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The interrelation between the accelerating gradient and the transformer ratio in the collinear wakefield
accelerator has been analyzed. It has been shown that the high transformer ratio and the high efficiency of
the energy transfer from the drive bunch to the witness bunch can only be achieved at the expense of the
accelerating gradient. Rigorous proof is given that in best cases of meticulously shaped charge density
distributions in the drive bunch, the maximum accelerating gradient falls proportionally to the gain in the
transformer ratio. Conclusions are verified using several representative examples.
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I. INTRODUCTION

In the collinear wakefield accelerator (CWA) ([1–8]) the
drive electron bunch generates the electromagnetic field by
interacting with the surrounding environment, typically
formed either by the dielectric lined waveguide or the
waveguide with small corrugations or plasma medium. This
field, known as the wakefield, accelerates electrons of the
witness bunch located at a strategically chosen distance
behind the drive bunch with the maximum accelerating
field and decelerates electrons of the drive bunch. The
charge of a witness bunch is much smaller then the charge
of a drive bunch. For the CWA to be an efficient accelerator,
the maximum accelerating field must be much higher than
the maximum decelerating field, in which case the energy
gain experienced by witness electrons by the time the drive
bunch is completely depleted of its energy will be much
higher than the initial energy of the drive bunch electrons.
This is accomplished by using the drive bunch with an
asymmetric electron distribution along the bunch length
[9]. In this paper we give a rigorous proof (in a full
agreement with [9,10]) that the highest ratio of the
maximum accelerating field to the maximum decelerating
field is obtained using the drive bunch electron distribution
that produces an identical decelerating field for all electrons
inside the drive bunch. Expanding on this result, we also
show that for a given environment and a charge of the drive
bunch, the upper value of the accelerating field is strictly

bounded by the ratio of the maximum accelerating field to
the maximum decelerating field. This has always been
observed in numerical simulations (and most recently
reported in [11,12]), but to our knowledge has never been
shown in the form of a theorem for arbitrary longitudinal
bunch distribution as it is demonstrated in this paper. The
results obtained in this paper are applicable to the CWA
employing a single drive bunch. The CWAwith a specially
arranged train of drive bunches was examined analytically
in Ref. [13].
The paper is organized in the following way. We obtain

main results in the first two sections analyzing a generic
CWA not limited to any specific symmetry either cylindri-
cal or planar and to any specific type of the wakefield
inducing environment, but limited only to the cases with a
single mode wakefield Green’s function. After that we
prove that the collinear wakefield accelerators with the
multimode Green’s function cannot have higher accelerat-
ing gradient than that in the CWA with the single mode
Green’s function. Finally, we demonstrate a good agree-
ment of the results with numerical calculations applied to
several representative examples using dielectric lined CWA.

II. TRANSFORMER RATIO

We define charge distribution in the electron bunch as
qðsÞ and consider bunches localized on the interval
0 ≤ s ≤ l. Therefore, we haveZ

l

0

qðsÞds ¼ Q; ð1Þ

where Q is the total bunch charge. Using the Green’s
functionGðsÞ consisting only of a fundamental harmonic (a
multimode case will be considered later) GðsÞ ¼
2κ∥ cos ðksÞθðsÞ, where κ∥ is the loss factor of a point
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particle per unit length, k ¼ 2π=λ is the wave vector, λ is the
wavelength, and θ is the Heaviside theta-function, we write
for the longitudinal field inside of the electron bunch
[14,15]

E−ðsÞ ¼ 2κ∥

Z
s

0

cos ½kðs − s0Þ�qðs0Þds0; s ≤ l ð2Þ

and for the longitudinal field behind the electron bunch

EþðsÞ ¼ 2κ∥

Z
l

0

cos ½kðs − s0Þ�qðs0Þds0; s > l: ð3Þ

Equation (2) is a Volterra equation of the first kind for the
function q and known E− with the trigonometric kernel
cos ½kðs − s0Þ�. If we assume that E−ð0Þ ¼ 0 at the bunch
“head”, then the solution of Eq. (2) is [16]

qðsÞ ¼ 1

2κ∥

�
E0
−ðsÞ þ k2

Z
s

0

E−ðxÞdx
�
; ð4Þ

where the derivative is taken over s. Now one can express
EþðsÞ as a function of E−ðsÞ by substituting Eq. (4) into
Eq. (3)

EþðsÞ ¼
Z

l

0

E0
−ðs0Þ cos ½kðs − s0Þ�ds0

þ k2
Z

l

0

cos ½kðs − s0Þ�ds0
Z

s0

0

E−ðxÞdx: ð5Þ

Evaluating the first integral in Eq. (5) by parts we arrive at

EþðsÞ ¼ E−ðlÞ cos ½kðs − lÞ�

− k sin ½kðs − lÞ�
Z

l

0

E−ðs0Þds0: ð6Þ

Further simplification of (6) leads to

EþðsÞ ¼ A cos ½kðs − lÞ þ ϕ�: ð7Þ

Here

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE−ðlÞÞ2 þ k2

�Z
l

0

E−ðs0Þds0
�

2

s
ð8Þ

is the amplitude and ϕ is a phase.
The transformer ratio is the ratio of the absolute value of

the maximum field behind the bunch to the absolute value
of the maximum field inside the bunch, i.e.

R ¼ max jEþj
max jE−j

: ð9Þ

Therefore, using Eq. (8) one obtains

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

E−ðlÞ
max jE−j

�
2

þ k2
�Z

l

0

E−ðs0Þ
max jE−j

ds0

�
2

s
: ð10Þ

We assume that E−ðsÞ < 0 for 0 < s ≤ l and E−ðsÞ is
continuous and bounded on the interval ½0; l�, then the
inequality

jE−ðsÞj
max jE−ðsÞj

≤ 1 ð11Þ

fulfills. Under our assumptions the integral under the
square root in (10) can be estimated as

�Z
l

0

E−ðs0Þ
max jE−j

ds0

�
2

≤ l2; ð12Þ

and the following inequality fulfills

�
E−ðlÞ

max jE−j
�

2

≤ 1: ð13Þ

Thus, one obtains for the transformer ratio

R ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2l2

p
: ð14Þ

Among all possible electron bunch distributions with equal
length only the distributions that produce almost a constant
E−ðsÞ along the electron bunch have the highest trans-
former ratio

Ru ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2l2

p
: ð15Þ

The approximation sign here means that the limit cannot be
reached in practice. Indeed, if E−ðsÞ is a constant with a
jump at the point s ¼ 0, then the first term in (4) is a Dirac’s
delta function that is not possible for any practical charge
density distribution.

III. UPPER LIMIT FOR THE
ACCELERATING GRADIENT

Now we define the maximum value of the wake potential
per unit length behind the electron bunch as:

max jW∥j ¼
max jEþj

jQj : ð16Þ

Using Eqs. (1) and (4), we write for Q

Q ¼ 1

2κ∥

�
E−ðlÞ þ k2

Z
l

0

dy
Z

y

0

E−ðxÞdx
�

ð17Þ

and assuming E−ðsÞ < 0 for 0 < s ≤ l obtain from Eq. (8):
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max jW∥j ¼ 2κ∥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jE−ðlÞj2 þ k2ðR l

0 jE−ðs0Þjds0Þ2
q
jE−ðlÞj þ k2

R
l
0 dy

R y
0 jE−ðxÞjdx

ð18Þ

Now we divide numerator and denominator in (18) by
max jE−j and consider:

I1 ¼
�Z

l

0

jE−ðs0Þj
max jE−j

ds0

�
2

¼
Z

l

0

Z
l

0

jE−ðxÞj
max jE−j

jE−ðyÞj
max jE−j

dxdy ð19Þ

and also consider:

I2 ¼
Z

l

0

Z
y

0

jE−ðxÞj
max jE−j

dxdy: ð20Þ

Then, based on the assumption (11), we have:

I2 ≥
Z

l

0

Z
y

0

jE−ðxÞj
max jE−j

jE−ðyÞj
max jE−j

dxdy ð21Þ

Evaluating integral I1 as:

Z
l

0

Z
l

0

jE−ðxÞj
max jE−j

jE−ðyÞj
max jE−j

dxdy

¼
Z

l

0

Z
y

0

jE−ðxÞj
max jE−j

jE−ðyÞj
max jE−j

dxdy

þ
Z

l

0

Z
l

y

jE−ðxÞj
max jE−j

jE−ðyÞj
max jE−j

dxdy; ð22Þ

and changing the order of integration in the second integral,
we arrive at

I1 ¼ 2

Z
l

0

Z
y

0

jE−ðxÞj
max jE−j

jE−ðyÞj
max jE−j

dxdy: ð23Þ

Comparing (21) with (23) we get

I2
I1

≥
1

2
: ð24Þ

Substitution of (19) and (24) into (18) gives

max jW∥j ≤ 2κ∥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
jE−ðlÞj
max jE−j

�
2 þ k2I1

r
jE−ðlÞj
max jE−j þ 1

2
k2I1

: ð25Þ

Because jE−ðlÞj
max jE−j ≤ 1, making a smaller denominator in

(25) with substitution jE−ðlÞj
max jE−j ⇒

1
2
ð jE−ðlÞj
max jE−jÞ

2 only increases

the right part in (25) and consequently the inequality

max jW∥j ≤ 2κ∥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
jE−ðlÞj
max jE−j

�
2 þ k2I1

r
1
2

�
jE−ðlÞj
max jE−j

�
2 þ 1

2
k2I1

ð26Þ

holds. With this change we can now relate the upper limit
for max jW∥j with the transformer ratio defined in (10) as:

max jW∥j ≤
4κ∥
R

: ð27Þ

and write for the maximum accelerating gradient:

max jEþj ≤
4κ∥jQj

R
ð28Þ

Since max jW∥j ≤ 2κ∥, the inequalities (27) and (28) are
applicable only for R ≥ 2.
A more accurate definition of the upper limit for the

accelerating gradient can be obtained in many special cases
when jE−ðlÞj

max jE−j ¼ 1. From (25) using Eqs. (10) and (19) one
can obtain

max jW∥j ≤ 2κ∥
2R

1þ R2
; ð29Þ

and finally for the upper limit of the accelerating gradient

max jEþj ≤ 2κ∥jQj 2R
1þ R2

: ð30Þ

The equal sign in (30) is realized in the most desirable case
of the constant longitudinal field inside the electron bunch.
The result shown by Eqs. (28) and (30) has a simple

physics meaning. Accelerating field amplitude max jEþj
begins to drop when R increases. According to (15) this
happens when the electron bunch begins to occupy a
significant fraction of the wavelength λ in which case
the cooperative interference of the radiation fields of the
individual electrons begins to become looser and the
destructive interference between the head and tail electrons
begins to emerge. The intended use of the destructive
interference is suppression of the decelerating field inside
the electron bunch and the accelerating field behind the
bunch, but with carefully manipulated imbalance (con-
trolled by the charge distribution in the electron bunch)
yielding high transformer ratio. Since large transformer
ratio is needed to boost the efficiency of the accelerator
measured in terms of the energy transfer from the drive
bunch to the witness bunch, we have proven that this can
only be done at the expense of a reduced energy gain for the
witness bunch per a unit length and, thus, at the expense of
having a longer accelerator. This conclusion applies to any
type of the wakefield accelerator with the single mode
Green’s function and independent of the environment used
to create the wakefield.
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IV. MULTIMODE CASE

Here we consider the CWAwith the wakefield producing
environment characterized by the Green’s function that has
more than one mode.
Let kn be the wave vector and κn be the loss factor for the

nth mode. Let ~qðkÞ be the Fourier transform of qðsÞ.
Consequently,

κ∥ ¼
X∞
n¼1

κn ð31Þ

and

max jEmlþ j ≤ 2
X∞
n¼1

κnj ~qðknÞj: ð32Þ

Here we denote Emlþ as a longitudinal field behind the bunch
in the multimode case.
Because of the bunching factor, we assume that ~qðkÞ

overlaps onlyN lowest modes and that there is such a mode
m that j ~qðkmÞj > j ~qðknÞj for all n from 1 toN and n ≠ m. In
this case

XN
n¼1

κnj ~qðknÞj ≤ j ~qðkmÞj
XN
n¼1

κn ð33Þ

and using Eqs. (31) and (32) one can write:

max jEmlþ j ≤ 2κ∥j ~qðkmÞj: ð34Þ

Since max jEþj in the single mode case equals to
2κ∥j ~qðkmÞj, then we are able to prove, under the assumption
given above, that the collinear wake field accelerators with
the multimode Green’s function cannot have higher accel-
erating gradient than that in the CWAwith the single mode
Green’s function.

V. ILLUSTRATIONS

We illustrate the results obtained in the previous sections
for a single mode Green’s function using two charge
density distributions in the electron bunch shown in
Fig. 1. The case (a) has a characteristic triangular shaped

distribution with a linear growth from s ¼ 0 to the end of
the bunch at s ¼ l previously considered in a number of
publications (see, i.e., [9,10]). In this case E− is not
constant along the electron bunch length, which makes
obtaining high R (and high max jEþj for a large R) more
difficult (see, Figs. 2 and 3). Another disadvantage of a
nonconstant E− is the loss of the efficiency in the energy
transfer from the drive bunch to the witness bunch in the
collinear wake field accelerator since the acceleration will
basically end when electrons with the highest rate of energy
losses give up their entire energy while other electrons still
have some energy left. In the case of a constant E− all
electrons lose their energies with the same rate.
The “door step” electron density distribution qðsÞ ¼

1þ θ½ks − π=2�ðks − π=2Þ proposed in [9] and used in the
case (b) largely solves this problem, ensuring an extended
range of the constant E− along the bunch length. Therefore
the attainable R and max jEþj are not much different from
maximum theoretical values as seen in Figs. 2 and 3.
The next two examples use the multimode Green’s

function and demonstrate that indeed the upper limits for
the transformer ratio and for the accelerating gradient
defined in Sec. II and Sec. III are not exceeded.

(a) (b)

FIG. 1. Electron density distribution and normalized wake
field. See text for explanation of the specific plots.

FIG. 2. Transformer ratio. Solid black line is given by Eq. (15).
The dot dashed and dashed curves correspond to the cases (a) and
(b) described in the text. As expected, the dashed curve lies only
slightly below the theoretical maximum.

FIG. 3. The normalized maximum accelerating field as a
function of the transformer ratio. The solid black line is given
by Eq. (30). The dot dashed and dashed lines correspond to the
cases (a) and (b) described in the text. As seen in this plot, the
case (b) is practically indistinguishable from the theoretical
maximum.
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In the first multimode example we consider a dielectric
lined copper tube with the inner radius a ¼ 1 mm and a
thickness of the dielectric layer Δ ¼ 200 μm with the
dielectric constant ϵ ¼ 3.5 (see Fig. 4). Figure 5 shows
the Green’s function and its spectrum for this case,
calculated using formulas taken from Ref. [17] and
benchmarked with CST [18]. The charge density distribu-
tion for this case was meticulously prepared to yield a
quasiconstant E− using the algorithm described in the
Appendix. This distribution (shown in Fig. 7(c) and
continuously scaled with the changing value of l) was
used to calculate R as a function l=λ and max jEþj as a
function of R. Here λ is the wavelength of the first mode.
The result is shown in Figs. 8 and 9 where we also show the
upper values calculated using Eqs. (15) and (30).
In the second example we consider the dielectric lined

copper tube with the same a ¼ 1 mm, but with the 4 mm
dielectric layer thickness. It allowed us to obtain the
Green’s function with the spectrum where the third mode
is the dominant one as seen in Fig. 6. As in the two cases

mentioned above, the special charge density distribution
was meticulously prepared to yield a quasi-constant
E−. This distribution [shown in Fig. 7(d)] was used to
calculate R and max jEþj using the wavelength of the 3rd
mode. The result is shown in Figs. 8 and 9. A dramatic fall
of max jEþj can be attributed to a quick decoherence of the
radiation fields of the individual electrons with the
increased bunch length.

VI. CONCLUSION

It has been shown that the transformer ratio R and the
maximum energy gain given by the accelerating field
max jEþj in the collinear wake field accelerator should
not be treated independently. In fact, their mutual

FIG. 4. Schematics of the dielectric lined waveguide.

FIG. 5. Green’s function (left panel) and spectrum (right panel)
normalized on the maximum values for the case of a dielectric
lined copper tube with Δ ¼ 200 μm. Here h is the harmonic
number, λ is the wavelength of the harmonic with the maximum
amplitude.

FIG. 6. Green’s function (left panel) and spectrum (right panel)
normalized on the maximum values for the case of a dielectric
lined copper tube with Δ ¼ 4 mm. Here h is the harmonic
number, λ is the wavelength of the harmonic with the maximum
amplitude.

(c) (d)

FIG. 7. Electron density distribution and normalized wakefield.
See text for explanation of the specific plots.

FIG. 8. Transformer ratio. Solid black line is the same as in
Fig. 2. The dot-solid and dot-dashed lines correspond to cases (c)
and (d) in Fig. 7.

FIG. 9. The normalized maximum accelerating field as a
function of the transformer ratio. The solid black line is the
same as in Fig. 2. The dot-solid and dot-dashed lines correspond
to cases (c) and (d) in Fig. 7.
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relationship is tightly constrained to max jEþj ∝ 1=R when
large R values are used for obtaining the efficient energy
transfer from the drive bunch to the witness bunch. It has
been also shown that the best result in obtaining the highest
efficiency for a given energy gain is achieved when the
electron bunch distribution is meticulously shaped (in
concord with a consideration of the specific wake field
producing environment with its specific wake field Green’s
function) to yield a quasiconstant decelerating field
E− along the bunch length. The two results summarized
here are applicable to the collinear wake field accelerators
driven by a single bunch and not applicable to ones that use
more than one drive bunch.
Another important parameter to be considered is the

magnitude of the accelerating field which is strictly defined
by the product of the total bunch charge and the loss factor,
i.e., Qκ∥ (see, e.g., [19,20]). Evidently, these are not free
parameters because the limitations on both are given by
considerations of stability of the drive bunch propagating
the wake field creating environment and gradually decel-
erating (possible tradeoffs are discussed for example
in [21]).
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APPENDIX: OPTIMIZATION OF THE BUNCH
SHAPE TO OBTAIN SPECIFIC E−

Let us consider Eq. (2) for an arbitrary Green’s function

E−ðsÞ ¼
Z

s

0

Gðs − s0Þqðs0Þds0; s ≤ l: ðA1Þ

If E−ðsÞ is known and satisfies the condition E−ð0Þ ¼ 0,
we can calculate q treating (A1) as a Volterra equation as
follows [16]:

qðsÞ ¼ E0
−ðsÞ
2κ∥

þ
Z

s

0

Kðs − s0ÞE0
−ðs0Þ

2κ∥
ds0 ðA2Þ

with a resolvent kernel given by

KðxÞ ¼ L−1
�

1

p ~GðpÞ − 1

�
ðA3Þ

where

~GðpÞ ¼ L½GðxÞ�
2κ∥

: ðA4Þ

Here L and L−1 are the operators of direct and inverse
Laplace transforms, given by

~fðpÞ ¼ L½fðxÞ� ¼
Z

∞

0

e−pxfðxÞdx;

gðxÞ ¼ L−1½~gðpÞ� ¼ 1

2πi

Z
cþi∞

c−i∞
epx ~gðpÞdp: ðA5Þ

Now defining the electron density distribution as

ρðsÞ ¼ qðsÞ
Q

ðA6Þ

and using (A2) and (1) we arrive at

ρðsÞ ¼ E0
−ðsÞ þ

R
s
0 Kðs − s0ÞE0

−ðs0Þds0
E−ðlÞ þ

R
l
0

R
s
0 Kðs − s0ÞE0

−ðs0Þds0ds
: ðA7Þ

For the Green’s function with a finite amount of modes
Eq. (A3) can be evaluated analytically, in which case
substitution of KðxÞ into Eq. (A7) allows one to calculate
ρðsÞ for any desired E−ðsÞ, in particular obtaining the
unique ρðsÞ correspondent to cases with the constant
longitudinal field inside the electron bunch.
Here we demonstrate it for two cases, each having:

E−ðsÞ ¼ E0θðsÞ ðA8Þ

and thus possessing:

ρðsÞ ¼ δðsÞ þ KðsÞ
1þ R

l
0 KðsÞds

ðA9Þ

as follows from (A7), where δðsÞ is the Dirac’s delta
function.
In the first case we consider a single mode Green’s

function GðsÞ ¼ 2κ∥ cosðksÞ. Using (A4) and (A3) we
obtain:

~GðpÞ¼ p
k2þp2

; ~KðpÞ¼ k2

p2
; KðsÞ¼k2s ðA10Þ

and arrive using (A9) at a well known result of a
triangular shaped electron density distribution with the
spike at s ¼ 0, i.e.:

ρðsÞ ¼ δðsÞ þ k2s
1þ 1=2k2l2

: ðA11Þ

In the second case we consider the Green’s function
with two modes and with the first mode dominating the
second, i.e.:

GðsÞ ¼ 2κ∥
cosðk1sÞ þ α cosðk2sÞ

1þ α
; ðA12Þ
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with α < 1. Now obtaining from (A4):

~GðpÞ ¼ 1

1þ α

�
p

k21 þ p2
þ αp
k22 þ p2

�
ðA13Þ

we have for the resolvent kernel:

KðsÞ ¼ ð1þ αÞk21k22
k22 þ αk21

s

þ
αðk22 − k21Þ2 sin

�
s

ffiffiffiffiffiffiffiffiffiffiffi
k2
2
þαk2

1

1þα

q �
ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p ðk22 þ αk21Þ3=2
: ðA14Þ

Substituting (A14) into (A9) and omitting for brevity the
normalization coefficient we arrive at

ρðsÞ ∝ δðsÞ þ ð1þ αÞk21k22
k22 þ αk21

s

þ
αðk22 − k21Þ2 sin

�
s

ffiffiffiffiffiffiffiffiffiffiffi
k2
2
þαk2

1

1þα

q �
ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p ðk22 þ αk21Þ3=2
: ðA15Þ

We note that the third term in (A15) is not necessarily small
even if α is small. Therefore, comparing (A15) to (A11)
leads us to a conclusion that there must always be a unique
electron density distribution matching each specific
Green’s function that allows for maintaining the constant
longitudinal field inside the electron bunch.
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