beam size at the location of the electron VBSM. These

steps are repeated for all 81 eigenparameters, with the
results shown in Fig. 3. We clearly see that almost all the
improvement in the beam size is due to the tuning of
the first few knobs, as we would expect for a sloppy system.
Repeating this procedure, but after first using our usual
Levenberg-Marquardt-based minimization of dispersion
and coupling, gives the results shown in Fig. 4. We again
see that the first few knobs are disproportionately effective
at fixing the beam size, although the contrast is not as stark
as in the uncorrected case due to the fact that our Levenberg-
Marquardt-based minimization makes corrections along
some of the knob directions, thus reducing their utility.

TABLE I. CESR parameters.

Circumference 768 m
Energy 5.3 GeV
Horizontal emittance 97 nm
Vertical emittance (Ideal) 37 fm
Vertical emittance (Actual) 20 pm
Horizontal tune 11.29
Vertical tune 8.79
Horizontal beta function at VBSM 4.8 m
Vertical beta function at VBSM 15.5 m
Fractional energy spread 6.5 × 10−4

FIG. 3. The average simulated beam size over 1000 instances of
a lattice with random misalignments after minimizing the beam
size using our first N eigenparameters. The average initial beam
size is shown by the point lying on the vertical axis. Note the
rapid decrease in beam size from the first few eigenparameters.

FIG. 4. The average simulated beam size over 1000 instances of
a lattice with random misalignments after correcting dispersion
and coupling using our Levenberg-Marquardt-based tuning and
then minimizing the beam size using our first N eigenparameters.
The average initial beam size is shown by the point lying on the
vertical axis. Although not as stark as when starting from an
uncorrected lattice, we still see that the first few eigenvectors
contribute a disproportionate amount to the reduction in beam size.
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We measure vertical beam size as a proxy for vertical
emittance. Although vertical beam size also depends on
the vertical beta function, dispersion, and coupling at the
VBSM source point, our knobs do not change the beta
function significantly (below one part per thousand), and
the vertical dispersion and coupling are ideally zero.
Therefore, while the beam size is not a perfect analogue
for the emittance, it is still an interesting parameter to
minimize for testing our methods.

B. Experiment

For the experimental tests, we restrict our search space to
the leading eight eigenparameters obtained from the simu-
lated Hessian. We mitigate the effects of measurement
uncertainty by taking point averages of multiple measure-
ments [30]. We scan each knob one-by-one as ordered by
eigenvalue using a modified RCDS algorithm. Step sizes
were set to be 2=7 of the knob value which increased the
vertical emittance by 15 pm in simulation. This value was
chosen so that when performing online tuning we would
expect to be sure of bounding the minimum beam size
within a reasonable number of measurements and have
enough data to perform a decent fit. The scan ranges up to
five standard deviations about the minimum vertical beam
size. The knob setting for minimum vertical beam size is
estimated from a quadratic fit to the data obtained from
the scan [31]. The orbit is altered by our use of vertical
correctors, and no attempt is made to hold it fixed. Each
one-dimensional scan may be completed in a few minutes.
We perform our tests starting from both an “uncorrected”
and a “corrected” lattice. The difference between these two
cases is that, for the latter, we have first applied our
standard Levenberg-Marquardt-based tuning of dispersion
and coupling. The uncorrected lattice retains historical
magnet adjustments made for CESR’s light-source oper-
ations and general machine usability, but no special effort
had been made to minimize the vertical emittance.
When applying RCDS tuning to both an uncorrected and

corrected CESR lattice, we obtain the results shown in
Fig. 5 and Fig. 6, respectively. We see that, when starting
from an uncorrected lattice, we are able to reach beam sizes
comparable to what the standard low-emittance tuning
algorithm is able to deliver. When starting from a lattice
already corrected by the standard tuning methods, we are
able to bring about a clear further reduction in beam size.
We also examine how much each knob contributes to the

improvement of the beam size, as is shown in Fig. 7 for the
case when starting from an uncorrected lattice. We see that
the first and fifth eigenvectors are the primary contributors
to the reduction in beam size. While the fact that the first
is so useful is not surprising, the utility of the fifth is
interesting. We note that the change in the fifth knob
required to minimize the beam size was more than twice
that of any of the other knobs and more than four times as
much as the requisite change in the first knob, suggesting

that its importance stems from the fact that our starting
lattice was very misaligned in that direction. From Fig. 4,
we see that the fifth knob also contributes significantly to
the reduction of the beam size in simulation when starting
from a corrected lattice. Recalling that even our “uncor-
rected” lattice still contains some history of magnet adjust-
ments for CESR’s light-source operations, we believe that
the reason for the fifth knob’s anomalous behavior stems
from these prior corrections having already made effective
use of the higher-eigenvalue knobs. The fifth knob is then
very useful because it is the strongest knob which had not

FIG. 5. Histogram of hundreds of experimental vertical beam
size measurements both using the standard lattice for light-source
operations with no additional tuning and after tuning with the
RCDS algorithm using the best 8 eigenparameters. A clear
improvement is observed. Note also the high-side tail of the
low-beam-size distribution.

FIG. 6. Histogram of hundreds of experimental vertical beam
size measurements both after applying just the standard Leven-
berg-Marquardt minimization of dispersion and coupling and
after additional tuning with the RCDS algorithm using the best
8 eigenparameters. A modest but unambiguous improvement is
observed. Note also the high-side tails of the measurement
distributions.
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yet been well-tuned. Although we cannot definitively
conclude that additional knobs will not give significant
further improvements to the beam size, the fact that the fifth
knob’s exceptional performance is substantiated by simu-
lation, while no other knob shows such striking behavior,
suggests that the knobs beyond the first 8 will not act in the
same way.
Comparison of the simulated and experimental results

shows that, in experiment, neither Levenberg-Marquardt
nor RCDS brings the vertical beam size to its theoretical
minimum of a few μm, obtaining instead a lower limit of
a few tens of μm. We infer the existence of an unknown
source of emittance in the machine that cannot be corrected
by static magnet changes. A search for the cause had
previously been made without success [2], and efforts in
this area are ongoing.

V. MULTIOBJECTIVE TUNING

A. Theory

Multiobjective genetic algorithms are useful in myriad
accelerator applications since the magnets used to fix one
problem will often introduce another; in our case, using
vertical correctors as part of an emittance-tuning algorithm
introduces orbit errors. When design objectives compete,
an intermediate step in identifying an optimal solution is to
locate the trade-off frontier. One design dominates another
if it is superior with respect to one objective and is not
inferior in any of the others. The trade-off frontier is the set

of nondominated designs. A multiobjective genetic algo-
rithm searches for the trade-off frontier by creating a
random sampling of initial “individuals” in the space
of tunable parameters, evaluating their merit functions,
and preferentially breeding the best individuals by
combining their tunable parameters, or genes [32]. The
population is iteratively grown then culled so that surviv-
ing individuals converge on the trade-off frontier. Genetic
algorithms have an essential place in the toolkit of
accelerator designers [33–36], but are relatively rare in
online applications.
We investigate a multiobjective genetic algorithm that

takes two merit functions: the vertical beam size at the
VBSM and the sum of the squares of three vertical orbit
measurements in the neighborhood of the narrow-aperture
undulator. The algorithm is a modification of SPEA2 [37]
as implemented by the PISA collaboration [38] using a
binary tournament selection operator, simulated binary
crossover recombination operator, and polynomial muta-
tion operator [32]. SPEA2 assigns each individual a
strength based on how many individuals it dominates, then
determines the fitness of a given individual by summing
the strengths of the individuals which dominate it, with
lower-fitness individuals being better. In order to promote
diversity, SPEA2 assigns a preference to individuals
located in more sparsely-populated regions of the objective
space. SPEA2 is an elitist algorithm, so that both parents
and offspring compete for inclusion in the next generation.
To handle noisy experimental data, we use sample

averaging and modify SPEA2 to randomly resample
individuals in the population. As was noted in [8], in an
elitist algorithm, individuals which obtain good merit
functions due to noise remain in the population indefinitely.
By determining the fitness of an individual by averaging
multiple measurements, we reduce the effective noise,
and so reduce the probability of such a situation arising
in the first place. By periodically resampling individuals,
we remove any individual which does end up appearing
good solely due to the noise. This was implemented by
reevaluating each individual once every seven generations,
with the time of the first resampling being random. As was
noted in [11], resampling also reduces our sensitivity to
machine drifts. Additional parameters used in the genetic
algorithm are displayed in Table II.

FIG. 7. The improvement due to each knob when tuning the
real machine starting from a lattice without additional corrections.
Knob 5 contributes a surprisingly large amount. However, we
note that it needed to be turned more than twice as far as any other
knob, and more than four times as far as the first knob, which
suggests that its utility stems from the fact that, when tuning the
lattice for use in light-source operations, the first few knobs had
already been used, and so the fifth knob is the strongest knob to
have not been well-tuned. Note that, when comparing to Fig. 3 or
Fig. 4, the latter two plots show the beam size after tuning
N knobs while this plot shows the change in beam size from
tuning the Nth knob.

TABLE II. SPEA2 parameters.

Variable swap probability 0
Individual mutation probability 1
Variable mutation probability 0.1
Individual recombination probability 1
Variable recombination probability 1
Eta mutation 20
Eta recombination 15
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B. Simulation

Our aim in simulation is to study the speed-up effect that
dimension-reduction and the use of conjugate directions
provide to the genetic algorithm. We use the values of the
81 useful corrector magnets as our genes in one set of tests,
and compare with a second set of tests that use as genes the
values of the 8 eigenparameters, with both run with 30
individuals for 30 generations. The population size was
chosen so that we would be able to evaluate one generation
of individuals in a reasonable time for online tests.
Although this limits the coverage of high-dimensional
spaces, we had found in simulation that the genetic
algorithm using the corrector magnets as genes performs
much better in this configuration than when using a
population of 90 with 10 generations, keeping the number
of function evaluations constant. We simulate the standard
CESR lattice with random misalignments without addi-
tional emittance tuning, iterating over an ensemble of 179
sets of misalignments. For each set of misalignments, we
combine the final generations from the algorithm using the
81 corrector magnets as genes and the algorithm using the
8 eigenparameters as genes and compute the set of non-
dominated individuals. In 114 trials (64% of trials), the
majority of individuals on the joint nondominated front
comes from using the 8 knobs as genes, while the reverse
occurs in 57 trials (32% of trials). In this way, we see that
using the 8 eigenparameters as our genes can improve the
performance of the genetic algorithm. We expect that, since
it has a larger space to explore, the algorithm running with
the 81 magnets as the genes will eventually obtain a
superior set of solutions. However, for online problems,
speed is a more important concern.
Two effects may explain the improved performance of

the 8 knobs relative to the 81 magnets. The first cause is the
restriction of the search to a lower-dimensional space. The
second is the use of conjugate directions. To attempt to
differentiate these causes, we use a properly scaled
Hadamard matrix to transform the 8 knobs we had used
previously into 8 “mixed” knobs, such that these mixed
knobs are still orthonormal and span the same space, but
each is a linear combination of equal parts of our 8 original
knobs. By running the genetic algorithm with these knobs,
we maintain the advantages of the reduced dimensionality
of the problem, but without any advantages which may
arise from using conjugate directions. We also run the
genetic algorithm with all 81 knobs as genes, so that we
maintain the advantages of conjugate directions without
dimension-reduction. As a less extreme case, we addition-
ally run a genetic algorithm using the first 16 knobs as
genes. We perform tests similar to those described in the
preceding paragraph: for the same ensemble of 179 sets of
magnet misalignments, we run the genetic algorithm using
these 8 mixed knobs, 16 knobs, or 81 knobs as the genes for
30 generations with a population of 30. To compare the

relative utility of two sets of genes, for each set of
misalignments we combine the final generations of the
two algorithms and compute the nondominated front. We
determine how many times the set of individuals found by
each algorithm composes the majority of the joint non-
dominated front. The results of these tests are shown in
Table III. We observe that the algorithms using the
conjugate-directions as genes routinely outperform the
algorithms which do not, regardless of the dimensionality.
From this, we conclude that the use of conjugate directions
consistently plays a significant role in improving algorithm
performance. The dimensionality of the search space does
not appear to play a significant role in determining the
performance of the genetic algorithm.
The fact that the use of conjugate directions improves

the performance of the genetic algorithm should not come
as a surprise. There is a direct relationship between the
value of a knob and the beam size, independent of the
values of the other knobs. When using knobs as genes, it
then makes sense to talk about one gene having a “good”
or “bad” value and having that reflected in the merit of the
individual.
In order to understand the irrelevance of the number

of dimensions, consider the example of using 8 versus
81 knobs as our genes. In the latter case, although we
have an additional 73 knobs to optimize, they lie along
the sloppy directions, and so are not very important to
the determination of the emittance. With the bounds
chosen for our search space, the increase in emittance
due to these lower-eigenvalue knobs is small relative
to the changes in emittance from the first few knobs
until the latter become very well-optimized, so that
even the 81-knob genetic algorithm will be able to
cleanly tune the high-eigenvalue knobs. Even if not
using knobs as our genes, almost any choice of 8
parameters can be projected onto the space spanned

TABLE III. Comparison of genetic algorithms with different
genes. The fraction of trials (out of 179) where the individuals
found by the genetic algorithm running with the genes listed on
the left comprise the majority of the joint nondominated front
when its final population is combined with the final population
of the algorithm running with the genes listed above. Higher
numbers indicate better performance by the genes to the left and
poorer performance by the genes above. In general, the use of
conjugate directions significantly improves the convergence of
the genetic algorithm.

8
Knobs

8 Mixed
Knobs

16
Knobs

81
Knobs

81
Magnets

8 Knobs � � � 0.63 0.46 0.51 0.64
8 Mixed
knobs

0.34 � � � 0.31 0.35 0.43

16 Knobs 0.50 0.65 � � � 0.49 0.64
81 Knobs 0.42 0.60 0.46 � � � 0.53
81 Magnets 0.32 0.52 0.30 0.43 � � �
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by the first 8 eigenparameters, with the complication that
tuning with these parameters entails also altering the
other, less-useful 73 eigenparameters. Adding additional
parameters only allows the independent tuning of these
73 eigenparameters, the values of which do not have a
large impact on the emittance.
If we attempt tuning with the allowed ranges of the

knobs and magnets increased by a factor of 10 above what
we had used previously, we find that the dimensionality of
the search becomes the dominant factor for the convergence
of the search. This may be seen in Table IV, which shows
the results of making the same comparisons as were
performed above, combining the final populations of
algorithms run with different genes and seeing how many
times each algorithm finds the majority of the individuals
on the nondominated front. The reason for this is that, in the
high-dimensional cases, the lower-eigenvalue knobs are
allowed to vary enough that they become significant
relative to the first few knobs well before the latter are
well-tuned. The algorithm then needs to spend resources to
optimize these additional knobs as well. When using a
reduced number of knobs, the default values for the lower-
eigenvalue knobs are fixed near their optimal values
relative to the size of the search space, so that, for our
chosen number of generations, their unavoidable contri-
bution to increasing the emittance is small relative to the
contributions from the high-eigenvalue knobs.

C. Experiment and discussion

Running the genetic algorithm on CESR, we use the
leading 8 eigenparameters as the genes and initialize the
machine with the lattice and conditions for light-source
operations, without additional emittance tuning. The initial

vertical beam size is 70 μm. After running with a
population of 30 individuals for 11 generations, we obtain
beam sizes of 30 μm, as shown in Fig. 8. This perfor-
mance is comparable to the RCDS algorithm, but with
greater control over the orbit. With the population size
chosen, each generation may be evaluated in roughly ten
minutes.
It is also interesting to measure the rate of convergence

to the trade-off frontier. The progress of our algorithm is
shown in Fig. 9. There is no consensus in the computer
science literature on the best way to measure multiobjective
convergence [39]. We choose the most popular metric
among the subset that do not assume knowledge of the
“true” trade-off frontier, the epsilon test [40]. Given the
trade-off frontiers Xi and Xiþ1 at iterations i and iþ 1 of
the algorithm, ϵ is defined as the minimum scaling factor
such that every element of the rescaled ϵXiþ1 is dominated
by at least one element of Xi. The algorithm converges
as ϵ → 1, meaning that successive generations just barely
dominate their predecessors and the fitness of the gene pool
is not improving over time. We find running on the real
machine that the algorithm has not fully converged within
the time allotted for it to run, as is shown in Fig. 10. This is
consistent with the findings from [10,11] that genetic
algorithms converge slowly when applied to online opti-
mization. However, we emphasize that the genetic algo-
rithm need not converge to be useful; good intermediate
solutions found by a genetic algorithm, such as those
shown in Fig. 8, still represent good working points for the
machine.

TABLE IV. Comparison of genetic algorithms with different
genes in a larger search space. The fraction of trials (out of 179)
where the individuals found by the genetic algorithm running
with the genes listed on the left comprise the majority of the joint
nondominated front when its final population is combined with
the final population of the algorithm running with the genes listed
above. Higher numbers indicate better performance by the genes
to the left and poorer performance by the genes above. The search
range for each gene has been increased by a factor of 10 from
what was used to obtain Table III. In this case, the reduction in the
number of dimensions plays a significant role in improving the
algorithm performance.

8
Knobs

8 Mixed
Knobs

16
Knobs

81
Knobs

81
Magnets

8 Knobs � � � 0.54 0.57 0.79 0.99
8 Mixed
Knobs

0.42 � � � 0.56 0.74 0.99

16 Knobs 0.37 0.39 � � � 0.61 0.96
81 Knobs 0.19 0.23 0.36 � � � 0.96
81 Magnets 0.00 0.01 0.03 0.02 � � �

FIG. 8. The final generation of our genetic algorithm as applied
to CESR, with the nondominated individuals differentiated from
the rest. Also plotted are the initial beam size and orbit and those
obtained after the 8-knob RCDS tuning, as in Fig. 5. The BPMs
near the undulator had some offsets, so we are in fact attempting
to steer the beam onto an arbitrary off-axis trajectory. Given that
steering the beam onto a specific nonzero orbit also represents a
trade-off with respect to minimizing emittance, our conclusions
are not affected.
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VI. CONCLUSIONS AND OUTLOOK

We have shown that, by making the proper choice of
decisionvariables, we are able to reduce the 81-dimensional
task of tuning the vertical emittance at CESR to an
8-dimensional problem with little loss in our ability to
minimize the beam size. These few stiff knobs enable the
efficient use of the RCDS algorithm for tuning the machine.
We have also demonstrated that stiff knobs speed up the
convergence of a multiobjective genetic algorithm. The
utility of the genetic algorithm extends to online optimi-
zation of the real machine.
It is important to note that with either the genetic or

RCDS algorithms, using more knobs will enable one to
find an improved solution, but at the cost of increased time
of running. For our tests, the fact that we have repeatedly
demonstrated that 10% of the available knobs (8 out of 81)
are able to provide at least 50% of the potential improve-
ment in beam size (and much more if there was some
additional source of emittance in our machine which could
not be corrected by such knobs) shows that this choice is a
useful compromise between speed of execution and utility
of results. Time and performance constraints will inform
the optimal choice of the number of knobs for practical
use elsewhere.
In addition to the cases reported here, this dimension-

reduction method will enable other algorithms that scale
poorly with the number of free parameters to be applied to
accelerators. Moreover, the fact that accelerators appear to
display features of sloppy systems motivates the application
of techniques for simplifying nonlinear sloppy systems to
problems such as injection or lifetime optimization. We
also aim to apply this work to the tuning of other high-
dimensionality systems, such as electron microscopes. To
facilitate the above objectives, we are planning to create a
more universal toolkit for flexibly applying various algo-
rithms to a myriad of accelerator systems based on an
Experimental Physics and Industrial Control System
(EPICS) interface. It will also be interesting to explore ways
to correct for the fact that prior tuning reduces the expected
effectiveness of some of the high-eigenvalue knobs.
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FIG. 10. The epsilon test of convergence in our online study: ϵ
is the scale factor such that the ith generation frontier set Xi
dominates the rescaled frontier set ϵXiþ1. The algorithm con-
verges as ϵ approaches unity. The figure shows that the algorithm
is still providing improvement at the end of the allotted time.
Comparison with Fig. 9 shows that this improvement is mainly
due to reduction in the orbit error.

FIG. 9. Experimental progress of the genetic algorithm with
time. Each square marks a generation of the algorithm, showing
the location of the mean individual in the trade-off frontier.
Arrows indicate the sequence of generations, with one generation
taking 10 minutes of machine time. The x axis shows the square
root of the ratio of the RMS beam size ϵ and RMS orbit error σ,
while the y axis shows the square root of their product. For any
given x, smaller y values are better. Solid lines show the best
power-law fit ðy ¼ AxbÞ to the trade-off frontier at each gen-
eration. Much of the improvement provided by the genetic
algorithm is due to reduction of the orbit error, as evidenced
by the trend of the algorithm toward larger values of

ffiffiffiffiffiffiffiffi
ϵ=σ

p
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