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We investigate sequential double ionization of helium by intense near-circularly polarized few-cycle laser
pulses using a semiclassical ionization model with two independent electrons. Simulated He2+ ion momentum
distributions are compared to those obtained in recent benchmark experiments [M. S. Schöffler, X. Xie, P.
Wustelt, M. Möller, S. Roither, D. Kartashov, A. M. Sayler, A. Baltuska, G. G. Paulus, and M. Kitzler, Phys.
Rev. A 93, 063421 (2016)]. We study the influence of a number of pulse parameters such as peak intensity,
carrier-envelope phase, pulse duration, and second- and third-order spectral phase on the shape of the ion
momentum distributions. Good agreement is found in the main features of these distributions and of their
dependence on the laser pulse duration, peak intensity, and carrier-envelope phase. Furthermore, we find that
for explaining certain fine-scale features observed in the experiments, it becomes important to consider subtle
timing variations in the two-electron emissions introduced by small values of chirp. This result highlights the
possibility of measuring and controlling multielectron dynamics on the attosecond time scale by fine tuning the
field evolution of intense close-to-single-cycle laser pulses.
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I. INTRODUCTION

Studying the quantum dynamics of multielectron systems
is a fundamental issue. One of the most elementary processes
is the removal of both electrons from a helium atom. Double
ionization of helium by strong laser fields serves as a bench-
mark process for the understanding of light-matter interactions
in complex systems and has been investigated extensively both
theoretically and experimentally over the past few decades [1].

There are two primary processes leading to laser induced
double ionization. The first is nonsequential double ionization,
which can be observed for close-to-linearly polarized laser
fields. In this process, a field-driven recollision of a tunnel
ionizing electron is responsible for the knockout of the second
electron [2–4]. This process can be efficiently controlled by
manipulating the shape of a few-cycle laser field, using,
e.g., the duration or carrier-envelope phase (CEP) of the
pulse [5]. The second process, sequential double ionization
(SDI), becomes dominant as the ellipticity, ε, of the laser
field increases. In this case, the second electron is emitted
via an additional tunnel ionization step. As the removal of
the first electron results in a more tightly bound second
electron, the second ionization requires a higher laser intensity.
For elliptically polarized laser pulses the ion momentum
distribution (IMD) resulting from SDI exhibits a characteristic
four-peak structure [6,7]. This is well understood within
the framework of the semiclassical model of strong-field
ionization [2,8] under the assumption of two independent,
sequential ionization events.

This assumption is questionable, however, if the SDI pro-
cess is squeezed into an extremely short time interval, which
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can be done by using very short pulses. The resulting SDI dy-
namics has been probed in a recent benchmark measurement of
the CEP-dependent IMD from helium produced by SDI in in-
tense close-to-circularly polarized few-cycle pulses [9]. It was
demonstrated that the four-peak structure of the IMD, typically
observed for longer pulses, may turn into a six-peak structure
for few-cycle fields. This behavior has been reproduced by a
purely sequential-ionization model, where the relative timings
of the two-electron emission events are linked only by the in-
terdependence of the field-governed ionization rate [10]. How-
ever, certain differences between measured and simulated re-
sults remained [9], and only chirp-free pulses were considered.

Here we investigate how different laser parameters, such
as different orders of chirp, and the resulting pulse shape
influence the dynamics of SDI and the measured IMD. We
focus on determining the parameter ranges for which the
aforementioned four-peak structure turns into a six-peak
structure. Specifically, we investigate the influence of the
pulse parameters: CEP (φ0), pulse duration (τ0), peak intensity
(I ), and second- (φ(2)) and third-order (φ(3)) spectral phase on
the IMDs.

Chirped pulses are a well-established tool in molecular and
atomic quantum control with femtosecond pulses [11–15].
In contrast, the influence of chirp is rarely considered for
extremely fast processes such as strong-field tunnel ionization
on the attosecond time scale. However, a good understanding
of the influence of chirp and the other aforementioned
parameters is particularly important for evaluating differences
between experiments and theoretical models on SDI in few-
cycle fields [9,16]. One reason for the lack of investigations of
the influence of these parameters is the difficulty in precisely
measuring and controlling them.

Here, our approach is to separately observe the effects
of each parameter in the resulting IMD and underlying
SDI dynamics. The paper is organized as follows. First we
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discuss our model and how it differs from existing theories
(Sec. II, with details of the simulations in the Appendix).
Next, in Sec. III, we demonstrate the validity of our model
by reviewing and extending the quantitative comparison with
recently published data on SDI of helium [9]. Finally, in
Sec. IV, the model is used to explore the effects of the
aforementioned pulse parameters.

II. SEMICLASSICAL MODEL OF SEQUENTIAL
DOUBLE IONIZATION

The SDI model used here and in Ref. [10] is detailed
in the Appendix. In short, we assume a laser pulse with
Gaussian spectrum defined by the parameters: peak intensity,
I ; transform-limited full-width-at-half-maximum (FWHM)
pulse duration of the intensity envelope, τ0; center wavelength,
λ0; carrier-envelope phase, φ0, and second-order, φ(2), and
third-order, φ(3), spectral phase. This defines the field, E(t), and
the corresponding vector potential, A(t). We use the ionization
rate proposed by Tong and Lin [17], which is based on the static
field ionization rate [18] and adjusts this rate with a prefactor
to correct overestimation in the high-intensity overbarrier
ionization regime. This rate is used to solve numerically the
coupled rate equations for the time-dependent population of
the two charge states [19].

A classical Monte Carlo simulation is used to generate an
ensemble of combinations of ionization times, t1 and t2, which
are subsequently used to calculate the asymptotic electron
momenta, p1 = −A(t1) and p2 = −A(t2). The resulting ion
momentum of the doubly charged ion, pion, is given by the sum,
pion = −(p1 + p2). Three-dimensional focal volume intensity
averaging is used to account for the extended laser-target
overlap in the measurement [20].

Our model assumes strictly sequential double-ionization
dynamics. Forces between the electrons as well as between the
electrons and the ion are neglected. However, performing the
Monte Carlo simulation according to the numerical solution
of the coupled rate equations, which includes the exponential
dependence of the tunneling rate on the field strength, accounts
for the fact that the probability for ionizing the second electron
is sensitive to the time-dependent population of the first charge
state. This interdependence is strongly affected by the subcycle
shape of the field and couples the relative timing of the two
ionization events. This becomes more important the shorter
the pulse is, since the time intervals during which the first and
second ionization events take place start to overlap due to the
rapidly increasing intensities of such pulses.

For SDI in an elliptically polarized field, the ab initio
approach would be direct integration of the two-electron
time-dependent Schrödinger equation. However, this approach
is computationally extremely demanding and thus has not been
realized to our knowledge. Moreover, this approach yields only
limited insight into the underlying dynamics.

For these reasons, semiclassical models have been the
preferred approach (see the recent review Ref. [1]). In our
model we neglect several aspects to simplify the theory while
covering the relevant effects. Specifically, we do not include
the time-dependent modulation of the ionization rates induced
by the oscillation of the remaining bound wave function caused
by the removal of the first electron [19,21,22]. Additionally,

we neglect forces between the two electrons and ions as well
as between electrons [23–25]. However, the model reproduces
the main features observed experimentally and yields a great
deal of insight into the underlying dynamics. Note that
recently a fully classical calculation which considers similar
laser parameters [26] yielded comparable results for the ion
momentum distributions corresponding to SDI of argon with
elliptically polarized laser fields (ε = 0.75).

III. COMPARISON BETWEEN SIMULATION
AND MEASUREMENT

Good agreement between the measured [9] and the sim-
ulated SDI distributions (see Fig. 1) is obtained for a pulse
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FIG. 1. Measured and simulated He2+ momentum distributions
(integrated over all values of the CEP) along the pz (a) and px

(b) directions and (c) measured momentum distribution in the
polarization plane, integrated over all values of the CEP, for a pulse
duration τ0 = 4.5 fs and an intensity of I = 1 × 1016 W/cm2 in the
position of the gas target. Here and throughout the manuscript the
measured IMDs were rotated such that the major polarization axis is
parallel to the x axis as it is assumed in the simulations. (e), (g) Same
as panel (c) but for CEP = 0 (e) and CEP = π/2 (g), where results
with a CEP ±5◦ around the nominal value were summed. (d), (f),
(h) Corresponding momentum distributions simulated by the CTMC
method with τ0 = 4.38 fs and an intensity of I = 9.6 × 1015 W/cm2

at the position of the gas target. CEP dependence of the measured
(i) and simulated (j) momentum distributions along pz (with all other
directions integrated over). Note that the arbitrary offset of the CEP
is adapted in the simulation to fit best to the count rate maxima with
small momenta in the experiment.
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duration of τ0 = 4.38 fs (φ(2) = 0, φ(3) = 0, λ0 = 750 nm,
ε = 0.95) in the simulation. This pulse duration is somewhat
shorter than the one measured in the experiment, but is still
within the uncertainty of the measured values (τ0 = 4.5 fs,
φ(2) ≈ 0, φ(3) ≈ 0, λ0 = 750 nm, ε = 0.95).

The peak intensity in the simulation required to reproduce
the measured data was identified by matching the cutoffs of the
IMDs in experiment and simulation based on the relation be-
tween the electron momenta and the laser field vector potential,
p1,2 = −A(t1,2). Varying the peak intensity in the laser focus,
best agreement was found for I0 = 7.4 × 1016 W/cm2. Note
that in the experiment, the laser focal position was outside the
gas jet (for details see the Appendix). Therefore the intensity
on target was considerably lower than in the focus. Using
the notation of Ref. [9], the intensity on target within the
limited spatial extension of the gas target that selects a small
part of the focal volume in the measurement is on average
equivalent to an intensity of I = 9.6 × 1015 W/cm2. This
result is in very good agreement with the experimental value of
I = 1 × 1016 W/cm2, obtained by an independent calibration
with the method described in Ref. [27].

Particularly striking is the agreement for the CEP-integrated
IMD in the polarization plane of the field [see Figs. 1(a)–1(d)].
The main features observed in the measurement, including the
splitting of the four-peak structure into a six-peak structure,
are reproduced by the simulations. Even the CEP-resolved
results, that are compared in Figs. 1(e)–1(h), agree quite
well. However, subtle differences are noticeable as indicated
by the arrows in Figs. 1(g)–1(h). These deviations transfer
into a corresponding feature in the CEP-resolved momentum
distribution along the z axis, pz [compare Fig. 1(i) with
Fig. 1(g) and note the arrows]. In the following, we will
investigate the dependence of these deviations on several
parameters and thus obtain insight into their origin.

IV. INFLUENCE OF THE PULSE PARAMETERS ON
MOMENTUM DISTRIBUTIONS

Now that we have established the validity of the model by
reproducing measured IMDs both integrated over all CEPs and
for certain values of the CEP, we investigate the influence of the
pulse parameters (I , τ0, φ(2), φ(3)) on the simulated momentum
distributions. Specifically, to obtain further insight into the SDI
dynamics in few-cycle laser pulses, we examine how the pulse
parameters influence the main features of the IMD and for
which parameter values the best match between the measured
and simulated data is achieved.

CEP-resolved SDI is particularly sensitive to the pulse
parameters as the first ionization typically occurs at sig-
nificantly, often more than an order of magnitude, lower
field strength. Thus, the precision with which one needs to
know the pulse shape for an accurate modeling is increased
compared to that required if only single ionization is modeled,
in particular, when the initial ionization step occurs early
on the rising edge of the pulse, the shape of which is very
sensitive to the laser parameters. In contrast, the second
ionization step predominantly happens within the smooth
and flat region around the pulse peak. In addition, the
temporal shift of spectral components introduced by chirp of
different orders can strongly affect the ionization dynamics.

These considerations are particularly important in view of the
experimental facts that (i) nonlinear spectral broadening and
subsequent recompression may easily result in a complicated
spectral phase with pre- and postpulses [28] and (ii) in difficult
to precisely characterize complicated pulse structures. The
typical method to generate few-cycle pulses starts with spectral
broadening of the incoming pulses by the ionization-induced
plasma nonlinearity as well as Kerr nonlinearity in a gas-
filled hollow-core fiber [29,30]. After spectral broadening,
the linear and nonlinear chirps introduced by the process are
compensated for by dielectric multilayer mirrors in order to
produce a few-cycle field.

Note, however, that this compensation is typically not
perfect and optimized for minimizing second- and third-order
chirp, which leaves some level of nonlinear chirp. Moreover,
the resulting spectra are typically far from Gaussian and exhibit
strong spectral modulations in intensity [31]. This often results
in pronounced pre- and/or postpulses, which can easily reach
amplitudes of ∼ 10% of the main pulse. Therefore, knowledge
of the spectral phase can be expected to become important for
processes like SDI, which is sensitive to such low-intensity
pulse structures due to the early emission of the first electron.

A. Dependence on pulse duration

Before we discuss the dependence of SDI on fine variations
of the pulse duration in the few-cycle regime, we compare
SDI by few- and multicycle pulses. For multicycle pulses, the
ionization probability of each ionization step is distributed
over many laser cycles and widely spreads in time [see
Fig. 2(c)]. Thus, the number of electrons emitted in the
positive or negative direction is almost identical and the
momentum distributions for both single and double ionization
are symmetric even for fixed CEP [see Fig. 2(e)]. This results
in a symmetric double ionization distribution [see Fig. 2(a)].
Further, as shown in Fig. 2(c), the long and slowly varying
pulse envelope removes any correlation between the phase of
the laser field at the times of the first and second sequential-
ionization steps, i.e., the classical times at which the first and
second electrons are born in the continuum are unrelated.

In contrast, for few-cycle pulses the ionization probabilities
of both ionization steps are squeezed into a single cycle or
even into a single half cycle of the field [see Fig. 2(d)]. As
the circularly polarized field rapidly changes in amplitude
and direction, i.e., during the outwards spiraling of the
electric-field vector, the observed photoelectron momentum
distribution takes the shape of a spiral and becomes asymmetric
[see Fig. 2(f)]. The shorter the pulse, the stronger the
interdependence of the ionization times, t1 and t2, and of
the corresponding momenta, p1 and p2, which leads to an
asymmetric IMD [see Fig. 2(b)]. For the limit of a single
contributing half cycle and a fixed CEP, the first electron
emission would be confined to a very small angular sector
and the range of instants of the second ionization event and
the resulting emission directions are extremely sensitive to the
shape of the instantaneous electric field.

Simulating the pulse duration dependence from the few-
cycle to the multicycle regime in Fig. 3, demonstrates how
the main features of the IMD depend on the pulse duration,
τ0, still assuming φ(2) = 0, φ(3) = 0. For example, as shown
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FIG. 2. Comparison between long and short pulses: Simulated
results for long (30 fs) (left) and short pulse (3.5 fs) (right) with
CEP = [−5◦, 5◦]. (a) and (b) Ion momentum distribution. (c), (d) Ez,
Ex , and envelope of laser field and ionization times for both electrons.
(e), (f) Momentum distributions of the first and the second emitted
electron.

in Fig. 3(a), a cut through the IMD around px = 0 starts
at a four-peak-structure for very short pulses, changes into
a six-peak structure around the pulse duration used in the
experiment (τ0 ≈ 4.5 fs), and changes back to a four-peak
structure for longer pulse. As shown in Fig. 3(b), this behavior
manifests itself in a pulse-length-dependent IMD width, which
we characterize using the variance, μ2 of pz. To further
illustrate the pulse-length dependence, examples of the CEP-
integrated two-dimensional IMDs for selected pulse durations
are shown in Fig. 3(c).

Extracting both electron emission times from the simulation
[see Fig. 3(e)] demonstrates that for durations around 4.38 fs
the ionization probability for the second electron extends over
two laser cycles, causing the six-peak structure in the IMD.
For longer pulses, the second electron emission is distributed
over more cycles and the six-peak structure turns back to a
four-peak structure.

Analyzing the individual electron momenta, pz1 and pz2,
yields the τ0 dependence of the CEP-integrated momentum
coincidence map of the first and second emitted electron [see
Fig. 3(d)]. In these maps, parallel emission of both electrons
into the same hemisphere [outer ring in the IMD in Fig. 3(c)]
is located in the first and third quadrants, while the antiparallel
electron emission case (inner ring) is located in the second
and fourth quadrants. While only a very narrow region of
antiparallel momentum combinations of pz1 and pz2 (second
and fourth quadrants) is possible for 3.5 fs, a splitting for
the antiparallel emission starts to appear around 4 fs and
vanishes for τ0 longer than 5 fs, which coincides with the
observations of the six-peak structure. The structures in the
first and third quadrants corresponding to parallel two electron
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φ(3) = 0). (a) IMD along pz for |px | < 2 a.u. as a function of pulse duration, (b) pulse duration dependence of the variance μ2 of pz, (c) ion
momentum distribution for different pulse durations, (d) coincidence map along pz of the momentum of the first vs the second emitted electron,
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emission are independent of the pulse length [see Fig. 3(d)
in the coincidence maps], which leads to a shape of the outer
ring in the IMD that is independent of the pulse duration [see
Fig. 3(c)]. This result might be a starting point for explaining
measurements of electron coincidence data for the double
ionization of argon by 7-fs pulses [16] without the need to
invoke any electron-electron correlation effects. An additional
observation in Fig. 3 is that t1, and thus p1, is remarkably
insensitive to the pulse duration as this ionization step is fully
saturated, while t2 is more susceptible to changes of τ0 and the
CEP enabling subcycle control of SDI [see Fig. 3(f)].

B. Dependence on peak intensity

As shown in the previous section, the existence of the six-
peak structure requires that the second electron emission is
distributed over more than one optical cycle, while the first
electron emission is saturated within essentially a single half
cycle. If the intensity is fixed, this condition can be met by
adjusting the pulse duration. Alternatively, with a fixed pulse
duration, a similar behavior can be achieved by altering the
intensity, as is shown in Figs. 4(a) and 4(b) in comparison with
Fig. 3(a). These figures display a cut through the IMDs around
px = 0. In the measured IMDs, the transition from four to six
and back to four peaks for increasing I is similar to that seen
for increasing τ0. Like the pulse duration dependence, these
observations for the intensity dependence can be understood
by acknowledging that increasing intensity enables more half
cycles to contribute to the ionization of the second electron.
In contrast to the measured results, in the simulated IMDs the
six-peak structure also survives for very high intensities (see
Fig. 4). The reason for the discrepancy between measured and
simulated IMDs for high intensities remains unclear, when
only chirp-free pulses are considered.

Another observation is that the intensity-dependent vari-
ance, μ2, increases monotonically with I , because the second
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FIG. 5. Chirp (φ(2)) dependence of CEP-integrated He2+ mo-
mentum distributions. (a) Measured width and (b) corresponding
distribution integrated over |px | < 2 a.u. as a function of the second-
order spectral phase. (c) Same as panel (a) and (d) same as panel (b) for
the simulation with τ0 = 4.38 fs (φ(3) = 0). Note the different (φ(2))
scale. (e) Vector potential of a laser pulse with negative and positive
φ(2). (f) Selected ion momentum distributions for equal positive and
negative φ(2).

emitted electron experiences a larger vector potential, since
the second ionization step takes place at higher intensities.

C. Dependence on second-order spectral phase

A more subtle knob to control subcycle emission in SDI is
the second-order chirp, φ(2), of the few-cycle fields. Figure 5
compares the φ(2) dependence of the measured and simulated
IMDs at fixed peak intensity along pz and the corresponding
variance, μ2 of pz. In the measurement φ(2) was varied by
adding glass to the beam path and adjusting the laser-pulse
energy to keep the peak intensity constant [9]. The added glass
leads to increased pulse durations, but leaves the spectrum
unchanged. Because of the increasing φ(2), the laser frequency
becomes time dependent.

The measured IMDs feature a transition between four and
six peaks, which is well reproduced by the simulation [see
Fig. 5(d)]. The transition can be explained using similar
arguments as those used for explaining the pulse duration
dependence. That is, the first ionization step is saturated and
the second step is distributed over an increasing number of
optical cycles as φ(2) is increased and the pulse is stretched.

In the simulation, we also considered negative φ(2). The re-
sulting IMDs and μ2 evolution reveal an interesting effect. For
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negative φ(2) [see Fig. 5(c)], the variance, μ2, is considerably
smaller than for positive φ(2) of the same absolute value. This
goes along with qualitatively different features in the chirp
dependence of the cut through the IMD as well as the IMD
itself [see Fig. 5(d)].

The effect can be explained by recalling that the chirp in-
duces a time-dependent frequency sweep, which translates into
time-dependent electron momenta, because of the mapping of
ionization time into the electron momenta via p = −A. If the
leading edge of the laser pulse is blueshifted (φ(2) < 0), the
first emitted electron experiences a smaller vector potential
and thus acquires smaller electron momenta. In contrast,
the second electron emitted around the center of the pulse,
where the carrier frequency remains unchanged as compared
to unchirped pulses, does not experience such a shift in
momentum. Conversely, for a redshifted (φ(2) > 0) leading
edge, the first electron obtains larger momentum due to the
larger vector potential. This effect of the chirp φ(2) on A is
visualized in Fig. 5(e), which shows A for a chirped pulse with
Gaussian, and thus symmetric, envelope of the electric field,
E(t). Due to the relation, A(t) = − ∫ t

−∞ E(t ′)dt ′, the envelope
for the vector potential is asymmetric. As the ion momentum,
pion, is the sum of both electron momenta, it follows that if
p2 stays more or less the same, while p1 is controlled by
the frequencies present at the leading edge, the distribution
of the resulting pion is wider or narrower for pulses with
positive or negative φ(2) values, respectively, in agreement with
Fig. 5(c).

D. Influence of third-order spectral phase

Variations of φ(2) lead to a time-dependent frequency within
the pulse, but the pulse envelope remains symmetric. This is
no longer the case when introducing third-order dispersion
(TOD), φ(3). A positive TOD produces an envelope that
exhibits a sequence of postpulses with decreasing intensity
in addition to an asymmetric main pulse with a steep falling
edge. Changing the sign of the TOD reverses the temporal
order of this envelope. Despite having only a fraction of the
amplitude of the main pulse, as previously discussed, these
satellite pulses influence the SDI dynamics by changing the
ionization times significantly.

Figure 6(d) shows simulated IMDs for a scan of the
TOD with all the other parameters being kept constant (I =
9.6 × 1015 W/cm2, τ0 = 4.38 fs, φ(2) = 0). Varying TOD in
the range of ±180 fs3 leads to FWHM durations of the main
pulse up to 8 fs. For increasing magnitude of TOD, the six-peak
structure quickly vanishes and only a four-peak structure is
observed. This shows that the measured six-peak structure
cannot be due to prepulses or postpulses.

Similar as for the variations of φ(2), the IMDs for different
signs of the spectral phase, φ(3), are different. This is not
surprising as φ(3) causes an asymmetric field envelope and
thus also an asymmetric vector potential. Analyzing the φ(3)

dependence of the IMDs’ widths in Fig. 6(c) shows that the
maximum of the width is shifted towards negative values. This
might be explained by a steeper slope of the leading edge of
the main pulse’s envelope that occurs for a small amount of
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negative φ(3). It squeezes both ionization events into a slightly
shorter interval.

However, for stronger negative TOD, starting around values
of −50 fs3, the prepulses play a significant role. As Fig. 6(h)
shows for φ(3) = −70 fs3, the first ionization step is separated
between the main pulse and the prepulse, which results in a
bimodal momentum distribution of the first emitted electron
[see Fig. 6(i)]. Interestingly, this splitting of the electron
momentum distribution is not translated into an additional
splitting of the IMD, since only the typical four-peak structure
is observed in the corresponding CEP-integrated IMD [see
Fig. 6(e)]. This can be explained by the fact that pion is the
convolution of the distributions of p1 and p2. As a consequence
of the convolution in the final distribution of pion, the splitting
of p1 is smeared out.

Another interesting effect shown in Figs. 6(e)–6(i) is that
the increased relevance of prepulses for larger negative TOD
coincides with the appearance of additional peaks in the
CEP-resolved IMD. These peaks are very similar to the
CEP-dependent features observed in the measurement, but not
reproduced by the simulations using the Fourier-transform-
limited pulses that we described in Sec. III (see Fig. 1).
Comparing Figs. 1(i) and 6(f) reveals that for φ(3) = −70 fs3 a
similar feature spreads over a wide range of CEPs in the IMD at
pz ≈ 5 a.u. (note the arrows). However, for the CEP-integrated
IMD obtained with negative φ(3), the six peaks merge nearly
completely into a four-peak structure. Thus, for the range
of parameters investigated here, it is not possible to obtain
full agreement between simulation and measurement for both
the CEP-resolved and the CEP-integrated IMDs by varying
single parameters. This indicates that the features observed
in the experiment that are marked by arrows in Fig. 1 are
likely to be caused by very small deviations of the phase
from a perfectly flat spectral dependence, which highlights
the delicate dependence of the IMDs on very fine changes of
the pulse parameters and their interplay. Obtaining insight into
elusive effects caused by electron-electron interaction [9,16]
from measured IMDs thus necessitates superb characterization
of the pulse parameters.

V. SUMMARY

In conclusion, we have compared measured ion momentum
distributions after double ionization of helium by close-to-
circularly polarized few-cycle fields to classical trajectory
Monte Carlo simulations, which assumed a purely sequential-
ionization model. The simulations emphasize that both ion-
ization steps in SDI are linked by the interdependence of
the field-governed ionization rate, i.e., that the probability
for emission of the second electron is sensitive to the first
ionization step.

Using this simple model we have demonstrated remarkably
good agreement with the observations in the measurements [9]
over a very large range of laser-pulse parameters: CEP, pulse
duration τ0, peak intensity I , and second-order φ(2) and
third-order φ(3) spectral phase. The parameter dependence of
the unusual six-peak structure observed in the measured ion
momentum distribution is reproduced in a very specific and
narrow parameter range and it shows that it is very sensitive to
the envelope and specific waveform of the ionizing laser field.

Extracting detailed information about the individual elec-
tron momenta using simulated coincidence maps yielded
detailed insight into the ionization dynamics. Scanning the
pulse duration we showed that the six-peak structure can be
observed when the first ionization step is quickly saturated
and thus localized in time while the second ionization step is
distributed over more than one optical cycle.

Investigating the influence of the laser field’s second- and
third-order spectral phase demonstrated a strong impact on
the ion momentum distribution for both types of chirp. This
finding sets high requirements on the precision of the pulse
characterization when using the described measurements for
testing different models of SDI. Further, our results highlight
opportunities for controlling two-electron emission on a
subcycle time scale using circularly polarized few-cycle fields.
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APPENDIX: MODEL OF SEQUENTIAL STRONG-FIELD
DOUBLE IONIZATION

Our Monte Carlo simulations use a semiclassical
sequential-ionization model [10]. In order to investigate the
influence of the pulse parameters, we introduce a complex
field, expressed by

E(ω) ∝
√

S(ω)e−i 1
2 φ(2)(ω−ω0)2

e−i 1
6 φ(3)(ω−ω0)3

, (A1)

using the common Taylor expansion [32] around the carrier
frequency ω0 of the pulse, where the spectral power density is
defined as

S(ω) ∝ e
− τ2

0
4 ln(2) (ω−ω0)2

, (A2)

φ(2) is the second-order phase coefficient of the laser pulse
known as linear chirp, and the coefficient φ(3) is the third-order
phase corresponding to a cubic spectral phase of the pulse. The
influence of higher orders is neglected here.

The time-dependent laser field, E(t), is obtained taking the
real part of the Fourier transformation of E(ω) and assuming
that both field components along x and z differ by a phase
shift of π/2 only. Thus, for φ(2) = 0 and φ(3) = 0 the laser
field components along x and z are of the following form:

E(t) = f (t)
F0√

1 + ε2

(
cos (ωt + φ0)ex

−ε sin (ωt + φ0)ez

)
, (A3)

where the envelope f (t) of the electric field is described by
the Gaussian

f (t) = exp

[
−2 ln 2

(
t

τ0

)2
]
, (A4)
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TABLE I. Parameters used in the formula for the ionization
rate [17,34].

Atom |IP |(eV) Z l Cnl |m| α

He 24.59 1 0 3.13 0 7
He+ 54.42 2 0 5.66 0 6

that has the Fourier-transform-limited FWHM pulse duration
in intensity τ0. The prefactor, F0, is connected to peak intensity
F0 = √

I in atomic units at the maximum of a Gaussian laser
spot in three dimensions (see Ref. [33]).

To model the ionization dynamics, first the time-dependent
population of the different charge states, i.e., PHe(t), PHe+ (t),
and PHe2+(t), are calculated by solving the set of coupled rate
equations

dPHe

dt
= −	He⇒He+ (t)PHe(t), (A5)

dPHe+

dt
=	He⇒He+(t)PHe(t) − 	He+⇒He2+(t)PHe+(t), (A6)

dPHe2+

dt
=	He+⇒He2+(t)PHe+(t). (A7)

Here, 	(t) denotes the quasistatic ionization rate that has the
form

	(t) = 	TBI(t)	nlm(t), (A8)

	TBI = exp

(
−α

2Z2

κ2

|E(t)|
κ3

)
, (A9)

	nlm = |Cnl|2Q2

(2κ)|m||m|!
(

2κ2

|E(t)|
)2Z/κ−|m|−1

exp

[
− 2κ3

3|E(t)|
]
,

(A10)

Q2 = (2l + 1)(l + |m|)!
2(l − |m|)! , (A11)

where a subscript indicates that parameters for respective
transitions are used. The factor 	nlm coincides with the
ADK (Ammosov-Delone-Krainov) rate [18], while 	TBI is an
empirical correction factor, which is regularly used to account
for the fact that the ADK rate overestimates the ionization rate
at the high field strengths used in the measurement [17,34]. The
quantity κ is related to the ionization potential, κ = √

2|IP |,
and Cnl measures the amplitude of the electron wave function
in the tunnelling region. Here, we follow the notation used
in Ref. [35]. Table I summarizes the parameters used in the
calculations.

To account for the number of electrons that contribute to
the ionization signal, the ionization rate needs to be weighted
by the actual population [19]. In helium, this means for the
first ionization step

	He⇒He+ = 2	TBIHe(t), (A12)

where 	TBIHe(t) is the ionization rate with the parameters given
in Table I. The factor of 2 is dropped for the second ionization
step as there is only one electron left.

From the solution of the rate equations in the laser field one
obtains the time-dependent populations, PHe(t), PHe+(t), and
PHe2+ (t), for a given ellipticity ε, peak field strength F0, pulse
duration τ0, and carrier-envelope phase φ0.

For the ionization times, tHe⇒He+
1 and tHe+⇒He2+

2 , one wants
to create a nonuniform random distribution of times that
both conforms to the rate equations [see Eq. (A7)] and
maintains causality, i.e., ensures that the first electron is
ionized before the second with tHe⇒He+

1 < tHe+⇒He2+
2 . To do

this, we first solve the coupled rate equations to determine
the time-dependent ionization probability, dPHe+/dt , for the
first ionization step. Second, the nonuniform random ensemble
of ionization times, tHe⇒He+

1 , is chosen to adhere to this
ionization probability. Third, for each and every initial ion-
ization time in the ensemble, tHe⇒He+

1 , the rate equations are
solved again, but with the starting conditions PHe(tHe⇒He+

1 ) =
0, PHe+ (tHe⇒He+

1 ) = 1, and PHe2+(tHe⇒He+
1 ) = 0. This yields

PHe2+ (t) from which dPHe2+/dt is calculated. Finally, the
second ionization time, tHe+⇒He2+

2 , is randomly chosen for each
and every initial ionization time following the aforementioned
ionization rate. This procedure ensures that the ensemble of
ionization time pairs adheres to the rate equations and that
tHe⇒He+
1 < tHe+⇒He2+

2 .
The final momentum, pion, of the He2+ ion after double

ionization is calculated as the sum of the momenta of the
emitted electrons pion = −(p1 + p1). Neglecting the initial
velocity after tunneling, any interaction between the two
electrons, as well as the Coulomb influence of the parent ion,
the electron momenta are given by the vector potential at the in-
stant of ionization, pe = −A(t), where A(t) = − ∫ t

−∞ E(t ′)dt ′.
Therefore, the final momentum of the He2+ ion is given by the
sum of the vector potentials at the two ionization times, i.e.,
pion = A(tHe⇒He+

1 ) + A(tHe+⇒He2+
2 ). Finally, the simulations

take into account the three-dimensional distribution of the
laser focal geometry in the experiment [9]. For this the
calculation is repeated for different maximum field strengths.
The contribution at each field strength to the ensemble of
ion momenta is weighted with the corresponding ionization
probability and the relative abundance of this intensity value
in the three-dimensional Gaussian focus in accordance with
the experimental conditions [20].

The simulated results were obtained with parameters
chosen to be the same to the experimental conditions. The
laser ellipticity was ε = 0.95. The center wavelength was
750 nm. For the CEP-independent calculations the CEP is
randomly chosen for each ionization event. For comparison of
the simulations with the experiment the focal geometry was
assumed to be Gaussian with a Rayleigh length of 200 μm.
In the CEP-resolved experiment the gas target thickness was
20 μm at a distance of 150 μm from the laser focal point.
This was taken into account in the simulations. Note that
due to the shift of the target away from the focal position
the effective intensity in the target area is strongly reduced
compared to the focal peak intensity. The CEP averaging due
to the Gouy phase shift across the Rayleigh length of the
laser beam was neglected in the calculation. This is justified
because the gas jet was much shorter than the Rayleigh
length [9].
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