
 

Stability condition for the drive bunch in a collinear wakefield accelerator
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The beam breakup instability of the drive bunch in the structure-based collinear wakefield accelerator is
considered and a stabilizing method is proposed. The method includes using the specially designed beam
focusing channel, applying the energy chirp along the electron bunch, and keeping energy chirp constant
during the drive bunch deceleration. A stability condition is derived that defines the limit on the
accelerating field for the witness bunch.
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I. INTRODUCTION

In the collinear wake field accelerator (CWA) proposed
by Voss and Weinland in 1982 [1] the drive electron bunch
generates the electromagnetic field by interacting with the
retarding medium, typically formed either by the dielectric
lined waveguide or the waveguide with small corrugations.
This field, known as the wakefield, accelerates electrons of
the witness bunch located at a strategically chosen distance
behind the drive bunch with the maximum accelerating
field and decelerates electrons of the drive bunch. The
charge of a witness bunch is much smaller than the charge
of a drive bunch. This promising method of particle
acceleration attracted many followers (e.g., see [2–12]
and references therein) who pursued accelerator designs
for a linear collider (e.g., see [13] and reference therein) and
a free-electron-laser-based light source [14]. A compre-
hensive review of the entire field of structure-based wake-
field accelerators was recently published in the Reviews of
the Accelerator Science and Technology [15]. Among
various challenges associated with practical designs of
the high energy gain and high energy efficient CWA, the
one that stands out because of its extreme difficulty and
importance is the task of restraining the beam breakup
instability (BBU) caused by the transverse wakefields. This
instability mostly affects the high charge drive bunch. The
witness bunch is much less amenable to this instability
because of a smaller charge and a higher energy.

Initially studied in a set of seminal papers ([16–18]), the
BBU has been a subject of many more investigations (e.g.,
see [19–34]). An elegant method to control the instability
was proposed by Balakin, Novokhatski, and Smirnov in
[19] and was named the BNS damping thereafter. They
proposed a systematic cancelation of the defocusing force
of the transverse wakefield by the chromatic dependence of
the quadrupole magnet strength on energy. Indeed, a key
provision of the BNS damping is creation of the linear
energy variation (chirp) along the electron bunch with the
head electrons having higher energy. By adjusting the
magnitude of the chirp, one can obtain a condition when
collective betatron oscillations of electrons in each longi-
tudinal slice of the electron bunch almost exactly repeat
oscillations of the preceding slices including the head slice.
In this case the frequency shift of the betatron oscillations,
due to chromaticity of external focusing provided by the
guiding FODO channel, balances the impact of the trans-
verse wakefield. Here F stands for the focusing lens, D for
the defocusing lens, and O for the drift space. Ultimately,
the BNS damping not only guarantees the stability of the
electron bunch motion, but also the preservation of the
electron bunch’s projected emittance. More information
about the BNS damping can be found in ([23–34]) and in
the Chapter 3 of the textbook [28].
The methodology of calculation of the energy chirp

described in ([19,23,28]) gives excellent results when a
small energy chirp and corresponding betatron frequency
shift is used. However, in the case of large longitudinal and
transverse wakefields of CWA, this methodology gives the
incorrect result. The error could be as large as 100% for the
energy chirp depending on phase advance of the focusing
system and transverse wakefield. A new formalism appli-
cable for an arbitrary strong wakefield compared to the
strength of the focusing system is proposed in this paper.
It includes three rules: the adaptive focusing, i.e., an
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optimized FD pattern for external focusing in the CWA
based on the maximum attainable magnetic field gradient in
the quadrupole lens; the adaptive energy chirp, i.e.,
selection of an optimized distribution of the drive bunch
peak current leading to a gradually changing energy chirp
with the deceleration of a drive bunch; and the stability
“window”, i.e., the smallest and largest energy chirp that
guarantees stable propagation of the drive bunch in con-
junction with other two rules.
We begin the analysis by considering the exact equation

that describes the motion of one drive bunch electron in the
structure based CWA that embedded in the FD channel.
The electron is decelerated by the longitudinal wakefield
and kicked by the transverse wakefield induced by other
electrons of the drive bunch ahead of it. In the next step we
define a special condition for electron focusing in the FD
channel and transform the equation of motion to the
inhomogeneous Hill’s equation without the dissipation
term using new variables. This leads to the definition of
the first set of stability conditions for the drive bunch that
includes two provisions, i.e., a requirement for the energy
chirp and a requirement for preservation of the relative
magnitude of the energy chirp independent of the decel-
eration of the drive bunch. We note that the Hill’s equation
is principally different from the approximate harmonic
oscillator equation considered in [19] and other papers cited
above because of the islands of instability in the particle
motion it describes. Using a two particle model, we solve
the inhomogeneous Hill’s equation for the second particle
in one FD cell and obtain bounding conditions on energy
chirp corresponding to its stable motion. After that we
generalize the solution to the entire electron bunch and
show how the stability condition connects together key
parameters of the CWA, i.e., the maximum attainable
accelerating field for the witness bunch, maximum attain-
able gradient of the magnetic field for the lens of the FD
channel, and maximum attainable energy chirp for the drive
bunch. Finally we show that stable CWA is possible for
experimentally realizable parameters and that these param-
eters do not have to be precisely matched in order to allow
for stable propagation of the drive bunch.

II. ADAPTIVE ENERGY CHIRP AND ADAPTIVE
BEAM FOCUSING

We consider the relativistic drive bunch with the trans-
verse dimensions that are much smaller than the radius a0
of the wake inducing structure of the CWA. Therefore, we
assume that the transverse wakefield is uniform across the
bunch. In this case, the analysis of the BBU is reduced to
the analysis of the stability of motion of the centers of the
bunch slices located at each coordinate s measured from
the bunch head when the drive bunch propagates along the
longitudinal axis z of the CWA. We study only vertical
displacements yðs; zÞ because the analysis of the horizontal
displacements xðs; zÞ is exactly the same. It can be shown

that the best option for a focusing system is the sequence
of focusing and defocusing lenses without drift spaces
that resembles a quadrupole wiggler. We consider CWA
embedded into the FD channel (see Fig. 1) with the
magnetic field gradient gðzÞ ¼ �g0, where the plus sign
is for the focusing (F) lens and the minus sign is for the
defocusing (D) lens.
The evolution of the yðs; zÞ along the CWA is described

by the following equation:

∂
∂z
�
γðs; zÞ ∂yðs; zÞ∂z

�
þ e
mec

gðzÞyðs; zÞ

¼ e
mec2

Z
s

0

G1ðs − s0Þqðs0Þyðs0; zÞds0; ð1Þ

where e is the electron charge, γ is the electron energy in
units mec2, me is the electron mass at rest, c is the speed of
light, and G1 is the transverse Green’s function.
We define charge distribution in the electron bunch

as qðsÞ and consider bunches localized on the interval
0 ≤ s ≤ l such as Z

l

0

qðsÞds ¼ Q; ð2Þ

where Q is the total bunch charge. We also assume that
there is no longitudinal focusing and ignore small changes
in the longitudinal velocity on the length of the CWA. This
is typical for the relativistic energies. Under assumptions
above we write:

∂γðs; zÞ
∂z ¼ e

mec2
Ezðs; zÞ: ð3Þ

Here Ezðs; zÞ is the decelerating wakefield. We further
define the variation of the electron energies along the
bunch as

γðs; 0Þ ¼ γ0½1 − fðsÞ� ð4Þ

and consider the bunch with the charge distribution that
produces the wakefield inside the bunch equal to

FIG. 1. A schematic diagram of the CWA embedded in the FD
channel and the electron bunch propagating from the left to right.
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Ezðs; zÞ ¼ E0½1 − fðsÞ�: ð5Þ

Here γ0 is the energy of electrons at the head of the bunch
and at the beginning of the CWA and E0 is the wakefield at
the head of the bunch. From (3), (4), and (5) we get

γðs; zÞ ¼ γ0½1 − αz�½1 − fðsÞ�; ð6Þ

where we define

α ¼ jejE0

γ0mec2
: ð7Þ

Thus the function fðsÞ is equal

fðsÞ ¼ −
γðs; zÞ − γz

γz
¼ −

Δγðs; zÞ
γz

; ð8Þ

where we use γz ≡ γð0; zÞ ¼ γ0½1 − αz� for the energy of
the head of the bunch.
Satisfying Eq. (8) requires the implementation of the

adaptive energy chirp when the relative magnitude of the
chirp remains constant with the deceleration of the drive
bunch, while its absolute value significantly decreases. This
can be done by employing the longitudinal wakefield
produced by the drive bunch with a special charge
distribution. For example, the “door step” electron density
distribution proposed in [9] and considered in [12] gives a
quasiuniform decelerating wakefield inside the drive
bunch. Adding a small quadratic component to a linear
ramp in the peak current will add a small linear variation to
the decelerating field, enough to keep constant the relative
magnitude of the chirp.
We notice that if we substitute γðs; zÞ in (1) as given by

(6) and make a change of the variable yðs; zÞ ¼ ṽðs; ũÞ/ ffiffiffĩ
u

p
,

where ũ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αz

p
, we arrive at

α2½1 − fðsÞ�
4

�
ṽ00ðs; ũÞ þ ṽðs; ũÞ

4ũ2

�
þ eg½zðũÞ�

γ0mec
ṽðs; ũÞ

¼ e
γ0mec2

Z
s

0

G1ðs − s0Þqðs0Þṽðs0; ũÞds0: ð9Þ

Here by the double prime we denote the partial derivative
∂2/∂ũ2. In the region where ũ2 > 0.1, i.e., where the drive
bunch has more than 10% of the initial energy, Eq. (9) can
be reduced to

ṽ00ðs; ũÞ þ 4e
α2γ0mec

g½zðũÞ�
1 − fðsÞ ṽðs; ũÞ

¼ 4e
α2γ0mec2

R
s
0 G1ðs − s0Þqðs0Þṽðs0; ũÞds0

1 − fðsÞ ð10Þ

assuming that 4jejg0
α2γ0mec½1−fðsÞ� ≫

1
4ũ2.

We notice that if gðzðũÞÞ is a periodic function of ũ, then
Eq. (10) is the Hill’s equation. Periodicity of gðũÞ can be
obtained by adjusting the length of the lenses according to

L ¼ L0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αz

p
; ð11Þ

where L0 is the length of the lens at the beginning of
the CWA.
By implementing this adaptive focusing and adaptive

energy chirp we achieve a condition where the betatron
phase advance over each individual FD cell remains the
same regardless of the drive bunch energy, and where the
beta function decreases in proportion to the length of
the cell, in which case the amplitude of betatron oscilla-
tion that would normally adiabatically grow as max jyj ∝
ð1 − αzÞ−1/2 due to the decreasing electron energy, will
only grow as max jyj ∝ ð1 − αzÞ−1/4. In Fig. 2 we show that
the quadrupole lens length tapering is better than the
tapering of the quadrupole gradient previously considered
in [35,36]. Here we plot the solution of equation (1) for a
head particle s ¼ 0 for the case of adaptive lens length (left
panel) and adaptive magnetic gradient (right panel) to
illustrate the advantage of the suggested design. We would
like to emphasize that for adaptive focusing to be valid for
the whole bunch, the absolute energy spread Δγ should be
dynamically adjusted so as to keep constant the relative
energy spread Δγ/γz.

III. TWO PARTICLE MODEL

In the subsequent analysis it is more convenient to make
substitution in the Eq. (10)

1 − ũ
2α

→ u;

ṽðs; ũÞ → vðs; uÞ; ð12Þ

FIG. 2. Solution of Eq. (1) for s ¼ 0, loss parameter α ¼ 0.005
and maximum

ffiffiffiffi
K

p
L¼0.35π (phase advance 0.2266π) for adap-

tive beam focusing using lens length variation L ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αz

p
(left panel) and lens magnetic gradient variation g0 ∝ ð1 − αzÞ
(right panel).
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to obtain

v00ðs; uÞ þ e
γ0mec

gðzðuÞÞ
1 − fðsÞ vðs; uÞ

¼ e
γ0mec2

R
s
0 G1ðs − s0Þqðs0Þvðs0; uÞds0

1 − fðsÞ : ð13Þ

Here by the prime we denoted partial derivative by u.
Now we consider two particles with charges q1 and q2

(see Fig. 3). The integrodifferential equation (13) can be
rewritten in this case as a system of two second order
differential equations:

v001ðuÞ þ KðuÞv1ðuÞ ¼ 0; ð14Þ

v002ðuÞ þ
KðuÞ

1 − fðsÞ v2ðuÞ ¼
wðsÞ

1 − fðsÞ v1ðuÞ: ð15Þ

Here

KðuÞ ¼ e
γ0mec

gðzðuÞÞ;

wðsÞ ¼ e
γ0mec2

G1ðsÞq1: ð16Þ

Similarly to the BNS damping condition, our goal now is
to find such fðsÞ when the second particle will closely
follow the trajectory of the first particle, or in other words, a
condition that will keep the distance between second and
first particles on a phase space diagram at a minimum
defined by the initial conditions:

argmin
fðsÞ

�
max

����
�
v2ðuÞ
v02ðuÞ

�
−
�
v1ðuÞ
v01ðuÞ

�����
�
: ð17Þ

Here argmin½·� is the notation for the operation of finding
such fðsÞ that delivers minimum to the expression inside
the brackets.
In the case of small wakefields, the recipe given by the

BNS damping condition [19] solves this problem by
defining fðsÞ that produces a small shift of the betatron

frequency for the second particle. However, the formalism
developed in ([19–28]) lacks applicability in the case of an
arbitrary strong wakefield and large shifts of the betatron
frequency. We therefore offer a new recipe to define fðsÞ
that continues fulfill condition (17) even in the case of the
arbitrary strong wakefields.
We start with the solution of the equation for the first

particle (14) that can be written as

�
v1ðuÞ
v01ðuÞ

�
¼ Xu

1

�
v01
v001

�
; ð18Þ

following [37,38]. Here v01 and v001 are the initial con-
ditions, and Xu

1 is the element of the phase flow of
equation (14). Since we consider an FD channel with
KðuÞ ¼ �K and KðuÞ has a period 2L, we can write the
matrix Xu

1 in the following form

Xu
1 ¼

(
Fu1ðA1Þn−1; focusing lens;

Du
1F

L
1 ðA1Þn−1; defocusing lens;

u ∈ ½0; L�; ð19Þ
where n is the period number, A1 ¼ DL

1F
L
1 is the mono-

dromy matrix or the transfer matrix,

Fu1 ¼
"

cosð ffiffiffiffi
K

p
uÞ 1ffiffiffi

K
p sinð ffiffiffiffi

K
p

uÞ
−
ffiffiffiffi
K

p
sinð ffiffiffiffi

K
p

uÞ cosð ffiffiffiffi
K

p
uÞ

#
ð20Þ

and

Du
1 ¼

"
coshð ffiffiffiffi

K
p

uÞ 1ffiffiffi
K

p sinhð ffiffiffiffi
K

p
uÞffiffiffiffi

K
p

sinhð ffiffiffiffi
K

p
uÞ coshð ffiffiffiffi

K
p

uÞ

#
: ð21Þ

If we assume that initial conditions for the second particle
are v2ð0Þ ¼ v02 and v02ð0Þ ¼ v002 then the solution of the
Eq. (15) can be found using the free parameters variation
method [37] and has the form

�
v2ðuÞ
v02ðuÞ

�
¼ Xu

2

�
v02
v002

�
þ wðsÞ
1− fðsÞX

u
2

Z
u

0

ðXτ
2Þ−1

�
0

v1ðτÞ

�
dτ:

ð22Þ

Here, as before the matrix Xu
2 , is the element of the phase

flow of Eq. (15) with wðsÞ≡ 0, that is given by the
following equation

Xu
2 ¼

(
Fu2ðA2Þn−1; focusing lens;

Du
2F

L
2 ðA2Þn−1; defocusing lens;

u ∈ ½0; L�; ð23Þ
where n is the period number, A2 ¼ DL

2F
L
2 is the mono-

dromy matrix or the transfer matrix,FIG. 3. A schematic diagram of the two particle model.
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Fu2 ¼

2
64 cosðθu2Þ

ffiffiffiffiffiffiffiffiffiffi
1−fðsÞ

K

q
sinðθu2Þ

−
ffiffiffiffiffiffiffiffiffiffi

K
1−fðsÞ

q
sinðθu2Þ cosðθu2Þ

3
75 ð24Þ

and

Du
2 ¼

2
64 coshðθu2Þ

ffiffiffiffiffiffiffiffiffiffi
1−fðsÞ

K

q
sinhðθu2Þffiffiffiffiffiffiffiffiffiffi

K
1−fðsÞ

q
sinhðθu2Þ coshðθu2Þ

3
75 ð25Þ

with θu2 ¼
ffiffiffi
K

p
uffiffiffiffiffiffiffiffiffiffi

1−fðsÞ
p .

We note that we may use in Eq. (22) the same initial
conditions for the second particle as for the first particle
without losing the generality of the analysis, assuming that
there is no wakefield before u ¼ 0, in which case one can
always find a point on the second particle trajectory before
u ¼ 0 where v2 and v02 coordinates are equal to the
coordinates of the first particle at u ¼ 0. Adding the
transfer matrix from that point to u ¼ 0 would only make
the expressions in the following analysis a bit more
cumbersome, but will not add new physics. Therefore,
by setting v02 ¼ v01 and v002 ¼ v001, Eq. (22) with (18) can
be transformed to

�
v2ðuÞ
v02ðuÞ

�
¼ Tu

�
v01
v001

�
ð26Þ

with

Tu ¼ Xu
2 þ Xu

2

Z
u

0

ðXτ
2Þ−1WXτ

1dτ ð27Þ

and

W ¼
�

0 0
wðsÞ

1−fðsÞ 0

�
: ð28Þ

We begin by considering the second particle transport
through the first focusing lens, i.e., using n ¼ 1, Xu

1 ¼ Fu1 ,
Xu

2 ¼ Fu2 , and thus obtaining from Eq. (27):

Tu ¼ Fu2 þ Fu2

Z
u

0

ðFτ2Þ−1WFτ1dτ: ð29Þ

for u ∈ ½0; L�.
Performing the matrix multiplication and integration we

arrive at the transfer matrix of the second particle after the
first focusing lens in the form

TL ¼ ð1 − ηÞFL2 þ ηFL1 ; ð30Þ

here η is defined as

η ¼ wðsÞ
KfðsÞ : ð31Þ

Next we achieve a solution in the first defocusing lens from
Eq. (22) with (30) in a form

TLþu ¼ Du
2

�
TL þ

�Z
u

0

ðDτ
2Þ−1WDτ

1dτ

�
FL1

�
: ð32Þ

with u ∈ ½0; L�.
Performing the matrix multiplication and integration we

arrive at the transfer matrix for the second particle through
the first period in the form

T2L ¼ ð1 − ηÞA2 − ηA1 þ 2ηDL
2F

L
1 : ð33Þ

One of the possibilities to force the second particle to
closely follow the trajectory of the first particle is by
requesting

Tr½T2L� ¼ Tr½A1�: ð34Þ

By solving Eq. (34) numerically for a given
ffiffiffiffi
K

p
L and

wðsÞ
K we may find fðsÞ. The explicit transcendent equation
that follows from Eq. (34) is given in Appendix A. We also
note that the solution of Eq. (34) replaces the BNS damping
condition for a case of two particles and is not limited to the
small wakefields and the small shift of the betatron
frequency for the second particle. Since the motion of
both particles is periodic, the above analysis is general and
can be repeated with the same conclusion using other
periods of the FD channel instead of the first period.

IV. STABILITY ANALYSIS

To illustrate the method, we selected four sets of
parameters and plotted phase trajectories for the first and
second particle in Fig. 4. These parameters were specifi-
cally chosen to demonstrate that the method works even at
very large energy chirps that may not even be practical.
Phase trajectories for the Fig. 4 were calculated by a
numerical solution of Eqs. (14) and (15) with fðsÞ
determined from Eq. (34). One can clearly see that phase
trajectories are indeed very close to being able to achieve
the above formulated goal. Moreover, the maximum
coordinate of the second particle is equal to the maximum
coordinate of the first particle, i.e., max jv2ðuÞj ¼
max jv1ðuÞj. We also verified that the analytical solu-
tions for phase trajectories given by Eq. (18) for the first
particle and Eqs. (26), (27) for the second particle give
the same results. In Fig. 4 and in subsequent analysis
we use the phase advance of the first particle defined as

Φ1 ¼ arccos½Tr½A1�
2

�.
Let us now investigate in more detail the motion of the

first and second particles. Stability of the first particle is

STABILITY CONDITION FOR THE DRIVE BUNCH … PHYS. REV. ACCEL. BEAMS 21, 031301 (2018)

031301-5



determined by the eigenvalues of the transfer matrix A1

and stability of the second particle is determined by the
eigenvalues of the matrix A2. Thus, the motion of both
particles is stable when [37,38]:

jTr½A1;2�j ≤ 2: ð35Þ

We rewrite Eq. (31) with (16) as

fðsÞ ¼ 1

ηðsÞ
q1G1ðsÞ
cg0

ð36Þ

and analyze the coefficient 1/ηðsÞ.
In Fig. 5 we plot 1/η for different values of the phase

advanceΦ1 of the first particle as a function of a normalized

wakefield wðsÞ
K calculated using fðsÞ found from Eq. (34).

One can see that 1/η greatly increaseswith the phase advance
varying from 0.74π to 0.1π. Consequently, fðsÞ grows by a
large factor, too. Therefore, the lattice with the high value of
the phase advance is preferred for a practical CWA to contain
the magnitude of the energy chirp required to stabilize the
drive bunch. A shaded area in Fig. 5 shows the combination
of parameters when the motion of the second particle is
unstable. This is caused by having an already large frequency
of betatron oscillations of the first particle that limits a room
to accommodate a frequency shift of the second particle
before reaching a condition when jTr½A2�j > 2. As seen in
Fig. 5, there is some flexibility in selection of the parameters.
However, in order to accommodate the maximum ratio of

wðsÞ/K using theminimumenergy chirp,weought to operate
in the bottom region of Fig. 5. We also note that for phase
advance Φ1 ≥ 0.5π, the coefficient 1/η is approximately
constant and approximately independent of the wakefield
amplitude. Therefore, for a consequent analysis we assume
Φ1 ≥ 0.5π and that coefficient 1/η≡ 1/ηðΦ1Þ is only a
function of a phase advance. With this assumption, we
rewrite (36) as:

fðsÞ ¼ 1

ηðΦ1Þ
q1G1ðsÞ
cg0

: ð37Þ

Using formula (37) and diagram Fig. 5 one can approx-
imately calculate energy chirp for a given ratio wðsÞ/K for
large phase advances.
It is worth emphasizing that Eq. (36) is very close to a

well-known BNS damping condition with the only excep-
tion of the coefficient η that depends on the wakefield
amplitude and can be calculated for a wide range of
parameters using Eq. (34).

V. STABILITY CRITERIA FOR
THE DRIVE BUNCH IN CWA

Now we consider the whole drive bunch and derive the
stability condition for its motion in the CWA.

(a) (b)

(c) (d)

FIG. 4. Phase trajectories of a first particle (black) and
second particle (red). Parameters for the calculation are: Panel
(a)Φ1 ¼ 0.227π, wðsÞ/K ¼ 0.178, fðsÞ ¼ 0.653; Panel (b)Φ1 ¼
0.389π, wðsÞ/K ¼ 0.165, fðsÞ ¼ 0.431; Panel (c) Φ1 ¼ 0.52π,
wðsÞ/K ¼ 0.132, fðsÞ ¼ 0.27; Panel (d)Φ1 ¼ 0.615π, wðsÞ/K ¼
0.102, fðsÞ ¼ 0.18. Initial conditions for both particles for all
panels are v01 ¼ 1 and v001 ¼ 0. FIG. 5. Coefficient 1/η calculated using condition (34) and

formula (31) for different values of phase advance Φ1 of the first
particle (35) as a function of normalized wakefield; lower panel:
zoom of coefficient 1/η to higher phase advances.
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At first we notice that since 1/ηðΦ1Þ is a constant, we
may write for the bunch

fðsÞ ≈ 1

ηðΦ1Þ

R
s
0 G1ðs − s0Þqðs0Þds0

cg0
: ð38Þ

Now let us focus on the estimation of the integral in
Eq. (38). At first we write for the decelerating field inside
the electron bunch, assuming a single mode longitudinal
wakefield

Ezðs; zÞ ¼ 2κk

Z
s

0

cos½k0ðs − s0Þ�qðs0Þds0; ð39Þ

where κk is the loss factor of a point particle per unit length
and k0 is the wave vector of the longitudinal wakefield. To
maintain stable motion for the driver bunch adaptive energy
chirp should be implemented. This limits Ez distribution
inside the bunch to the Eq. (5). We calculate Laplace
transformation of Ezðs; zÞ as given by Eq. (39) with Eq. (5),
we obtain for the Laplace image of qðsÞ

q̃ðpÞ ¼ E0

2κk

k20 þ p2

p

�
1

p
− f̃ðpÞ

�
; ð40Þ

where f̃ðpÞ is the Laplace image of fðsÞ.
We introduce notation

I1ðsÞ ¼
Z

s

0

G1ðs − s0Þqðs0Þds0: ð41Þ

Next we use a single mode transverse Green’s function
G1ðsÞ ¼ κ⊥/k1 sinðk1sÞ, where κ⊥ is the kick factor and k1
is the mode’s wave vector, and apply the Laplace trans-
formation to obtain:

Ĩ1ðpÞ ¼ κ⊥
q̃ðpÞ

p2 þ k21
: ð42Þ

Assuming that δ ¼ jk0 − k1j/k0 ≪ 1 we rewrite Ĩ1ðpÞ as

Ĩ1ðpÞ ¼ κ⊥q̃ðpÞ
�

1

p2 þ k20
þ 2k20
ðp2 þ k20Þ2

δþO½δ�2
�
; ð43Þ

and using only a zero order term and substitution for q̃ðpÞ
from (40) further obtain:

Ĩ1ðpÞ ≈ E0

κ⊥
2κk

�
1

p2
−
f̃ðpÞ
p

�
: ð44Þ

Finally, applying inverse Laplace transformation to (44) we
arrive at

I1ðsÞ ≈ E0

κ⊥
2κk

�
s −
Z

s

0

fðs0Þds0
�
: ð45Þ

With (38) and (45) we have

fðsÞ ≈ 1

ηðΦ1Þ
E0

cg0

κ⊥
2κk

�
s −
Z

s

0

fðs0Þds0
�
: ð46Þ

Taking the derivative of (46) and introducing
ρ ¼ E0

ηðΦ1Þcg0
κ⊥
2κk
, we find the equation for fðsÞ

f0ðsÞ ¼ −ρð1 − fðsÞÞ: ð47Þ

The solution of the Eq. (47) with the initial condition
fð0Þ ¼ 0 is

fðsÞ ¼ 1 − eρs: ð48Þ

We assume ρ to be is a small parameter. Therefore,

fðsÞ ¼ −ρs −
ðρsÞ2
2

þOðρ3Þ: ð49Þ

Thus, we have for a linear part of the relative energy
variation in the first order to ρ:

Δγ
γz

≈ −
jE0j

ηðΦ1Þcg0
κ⊥
2κk

l: ð50Þ

Applying the identity jE0j ¼ max jEþj/R, where max jEþj
is the maximum amplitude of the longitudinal electric field
behind the electron bunch and R is the transformer ratio, we
obtain ����Δγγz

���� ≈ max jEþj
ηðΦ1Þcg0R

κ⊥
2κk

l: ð51Þ

It was shown in [12] that R ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k20l

2
p

. Consequently,

l ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 1

p
/k0. With the substitution g0 ¼ B0/am, where

B0 is the maximum pole tip field for the quadrupole lens
with the bore radius am, we may estimate the amplitude of
the energy variation as:

����Δγγz
����≳ am

ηðΦ1ÞcB0

κ⊥
2κk

max jEþj
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − 1

p

R
: ð52Þ

In the cylindrical waveguide with any type of the retarding
layer (corrugation, dielectric or semiconductor), the ratio
κ⊥/2κk is strictly bounded by the radius a0 of the wave-
guide, i.e., κ⊥

2κk
¼ 2

a2
0

(see [39,40] and references therein).

With this substitution and focusing only on the most
interesting cases with large transformer ratios, i.e.,
R ≫ 1, we reduce Eq. (52) to:
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����Δγγz
����≳ 2

ηðΦ1Þ
am
k0a20

max jEþj
cB0

: ð53Þ

The instability region in Fig. 5 limits the maximum chirp
for a given phase advance. We denote the maximum ratio of
wðsÞ/K for a given phase advance Φ1 as SðΦ1Þ and
consequently have ����Δγγz

���� ≤ SðΦ1Þ
ηðΦ1Þ

: ð54Þ

Inequalities (53) and (54) set boundaries on the energy
chirp in the drive bunch required to obtain a certain
maximum accelerating field for the witness bunch while
maintaining a stable motion of the drive bunch.
We note that the typical maximum value of cB0 is

300 MV/m defined by the saturation of the magnetic poles
in quadrupole lenses. The ratio of the quadrupole bore
radius to the radius of the vacuum channel of the wakefield
structure is defined by the design constraints of the CWA
embedded into the FD channel and here we assume
am/a0 ¼ 1.5. To achieve the minimum energy chirp we
select the phase advance Φ1 ¼ 0.74π that corresponds
to the lowest line for 1/ηð0.74πÞ ¼ 1.53 in Fig. 5.
Consequently, the maximum possible value of wðsÞ/K is
Sð0.74πÞ ¼ 0.056. Thus the inequality (53) can be further
rewritten in the engineering form:����Δγγz

����≳ 1.5 × 10−2
max jEþjðMV/mÞ

k0a0
; ð55Þ

and inequality (54) ����Δγγz
���� ≤ 0.086: ð56Þ

Using Δγ
γz
¼ 0.086, a0¼ 1mm, and max jEþj ¼ 100 MV/m,

we find from (55) for a fundamental mode in the CWA
k0 ≳ 17.4 mm−1 or 832 GHz. One can see from this
example that it is favorable to choose the CWA with the
fundamental mode frequency in the THz range to simulta-
neously achieve a high accelerating gradient for the witness
bunch and a stable motion of a drive bunch.

VI. CONCLUSION

It has been shown that obtaining a stable motion of the
drive bunch in the structure-based collinear wakefield
accelerator (CWA) during its deceleration down to a small
fraction of its initial energy requires following several
important arrangements. The first is the adaptive focusing
that gives the benefit of reduction of the adiabatic growth of
the amplitude of betatron oscillations from the γ−1/2

dependence to γ−1/4 dependence. The second one is the

adaptive energy chirp, i.e., a condition where the longi-
tudinal wakefield is used for continuous reshaping of the
initial energy chirp, such as to maintain the same chirp in
the relative terms over the entire process of the deceleration
of the drive bunch. The last one is actually a prescription
describing how to define the initial energy chirp using
known parameters of the CWA, a new formalism that is
used instead of the BNS damping in the case of strong
wakefields. It is based on an extensive analysis of the
trajectories of two particles, one driving the wakefield and
one subjected to this wakefield, and its extrapolation to the
entire drive bunch. It has been shown that when all these
arrangements are made to work together, the final result
shows that the energy chirp and stability of motion of the
drive bunch is defined only by a few parameters combined
in one formula. They are the frequency of the wakefield
fundamental mode, the radius of the wake inducing
retarded medium, the maximum value of the pole tip field
of the magnetic lens defined by the saturation of the
magnetic poles, and the maximum value of the accelerating
field behind the drive bunch. It has also been shown that the
criteria for a stable propagation of the drive bunch in the
CWA can be satisfied using experimentally realizable
parameters. Moreover, these parameters are not tightly
constrained and must only fulfill the inequalities (53)
and (54).
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APPENDIX A: TRANSCENDENT
EQUATION FOR f ðsÞ

Using the fact that trace is a linear operation we may
write (34) with (33) and (31) as

Tr½A2� − Tr½A1� þ
2wðsÞ/K

fðsÞ − wðsÞ/K Tr½DL
2F

L
1 � ¼ 0: ðA1Þ

Corresponding traces are found to be

Tr½A1� ¼ 2 cos ð
ffiffiffiffi
K

p
LÞ cosh ð

ffiffiffiffi
K

p
LÞ;

Tr½A2� ¼ 2 cos

 ffiffiffiffi
K

p
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − fðsÞp
!
cosh

 ffiffiffiffi
K

p
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − fðsÞp
!
; ðA2Þ
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and

Tr½DL
2F

L
1 � ¼ 2 cosð

ffiffiffiffi
K

p
LÞ cosh

 ffiffiffiffi
K

p
Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − fðsÞp
!

þ
fðsÞ sinð ffiffiffiffi

K
p

LÞ sinh
� ffiffiffi

K
p

Lffiffiffiffiffiffiffiffiffiffi
1−fðsÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðsÞp : ðA3Þ

APPENDIX B: FULL NUMERICAL SIMULATION
OF A TWO PARTICLE MOTION

To illustrate that all approximations used in the paper are
indeed correct, we consider equations of motion of two
particles in the most general form

d
dt

�
γ1ðtÞ
c2γ0

dz1
dt

�
¼ −α1;

d
dt

�
γ1ðtÞ
c2γ0

dy1
dt

�
þ Kðz1Þy1 ¼ 0; ðB1Þ

d
dt

�
γ2ðtÞ
c2γ0

dz2
dt

�
¼ −α2;

d
dt

�
γ2ðtÞ
c2γ0

dy2
dt

�
þ Kðz2Þ
1 − fðsÞ y2 ¼

wðsÞ
1 − fðsÞ y1; ðB2Þ

with relativistic factors γ1;2ðtÞ given by

γ1;2ðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − y01;2ðtÞ2/c2 − z01;2ðtÞ2/c2
q ; ðB3Þ

and

α1;2 ¼
jejjE1;2j
γ0mec2

;

KðzÞ ¼ e
γ0mec

gðzÞ;

wðsÞ ¼ e
γ0mec2

G1ðsÞq1: ðB4Þ

We solve this equations numerically using parameters listed
in Table I and prescriptions given in Sec. II. In particular

α2 ¼ ½1 − fðsÞ�α1; ðB5Þ

and adaptive lens length LðzÞ ¼ L0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α1z

p
. Simulation

was stopped when γ1ðtÞ ¼ 0.1γ0. To determine fðsÞ we
used condition (34).

In Fig. 6 we plot trajectories y1;2ðtÞ vs z1;2ðtÞ of the
first and second particle for different phase advances Φ1

of the first particle. We clearly see that for both particles
amplitude of the coordinate grows as max jy1;2j ∝
ð1 − α1z1Þ−1/4 and condition (34) indeed leads to the equal
trajectories y1ðz1ðtÞÞ ≈ y2ðz2ðtÞÞ during the entire deceler-
ation process.

TABLE I. Parameters for the simulation.

γ0 α1 (cm−1) y1;2ð0Þ (cm) y01;2ð0Þ/c z01;2ð0Þ/c
100 5 × 10−3 3 × 10−2 0 0.99995

(a)

(b)

(c)

(d)

FIG. 6. Trajectories y1;2ðtÞ of a first particle (black) and second
particle (red) versus particle longitudinal coordinate z1;2ðtÞ for
(a)Φ1 ¼ 0.227π, wðsÞ/K ¼ 0.12, fðsÞ ¼ 0.484; (b)Φ1 ¼ 0.389π,
wðsÞ/K ¼ 0.13, fðsÞ ¼ 0.344; (c) Φ1 ¼ 0.525π, wðsÞ/K ¼ 0.08,
fðsÞ ¼ 0.164; (d) Φ1 ¼ 0.689π, wðsÞ/K ¼ 0.056, fðsÞ ¼ 0.09.
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APPENDIX C: APPROXIMATE ANALYTICAL
FORMULAS FOR THE TWO PARTICLE MODEL

Let us consider Eq. (10) for the head particle and write
it as

ṽ001ðũÞ þ
4

α2
KðũÞṽ1ðũÞ ¼ 0: ðC1Þ

and for the trailing particle as

ṽ001ðũÞ þ
4

α2
KðũÞṽ1ðũÞ ¼

4

α2
wðsÞṽ1ðũÞ: ðC2Þ

with periodic KðũÞ. A standard approach for an approxi-
mate solution is a Floquet transformation and introduction
of an average phase advance per FD cell (see for example
[28]). Since under the conditions of adaptive focusing
phase advance Φ1 is constant, one can write down an
approximate solution of (C1) as

v1ðũÞ ¼ v0 cos

�
Φ1

αL0

ũþ ϕ0

�
; ðC3Þ

here ϕ0 is initial phase and L0 is initial lens length.
Applying initial condition yð0Þ ¼ y0, y0ð0Þ ¼ 0 and
returning back to z, variable we have

y1ðzÞ ¼ y0
cos
h
Φ1

αL0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αz

p
− Φ1

αL0

i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αz4

p : ðC4Þ

Following the same steps and assuming the same initial
conditions for the second particle as for the first one, we
may write an approximate solution for a wake free
[wðsÞ≡ 0] equation for the second particle (C2) as

y2ðzÞ ¼ y0
cos
h
Φ2

αL0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αz

p
− Φ2

αL0

i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αz4

p : ðC5Þ

with Φ2 ¼ arccos½Tr½A2�
2

�. Looking at Eq. (33) one can come
up with an idea of how to construct an approximate solution
of (C2) with the wakefield term in the form

y2ðzÞ ¼
y0fdðsÞ
fðsÞ

cos
h
Φ1

αL0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αz

p
− Φ1

αL0

i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αz4

p

þ y0

�
1 −

fdðsÞ
fðsÞ

� cos
h
Φ2

αL0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αz

p
− Φ2

αL0

i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αz4

p : ðC6Þ

Here fdðsÞ is the energy chirp needed for the wakefield
cancelation [determined from Eq. (34)] and fðsÞ is the
current energy deviation of a second particle.
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