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An extensive experimental study is performed to confirm fundamental resonance bands of an intense
hadron beam propagating through an alternating gradient linear transport channel. The present work
focuses on the most common lattice geometry called “FODO” or “doublet” that consists of two
quadrupoles of opposite polarities. The tabletop ion-trap system “S-POD” (Simulator of Particle Orbit
Dynamics) developed at Hiroshima University is employed to clarify the parameter-dependence of
coherent beam instability. S-POD can provide a non-neutral plasma physically equivalent to a charged-
particle beam in a periodic focusing potential. In contrast with conventional experimental approaches
relying on large-scale machines, it is straightforward in S-POD to control the doublet geometry
characterized by the quadrupole filling factor and drift-space ratio. We verify that the resonance feature
does not essentially change depending on these geometric factors. A few clear stop bands of low-order
resonances always appear in the same pattern as previously found with the sinusoidal focusing model. All
stop bands become widened and shift to the higher-tune side as the beam density is increased. In the space-
charge-dominated regime, the most dangerous stop band is located at the bare betatron phase advance
slightly above 90 degrees. Experimental data from S-POD suggest that this severe resonance is driven
mainly by the linear self-field potential rather than by nonlinear external imperfections and, therefore,
unavoidable at high beam density. The instability of the third-order coherent mode generates relatively
weak but noticeable stop bands near the phase advances of 60 and 120 degrees. The latter sextupole stop
band is considerably enhanced by lattice imperfections. In a strongly asymmetric focusing channel, extra
attention may have to be paid to some coupling resonance lines induced by the Coulomb potential. Our
interpretations of experimental data are supported by theoretical predictions and systematic multiparticle
simulations.

DOI: 10.1103/PhysRevAccelBeams.20.064201

I. INTRODUCTION

Modern particle accelerators have relied, almost without
exception, on the principle of strong focusing [1,2].
Discrete focusing elements, generally quadrupole magnets,
are carefully aligned along the design beam orbit to confine
a large number of charged particles within tiny transverse
space [3]. Each particle receives linear and weak nonlinear
forces periodically every turn when the beam orbit is
closed. Even in a linear machine, the beam is often focused
by an array of identical alternating gradient (AG) quadru-
pole cells, which makes the external driving potential
approximately periodic. This periodic nature of strong
focusing systems inevitably gives rise to resonant beam

instability under a specific condition that depends on the
lattice configuration, in other words, the arrangement of
quadrupole magnets within a focusing period.
The transverse motion of a single particle traveling in

an AG focusing system has been well understood since
Courant and Snyder established a most seminal theory over
a half century ago [1]. Many papers and standard text-
books published afterwards have followed their theoretical
framework. The traditional theory concludes that
the so-called betatron motion becomes unstable when the
horizontal and vertical bare tunes ðν0x; ν0yÞ satisfy the
relation kν0x � lν0y ¼ integer, where k and l are zero or
positive integers. The driving potential of this resonance is
proportional to xkyl with ðx; yÞ being the transverse spatial
coordinates. In reality, however, any beams in accelerators
contain not one but many particles interacting each other via
Coulomb self-fields [3,4]. The motion of each individual
particle is influenced by those of other particles especially
when the beam is dense. The simple single-particle picture
no longer applies in such a case. Since the Coulomb
interaction has a long range, the beam as a whole exhibits
a complex collective behavior responding to the externalAG
field. The collective motion can be expressed as the
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superposition of various coherent modes whose oscillation
frequencies depend on the mode number and beam density.
The whole beam becomes resonantly unstable, or more
correctly, a certain mode blows up when the frequency of
that mode fulfills a specific relation with the frequency of a
Fourier harmonic in the periodic driving force.
A systematic experimental study of intense beam sta-

bility is very difficult to perform in practice due to the poor
controllability of basic parameters. In particular, the AG
lattice structure of any accelerator is generally inflexible
once constructed. We face severe limitations in exploring
how the beam stability depends on the arrangement and
dimension of quadrupole magnets. Previous experiments
on the resonant instability of space-charge-dominated
beams have actually relied on a particular machine with
a particular lattice configuration [5–11]. To overcome this
practical limitation, we here employ the novel tabletop
apparatus called “S-POD” (Simulator of Particle Orbit
Dynamics) [12–19]. This experiment is based on an
isomorphism between the equations of non-neutral plasma
motion in a linear Paul trap (LPT) and the equations of
intense beam motion in a strong focusing channel [20]. As
explained later, these two many-body systems are governed
by very similar Hamiltonians, which guarantees that what
happens in one system also happens in the other. We make
use of the compact LPT-based facility to approximately
reproduce the collective motion of an intense hadron beam
in a local tabletop environment.
The main purpose of the present work is the experi-

mental demonstration of fundamental resonance instability
bands of an intense hadron beam propagating in the
“FODO” (or “quadrupole doublet”) lattice with arbitrary
geometric factors. In addition to the lattice details, the
betatron tunes and beam density are also varied over a very
wide range to offer definitive information of beam stability
in the most typical AG transport line. The paper is
organized as follows. In Sec. II, we first summarize some
theoretical expectations regarding the space-charge issue of
our interest. Numerical simulation results are given to
confirm the existence of a few low-order resonance bands
with and without external nonlinear driving forces. After
describing in Sec. III how S-POD works, we proceed to
experimental observations. In our past experiments with
S-POD [14–19], the sinusoidal focusing model was often
adopted to approximate the AG focusing effect from the
FODO lattice. This simplification is experimentally vali-
dated in Sec. IV, and then, we symmetrically modify the
lattice geometry to check if any remarkable change is
induced in the stop-band distribution. A wide range of
asymmetric modification of the focusing (F) and defocus-
ing (D) elements in the FODO lattice is also implemented
to survey the transverse tune space. Such a comprehensive
experimental study of high-intensity beam transport has
never been done elsewhere before. Finally, concluding
remarks are made in Sec. V.

II. THEORETICAL BACKGROUND

A. Self-field-driven and external-field-driven
resonances

The transverse dynamics of an intense beam focused by
quadrupole magnets obeys the Hamiltonian

H0 ¼
p2
x þ p2

y

2
þ 1

2
KQMðsÞðx2 − y2Þ þ Ibϕ; ð1Þ

where the path length s along the beam transport line,
instead of time t, has been chosen as the independent
variable, the function KQMðsÞ is determined by the AG
lattice structure, Ib is a constant parameter that depends on
the beam energy, and ϕ is the collective Coulomb potential.
In many cases, KQMðsÞ is a periodic function; namely,
KQMðsÞ ¼ KQMðsþ LÞ with L being the length of an AG
focusing cell. In this paper, we consider the most standard
lattice configuration illustrated in Fig. 1. This waveform
has been referred to as “FODO” or “doublet” in past
publications. The cell structure can be characterized by the
quadrupole filling factor ξ and the drift-space ratio ζ
defined by ξ ¼ ðLF þ LDÞ=L and ζ ¼ d1=d2. In the fol-
lowing, we assume d1 ≤ d2 without loss of generality so
that 0 ≤ ζ ≤ 1. The absolute heights of the focusing and
defocusing pulses are always set equal. The lattice con-
figuration is then symmetric whenever LF ¼ LD.
Self-consistency is especially important to draw reliable

conclusions in the study of space-charge effects. Provided
that Coulomb collisions among individual particles are
negligible [21], the time evolution of the phase-space
distribution function fðx; y; px; py; sÞ is governed by the
Vlasov equation

∂f
∂s þ ½f;H0� ¼ 0; ð2Þ

where ½ ; � stands for the Poisson bracket. The Coulomb
potential ϕ in the Hamiltonian H0 is a solution to the
Poisson equation

∇2ϕ ¼ −
q
ε0

ZZ
fdpxdpy; ð3Þ

LF

LD
d1d2 d2/ 2 / 2

L

s0

KQM

FIG. 1. Quadrupole doublet (FODO) lattice.
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where q is the particle’s charge state and ε0 is the vacuum
permittivity. To be self-consistent, we must simultaneously
solve the Vlasov equation (2) and the Poisson equation (3)
together with the Hamiltonian (1) [22–25]. The analytic
treatment of this closed set of equations is obviously very
difficult if we take the AG lattice design explicitly into
account. Almost all theoretical approaches to space-charge
issues are thus purely numerical (i.e., computer simula-
tions) or analytic but dependent on the uniform focusing
model (i.e., the smooth approximation) [4,26]. As an
alternative basis for space-charge studies, the root-mean-
squared (rms) envelope equations much easier to handle are
available [27–31], but they can only describe the linear
collective modes that possess elliptical symmetry in
real space.
Although the external driving force is completely linear

in the Hamiltonian dynamical system of Eq. (1), the
nonlinear nature of the Coulomb potential can excite
resonant instabilities of higher orders. Considerable theo-
retical effort was made over thirty years ago by many
researchers to figure out the condition of such self-field-
driven instabilities in high-intensity linear transport chan-
nels [4]. For instance, Hofmann et al. employed the
Kapchinsky-Vladimirsky (KV) model to derive a set of
ordinary differential equations from the linearized Vlasov-
Poisson equations and numerically integrated them [24]. It
was concluded that the space-charge-induced transverse
instability of themth order could be avoided in a symmetric
beam transport line if σ0 ≤ π=m where σ0 denotes the bare
betatron phase advance per unit focusing cell. This design
criterion was soon confirmed through careful multiparticle
simulations by Struckmeier et al [28,32]. Later, Okamoto
and Yokoya constructed a fully analytic Vlasov theory in
which an arbitrary lattice configuration can be incorporated
explicitly [25]. Their theory predicts that the primary
parametric resonance of the mth order occurs under the
condition

Ωm ≈
n
2
; ð4Þ

where Ωm represents the tune of the mth-order collective
oscillation mode per lattice period, and n is an integer
[33,34]. Using the betatron phase advance, Eq. (4) can
approximately be rewritten as

mðσ0 − CmΔσ̄Þ ≈ nπ; ð5Þ

where Δσ̄ is the average phase shift induced by the
Coulomb repulsion among particles, and Cm is a positive
constant less than unity and depending on the mode
number m. It should be noted that Δσ̄ does not stand for
the so-called incoherent tune spread. Denoting the rms tune
depression to be η, we have Δσ̄ ¼ ð1 − ηÞσ0 that is almost
independent of the phase-space distribution function [27].
A practically important implication of Eq. (5) is that the

shift of a collective instability band is somewhat smaller
than Δσ̄ because Cm < 1 for all m numbers.
The mathematical description in Ref. [25] clarifies the

parameter dependence of the instability and thus gives us
useful insight into underlying physics even if it is based on
a one-dimensional (1D) model. From Eq. (5), we expect the
mth-order resonance to take place around the operating
phase advance σ0 ≈ nπ=mþ CmΔσ̄. The 1D Vlasov theory
also indicates that the half width of the corresponding
resonance band does not exceed the coherent phase shift
CmΔσ̄. We can, therefore, eliminate the instability of the
mth-order mode by setting σ0 in the range σ0 ≤ π=m, which
is consistent with the previous numerical finding. Apart
from weak coupling resonances, the simple criterion in
Eq. (5) works remarkably well to explain S-POD data so far
[12–19]. As experimentally demonstrated in Sec. IV, low-
order instabilities that demand particular attention are
mostly 1D; primary resonance bands accompanied by
serious particle losses run horizontally and vertically on
the tune diagram (cf. Fig. 10) unless non-negligible non-
linear fields are intentionally or accidentally introduced
[12,13].
In reality, artificial imperfection fields are unavoidable,

which adds extra driving terms to H0. The exact
Hamitonian is

H ¼ H0 þ ΔUextðx; y; sÞ; ð6Þ

where ΔUextðx; y; sÞ is the external nonlinear potential due
to mechanical errors and correction magnets. If the per-
turbation ΔUext is periodic with respect to s, it could
substantially enhance nonlinear collective resonances.
According to Ref. [25], the mth-order collective mode in
the horizontal or vertical direction can be driven by the jth-
order imperfection if j ≥ m and jþm ¼ even [35]. The
condition of this external-field-driven resonance is given by

Ωm ≈ n ð7Þ

that can be converted into the form

mðσ0 − CmΔσ̄Þ ≈ 2nπ: ð8Þ

Equation (8) was first derived in the pioneering work by
Sacherer who analytically solved the 1D Vlasov-Poisson
equations under the smooth approximation [22,26]. The
growth rate of the instability under the condition (8)
depends on the strength of the error fields as well as on
the beam intensity. This resonance is, therefore, of practical
importance even at low intensity unlike the self-field-driven
resonance under the condition (5) that disappears at the
zero-intensity limit.
Except for the dipole mode (m ¼ 1), the factor Cm is in

the range between 0.75 and 1.0 [22,25]. The magnitude of a
coherent band shift is, therefore, not extremely sensitive to
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the resonance order m. Since Cm < Cm0 for m < m0, the
band shift of a higher-order mode is somewhat greater
while the band width narrower. Theoretically, many reso-
nances that have the same n=m ratio in Eqs. (5) and (8)
more or less overlap. Needless to say, the external-field-
driven and self-field-driven resonances discussed here are
collective phenomena, thus nothing to do with incoherent
single-particle mechanism [36]. They can be treated simul-
taneously with the help of the Vlasov formalism. The
Hamiltonian H in Eq. (6) contains all physical information
required for a general description of both types of collective
resonances. If it is possible to solve Eqs. (2) and (3)
mathematically with H instead of H0, the resultant uni-
versal solution will predict the horizontal or vertical 1D
instability of the mth-order mode under the condition just
like Eq. (4). Then, for even n that leads to the condition (7),
the stop-band width and growth rate will be a function of
not only the space-charge intensity but also imperfection-
related parameters [25]. For odd n, the instability will be
free from the latter parameters. We shall show later in an
appendix that the coherent resonance condition (5) may
naturally be extended to two-dimensional (2D) coupling
resonances [12].

B. Numerical simulations

Before proceeding to experimental observations, let us
take a look at some typical numerical results for later
reference. We have done a number of particle-in-cell (PIC)
simulations to support our interpretations of S-POD data
[12–19]. The WARP code has been employed for this
purpose [37]. Figure 2 shows WARP results obtained with
the symmetric FODO waveform for KQMðsÞ. The longi-
tudinal degree of freedom has been ignored to save
computing time. The initial particle distribution is in the
thermally equilibrated state well matched to the external
focusing potential. The WARP code can carry out the
sophisticated self-consistent matching to an AG lattice
including the Debye screening effect [38]. What particle
species we choose does not matter. The resonance con-
dition is free from such information. The most essential
information are the focusing strength and beam density,
in other words, the bare phase advance σ0 and tune
depression η. The PIC simulations in Fig. 2 have assumed
a proton beam traveling along the FODO channel at the
kinetic energy of 1 MeV, but these parameters are physi-
cally of no importance. We obtain substantially the same
emittance-growth curve as in Fig. 2 for any ion species at
any beam energy (within a range of numerical error) as long
as the initial tune depression is fixed. Since no error fields
have been included here, the observed rms emittance
growth comes purely from self-field-driven resonances;
the results in Fig. 2 reflect what we expect in the ideal
dynamical system govern by the Hamiltonian (1).
At zero intensity, no emittance growth occurs over the

whole tune range. Switching the Coulomb potential on, we

find a couple of instability regions above σ0 ¼ 90° and
120°. In addition to these two regions, there is another very
weak instability growing near σ0 ¼ 60°. All of them move
rightward in Fig. 2 as the betatron motion is more depressed
by the Coulomb potential. At high intensity, the instability
near σ0 ¼ 90° becomes far more severe than the other two.
The linear self-field-driven resonance (m ¼ 2) is respon-
sible for this major emittance growth as evidenced by the
phase-space plot in Fig. 2. It corresponds to the well-known
collective mechanism sometimes referred to as envelope
instability [4,24,28–32]. While the condition (5) predicts
the existence of other even-order (m ¼ 4; 6; 8;…) reso-
nances overlapping, it is illogical to insist that any of these
higher-order nonlinear resonances can dominate over the
linear instability in the absence of external nonlinear
driving forces. The Vlasov theory actually says that the
growth rate of a lower-order resonance is higher without
error fields [25]. The same argument applies to other
instabilities identified near σ0 ¼ 60° and 120°; in practice,
we should be more cautious about the third-order mode
(m ¼ 3) rather than the higher-orders’ (m ¼ 6; 9;…). The
self-field-driven instabilities of highly nonlinear modes will
be weakened or totally suppressed by the Landau-damping
mechanism. Note that the coherent dipole (m ¼ 1) reso-
nance is located at the edge of the stability domain, i.e., at
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FIG. 2. WARP simulation results assuming the symmetric
FODO lattice with ξ ¼ 0.5 and ζ ¼ 1. The external focusing
potential is completely linear (no nonlinear error fields). The
growth rate of average transverse rms emittance after 100 FODO
periods is plotted as a function of the bare betatron phase advance
σ0. We have initially taken a 1 MeV proton beam in the thermal
equilibrium state well matched to the FODO lattice. Two different
initial tune depressions are considered here; namely, η ¼ 0.8
(blue) and 0.9 (red). The final phase-space profile at σ0 ¼ 98.64°
in the case of η ¼ 0.8 is displayed which supports our expectation
that the linear resonance (m ¼ 2) is responsible for the large
emittance growth. The color scale attached represents the
normalized particle density. The 90% emittance assumed at
the entrance of the transport channel is 0.98π mm · mrad.
A different choice of the input emittance only changes the scales
of the (x; px)-axes, keeping the overall phase-space configura-
tion. The growth rate is also unaffected as long as η is fixed.
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σ0 ¼ 180°, and thus never excited under the present lattice
condition. Detailed results of S-POD experiment on the
dipole instability have been given in Ref. [19].
Coherent resonances overlapping at a certain operating

point are not necessarily excited at the same timing. Our
WARP simulations have revealed that the higher-order
resonance tends to be activated earlier within an instability
region where two resonances of relatively low orders
overlap. This tendency has also been reported in another
numerical work based on a different PIC code [39]. In the
region just above σ0 ¼ 90°, we often see the excitation of
the weak octupole instability (m ¼ 4) first followed by the
quadrupole (m ¼ 2). The latter instability is so strong that it
quickly destroys the original matched beam core before the
100th cell even at the tune depression of 0.8 (cf. the phase-
space plot in Fig. 2). Similarly, the weak sixth-order
instability could be manifested prior to the third-order
instability in the vicinity of σ0 ¼ 60°. The very small
emittance growth near σ0 ¼ 60° in Fig. 2 is probably due to
the preceding sixth-order resonance because, unlike the
quadrupole resonance at σ0 ≈ 90°, the transport over 100
FODO periods seems too short for the sextupole mode
(m ¼ 3) to grow sufficiently at the beam intensity consid-
ered here. Longer-term WARP simulations with the water-
bag beam point out that the self-field-driven sextupole
resonance needs hundreds of FODO periods to get excited
when η ¼ 0.8. Figure 3(a) shows the phase-space evolution
at σ0 ¼ 69.12°. The three-arm structure peculiar to the
third-order instability has been developed after the 400th
cell. Before then, nothing significant happens at this
operating point. The timing when the emittance starts to
blow depends not only on the tune depression but also on
the bare phase advance. At a slightly higher σ0, we first
observe a small emittance growth before 400th cell due to
the sixth-order resonance that is eventually taken over
by the sextupole instability. An example is displayed in
Fig. 3(b) where the operating point has been shifted from
σ0 ¼ 69.12° to 70.92°. The emittance evolution appears to
have two qualitatively different stages. The core distribu-
tion in the early stage suggests the activation of weak sixth-
order instability. The six-arm structure is smeared out
before the second stage where the sextupole-looking
instability becomes active causing a relatively rapid emit-
tance growth. Such a transition from a weak high-order
instability to a more dominant low-order instability is prone
to occur on the high-tune side of a wide instability band.
This is consistent with the coherent resonance condition in
Eq. (5) or (8) predicting that the phase-shift factor Cm is
greater for a higher-order mode.
In S-POD, the radio-frequency (rf) potential for

transverse plasma confinement inevitably includes weak
nonlinearity originating from mechanical imperfections,
e.g., slight electrode misalignments. Strictly speaking,
the dynamical system emulated by S-POD obeys the
Hamiltonian (6) rather than the Hamiltonian (1) (so do

real beam transport channels). The external nonlinear
potential ΔUext is generally much weaker than the quadru-
pole focusing potential but for sure nonzero depending on
how precisely the LPT was fabricated [17,40]. In a regular
LPT, the error fields are turned on simultaneously with the
linear focusing field, so ΔUext has the same periodicity as
KQMðsÞ and may expedite the nonlinear resonance process.
Such a driving-force condition peculiar to the LPT has been
taken into account in the numerical results of Fig. 4. We
have incorporated periodic imperfection fields in these
WARP simulations, assuming possible misalignments of the
four quadrupole rods. The strengths of error-induced non-
linear multipole components are less than 1% of the
quadrupole strength [40]. The sextupole amplitude, which
is the largest among all nonlinear components, is roughly
0.36% for the rms electrode misalignments of 0.05 mm.
The strengths of all multipole components are approxi-
mately doubled with the average misalignments of 0.1 mm.
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FIG. 3. Transverse rms emittance evolution of a waterbag beam
propagating through a long FODO channel with ξ ¼ 0.5 and
ζ ¼ 1. The initial tune depression is set at η ¼ 0.8 in both
examples. The bare phase advance in the upper picture (a) is
σ0 ¼ 69.12° while in the lower picture (b), the operating point is
slightly moved to σ0 ¼ 70.92° within the same local instability
band. The external potential includes no nonlinearity. Two insets
in each picture exhibit the horizontal phase-space profiles after
the waterbag beam has passed through certain numbers of FODO
cells; namely, the profiles at the 400th cell and at the 480th cell in
the upper picture, and the profiles at the 100th cell and at the
1260th cell in the lower. Following the PIC simulations in Fig. 2,
we have assumed a 1 MeV proton beam with the initial emittance
(90%) of 0.88π mm · mrad.
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We recognize that the plasma instability above σ0 ¼ 120° is
strengthened by the mechanical error in both cases (a) and
(b) where η ¼ 0.9 and 0.8 respectively. The effect of the
error fields on other two stop bands turns out to be very
weak at least within 100 FODO periods. There is no clear
signature of additional resonances, despite that the external

driving potential has included finite nonlinearities up to the
sixth order.
A question now is whether external error fields exert any

influence on nonlinear resonance bands even if they are not
exactly periodic. This is the case in actual linear transport
channels where the beam orbit is not closed. The question is
answered in Fig. 5 where we have assumed random
nonlinear imperfections along the channel. The absolute
strengths of the imperfection fields relative to the linear
focusing field are set equivalent on average to the case of
0.05-mm rms misalignment in Fig. 4. No essential change
can be seen depending on whether the error fields hold
perfect periodicity (Fig. 4) or not (Fig. 5).

III. BEAM-DYNAMICS MODELING WITH S-POD

Since the information of S-POD has been given in many
previous publications [14–20,41,42], we only briefly out-
line how it works. As already mentioned above, S-POD
provides a compact many-body system that approximately
obeys the Hamiltonian

HS-POD ¼ p2
x þ p2

y

2
þ 1

2
KrfðτÞðx2 − y2Þ

þ Ipϕþ ΔUrfðx; y; τÞ; ð9Þ

where the independent variable is now time τ ¼ ct with c
being the speed of light, Ip is a constant associated with the
species of confined particles, KrfðτÞ is a periodic function
proportional to the rf focusing voltages VrfðτÞ on the
quadrupole rods, and ΔUrfðx; y; τÞ represents the nonlinear
potential that comes from mechanical imperfections and
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FIG. 4. WARP simulation results in consideration of the rf-field
property of the LPT. Nonlinear imperfection fields up to the sixth
order have been introduced in these PIC simulations. The
strengths of the nonlinear fields are determined by analyzing
the weak rf-potential distortion caused by misalignments of the
four quadrupole rods. The upper picture corresponds to the case
where η ¼ 0.9 while the lower to the case where η ¼ 0.8. In each
picture, we have considered two different sizes of rms misalign-
ments; namely, 0.05 mm (dotted line) and 0.1 mm (broken line).
The result in Fig. 2 under the ideal linear focusing condition is
replotted with solid line for reference. The average nonlinear
multipole strengths relative to the quadrupole’s are listed in
Table 1 of Ref. [40] and assumed in these simulations. The rf
focusing waveform used for the transverse confinement of 40Arþ
ions is the symmetric FODO with ξ ¼ 0.5 and ζ ¼ 1. The initial
distribution is in the thermal equilibrium and well matched to the
AG potential. The ordinate represents the growth rate of average
transverse rms emittance after 0.1 ms corresponding to 100
FODO periods. The effect of image charges induced on the
electrode surfaces has been incorporated for completeness but it
turns out to be negligible according to separate test simulations
without the image effect.
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pole components in each focusing element are defined by using
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with the strengths of the periodic nonlinearities assumed in Fig. 4
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has the same periodicity as KrfðτÞ [43]. Similarly to the
beam transport system, the Coulomb potential ϕ in Eq. (9)
is determined by solving the Poisson and Vlasov equations
in the self-consistent manner. Since ΔUrf is weak in a
regular LPT, the Hamiltonian (9) is very close to H0 in
Eq. (1). Our experimental model is physically equivalent to
the theoretical basis frequently adopted for diverse space-
charge studies in the accelerator community.
There are many practical advantages in S-POD experi-

ment, compared with conventional approaches to intense
beam issues. First of all, S-POD is far more compact and
incomparably cheaper than any accelerators. Thanks to the
compactness and simple nature of the system, we have only
little noise sources that complicate output signals. It is thus
possible to explore collective effects expected in the very
basic model of Eq. (9). Second, S-POD is extremely
flexible in controlling fundamental beam-dynamics param-
eters. For instance, the waveform of the AG focusing
function KrfðτÞ can be changed over a very wide range
without any mechanical modifications to the LPT structure.
Since KrfðτÞ is proportional to the rf voltages applied to the
quadrupole rods, all we need for the study of lattice-
dependent effects is simply to modify the rf waveform from
the power supply. In principle, we can emulate any AG
focusing function [44]. Third, S-POD is not a numerical
simulation tool but an experimental apparatus. Our
approach is free from drastic approximations and assump-
tions often made in computer codes to reduce CPU time.
Each experimental simulation run with S-POD at a par-
ticular operating tune is completed almost instantly no
matter whether the beam intensity is high or low. In
addition, we do not have to worry about radio-activation
due to the instant loss of a whole intense bunch because the
energy of stored particles is very low in the laboratory
frame. Taking these facts seriously, the Intense Beams
Group of Accelerator Science and Technology Centre in
England recently decided to construct a LPT system closely
following the S-POD design [45]. The English ion-trap
facility, named “IBEX” (Intense Beam Experiment), is now
in the middle of commissioning. There is another dedicated
ion trap at Princeton Plasma Physics Laboratory in the US.
Gilson and his co-workers have done interesting beam-
physics experiments, using a different type of LPT [46–48].
Their work includes a detailed study of beam-quality
degradation induced by white and colored noises on the
linear focusing function KrfðτÞ [49,50].
Our LPT is roughly 200 mm long and divided into five

independent sections so that two axial potential wells can
be formed if necessary by giving different DC bias
potentials to those sections [41]. Since the plasma confine-
ment is static in the longitudinal direction, we are not
bothered by synchrotron resonance under the current
S-POD setup (while it is possible to excite such resonance
by adding a periodic modulation in the axial confinement
force [51]). A microchannel plate (MCP) with a phosphor

screen is placed about 20 mm away from one end of the
LPT, and on the other side, we have a Faraday cup (FC)
detector. 40Arþ ions produced through the electron bom-
bardment process are used for the experiment. The repeti-
tion frequency of the doublet waveform in Fig. 1 is set at
1 MHz. Then, the maximum step height required for the
full tune-space survey is only 101.9 V for the symmetric
FODO lattice [42]. We introduce neutral Argon gas atoms
into the chamber and ionize them with a low-energy
coasting electron beam from an e-gun. Generated ions
are accumulated within a circular boundary of 5 mm in
radius surrounded by the four quadrupole rods. The trans-
verse extent of the non-neutral plasma is a few mm [19]
while the axial extent is much larger, i.e., roughly 50 mm,
to emulate a long bunch. As a future subject, we are
considering the use of a short bunch (with or without the
driven axial resonance) to investigate the effect of synchro-
betatron coupling [52].
It takes about a second to accumulate a sufficient number

of 40Arþ ions. The initial plasma density can be controlled
by changing the Argon-gas pressure and/or the electron-
beam current. The base vacuum pressure is 1 × 10−8 Pa,
which is worsened to the order of 10−5 Pa after the
introduction of the neutral gas when we need a high-
density plasma (cf. Ref. [21]). The tune depression reached
with 107 stored ions in the LPT is estimated to be about
0.85–0.9 [16]. After an ion bunch is formed, we shut down
the electron beam, wait typically for 50 ms until the bunch
settles into a sort of stationary state, and then adjust the LPT
operating point to a proper intended position at which the
bunch is maintained for a certain period to test its stability.
The operating betatron tunes are evaluated at high accuracy
(within an error of �0.1%) through direct measurement of
the rf voltages on the electrodes. Finally, the axial potential
barrier on either the MCP or FC side is dropped to extract
the ions. If the bunch is unstable at the chosen operating
point due to the transverse coherent resonance, we will
detect a noticeable reduction of the output ion signal. The
single measurement cycle at a particular operating point is
finished within 10 s including the whole data transfer and
saving on a personal computer. The reproducibility of
S-POD data is very good. Since the experimental procedure
is automated, we do not have to stay beside S-POD to
retune fundamental parameters. Only less than one hour is
enough for several hundred measurements executed at
several hundred different operating points at any density.
At present, there are three independent LPT-based

S-POD systems (S-POD I, II, and III) operating side by
side at the Beam Physics Laboratory in Hiroshima. We can
double-check experimental data whenever necessary. The
mechanical designs of the three LPTs are similar, but of
course, they have different nonlinear characters due to the
random nature of errors in electrode machining and
assembling. We expect the rms average of electrode
misalignments to be around 50 μm to 100 μm at most.

COHERENT RESONANCE STOP BANDS … PHYS. REV. ACCEL. BEAMS 20, 064201 (2017)

064201-7



Previous experimental observations indicate that the
mechanical imperfection is the largest in the LPT currently
used for S-POD III [53]. In fact, it is always easier for us to
observe nonlinear effects in S-POD III, compared with the
other two systems [12,14]. This study was done with
S-POD II where the error-induced nonlinearities are
relatively weak. Throughout the paper (except for
Appendix C), the plasma storage period at each operating
point is fixed at 10 ms corresponding to 10,000 FODO
cells. It should be long enough to find out practically
important instabilities that might cause non-negligible
emittance growth in real linear transport channels.

IV. RESULT

A. FODO and sinusoidal focusing

In previous S-POD experiments as well as WARP

simulations [14–19], we have often assumed the sinusoidal
focusing potential commonly used for regular LPTs while
the FODO waveform was employed in some earlier ion-
trap experiments [47,54]. Theoretically, the sinusoidal
focusing channel has a resonance feature very similar to
that of the FODO channel. Figure 6 shows the ion-loss
distributions under the sinusoidal focusing potential. Three
clear instability regions repeatedly observed in past S-POD
experiments have appeared here again. The instabilities are
located near σ0 ¼ 60°, 90°, and 120°, all of which shift to
the higher-tune side as the initial number of stored ions is
increased. This observation qualitatively agrees with the
PIC simulation results in Sec. II. Particular attention should
be paid to the following facts. First, ion losses at σ0 ≈ 60°
and 90° are very weakened in the low-intensity regime,
which suggests that the primary source of the instability is

the Coulomb self-field potential. Second, unlike these two
instability bands, ion losses near σ0 ¼ 120° remain observ-
able even at very low density. The lowest-order instability
expected from the condition (8) in the range σ0 < 180° is
the sextupole (m ¼ 3) resonance that occurs at σ0 ≈ 120°.
The third-order error field must, therefore, be playing a
central role around this phase advance. Third, the instability
at σ0 ≈ 90° rapidly grows with increasing number of initial
ions and becomes most severe in the high-intensity regime.
The lowest-order mode that can be unstable near σ0 ¼ 90°
is the quadrupole (m ¼ 2) and the second lowest is the
octupole (m ¼ 4). The former is driven by the Coulomb
potential and the latter not only by the Coulomb potential
but also by the fourth-order external field depending on the
degree of mechanical imperfections. Recalling the PIC
simulation results in Sec. II B and observed instability
suppression in the low-intensity regime, we come to a
conclusion that serious ion losses near σ0 ¼ 90° at high
density should be due mainly to the self-field-driven linear
resonance. A similar argument applies to the origin of the
small dip at σ0 ≈ 60°; the most straightforward interpreta-
tion is that ion losses there are caused largely by the self-
field-driven sextupole (m ¼ 3) resonance rather than the
much higher-order instability of the m ¼ 6 mode.
The stop-band behavior almost identical to what we

found in Fig. 6 has been confirmed experimentally with the
doublet lattice [12,13]. The result in Fig. 7 verifies that the
basic feature of the ion-loss distribution does not change
even if the rf waveform for Krf is switched from the sine
curve to the symmetric FODO configuration with ξ ¼ 0.5
and ζ ¼ 1. We encounter the three instability bands that
have the same characteristics as those discovered in Fig. 6.
It is well known from rms envelope theories that the

instability near σ0 ¼ 90° may involve the resonances of two
distinct modes referred to as “in-phase (breathing)” and
“out-of-phase (quadrupole)” modes [4]. In S-POD
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FIG. 6. Ion-loss distributions measured in S-POD with the
sinusoidal focusing potential. Each of the four curves consists of
237 data points obtained from 237 independent measurements
over the range 50° ≤ σ0 ≤ 140° at the same initial ion number
(Nion ≈ 104, 105, 106, or 107). The storage period of ions in the
LPT is fixed at 10 ms in all four cases. It takes us only less than
40 minutes to complete 237 measurements.
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FIG. 7. Ion-loss distributions measured in S-POD with the
symmetric FODO potential where ξ ¼ 0.5 and ζ ¼ 1. The
experimental condition is the same as adopted in Fig. 6 except
for the rf focusing waveform of KrfðτÞ.
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experiment, however, no clear evidence that proves this
theoretical prediction has been obtained so far. Ion losses
above σ0 ¼ 90° always form a single pronounced dip at
high density as displayed in Figs. 6 and 7. This seems
reasonable because the external driving field in the LPT is
free from the axisymmetric component that can directly
drive the breathing oscillation. A careful analysis of the
envelope equations by Lund and Bukh has revealed that in
quadrupole doublet channels, the two linear eigenmodes
lose stability within almost the same ranges of parameters
[30]. It is, therefore, practically impossible to separate these
envelope instabilities in S-POD.

B. Dependence on the geometric factors

It is not surprising that the stop-band distributions of
the FODO and sinusoidal focusing channels have no
striking difference [15]. In fact, the matched envelope
modulations along these two AG channels are nearly
identical. The result in the last subsection makes us
anticipate that analogous stop-band behavior must be
observed in a Focus-Defocus-Defocus-Focus (FDDF)
transport channel as well. The FDDF lattice has been
adopted in some major machines such as the Proton
Synchrotron (PS) at CERN [9] and the UNILAC at GSI
[7]. An example of S-POD data verifying this natural
expectation is given in Appendix A.
The drift-space ratio ζ is not necessarily equal to 1.0 as

assumed in Fig. 7. Moreover, the quadrupole filling factor ξ
is different from 0.5 in most of existing beam transport
lines. It is thus valuable to examine whether the choice of
the geometric factors has any influence on the “three-band
structure” in Fig. 7. Such an experimental study, generally
impossible in a large-scale machine that has a unique
uncontrollable lattice configuration, can be conducted very
easily in S-POD. The right panels in Figs. 8 and 9 show the
ion-loss distributions when the rf waveforms as in the left
panels are employed for KrfðτÞ. The quadrupole filling
factor ξ is changed in Fig. 8 with the drift-space ratio ζ
fixed at 1.0. The familiar stop bands have reappeared at
σ0 ≈ 60°, 90°, and 120° regardless of the change in ξ.
Essentially the same distribution is found in Fig. 9 where
we have varied ζ instead of ξ. Previous WARP simula-
tions have pointed out a possible correlation between the
ζ-parameter and instability growth rate [15], but the effect
looks too weak to be identified in Fig. 9. These observa-
tions allow us to conclude that the global resonance picture
is unaffected by variation in the geometry factors.
The envelope theory in Ref. [30] disclosed a thin stop

band overlooked in earlier work on the linear collective
modes. The stop band, named “lattice resonance band” in
Ref. [30], is manifested when ζ ≠ 1. It is, however, very
narrow and located very close to the major instability
region at σ0 ≈ 90°, which makes it difficult for us to
confirm its existence under the current operating condition
of S-POD. For experimental verification of the lattice
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FIG. 8. Ion-loss distributions measured in S-POD with doublet
focusing waveforms of different quadrupole filling factors. The
drift-space ratio is fixed at ζ ¼ 1 while we consider two quadru-
pole filling factors: (a) ξ ¼ 0.25 and (b) ξ ¼ 0.75. The left panels
show the rf waveforms generated by the S-POD power supply
when σ0 is adjusted to 90°. The storage period of ions in the LPT
is fixed at 10 ms.
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FIG. 9. Ion-loss distributions measured in S-POD with doublet
focusing waveforms of different drift-space ratios. The quadru-
pole filling factor is fixed at ξ ¼ 0.5 while we consider two drift-
space ratios: (a) ζ ¼ 0 and (b) ζ ¼ 0.5. The left panels show the rf
waveforms generated by the S-POD power supply when σ0 is
adjusted to 90°. The storage period of ions in the LPT is fixed
at 10 ms.
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resonance band, we may need to try further increasing the
initial plasma density, so that the thin stop band is
sufficiently distanced from the dominant 90° band.

C. Asymmetric focusing

The experiments and numerical simulations in the
previous sections have assumed the symmetric focusing
condition σ0x ¼ σ0yð≡σ0Þ where ðσ0x; σ0yÞ are the hori-
zontal and vertical bare betatron phase advances per unit
cell. The two transverse phase advances are often set equal
or close to each other in drift tube linacs (DTLs) [55,56].
For instance, the DTLs at some major Japanese institutes
including J-PARC, RIKEN, and NIRS have actually used
the FODO lattice under the condition σ0x ¼ σ0y [57]. Most
of past theoretical studies of intense beam transport have
also assumed symmetric transverse focusing [4,24,28–32].
As pointed out later in this section, the coupling resonance
along the line σ0x − σ0y ¼ 0 on the tune diagram is
practically harmless to an equilibrium beam that has the
same emittances in both directions. Choosing the operating
point σ0x ¼ σ0y, therefore, seems quite natural because a
round beam is certainly preferred for typical drift tubes with
a small circular aperture.
In this subsection, we take a step forward to explore the

general case where σ0x ≠ σ0y [12,13,15]. The transverse net
focusing forces in the LPT can readily be made asymmetric
by controlling the rf waveform for KrfðτÞ. Specifically, we
alter the widths of the focusing and defocusing pulses in
Fig. 1 separately to differentiate σ0x and σ0y. Over four
thousand measurements with different combinations of σ0x
and σ0y were carried out and summarized in Fig. 10. The
number of ions surviving after 10 ms at a specific operating
point has been represented by the shading of gray scale on
the tune diagram. The ion survival rate is lower in darker
operating regions. We immediately recognize three hori-
zontal and three vertical lines along which considerable

reduction of the survival rate has occurred. All these
instability lines are more widened and move to the
higher-tune side with increasing number Nion of initial
ions. This observation is consistent with the stop-band
behavior shown in Figs. 6–9 where σ0x ¼ σ0y. In the case of
symmetric focusing, the LPT operating point is somewhere
on the straight line inclined at an angle of 45° on the
stability map in Fig. 10. The horizontal and vertical
resonance bands intersect on the line, which means that
the ion losses in Figs. 6–9 contain contributions from at
least two instabilities induced independently in the different
degrees of freedom.
As discussed in the subsections II B and IVA, the most

conspicuous lines slightly above σ0xð0yÞ ¼ 90° are attributed
largely to the self-field-driven linear resonances excited in
the two transverse directions and partly to the weak octupole
resonances. Other four lines near σ0xð0yÞ ¼ 60° and 120°
should be due mostly to the horizontal and vertical sextupole
resonances. Since external nonlinear fields strengthen the
sextupole instability along σ0x ≈ 120° and σ0y ≈ 120°, these
two lines could be most troublesome at low beam intensity if
the lattice includes large mechanical errors. At high beam
intensity, the instabilities along σ0xð0yÞ ≈ 60° and σ0xð0yÞ ≈
90° also become unavoidable even in a perfectly constructed
machine because the natural Coulomb potential can be the
source of them. The 90° resonance lines are particularly
dangerous as is evident from Fig. 10(c).
In addition to the six 1D stop bands running horizontally

and vertically in Fig. 10, we notice two faint coupling
resonance lines when the initial plasma density is high
(Nion ≈ 107). These weak instability bands originate most
likely from the third-order coupling terms x2y and xy2 as
they can be fitted by 2σ0x − σ0y ≈ 0 and σ0x − 2σ0y ≈ 0.
Both lines are observed even in PIC simulations without
external nonlinearities (see Appendix B). Other coupling
resonance lines are invisible or unclear in Fig. 10, which
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FIG. 10. Tune diagrams of the quadrupole doublet beam transport. The number of ions (Nion) initially stored in the LPT is about 105 in
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implies that mechanical imperfections are rather small in
the LPT employed here for S-POD II. In another LPT for
S-POD III, we can detect third-order, probably error-
induced coupling resonance lines more easily and clearly
[12]. It was even possible to identify the fourth-order
difference resonance line 2σ0x − 2σ0y ¼ 0. This type of
difference resonance is usually undetectable not only due to
the weakness of the fourth-order error field but also because
the horizontal and vertical emittances are initially equal
in a regular LPT when σ0x ¼ σ0y. Since the sum of the
two emittances is conserved under the resonance
2σ0x − 2σ0y ¼ 0, nothing remarkable happens if the plasma
is isotropic in the transverse dimensions. We, therefore,
used an elaborate plasma shaping technique to make the
initial ion distribution anisotropic in the two transverse

directions [58]. More nonlinear resonance lines have been
successfully identified in S-POD III, but coupling insta-
bilities of the fourth or higher orders are generally very
weak and thus difficult to locate unless we considerably
extend the period of plasma storage to enhance ion losses.
Boine-Frankenheim et al. recently pointed out the

possibility of parametric sum resonance induced by the
space-charge potential of second order [59]. Such a
resonance line was not very clear in the original S-POD
data of Fig. 10, so we focused our attention on a narrower
area around ðσ0x; σ0yÞ ¼ ð120°; 70°Þ increasing the density
of data points. Theoretically, the sum-resonance band is
somewhat widened around this region, which gives us a
better chance to find it out (cf. Appendix B). Figure 11 is an
enlarged local tune map containing about 4000 data points.
We now see a sum resonance band thicker than the third-
order coupling resonance line. Although a further study is
necessary to make a definitive conclusion, we presently
suspect that the observed line is due to the skew-mode
resonance discussed in Ref. [59]. It is possible to show that
the Coulomb self-field potential can be a source of not only
the linear sum resonance but also a variety of parametric
coupling instabilities [60]. A plausible hypothesis is for-
mulated in Appendix B regarding this issue.

V. CONCLUDING REMARKS

Systematic experiments have been conducted to inves-
tigate the stability of an intense hadron beam traveling in a
periodic AG focusing channel. The Simulator of Particle
Orbit Dynamics, the compact non-neutral plasma trap
facility designed solely for diverse beam-physics applica-
tions, has been employed to clarify how the condition of
coherent betatron resonance depends on fundamental
parameters. For the last more than a decade, we have
devoted a great deal of experimental and theoretical effort
to this important subject, establishing the new tabletop
research technique [12–20,25,40–42,51,60]. The high
parameter controllability and flexibility available in
S-POD experiments enable us to provide a definitive
answer to the question of what operating condition should
be avoided to minimize possible beam losses in a long AG
transport line. The present study focuses on the FODO
lattice (quadrupole doublet) that has been widely used as
the most standard AG configuration for various machines.
A key to the comprehensive understanding of our exper-
imental results is the parametric resonance condition (5)
first formulated in Ref. [25]. Only little attention has been
paid to this instability criterion so far in spite of its practical
importance at high beam density. It looks very similar to the
Sacherer’s famous coherent resonance condition (8)
[22,26], but the factor 1=2 on the right-hand side of
Eq. (4) yields essential difference in the interpretation of
S-POD data [12–19]. The mathematical formulas given in
Ref. [25] are not limited to the simple doublet focusing but
applicable to arbitrary lattice configurations. The present
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FIG. 11. Tune diagrams of the quadrupole doublet beam
transport. The transverse tune space above σ0x ¼ 100° and below
σ0y ¼ 90° in Fig. 10 is magnified to search for a weak coupling
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LPT is about 106 in the upper picture (a), and 107 in the lower
picture (b). The storage period of ions in the LPT is fixed at 10 ms
in both cases. Each picture consists of 3969 data points.
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discussion can readily be extended to the situation of high-
intensity storage rings [12,14,16,19] (see Appendix C).
In the ordinary case where σ0x ¼ σ0yð≡σ0Þ, we have

observed three instability bands near σ0 ¼ 60°, 90°, and
120° not only in S-POD experiments but also in PIC
simulations no matter whether weak nonlinear imperfection
fields are present. As the initial beam density becomes
greater, each stop band is broadened while moving its
central position to the higher-tune side [61]. The global
picture of ion losses is unchanged even in S-POD III that
has relatively strong nonlinearities, compared with S-POD
II used here [14,16,18,19]. In the high-intensity regime, the
instability near σ0 ¼ 90° is especially serious producing
much more ion losses than the other two. We have judged
that the main cause of this severe instability is the linear
(m ¼ 2) self-field-driven resonance predicted by Eq. (5)
[25] and earlier theoretical studies of collective oscillation
modes [4,24,28]. The large stop band shrinks as the plasma
density is lowered (see, e.g. Figs. 6 and 7). It almost
disappears at very low density, which is in striking contrast
with the instability near σ0 ¼ 120° driven primarily by the
third-order (m ¼ 3) imperfection field. If the fourth-order
error in the LPT happened to be very enhanced somehow
and thus created the most prominent stop band at σ0 ≈ 90°,
the resultant ion losses would never vanish even in the low-
intensity regime just like the 120° stop band.
Similarly, we accept the most straightforward interpre-

tation concerning the ion losses near σ0 ¼ 60°; at high
density, the self-field-driven resonance of the third-order
mode rather than the sixth-order resonance plays a dom-
inant role there in a long transport channel [12–17]. If we
assume the ion losses in the vicinity of 60° to be caused by
the sixth-order instability, it seems difficult to explain the
complete absence of the fifth-order resonance lines.
Statistically speaking, a lower-order multipole field is
stronger within the LPT aperture as long as electrode
misalignments are completely random [40]. Besides, the
mth-order multipole potential is proportional to ðr=RÞm
with R being the aperture radius and r being the distance
from the LPT axis. Since the ratio r=R is well below unity
inside the beam core, the sixth-order effect should be much
weaker than the fifth and lower orders’. As supported by
PIC simulations in Sec. II, the sextupole instability does
exist near the phase advance of 60° and eventually gives
rise to rms emittance growth more than that of the sixth-
order-mode origin. Even though the emittance behavior is
sensitive to several parameters such as the operating tune,
beam density, and transport distance, it is misleading to
claim that the sixth-order resonance can dominate over the
self-field-driven third-order resonance when the beam is
intense. According to our interpretation based on the
criterion in Eq. (5), the three conspicuous instabilities
experimentally observed at high density can be understood
as the coherent resonances of the linear (m ¼ 2) and first
nonlinear (m ¼ 3) modes only [12–19]; it is unnecessary to

seek for their origins in much higher-order driving terms.
Extra attention to the fourth and high-order nonlinear
resonances may, however, be required in a circular machine
that stores intense hadron bunches for a very long period
(see Appendix C).
The seed of parametric beam resonance is a distortion of

the particle distribution from the ideal stationary state fine-
grainedly matched to the external AG potential in phase
space. Since perfect matching can never be achieved in
practice, any realistic beam will sooner or later start to blow
if the machine operating condition is poorly chosen. At an
operating point where coherent resonances of relatively low
orders overlap, we sometimes observe the development of a
high-order instability first followed by a lower-order’s. This
does not necessarily mean that the higher-order resonance
is stronger than the lower-order resonance or the latter can
only be activated through the preceding disturbance to the
initial particle distribution by the former instability. Even
without a disturbance from the higher-order mode, the
lower-order instability will eventually grow resulting in
more serious particle losses. The resonance of a lower order
is generally more troublesome unless the external driving
potential contains excess nonlinearity [25] (or the beam
initially possesses an unusual distribution very far from the
stationary state). We should also keep it in mind that
coherent resonances of different orders have different
widths and different space-charge-induced band shifts
because of the mode-dependent factor Cm [22,25]. The
phase-space structure of an unstable beam may, therefore,
evolve quite differently even at two adjacent operating
points within a local instability region (cf. Fig. 3).
Furthermore, the effective operating point gradually moves
as the phase shift Δσ̄ is reduced by emittance growth. All
these complex features of the collective resonance process
make it extremely difficult to explain the time evolution of
the beam behavior in phase space.
It is apparent from Fig. 10 that at least two low-order

resonances excited independently in the horizontal and
vertical directions contribute to each of the three pronounced
instability bands discovered in Figs. 6–9 for the symmetric
beam transport. In thegeneral casewhereσ0x ≠ σ0y, wemust
particularly care about the three vertical lines σ0x ≈ 60°, 90°,
120° and the three horizontal lines σ0y ≈ 60°, 90°, 120° on the
tune diagram. Among them, the instability bands just above
σ0xð0yÞ ¼ 90° are most dangerous whenever the beam is
dense [13,15]. The effect of nonlinear coupling resonance is
weak in S-POD II within 10ms despite that the rf field in the
LPT aperture certainly involves finite nonlinearities.
Assuming the rms misalignments of the LPT electrodes to
be a few tens of μm, the resultant sextupole and octupole
nonlinearities are on the order of 0.1% relative to the
quadrupole strength. This level of nonlinearity is compa-
rable to or, at least, not too far from possible imperfections
expected in real machines [55,62–64]. For example, the
strengths of low-order nonlinear components are 0.1% or a
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bit smaller in the quadrupole magnets used for the DTL at
J-PARC, where the FODO lattice has been adopted for
transverse focusing of high-intensity proton beams [62,65].
The actual strengths of nonlinear error fields along the beam
line should be increased to some degree because of the
limited accuracy of the drift-tube alignments [66]. We thus
believe that the present S-POD data have reproduced what is
likely to happen in conventional linear machines for hadron
beams. Considering the fact that the ion storage period of
10ms in the LPT is equivalent to beam transport over 10,000
FODO cells, nonlinear coupling resonances are probably of
little concern in practice when the beam is near the ideal
stationary state at injection. In a strongly asymmetric lattice,
however, it is recommended to care about several coupling
resonance lines experimentally revealed at high intensity on
the tune diagrams in Figs. 10(c) and 11; namely, the sum
resonance σ0x þ σ0y ≈ 180° [59] and third-order difference
resonances 2σ0x−σ0y≈0 and σ0x−2σ0y≈0, all of which are
observable even in short-term PIC simulations without
external nonlinearities (see Appendix B).
The growth rate and stop-band width of self-field-driven

resonance are roughly proportional to the beam perveance
[25]. The coherent instabilities of higher than the third
order (m ≥ 4) could, therefore, cause unacceptable emit-
tance growth even in a linear transport channel if the tune
depression is significantly below the range considered in
the present study. All stop bands observed in the stability
map of Fig. 10 then become much wider and, in addition,
some more coupling resonance lines may manifest them-
selves depending on the beam density and transport
distance (cf. Appendices B and C). For the future study
of such an extremely space-charge-dominant regime with
S-POD, we are now developing a plasma stacking tech-
nique to accumulate a large number of 40Caþ ions in the
LPT [41]. The use of 40Caþ ions allows the application of
powerful Doppler laser cooling [67,68], while the tune
depression currently reachable with 40Arþ ions is limited to
about 0.8–0.85 due to technical reasons. In principle, a
bunch of 40Caþ ions can be cooled to near the absolute zero
temperature, which means that it is possible to depress the
betatron tune down to the ultimate lower limit, i.e., η ≈ 0
where the beam is Coulomb crystallized.
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APPENDIX A: FDDF LATTICE

In addition to the sinusoidal and doublet waveforms
considered in Sec. IV, we have also tried other types of AG
waveforms for KrfðτÞ including the so-called “triplet,”
“FDDF,” etc. [12,13]. The left panel in Fig. 12 shows an
example of the rf voltage generated by the S-POD power
supply to emulate a FDDF-type lattice configuration. Since
the lattice is symmetric, the horizontal and vertical phase
advances are equal; namely, σ0x ¼ σ0yð≡σ0Þ. The rf period
is now 2 μs, twice longer than the doublet case. The plasma
envelope is then a bit more expanded in the LPT aperture,
which enhances ion losses; in other words, the acceptance
of the LPT is reduced to some degree. It is, therefore,
difficult to confine as large a number of ions as in the case
of the FODO lattice, but the global picture of the stop-band
distribution is not substantially changed. When the plasma
density is high, the three instability regions are formed just
above σ0 ¼ 60°, 90°, and 120° as expected. The severe 90°
stop band disappears in the emittance-dominated regime
while finite ion losses remain at σ0 ≈ 120°.

APPENDIX B: SELF-FIELD-DRIVEN
COUPLING RESONANCES

It is natural to expect that the Coulomb self-field
potential can be a source of not only the parametric 1D
resonances in Eq. (5) but also parametric coupling reso-
nances. In the 2D case, however, the fully analytic
derivation of a general resonance condition from the
Vlasov-Poisson equations is hopeless to achieve. All we
can do is to develop a hypothesis based on the 1D criterion
and numerical data. A simple-minded generalization of the
condition in Eq. (5) is

kðσ0x − CðxÞ
klΔσ̄xÞ � lðσ0y − CðyÞ

klΔσ̄yÞ ≈ nπ; ðB1Þ
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FIG. 12. Ion-loss distributions measured in S-POD with a
FDDF focusing potential. The FDDF waveform employed for
this experiment is symmetric as depicted in the left panel. The
right panel shows the ion-loss distributions at three different
initial plasma intensities. The storage period of 40Arþ ions in the
LPT is fixed at 10 ms in all measurements. The small ripples in
the low-density data are due to the performance limitation of our
pulse-waveform generator (rather than to the fluctuation of the
initial ion number).
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where CðxÞ
kl and CðyÞ

kl are constant parameters depending on
the order of the driving space-charge term xkyl, and Δσ̄xðyÞ
represent the coherent phase shifts in the two transverse
directions. The resonance order is kþ lð≡mÞ. We require

CðxÞ
m0 ¼ CðyÞ

0m ¼ Cm so that Eq. (B1) is reduced to Eq. (5) for
the 1D coherent instability in the horizontal or vertical
degree of freedom. Because of the symmetry of the

problem, the requirement CðxÞ
kl ¼ CðyÞ

lk should also be
met. The space-charge-induced phase shifts are defined
as Δσ̄xðyÞ ¼ ð1 − ηxðyÞÞσ0xð0yÞ with ηxðyÞ being the horizon-
tal(vertical) rms tune depression. The condition above has
been linearized with respect to the phase shift, assuming
Δσ̄xðyÞ=σ0xð0yÞ ≪ 1. The parameter dependence could be
more complex at very high beam density. The right-hand
side of Eq. (B1) must be replaced by 2nπ if the driving
force comes from an artificial source, e.g., mechanical
imperfections [12].
We can show the possibility of self-field-driven coupling

resonances by generalizing the procedure in Ref. [24], but
the Vlasov theory based on the KV model predicts so many
nonlinear stop bands (even if we ignore all resonances
higher than the fourth order), most of which are probably
unimportant in practice [60]. As experimentally demon-
strated with S-POD for the first time, the number of
observable coupling resonance lines is limited even after
10,000 AG periods in the absence of strong external
nonlinearities. Our experimental observations in Sec. IV
agree fairly well with PIC simulations in Fig. 13 where the
rms emittance growth rate after 100 AG focusing periods is
color-coded on the tune diagram. The horizontal and
vertical tune depressions are set equal initially to
ηx ¼ ηy ¼ 0.9. Since no nonlinear imperfection fields have
been taken into account here, the resonances manifested in
Fig. 13 are purely space-charge-driven. Apart from the 1D
resonance lines confirmed in Fig. 10, we notice five
coupling resonance lines expressed approximately as

σ0x½1 − ð1 − ηÞCðxÞ
11 � þ σ0y½1 − ð1 − ηÞCðyÞ

11 � ≈ π; ðB2Þ
(
2σ0x½1− ð1− ηÞCðxÞ

21 �− σ0y½1− ð1− ηÞCðyÞ
21 �≈ 0;

σ0x½1− ð1− ηÞCðxÞ
12 �− 2σ0y½1− ð1− ηÞCðyÞ

12 �≈ 0;
ðB3Þ

(
2σ0x½1− ð1−ηÞCðxÞ

21 �−σ0y½1− ð1−ηÞCðyÞ
21 �≈π;

σ0x½1− ð1−ηÞCðxÞ
12 �−2σ0y½1− ð1−ηÞCðyÞ

12 �≈−π;
ðB4Þ

where the definition Δσ̄xðyÞ ¼ ð1 − ηxðyÞÞσ0xð0yÞ has been
used together with ηx ¼ ηyð≡ηÞ. Fitting these lines to the
numerical data enables us to estimate the phase-shift factors

as follows: CðxÞ
11 ¼ CðyÞ

11 ≈ 0.7 and CðxÞ
12 ¼ CðxÞ

21 ¼ CðyÞ
12 ¼

CðyÞ
21 ≈ 0.8. Interestingly, these numbers are close, respec-

tively, to C2 and C3 from the 1DVlasov prediction [22] and
actually usable to fit the 1D resonance lines as well. These

findings lead us to a conjecture that the C-factor only
depends on the order m of the driving potential, namely,

CðxÞ
kl ¼ CðyÞ

kl ¼ Cm if the beam is matched to the AG lattice
at injection. Equation (B1) can then be simplified to

kσ0x � lσ0y ≈
nπ

1 − ð1 − ηÞCm
; ðB5Þ

where the positive phase-shift factor Cmð< 1Þ approaches
unity as the resonance orderm becomes higher [22,25]. The
two faint difference resonance lines detected experimen-
tally in Fig. 10 correspond to the cases where ðk;l; nÞ ¼
ð2; 1; 0Þ and (1,2,0) in Eq. (B5) with the minus sign. These
lines have been reproduced in the PIC simulations in
Fig. 13. On the other hand, the third-order difference
resonance lines with ðk;l; nÞ ¼ ð2; 1; 1Þ and ð1; 2;−1Þ
given in Eq. (B4) are invisible in experiment. According
to the PIC data, the emittance growth rate along the
resonance lines in Eq. (B4) is a few percent or less while
the rate is about twice higher along another third-order lines
in Eq. (B3). This may be why the weaker resonance lines
with n ¼ �1 are undetectable with S-POD.
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FIG. 13. Tune diagram obtained form 2D WARP simulations at
η ¼ 0.9 with no external nonlinearities. The rates of rms
emittance growth numerically evaluated at about 5,000 different
operating points are color-coded on the tune diagram. The
horizontal and vertical rms emittances are initially unequal almost
everywhere on the diagram because the tune depressions in both
directions have been adjusted to the same value (ηx ¼ ηy ¼ 0.9).
When the emittance exchange occurred between the transverse
degrees of freedom, we took the larger one of the two growth
rates to choose the color. Each simulation is started with a
thermally equilibrated beam confined by the sinusoidal focusing
potential. The transport channel is 100 sinusoidal periods long.
As explained in Sec. II B, the very small emittance growth along
the lines σ0xð0yÞ ≈ 60° is most likely due to the sixth-order
resonance preceding the sextupole instability. The third-order
resonance lines σ0xð0yÞ ≈ 120° are not so clear as in Fig. 10
because of the absence of nonlinear error fields.
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APPENDIX C: LONG-TERM BEAM STABILITY
IN HIGH-INTENSITY HADRON

STORAGE RINGS

In a circular machine, even if it is a so-called high-
intensity ring, the Coulomb self-field potential is not so
strong as achievable in S-POD; the space-charge-induced
tune shift is usually below 10% of the bare tune, i.e.,
η > 0.9. Nevertheless, we have to be careful about various
nonlinear resonance lines because, unlike linear transport
channels, the beam often stays in the machine for much
longer than 10,000 AG periods assumed in Sec. IV. Note
also that the tune depression is determined by the beam
density in phase space rather than by the beam intensity or
power in real space. Even if the beam is compressed in real
space by a conservative electromagnetic force, the phase-
space density does not change due to Liouville’s theorem.
To control η, the beam must be compressed in phase space
The space-charge-driven resonance may thus limit the
performance of a cooler storage ring of hadron beams.
As a matter of fact, the stop band of the linear (m ¼ 2)
coherent instability has been known to interrupt the cooling
process seriously [69,70]. It is one of the most critical
limiting factors for next-generation cooler rings aiming at
the production of ultralow-emittance ion beams [71].
The resonance lines of the seventh (m ¼ 7) and higher

than eighth (m ≥ 9) orders are hardly visible in S-POD
experiments so far even if we extend the plasma storage
period to a few hundred milliseconds. On the other hand,
it is always easier to spot an instability band near
σ0 ¼ 360°=8. A typical result on long-term plasma stability
at low intensity is plotted in Fig. 14(a) for reference. The
ion storage period is now 300 ms (equivalent to beam
transport over 3 × 105 AG cells), thirty times longer than
the experiments in Sec. IV. Noticeable ion losses have
occurred at the phase advances close to σ0 ¼ 360°=j with
j ¼ 3, 4, 5, 6, and 8. The space-charge-induced shift of
each stop band is small but nonzero. The possible insta-
bility at σ0 ¼ 360°=7 is missing even in this time scale. It is
noteworthy that the instabilities at σ0 ¼ 360°=6 and 360°=8
are stronger than the instability at σ0 ¼ 360°=5. These two
stop bands become more pronounced as the plasma density
is increased. Figure 14(b) shows how the instabilities grow
in time at high density. The weak nonlinear resonance of
j ¼ 5 is no longer evident. In addition to the three major
resonances observed in Figs. 6–9, one more instability band
has been formed at σ0 ≈ 53° after 100 ms. This corresponds
to the dip originally located at σ0 ¼ 360°=8 in Fig. 14(a).
Similar tendency has been confirmed also in S-POD III.
According to the interpretation in previous sections, the

sextupole resonance (m ¼ 3) should be responsible for the
instability around σ0 ¼ 70°, which is why the loss rate there
is much higher than that of the fifth-order resonance
(expected near σ0 ¼ 80° at this intensity). A similar argu-
ment can be made regarding the primary source of the
instability at σ0 ≈ 53° in Fig. 14(b). We presume that this

instability is driven not by the eighth-order (m ¼ 8)
imperfection but rather by the much lower fourth-order
(m ¼ 4) term in the space-charge potential. It is unreason-
able to assert that the eighth-order error field has been
accidentally created much more strongly than the fifth-
order error in both S-POD II and III. All of the prominent
instability bands observed in Fig. 14(b) at high density can
then be explained as collective resonances lower than the
fifth order (m ≤ 4). The instabilities near σ0 ¼ 360°=5
and 360°=7 originate purely from the odd-order modes
of m ¼ 5 and m ¼ 7 higher than the fourth order, so they
are weaker.
Suppose a storage ring composed of Nsp lattice super-

periods. The coherent resonance conditions in Eqs. (5) and
(8) can be put together as
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FIG. 14. Long-term stability of a non-neutral plasma confined
in S-POD by the sinusoidal focusing potential. (a) Stop-band
distribution measured at the initial ion number Nion ≈ 105. The
storage period of ions is fixed at 300 ms corresponding to 3 × 105

AG periods. The vertical broken lines indicate the positions of the
phase-advance values 360°=j (j ¼ 3; 4;…; 8). (b) Time-evolution
of the stop-band distribution in the space-charge-dominant
regime where Nion ≈ 107.
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ν0 − CmΔν̄ ≈

8><
>:

Nsp ·
n
2m

ðself-field-drivenÞ

Nsp ·
n
m

ðexternal-field-drivenÞ
ðC1Þ

where ν0 represents the bare betatron tune around the ring
in either the horizontal or vertical direction, and Δν̄ ¼
ð1 − ηÞν0 [12,14,19]. Let us consider the case of CERN PS
as an example. Wasef et al. has reported experimental
evidence indicating the excitation of an intensity-dependent
resonance at ν0 ≈ 6.25 [9]. The unit lattice of the PS is the
FDDF type studied in Appendix A. This lattice possesses
the resonance property analogous to that of the doublet and
sinusoidal focusing channels. Since the PS consists of 50
FDDF blocks, the 50th driving harmonic is expected to
have a non-negligible amplitude even though the strict
superperiodicity of the machine is 10. If we set Nsp ¼ 50,
the self-field-driven resonance condition in Eq. (C1) pre-
dicts the fourth-order (not the eighth-order) instability
slightly above ν0 ¼ 6.25.
If the conjecture made in Appendix B is valid, Eq. (C1) is

generalized for an initially matched intense beam as
follows:

kν0x � lν0y ≈

8>><
>>:

Nsp

1− ð1− ηÞCm
·
n
2

ðself-field-drivenÞ
Nsp

1− ð1− ηÞCm
· n ðexternal-field-drivenÞ

ðC2Þ

where ðν0x; ν0yÞ are the horizontal and vertical bare tunes
around the ring, and m ¼ kþ l. This condition is reduced
to Eq. (C1) for the horizontal or vertical 1D coherent
resonance of the mth order, namely, in the case where
ðk;lÞ ¼ ðm; 0Þ or ð0; mÞ. In the emittance-dominated
regime (η ≈ 1), the band widths and growth rates of the
self-field-driven resonances of all orders are negligible, so
we only need to care about the external-field-driven
instabilities. Equation (C2) then agrees with the well-
known single-particle resonance condition kν0x � lν0y ≈
Nspn that depends on the strengths of imperfection fields
and nonlinear correction magnets.
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