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With the aid of machine learning techniques, the genetic algorithm has been enhanced and applied to the
multi-objective optimization problem presented by the dynamic aperture of the National Synchrotron Light
Source II (NSLS-II) Storage Ring. During the evolution processes employed by the genetic algorithm,
the population is classified into different clusters in the search space. The clusters with top average fitness
are given “elite” status. Intervention on the population is implemented by repopulating some potentially
competitive candidates based on the experience learned from the accumulated data. These candidates
replace randomly selected candidates among the original data pool. The average fitness of the population is
therefore improved while diversity is not lost. Maintaining diversity ensures that the optimization is global
rather than local. The quality of the population increases and produces more competitive descendants
accelerating the evolution process significantly. When identifying the distribution of optimal candidates,
they appear to be located in isolated islands within the search space. Some of these optimal candidates have
been experimentally confirmed at the NSLS-II storage ring. The machine learning techniques that exploit
the genetic algorithm can also be used in other population-based optimization problems such as particle
swarm algorithm.
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I. INTRODUCTION

Population-based optimization techniques, such as evo-
lutionary (genetic) [1–16] and particle swarm [17–19]
algorithms, have become popular in modern accelerator
design. They are effective design tools for both linear and
nonlinear system optimization. Optimization of a nonlinear
lattice’s dynamic aperture usually has multiple objectives,
such as the area and the profile of the dynamic aperture,
energy acceptance, beam lifetime [1,3], and nonlinear
driving terms (NDT) [4] etc. Dynamic aperture and energy
acceptance can be evaluated through direct single-particle
tracking simulations. NDTs can be extracted analytically
from the one-turn-map for a given nonlinear lattice con-
figuration [20–23]. Recent studies have found that the
spread from a constant of the action obtained with the
square matrix method [24–27] represents a kind of non-
linearity measure of a lattice, which can be treated as an
optimization objective as well. Another optimization objec-
tive, which is deduced from the square matrix method and
used in this paper, is the spread of linear action Jx;y from a

constant. The spread is numerically computed from simu-
lated turn-by-turn data [28,29]. Based on the number of
objectives presented in this application, multiobjective
genetic algorithm (MOGA) [30] is a suitable optimization
tool to compromise among these objectives simultaneously.
A general model for multiobjective optimization is

(i) given a set of free variables xn within the range
xn ∈ ½xLn ; xUn �, n ∈ ½1; N�; (ii) subject to some constraints
cjðxnÞ ≥ 0, j ∈ ½1; J�, and ekðxnÞ ¼ 0, k ∈ ½1; K�;
(iii) simultaneously minimize a set of objective functions
fmðxnÞ, m ∈ ½2;M�. Here xLn , and xUn are the lower and the
upper boundaries of the nth free variables. N, J, K, and M
are non-negative integers. Note for simplicity, clarity, and
without loss of generality, all constraints are lower bounds,
and all objectives are minimized.
A genetic algorithm (GA) is a type of evolutionary

algorithm. It can be used to solve both constrained and
unconstrained optimization problems based on a natural
selection process that mimics biological evolution [30].
Each candidate has a set of free variables which it inherits
from its parents and is mutated at random corresponding
to a certain probability. Each candidate’s free variables xn
can be regarded as an N-dimensional vector x. Their ranges
½xLn ; xUn � define a volume of an N-dimensional “search
space.” The evolution, as in nature, is an iterative process.
The new population from each iteration is referred to as a
“generation.” The process generally starts with a population
that is randomly generated and the fitness of the individuals
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is evaluated. Individuals with greater fitness are randomly
selected, and their genomes are modified to form the next
generation. The average fitness of each generation therefore
increases with each iteration of the algorithm. Commonly,
the algorithm terminates when either a maximum number
of generations has been reached, or a satisfactory fitness
level has been achieved for the population.
The goal of multiobjective optimization (MO) is to

optimize functions simultaneously. These functions are
sometimes related and their objectives may conflict. In
these events, trade-offs are considered among the objec-
tives. In non-trivial MO problems the objectives conflict
such that none can be improved without degrading others
in value and are referred to as nondominated or “Pareto
optimal.” In these cases a nondominated sorting algorithm
can be used to judge if one candidate is better than another
[30]. In the absence of constraints or preferences, however,
all Pareto optimal candidates are equally valid and given
the same rank. For a given application, in an unconstrained
optimization, more desirable solutions (based on some
unspecified metric or criteria) can be dominated by less
desirable solutions, and understandably, the unconstrained
optimization may fail to produce solutions that meet the
unspecified metrics. In this instance, the unconstrained
optimization is not an accurate model of the problem to be
solved. If constraints are provided, however, the rank of
each individual accounts for the constraints, and qualified
candidates are guaranteed to dominate unqualified ones.
Each qualified candidate has M fitness values fm, which
compose another M- dimensional “fitness space.” The
combination of multiobjective, nondominated sorting with
employment of the genetic algorithm forms the basis of the
“MOGA” method.
Although MOGA has proven to be effective, it has

some limitations in its application to modern storage ring
optimization. In general, the application of MOGA on
dynamic aperture optimization can be driven by either
direct particle tracking, or analytical calculation of non-
linear characterization. It is time-consuming to evaluate the
fitness quantitatively, as seen with the calculation of a
large-scale storage ring’s dynamic aperture using the
symplectic integrator [31]. The enormity of the dimensions
of the search space also presents an issue. Modern accel-
erators have many magnets that are tuned independently.
Each of them can be continuously tuned within a wide
range, limited only by the capacity of their power supply or
their field saturation. Compounding the issue, a storage
ring’s lattice is also a highly nonlinear system, in which a
small difference in the magnet configuration can result in
vastly different behavior in regard to beam dynamics.
Given the dimensionality provided by the genetic algo-
rithm, and although tens of thousands of candidates make
up the population of the search space of each generation,
the population density is still low. Optimal candidates
might also be located within a narrow space. The outcomes

of satisfactory candidates rely on some random processes,
such as initial seeding, mutation, and the probability of
crossover. In order to determine at least some of optimal
candidates, either a large population is needed, or a long
time frame for evolution, or both. MOGA are therefore
usually limited by processing power and/or computation
resources.
Although there is no a priori reason why the genetic

evolution process needs external intervention, examples
without it such as the evolution of biological life on earth
or planetary formation in the solar system, were only
possible after billions of years [32]. One reason why natural
evolution is comparatively slow is that the percentage of
elite candidates among the whole population is low. A brute
force method for speeding up evolution is to narrow down
the search ranges around good candidates found early in the
evolution process. This decreases diversity, however, and
could lead to selecting candidates that are trapped in local
minima. An effective intervention step would be able to
significantly speed up the evolution in the desired direction.
To do so, some machine learning techniques are introduced
to traditional MOGA methods to intervene on the natural
process. The intervention process is implemented auto-
matically. First, it classifies the candidates in the search
space, and second, it increases the ratio of potential elites
among the population without loss of diversity. This
method was demonstrated by optimizing the NSLS-II
storage ring’s dynamic aperture. The convergence of
average fitness of the population evolved much faster with
intervention. Since sufficient elites exist, their distribution
in the search space can also be studied.
To further explain the enhanced MOGA method and its

application at NSLS-II, the remaining sections are outlined
as follows: Section II describes the technical details of
MOGA enhanced by intervention. Section III introduces
the application of this method on the NSLS-II ring. Here,
both the tracking simulation and the experimental results of
an optimal solution obtained with this technique are also
demonstrated. A brief summary is given in Sec. IV.

II. MOGA ENHANCED BY MACHINE LEARNING

During the evolution process, MOGA produces a large
data pool. It is possible to reuse the data with machine
learning techniques to intervene on the evolution process.
Here an intervention method is introduced which is
schematically illustrated in Fig. 1. It includes the classi-
fication of the search space (unsupervised learning), sorting
based on the average fitness and repopulation of potential
elite candidates (supervised learning).
Starting with randomly distributed individuals, the initial

population is allowed to produce descendants via the
traditional genetic algorithm. Once all candidates satisfy
some desired constraints, sufficient data is accumulated to
intervene on the evolution process using machine learning
techniques. For each following generation, all populations
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are classified into different clusters in the search space
based on a parameter D,

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
n¼1

ðx1;n − x2;nÞ2
vuut ; ð1Þ

which represents the “Euclidean distance” between two
candidates x1 and x2 in the search space. The classification
was performed with the K-means algorithm [33] as shown
in the subplot (b) of Fig. 1. The number of clusters should
be determined based on the size of the population and the
nonlinearity of the system itself. In general, a highly
nonlinear system needs more clusters to narrow down
the range of each cluster for better performance.
After classifying candidates into different clusters, a

statistical analysis is carried out on each cluster to evaluate
their average or weighted fitness F, which reads as

F ¼
XM
m¼1

wmfmðxnÞ: ð2Þ

Here wm is the weight on the mth fitness value of fm.
As mentioned previously, our optimization has multiple

objectives. Within each generation, most of the candidates
belong to the same rank on the Pareto front. Although they
are equally good (they exhibit no dominance) and a lot of
candidates have one or two good fitness values, the rest
have poor fitness. They can survive through many gen-
erations unless a constraint is imposed. These types of
candidates, however, often have poor trade-offs with
conflicting objectives. Weighted fitness F as a measure
for implementing machine learning is therefore introduced.
If all weights wm are chosen to be 1=M, F becomes the
average fitness.
The weighted fitness of individuals in each cluster are

then evaluated and sorted as illustrated in the subplot (c) in
Fig. 1. A few of the better clusters are then selected and
labeled with the “elite” status. Some arbitrary number of
new candidates (for example, 20% of the total population)
are repopulated uniformly and randomly within the narrow
“elite range” of these elite clusters within the search space.
Since these newly populated candidates share some simi-
larities in the search space with the elite candidates thus
far, they are expected to be more competitive in regard to
survivability. From the original population, the same
amount of candidates are randomly selected, to be replaced
by the newly populated candidates. After the replacement,
the number within the population remains the same, but the

FIG. 1. Schematic illustration of intervention using machine learning techniques. Here, a search space of two free variables is
assumed. The distribution of the original population is shown in the subplot (a). The candidates are classified into three colored clusters
with the K-means algorithm in the subplot (b). The average fitness of each cluster has been evaluated, sorted, and given a status labeled
with “Best (elite),” “Good,” and “Poor” respectively in the subplot (c). In the subplot (d), some potential competitive candidates (marked
as the magenta dots) are repopulated inside the range of the “Best (elite)” cluster and then are used to replace the same amount of
candidates from the original data pool. After the replacement, the post-population densities of the “Good” and the “Poor” cluster become
low. In reality, there may not exist obvious boundaries to separate each cluster and cluster classification is not unique either.
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percentage of elites among the total population is increased.
The average fitness within each generation should therefore
increase respectively. This could potentially improve the
probability of producing more competitive descendants
favored by the optimization goals. The newest generation,
after intervention, produces descendants which start the
next iteration. While the next generation undergoes the
same intervention, the elite range for the following repo-
pulation of descendants will be dynamically redefined by
its own elite clusters. Note that the average fitness is used to
define the elite range for repopulation. These repopulated
candidates are not guaranteed the “privilege” of being
“winners” in each generation. The final candidates still
need to be selected through the nondominated sorting.
Considering that general fitness could have different scales
in each dimension, they may need to be normalized within a
similar range, usually ∈ ½0; 1�, prior to averaging them [34].
Thus far the proportion of the replacement at each

generation is set to a constant value. This is referred to
as the static replacement method (SRM). For the SRM, the
proportion of replacement is arbitrary, but it is necessary
to maintain diversity among the candidates to avoid traps
at local minima. When the search space is too large, the
distances D between candidates within the same cluster are
far. In this case, it is likely that intervention would mislead
evolution because the expectation on the “elite range” may
not be accurate. An optional dynamic replacement method
can be used to mitigate this issue. To judge how likely an
“elite range” can produce competitive candidates, a super-
vised machine learning technique is adopted. First, the
candidates of an elite cluster are divided into a training set
(usually around 90%–95% of its population) and a testing
set (the residual 5%–10%). With the training set data, a
learning model (hypothesis) H using the K-nearest neigh-
boring (KNN) regression algorithm [33] is created. The
model is used to predict the testing set’s fitness (prediction).
A comparison of the prediction and each individual’s
evaluated fitness value can determine the accuracy of the
prediction. The comparison is quantitatively measured by a
parameter “discrepancy” S in the fitness space,

S ¼ 1

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM
m¼1

jfm − hmj2
f2m

vuut : ð3Þ

Here, hm is the mth fitness value predicted from the
learning model H and fm is the actual fitness value. In
this case, f is evaluated from a lattice characterization code.
S ¼ 0 means they are exactly same. A large S indicates a
large discrepancy between the hypothesis model and the
actual value. Based on the average discrepancy of the
testing set, the replacement proportion for the population
can be dynamically adjusted on a generation basis. If
discrepancy is large enough for a particular generation,

intervention on the evolution process can be skipped
entirely.
In the previous discussion, the size of each population

was quite large. Therefore machine learning could be
implemented within a generation. In the case of small
population sizes, however, an alternative method still exists
for machine learning. Rather than using the candidates in a
single generation, accumulated candidates can be used
from multiple generations to define the elite range for
repopulation.

III. MOGA APPLICATION AT NSLS-II

The NSLS-II storage ring lattice [35] is used as an
example to demonstrate the application of this method. The
goal is to optimize the dynamic aperture of the operational
lattice. The linear chromaticity is corrected to þ2 by three
families of chromatic sextupoles in both the horizontal and
vertical planes. The free “tuning knobs” are six families of
harmonic sextupoles with fixed polarities.
The spreads of the linear actions Jx;y computed from

turn-by-turn particle tracking simulation are chosen as the
optimization objectives. The linear action Ju is defined as

Ju;i ¼ βuu2i þ 2αuuipu;i þ γup2
u;i ¼ ū2i þ p̄2

u;i; ð4Þ

where ui ¼ ðx; yÞi and pu;i ¼ pðx;yÞ;i are the turn-by-turn
coordinates in the horizontal and vertical planes respec-
tively. ū ¼ 1ffiffiffiffi

βu
p u, p̄i ¼ 1ffiffiffiffi

βu
p ðαuuþ βupuÞ are a pair of

normalized canonically conjugated coordinates, and α and
β are the linear lattice optics Twiss parameters at the
observation point. In the presence of nonlinear magnets, the
linear actions have some spread from constants, as illus-
trated in Fig. 2. Typically the spread gradually increases

FIG. 2. The root means squared (rms) spread of action from a
constant is used as an optimization objective. The dashed circle
represents a constant linear action at different angles. The dots are
the normalized turn-by-turn coordinates.
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with betatron oscillation amplitude. In order to obtain a
sufficient dynamic aperture, control of the nonlinearity of
motion for particles starting from different initial conditions
(amplitudes) is needed. Here, five sets of initial conditions
are chosen as shown in Fig. 3. The objectives are ten
spreads of actions under different sextupole settings (each
initial condition has both ΔJx;rms=Jx and ΔJy;rms=Jy). For
each candidate, the constraint is that all five particles can
survive for multiple turns. All objectives outlined thus far
are required to be equally important to ensure that there are
no “holes” (particle loss) inside the dynamic aperture.
To begin with, a random distribution is chosen in which

the entire population is uniformly distributed within ranges
limited by field saturation of the magnets and power supply
capacity. In the NSLS-II ring, the search space at each
sextupole dimension is K2 ∈ ½0;�40�m−3 (Here � is
chosen depending on its polarity). Initially a population
total of 5000 is cast, and maintains the population size
during the evolution process. The search space density of a
population of 5000 in a six-dimensional space is extremely
low. For the first several generations, many candidates
cannot survive under 5 initial conditions for dozens of
turns. Therefore, the initial population evolves under the
initial constraint of self-survival. Each candidate’s resulting
fitness is evaluated with a symplectic particle tracking
simulation code and all data are archived in a database.
After the evolution of 6–7 generations, all candidates can
survive, but with very poor average fitness (see Fig. 4).
Thus far sufficient data may have already been accumulated
to allow the optimizer to learn from the history.
The K-means algorithm is then applied (using an

unsupervised learning technique) to classify the total
population into N ¼ 100 clusters in the search space and
each individual cluster’s average fitness is evaluated and

sorted. The top three elite clusters are selected, based on
their average fitness, to define an “elite” search range.
Within this range, 20% of the total population is uniformly
repopulated by random candidates. After this intervention
(repopulation), the optimizer enters the next iteration. An
optional dynamic replacement method can be employed
here as well, as described previously.
With intervention, a fast convergence in the average

fitness has been observed during evolution. Figure 4
compares the evolution of the average fitness of MOGA
with and without machine learning. Without machine
learning, the improvement of fitness relies heavily on
random crossover and mutation and global evolution can
sometimes stop, or even regress. With the implementation
of machine learning, however, the fitness convergence
becomes not only faster, but much more steady.
Although each generation requires extra time to implement
machine learning, the overall evolution is actually sped up.
More importantly, the amount of competitive candidates is
significantly increased, which allows for analysis of the
distribution of optimal candidates in the search space.
With each generation, all candidates are reclassified. The

elite ranges for repopulation also vary as shown in Fig. 5.
The ranges are observed to fluctuate, but gradually con-
verge during the evolution. For some free variables, the
ranges converged quickly to a small range of optimal
values. For example, the SL1 sextupole’s elite range shifts
toward zero (limited by its polarity). The sextupole SL1’s
strength K2 in many optimal candidates is observed to be
very weak. This sextupole can therefore either be removed
from the lattice, or have its polarity changed to see if
machine performance can be further improved.
In the final generation’s population, most of the candi-

dates are found on the Pareto front. Among them, many
have good average fitness. They are reclassified in the
search space to study their distribution. These candidates
appear to belong to many distinct groups. Each group is

FIG. 3. Five initial particle coordinates in the x − y plane with
their conjugate momenta px;y ¼ 0 used for tracking. The turn-by-
turn data are used to evaluate the spread of their linear actions.
The dashed line is the size of the desired dynamic aperture. The
5th particle is chosen beyond the desired dynamic aperture in
order to obtain a safe margin. The choice of the initial coordinates
is not arbitrary. It may depend on the local optics functions, and
physical aperture, etc.

FIG. 4. Comparison of the evolution of average fitness with and
without machine learning for 135 generations. Without machine
learning, the evolution process can sometimes stop, or even
regress. On the other hand, the fitness convergence becomes
faster and steadier with the introduction of machine learning.
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like an isolated island in the search space. The island
volumes, defined as

V ¼
YN
n¼1

ðxun − xlnÞ; ð5Þ

are quite different. Here, N is the number of dimensions of
the search space, and xun and xln are their upper and lower
boundaries in the nth dimension. In general, optimal
candidates in large islands are more robust and therefore
less impacted by errors than candidates in small islands
because average fitness in large islands is less sensitive to
the variation in search parameters. In Fig. 6, one island’s
coordinates are chosen as the origin to illustrate the relative
distance to the six neighboring islands. All candidates in
these islands yield decent dynamic apertures, but the
sextupole settings are quite different. It can sometimes
be useful to know the distribution of the optimal candidates
for a complicated nonlinear system. For example, in certain
scenarios, undetectable random errors might degrade per-
formance of a particular nonlinear lattice. Other optimal
candidates belonging to different islands, however, might
not be as sensitive to the same errors. This means more
viable lattice options for machine operations are available.
From the traditional MOGA population, very few good
candidates may result, but the density of good candidates

among the population is too low to analyze their distribu-
tion, unless given an extremely long evolutionary period
and/or a huge population.
The performance of the optimization has been

tested on a parallel cluster equipped with more than
200 Intel® Xeon® 2.2–2.3 GHz CPU cores. With a
population of 5000, and a fixed fraction of 20% repopu-
lated candidates per generation. It takes about 10 hours to
run 120 generations for the NSLS-II ring. A large fraction
of replacement means a more aggressive expectation
convergence, which may result in overshooting during
optimization. The population size, fraction of replacement,
and the final performance eventually depend on the com-
plexity of the machine lattice.
The following paragraphs describe the detailed tracking

results with the simulation code ELEGANT [36] and the
experimental observations at the NSLS-II ring. From many
optimal candidates obtained thus far, one solution is
arbitrarily chosen and used as the origin in Fig. 6, to carry
out machine studies. Fitness is determined in regard to the
spreads of linear actions through numerical simulations.
Tracking 5 particles with different initial conditions is
carried out for 2048 turns. Their normalized conjugate
position-momentum coordinates are shown in Fig. 7. Here,
5 initial conditions are used that differ from those used in
the optimization setting (see Fig. 3). The purpose of using
these initial conditions is to demonstrate that the optimized

FIG. 5. Variation of the ranges for generating new elite population in six-dimensional search space (sextupole’s K2) along the
evolution. The elite ranges fluctuate, but gradually converge toward much narrower ranges.
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sextupole settings can cover the dynamic aperture area of
interest, which is independent from these particular initial
conditions. In other words, the choice of initial conditions
for the optimization is not unique. The simulations indicate
that the rms spread of actions J gradually increase with the
initial amplitudes, but still remain small in both the
horizontal and vertical planes as expected. The maximum
rms spread with the initial condition x ¼ 20 mm and
y ¼ 3 mm (the outer ring in the plot) is around 3%,
indicating that the motion is quite regular.
A detailed frequency map analysis has been carried

out for both the on-momentum dynamic aperture (Figs. 8

and 9), and the off-momentum acceptance (Fig. 10). The
dynamic aperture has small nonlinear diffusion [37]: up to
35 mm in the horizontal plane, and 13 mm in the vertical
plane as shown in Fig. 8. In the meantime, this particular

FIG. 6. Relative distances of six neighbors from one elite candidate, which is used as the reference here in the search space.
The reference sextupole settings are given as K2;SH1 ¼ 26.20891 m−3, K2;SH3 ¼ −17.87664 m−3, K2;SH4 ¼ −6.39466 m−3,
K2;SL3 ¼ −22.42607 m−3, K2;SL2 ¼ 28.54735 m−3, K2;SL1 ¼ −0.22496 m−3.

FIG. 7. Simulated multiturn trajectories in the phase space
(left: the horizontal plane, right: the vertical plane) for five different
initial conditions. The maximum spread for the initial condition
x ¼ 20 mm, px ¼ 0 mradand y ¼ 3 mm, py ¼ 0 mrad is
around 3%.

FIG. 8. Dynamic aperture for on-momentum particles. The
color represents the tune diffusion obtained by turn-by-turn
tracking simulation. Diffusion [37] is defined as the difference
of tunes Δν extracted from the different time durations

Diff ¼ log10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δν2x þ Δν2y

q
. A cool color means the motion is

less chaotic and vice versa.
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candidate has large tune-shift-with-amplitude coefficients,
which can trap many resonance lines into a very thin stop-
band width [38,39] (see Fig. 9). The robustness of this
candidate has been confirmed by including the realistic
NSLS-II magnet errors. As the detailed nonlinear properties
of this lattice are not relevant to the optimization technique
discussed here, it will require more detailed discussion
outside the scope of this paper.
In this example, after the on-momentum dynamic aper-

ture is optimized, the energy acceptance appears to be
sufficient in the view of beam lifetime (see Fig. 10). The
same observation holds for other optimal candidates. For
the NSLS-II storage ring, it would appear that the two

objectives, dynamic aperture and energy acceptance,
may not conflict with each other. Should the dynamic
aperture and energy acceptance conflict as optimization
objectives in other synchrotrons, it is possible to include
some off-momentum particle’s actions as the optimization
objectives.
After testing several evolved candidates on the NSLS-II

storage ring, located on different islands within the search
space, all yield sufficient dynamic aperture and energy
acceptance, and therefore sufficient beam lifetime, for
nominal operating conditions. A brief discussion of one
particular experimental study period follows. During this
time, beam was brought to third order tune resonance
3νx ¼ 100 with the same lattice used for the tracking
simulation with interesting results.
The simulated frequency map of the on-momentum

dynamic aperture in Fig. 9 indicates that the third-order
resonance 3νx ¼ 100 was safely covered within the
dynamic aperture, with no obvious diffusion (nonlinearity)
observed in the tune space. The turn-by-turn particle
tracking simulation further shows that the third order
resonance has a very narrow stop bandwidth, which can
“trap” particles once their trajectories are located inside
the islands in the phase space (Fig. 11). During the study
period, the machine’s horizontal tune νx was set to 33.332.
A short bunch train of 25 buckets was displaced to a
particular amplitude using a pulse magnet (pinger). The
amplitude of displacement chosen was ≈0.4 mm, measured
at the center of the straight section where βx ¼ 21 m. This
particular amplitude allowed the beam horizontal fractional
tune to approach as close as possible to 1=3 ≈ 0.3333 � � �
(the right subplot in Fig. 12). The beam turn-by-turn
trajectories were then observed to be trapped in three
isolated islands in the phase space (the left subplot in

FIG. 9. Frequency map corresponding to the on-momentum
dynamic aperture in the x–y planes. A large tune-shift-with-
amplitude is observed in this lattice. The third order resonance
line can be crossed stably (without obvious diffusion).

FIG. 10. Frequency map of energy (momentum) acceptance in
the x − δ planes. Here δ ¼ Δp

p is the particles’ relative momentum
deviation.

FIG. 11. Simulated turn-by-turn trajectories in phase space.
A large tune-shift-with-amplitude coefficient shifts the tune
away from the third order resonance quickly when the betatron
amplitude is slightly off. The stop-band width for this lattice is
narrow, which means particle motion is stable even if its tune sits
on the resonance.
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Fig. 12). The beam began to circulate around the ring on a
closed, stable orbit with the periodicity 1=3 (see Fig. 13). A
similar study was demonstrated and reported on in [40,41].
The closed orbit with a 1=3 periodicity repeats itself

every 3 turns as illustrated in Fig. 13. It has some
potentially interesting applications in dynamics and time-
of-flight experiments [42]. For example, using a bunch-by-
bunch excitation technique [43,44], selected bunches can
be displaced in this closed orbit while keeping the rest of
the bunches in the original central orbit. Thus each
synchrotron radiation port can deliver up to four distinct
x-ray beams. The x-ray beams can have different horizontal
positions and angles, and particularly different, distinct
time structures. This technique and its implications, how-
ever, are beyond the scope of this paper and require further
development and study.

IV. SUMMARY

The evolution process of the genetic algorithm is
significantly sped up when enhanced by machine learning

and applied to the NSLS-II storage ring’s dynamic aperture.
Intervention via machine learning not only speeds up
evolution, but increases the number of elite candidates in
the data pool. Greater density of elite candidates allows for
study of the distribution of optimal candidates (resulting
dynamic aperture) in the search space. Therefore, more
options are provided for viable magnet settings. An optimal
candidate’s robustness can be roughly estimated by deter-
mining the dimension of the island to which it belongs in
the search space. The quality of some optimal candidates
obtained with this technique have been confirmed exper-
imentally on the NSLS-II ring and by simulation. This
technique can be applied to other population-based opti-
mization problems such as particle swarm algorithms.
Thus far, the optimizer is driven by the simulated data to

realize an offline optimization. Extending it to an online
mode would be a next logical step and would be driven by a
real storage ring’s TbT data [45,46].
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