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Modeling magneto-optical trapping of CaF molecules
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Magneto-optical trapping forces for molecules are far weaker than for alkali-metal atoms because the photon
scattering rate is reduced when there are multiple ground states, and because of optical pumping into dark states.
The force is further reduced when the upper state has a much smaller Zeeman splitting than the lower state. We
use a rate model to estimate the strength of the trapping and damping forces in a magneto-optical trap (MOT)
of CaF molecules, using either the A 2�1/2–X 2�+ transition or the B 2�+–X 2�+ transition. We identify a
mechanism of magneto-optical trapping that arises when, in each beam of the MOT, two laser components with
opposite polarizations and different detunings address the same transition. This mechanism produces a strong
trapping force even when the upper state has little or no Zeeman splitting. It is the main mechanism responsible
for the trapping force when the A 2�1/2–X 2�+ transition is used.
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I. INTRODUCTION

There is currently great interest in cooling molecules
to very low temperatures, motivated by a diverse range of
applications [1]. Laser cooling, which has been used to cool
atoms to ultracold temperatures for decades, is difficult to
apply to molecules because it is necessary to address multiple
vibrational branches, each requiring a separate laser. Despite
this difficulty, laser cooling has been demonstrated for the
diatomic radicals SrF [2,3], YO [4], and CaF [5], and most
recently a magneto-optical trap (MOT) of SrF molecules
was demonstrated [6,7]. In all these cases, the laser-cooling
transition was the A 2�1/2–X 2�+ transition. The mechanism
of magneto-optical trapping for these diatomic molecules
has been elucidated in [8], where rate equations are used to
model the interaction of the multilevel molecules with multiple
frequencies of laser light.

For a two-level atom of mass M , wavelength λ, and decay
rate �, the maximum achievable acceleration is h�/(2Mλ).
Using the parameters of the A 2�1/2–X 2�+ transition of CaF,
this is 290 000 ms−2. For the real molecule the acceleration
is greatly reduced. This is partly because the molecule has
multiple levels in the ground state that all need to be driven
with separate laser frequencies, and this reduces the maximum
achievable scattering rate relative to that of a two-level
system [9]. This is compounded by optical pumping into states
that are dark to the polarization of the laser beam that pushes
displaced molecules back to the center. Finally, even in the
absence of these other difficulties, the trapping forces are very
weak when the upper-state g factor, gu, is much smaller than
the lower-state g factor, gl [8]. In the Hund case (a) limit, a
2�1/2 state has a negligibly small g factor and so is unsuitable
for making a MOT. The observed MOT of SrF was attributed to
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the mixing of the A 2�1/2 state with the B 2�+ state, resulting
in a value of gu that is large enough for weak trapping [8].
Magneto-optical trapping of CaF is being pursued, but given
the very small value of gu in the A 2�1/2 state [10] it is unclear
whether the A 2�1/2–X 2�+ transition is suitable for the MOT,
or whether it is better to use the B 2�+–X 2�+ transition.
In this paper we explore this question and we identify a
mechanism of magneto-optical trapping that can give strong
trapping forces irrespective of the upper-state g factor, and that
also sidesteps the problem of optical pumping into dark states.
We focus on CaF, though our conclusions also apply to other
molecules of interest.

II. MODEL

We model magneto-optical trapping of CaF using a rate
equation approach identical to that of [8], except that here
we use the full nonlinear Zeeman shifts discussed below,
rather than assuming linear shifts. We also use the same
notation as in [8]. The angular momenta of the lower and
upper states are written as Fl and Fu, respectively; their
projections onto the z axis are Ml and Mu; and in the linear
Zeeman shift approximation the g factors are gl and gu. Along
each coordinate axis of the MOT, molecules interact with
counterpropagating beams, one pushing towards the center
(the restoring beam) and the other away from the center (the
anti-restoring beam). In a local coordinate system, which is
always aligned to the direction of the magnetic field at the
position of the molecule, the polarization of the restoring beam
is σ± according to whether it excites �MF = ±1 transitions.
Throughout the discussion we take the field gradient in the z

direction, which is along the axis of the magnetic field coils,
to be 20 G/cm. The intensity distribution of the laser beams is
Gaussian with a 1/e2 radius of 12 mm.

A useful way to summarize the trapping force of the
MOT is to calculate the acceleration of a stationary molecule
versus its displacement along the z axis, and the acceleration
of a molecule at the center of the MOT versus its speed
in the z direction. We call these acceleration curves. For
small values of the displacement, z, and speed, vz, we can
write the acceleration as az = −ω2

zz − βvz, where ωz/(2π )
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is the trap frequency and β is the damping coefficient. Their
values provide a simple and convenient way of characterizing
the MOT. To find the capture velocity of the MOT, vc, we
consider molecules entering the MOT in the xy plane and
at 45◦ to the laser beams, and calculate the fastest speed a
molecule can have if it is to be captured. We consider MOTs
using both the (0-0)A 2�1/2–X 2�+ and (0-0)B 2�+–X 2�+
transitions, which we call the “A-state MOT” and “B-state
MOT,” respectively. The lower level is the first rotationally
excited state of X 2�+ (i.e., N = 1), while the upper level
is the lowest energy state of positive parity in either the
A 2�1/2 or B 2�+ states. Electric dipole selection rules for
angular momentum and parity ensure that these states can only
decay back to the N = 1 rotational state of X 2�+, meaning
that these transitions are “rotationally closed.” None of the
A 2�3/2–X 2�+ transitions have this property, which is why
we do not consider this case.

III. HYPERFINE STRUCTURE AND ZEEMAN SPLITTING

As we will see, the best scheme for making a MOT depends
sensitively on the hyperfine structure and Zeeman splitting of
the ground and excited states. Figure 1 shows the relevant
energy levels of the X 2�+, A 2�1/2, and B 2�+ states, and
their Zeeman tuning for magnetic fields up to 20 G, calculated
using the Zeeman parameters measured in [10]. At sufficiently
low fields, the Zeeman shifts are linear, �E = gF μBMF B,
and the values of gF are given in Fig. 1. In the X 2�+(N = 1)
state, spin-rotation and hyperfine interactions lead to the four
components shown in Fig. 1(a), with total angular momenta
F = 1, 0, 1, and 2. In the MOT, all four components need to
be addressed. The field-free intervals between these levels are
calculated using the spin-rotation and hyperfine parameters
given in [11]. The Zeeman tuning is significantly nonlinear for
fields above a few gauss, and there are level crossings above
10 G due to the small energy interval between the upper F = 1
and F = 2 levels.

Figure 1(b) shows the much smaller Zeeman tuning of the
A 2�1/2(J = 1/2) state of positive parity (i.e., the e-parity
component). The hyperfine splitting of this state is unknown.
We have attempted to measure it by laser spectroscopy using
the apparatus described in [10]. The hyperfine splitting of the e-
parity and f -parity components of the A 2�1/2(J = 1/2) level
are, in terms of the Frosch and Foley parameters, 2/3(h1/2 − d)
and 2/3(h1/2 + d), respectively, where h1/2 = a − (b + c)/2
and b = bF − c/3 [12]. Both h1/2 and d should be small
and positive (∼ 10 MHz) given the nature of the A 2�

state. Scans over the P1 + Q12(1), Q1(0), and P12(2) lines
of the (0,0)A 2�1/2–X 2�+ band, which probe the e-parity
and f -parity components of the A 2�1/2(J = 1/2) level,
were recorded at a resolution of 20 MHz full width at half
maximum (FWHM) and revealed no evidence of excited-state
hyperfine splitting. Similarly, the SR21(0) and P2(3) lines of the
(0,0)A 2�3/2–X 2�+ band, which probe the e- and f -parity
components of the A 2�3/2(J = 3/2) level, were recorded and
show no evidence of excited-state hyperfine structure. The
observed and predicted spectra, and associated energy-level
diagrams, are given in the Supplemental Material [13]. These
measurements demonstrate that h1/2, h3/2(= a + (b + c)/2)
and d are all less than 20 MHz, and that the hyperfine interval

FIG. 1. Zeeman tuning of the states involved in magneto-optical
trapping of CaF. (a) The four spin-rotation and hyperfine components
of the X 2�+(v = 0,N = 1) state. (b) The two hyperfine components
of the A 2�1/2(v = 0,J = 1/2) state of positive parity (e parity). (c)
The two hyperfine components of the B 2�+(v = 0,N = 1) state.
The numbers in brackets are the gF factors for each level.

in the A 2�1/2(J = 1/2) state is less than 10 MHz. In our
model, we set this interval to 4.8 MHz, which is the value
determined for the hyperfine splitting of the corresponding
negative-parity level [14].

Figure 1(c) shows the Zeeman tuning of the B 2�+(N = 0)
state. The hyperfine splitting of this state was also previously
unknown, and so we have attempted to measure it. Scans over
the RQ12(1) and P1 + P Q11(1) lines of the (0,0)B 2�+–X 2�+
band were recorded at a resolution of 20 MHz FWHM, and
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they reveal some small splittings and shifts due to excited-state
hyperfine structure. The observed and predicted spectra, and
associated energy-level diagram, are given in the Supplemental
Material [13]. From these data we estimate bF = 20 ± 5 MHz
and c = 50 ± 10 MHz. This gives a 20-MHz hyperfine interval
for the B 2�+(N = 0) state, which is the value we use in
our model. Because of the small hyperfine splitting and rapid
Zeeman tuning, the electron and nuclear spin decouple at low
magnetic fields, and then the states are best characterized by
the MJ and MI quantum numbers.

IV. DUAL-FREQUENCY MOT

We identify a mechanism of magneto-optical trapping
which avoids the problem of weak trapping associated with
dark states and with a small gu, and which is relevant
to the rest of our discussion. Consider the simple system
illustrated in Fig. 2(a), which consists of a single lower level
with Fl = 2, gl = 0.5, an upper level with Fu = 1, gu = 0,
and two oppositely polarized frequency components with
detunings δ1 and δ2. The wavelength, linewidth, and mass
are set equal to our CaF system. The molecule interacts with
counterpropagating laser beams along each of the coordinate
axes, each beam containing these two frequency components.
The size of the laser beams is the same as described above,
and the power per beam and per component is set to
40 mW. We fix δ1 = −�, and vary δ2. Figure 2(b) shows the
trapping frequency as a function of δ2. When δ2 is positive,
meaning that one component is red detuned and the other
is blue detuned, there is a restoring force. When MF is
positive the Zeeman shift brings the transition into resonance
with the red-detuned light, and so we have arranged for
the red-detuned component of the restoring beam to drive
�MF = −1 transitions so that the molecule preferentially
interacts with that restoring beam (the red-detuned component
of the anti-restoring beam drives �MF = +1 transitions).
When MF is negative the transition comes into resonance with
the blue-detuned frequency component, and because it has the
opposite polarization the molecule again preferentially scatters
from the restoring beam. The restoring force is maximized
when δ2 is about 0.7�, but it remains significant even for large
positive detunings. There is no trapping when δ2 is between
−0.3� and −� because then the transitions are preferentially
driven by the anti-restoring beams. However, for more negative

detunings there is once again a restoring force. In this case,
the restoring beam has one component driving �MF = −1
transitions, and another driving �MF = +1 transitions, with
the former closer to resonance. For the anti-restoring beam,
it is the opposite. When MF is positive, only �MF = −1
transitions are driven, and this is far more likely to be driven
by the restoring beam since it is (relatively) much closer to
resonance. When MF is negative, only �MF = +1 transitions
are driven, and this is only a little more likely to be driven by
the anti-restoring beam since the relative difference in detuning
is not so great.

Figure 2(c) shows how the damping coefficient depends on
δ2. Cooling occurs when β is positive. When δ2 is negative
there is always cooling because both frequency components
are red detuned. When δ2 is positive and smaller than � there
is heating because the blue-detuned component is closer to
resonance than the red-detuned one. When δ2 > � there is
cooling again, because the red-detuned component is the one
closer to resonance. Together, these plots show that there is
both cooling and trapping for all values of δ2 apart from values
between 0 and −�. It also demonstrates the complexity that
can arise even in this relatively simple system.

V. THE A 2�1/2–X 2�+ TRANSITION

We turn now to a model of a CaF MOT using the
(0,0)A 2�1/2–X 2�+ transition—the A-state MOT. This tran-
sition has λ = 606 nm and � = 2π × 8.3 MHz [14]. Four
frequency components are used to drive the four hyperfine
components of the transition, and their polarizations in the
restoring beam are chosen as shown in Fig. 3(a), which follows
the recommendations of [8] for our case where gu is negative.
We neglect the small branches to higher-lying vibrational
states.

Figure 3(b) shows how the acceleration of a stationary
molecule depends on position for various values of the power
per beam and per frequency component. Here we have set
the detuning of all components to −�. We expect the MOT
forces to be weak because of the small value of gu, but we see
from the figure that this is not the case. This is because the
MOT forces are complicated by the close spacing of the upper
Fl = 1 and Fl = 2 levels of the X 2�+ state. This frequency
interval is 25 MHz, which is only 3�. With our detuning of −�,
the field-free transition from Fl = 2 is driven (mainly) by two

FIG. 2. (a) Illustration of a model MOT where the lower level has Fl = 2, gl = 0.5, and the upper level has Fu = 1, gu = 0. The transition
is driven by two oppositely polarized frequency components with detunings of δ1 and δ2, indicated by the dashed lines. (b) Trapping frequency
versus δ2. (c) Damping coefficient versus δ2.
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FIG. 3. CaF MOT operating on the A 2�1/2–X 2�+ transition. (a) The four frequency components of the laser have a common detuning,
δ, from Fl to Fu = 1, as shown by the solid arrows. Dotted arrows show allowed transitions to Fu = 0. Values to the left of the arrows give
the relative transition strengths for a fixed polarization, summed over Mu and Ml . These are independent of the choice of polarization. The
polarizations chosen for each component of the restoring beam are indicated as σ±. Acceleration versus (b) displacement and (c) speed, for
four different values of the power in each MOT beam and each frequency component: 5, 15, 40, and 100 mW. The detuning is −�. Acceleration
versus (d) displacement and (e) speed, for four different values of the detuning: −0.25�, −0.5�, −�, and −2�. The power is 40 mW.

oppositely polarized components, one detuned by −� and the
other by 2�. The polarizations of these components are exactly
as in the model system of Fig. 2(a), and Fig. 2(b) tells us that
this configuration produces a trapping force. Near the center
of the MOT it is this transition which is mainly responsible
for the restoring force. Further from the center, there is a
strong additional trapping force coming from the upper Fl = 1
transition. At a field of about 30 G the MF = +1 component of
this transition comes into resonance with the laser component
that is meant to drive Fl = 2, while the MF = −1 component
comes into resonance with the laser component intended for
Fl = 0. Once again, the two laser components are polarized
correctly so that the transitions from MF = +1 and MF = −1
are both driven by the restoring beam. This contribution to
the trapping force pushes the turning point of the acceleration
curve further out from the center of the MOT, generating a
large MOT capture volume. We also see from Fig. 3(b) that
the acceleration continues to increase as the laser power is
increased up to 100 mW.

Figure 3(c) shows how the acceleration of a molecule at
the MOT center depends on its speed, for the same set of laser
powers as before. We see that this damping force peaks when
the speed is near 5 m/s, corresponding to a Doppler shift
that equals the detuning of −�. There is also a secondary
peak where the Doppler shift is −4�, which is again the
result of there being two frequency components spaced by
3�. This acts to broaden out the acceleration curve so that
the damping force remains significant over a larger range of
speeds.

Figures 3(d) and 3(e) show how the acceleration depends
on position and speed for various values of the detuning, with
the power fixed at 40 mW. Bringing the detuning close to
zero maximizes the trapping force in this case, but a negative
detuning is required for there to be a damping force and so there
is a trade-off between cooling and trapping. When the detuning
is −� and the power is 40 mW we find ωz = 2π × 160 Hz,
β = 5600 s−1, and vc = 20 m/s.

We attribute the strong restoring forces shown in Figs. 3(b)
and 3(d) almost entirely to the dual-frequency effect. To verify
this, we make the intervals between the four components
of the transition much larger than �, setting the detuning
to −� and the power per beam and per frequency to 40
mW. Then, we find a very simple dependence of the MOT
forces on gu: over the range 0 � gu � 0.14, the maximum
acceleration is |az,max| = (17 000 m/s2)|gu| and the squared
trapping frequency is ω2

z = (2π × 282 Hz)2|gu|. Note that
the sign of gu dictates only the required sign of the field
gradient. These relationships could also be applied to other
similar molecules, suitably scaled by the ratio of the maximum
scattering rates. For our present case, gu = −0.021, and so
the maximum acceleration is only 357 m/s2 and the trap
frequency is 41 Hz. We find similar results if we set the
intervals between the four components equal to their true
values, and also set the polarization handedness of the laser
components all equal instead of the way they are shown
in Fig. 3(a). These results demonstrate the large increase
in the MOT forces brought about by the dual-frequency
arrangement.
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It is interesting to consider whether the trapping forces
can be increased even further by applying the dual-frequency
method to several of the hyperfine components. Figure 2
shows that when δ1 = −� and δ2 = 2�, the trapping and
damping forces are both strong, so we can aim to arrange this
situation for several of the hyperfine components. Because
the Fl = 2 and upper Fl = 1 components are spaced by 3�

we automatically have this ideal situation for the Fl = 2
state, as discussed above, but this means that we cannot also
have it for the upper Fl = 1 state. The Fl = 0 state has no
Zeeman splitting and no dark states, so there is nothing to
be gained from applying two oppositely polarized frequency
components. This leaves the lower Fl = 1 state. Because this
has a negative g factor, the Zeeman shift of the MF states
are opposite to the way they are drawn in Fig. 2(a), and so
the polarizations of the two frequency components need to
be reversed relative to that figure. These arguments lead us
to add one more frequency to address the lower Fl = 1 level,
detuned by 2� from this level and polarized σ−, giving us the
set of five frequencies and polarizations illustrated in the inset
of Fig. 4. Figure 4(a) gives the acceleration versus position
when the laser power is 40 mW in each beam and frequency
component. The addition of the extra component more than
doubles the maximum acceleration to 12 000 ms−2, and the
trap frequency increases to ωz = 2π × 191 Hz. Figure 4(b)

FIG. 4. Acceleration versus (a) displacement and (b) speed, for a
CaF MOT operating on the A 2�1/2–X 2�+ transition using the set of
detunings and polarizations illustrated in the inset to (a) and discussed
in the text. The power per beam and per frequency is 40 mW, and the
components are detuned by −� apart from the additional component
whose detuning is 2�.

shows the acceleration versus speed for this case. We find
that the additional component has little effect on the damping
coefficient or the maximum damping force, but it does narrow
down significantly the range of velocities where there is
damping. In fact, the force has the wrong sign for speeds
between 8 and 15 m/s because, when in the lower Fl = 1
level, the molecule is Doppler shifted into resonance with the
extra frequency component of the copropagating beam. As a
result, the capture velocity decreases to vc = 14 m/s. These
results suggest that a good strategy may be to first load the
MOT using four frequency components, and then switch on
the fifth to provide tighter confinement.

VI. THE B 2�+–X 2�+ TRANSITION

Next, we model a MOT using the (0-0)B 2�+–X 2�+
transition—the B-state MOT. This transition has λ = 531 nm
and � = 2π × 6.4 MHz. Population that leaks into other
vibrational states of X 2�+ can be rapidly pumped back into
the cooling cycle via the A 2�1/2 state. These repumping
transitions contribute very little to the cooling and trapping
forces of the MOT, and so we neglect them in our model.
Four laser frequency components address the four transitions
from the X 2�+ state, all with a common detuning. Their
polarizations in the restoring beam are indicated in Fig. 5(a),
following the recommendations of [8] for a positive gu. We can
choose whether to excite the transition to Fu = 0 or Fu = 1,
which are spaced by 20 MHz. The transition strengths are given
in Fig. 5(a). We note that Fu = 0 decays to the lower Fl = 1
level 95% of the time. If the laser is tuned close to resonance
with this transition, the combination of the resonance condition
and the stronger transition strength strongly favors excitation
to Fu = 0, and so these two levels can form a nearly closed
transition. Our model shows that this produces a high scattering
rate and strong damping but contributes little to the trapping
force. Therefore, we choose to drive all Fl components to
Fu = 1.

Figure 5(b) shows the acceleration versus position of
stationary molecules for four different values of the power
in each beam and frequency component. The detuning is −�.
The curves have turning points near the position where the
largest Zeeman shifts are equal to this detuning. Further out, the
acceleration crosses zero because the Zeeman shifts become
comparable to the upper-state hyperfine interval and because
of level crossings between the Fl = 1 and 2 levels. The peak
acceleration roughly triples as the power is increased from 5 to
40 mW, but it does not increase much for powers exceeding 40
mW. This differs from the A-state MOT which requires more
power to obtain the highest force. For the same set of powers,
Fig. 5(c) shows the acceleration versus speed for a molecule at
the center of the MOT. The curves are similar to those shown in
Fig. 3(c) for the A-state MOT, except that the range of speeds
that give a damping force is reduced. The light is red detuned
by 6.4 MHz for excitation to Fu = 1, and so it is blue detuned
by 13.6 MHz for excitation to Fu = 0. When the speed is 7 m/s
the Doppler shift is 13 MHz, bringing the copropagating light
into resonance with the transitions to Fu = 0, and thus making
the net force positive at this speed. This will limit the capture
velocity of the MOT.

053401-5



M. R. TARBUTT AND T. C. STEIMLE PHYSICAL REVIEW A 92, 053401 (2015)

FIG. 5. CaF MOT operating on the B 2�+–X 2�+ transition. (a) The four frequency components of the laser have a common detuning, δ,
from Fl to Fu = 1, as shown by the solid arrows. Dotted arrows show allowed transitions to Fu = 0. Values to the left of the arrows give the
relative transition strengths for a fixed polarization, summed over Mu and Ml . These are independent of the laser polarization. The polarizations
chosen for each component of the restoring beam are indicated as σ±. (b) Acceleration versus displacement and (c) acceleration versus speed,
for four different values of the power in each MOT beam and each frequency component: 5, 15, 40, and 100 mW. The detuning is −�. (d)
Acceleration versus displacement and (e) acceleration versus speed, for four different values of the detuning: −0.5�, −�, −1.5�, and −2�.
The power is 40 mW.

Figure 5(d) shows acceleration versus position for various
detunings, δ, with the power per beam and frequency compo-
nent set to 40 mW. As |δ| increases, the turning point of the
acceleration curve shifts to larger displacements, because this
turning point occurs roughly where the Zeeman shift matches
the detuning. The peak restoring force is greatest when the
detuning is approximately −�. A smaller value of |δ| reduces
this peak force, just as it does in a simple one-dimensional
theory of the MOT [15]. A larger value of |δ| also reduces
the peak restoring force, which differs from the simple MOT
theory, probably because of the different Zeeman tunings of
the states involved. Figure 5(e) shows the acceleration versus
speed for the same set of detunings. We note that a larger
detuning shifts the point where the acceleration crosses zero
to higher speeds. When the detuning is −� and the power
is 40 mW we find ωz = 2π × 254 Hz, β = 4600 s−1 and
vc = 10 m/s. Increasing the detuning to −1.5� gives a smaller
trap frequency and damping constant, ωz = 2π × 166 Hz,
β = 1600 s−1, but the capture velocity increases slightly, to
11 m/s, due to the increased range of speeds where there is
damping.

When we increase the X 2�+ hyperfine splittings by a factor
of 10 from their true values, keeping the laser detunings the
same as before, the acceleration curves do not change much.
This shows that the dual-frequency effect discussed in Sec. IV
does not play a major role in this MOT. As for the A-state
MOT, it is worth trying to engineer a stronger trapping force
by using the dual-frequency effect. Our modeling suggests that
a good way to do this is to add one extra frequency component

with σ+ polarization, detuned by 2� from the upper Fl = 1
level. Figure 6 shows the acceleration versus position and
speed for this arrangement. The detunings and polarizations
are illustrated in the inset. With 40 mW in each frequency
component, the addition of this extra component increases the
maximum trapping force by about 50 %, and the trap frequency
increases to ωz = 2π × 278 Hz. The damping coefficient and
maximum damping force are almost unchanged. However, the
damping force now has the wrong sign for all speeds between
5.7 and 15 m/s, and this positive force is larger than before.
This is due to the Doppler shift bringing the extra frequency
component of the copropagating beam into resonance, in
addition to the transitions to Fu = 0 being Doppler-shifted
into resonance as explained above. Consequently, the capture
velocity decreases to vc = 8 m/s.

VII. SUMMARY

Let us now summarize our findings. We find similar
trapping forces in the A-state MOT and the B-state MOT.
For the B-state MOT, when the detuning is −� and the power
is 40 mW, the maximum acceleration of a stationary molecule
is 4800 m/s2, the trapping frequency is ωz = 2π × 254 Hz,
the damping coefficient is β = 4600 s−1, and the capture
velocity is vc = 10 m/s. For the A-state MOT, with the
same parameters, the maximum acceleration of a stationary
molecule is 5800 m/s2, ωz = 2π × 160 Hz, β = 5600 s−1,
and vc = 20 m/s. For the A-state MOT the forces act over a
wider range of displacements and velocities, which is why it
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FIG. 6. Acceleration versus (a) displacement and (b) speed, for a
CaF MOT operating on the B 2�+–X 2�+ transition using the set of
detunings and polarizations illustrated in the inset to (b) and discussed
in the text. The power per beam and per frequency is 40 mW, and the
components are detuned by −� apart from the additional component
whose detuning is 2�.

has a higher capture velocity. Throughout, we have assumed
that vibrational repump transitions do not share the same upper
state as the main MOT transition, in which case their influence

on the MOT forces is small. When a repump transition does
share the same upper state as the MOT transition, we find that
the force is reduced to about 70 % of the values found here.

We have identified a mechanism of magneto-optical trap-
ping that arises when two laser components with opposite
polarizations and different detunings address the same transi-
tion. The forces produced are strong even when the upper state
has little or no Zeeman shift, and also when there are dark
states among the lower levels. In the B-state MOT it is the
large value of gu that contributes most to the trapping force,
with the dual-frequency effects playing only a minor role. By
contrast, the trapping force in the A-state MOT comes almost
entirely from these dual-frequency effects. These effects also
play a large role in the SrF MOT that has recently been
demonstrated [6,7]. If we turn these effects off in our model of
the SrF MOT (by artificially increasing the hyperfine intervals)
the maximum acceleration is reduced by a factor of 6, the
turning point of the acceleration curve is a factor of 2 closer to
the center, and the trapping frequency is reduced by a factor
of 2. The dual-frequency effect can be utilized to produce
stronger trapping forces using a carefully designed set of
laser frequencies. For CaF, adding a single extra frequency
component increases the restoring force by 100 % for the
A-state MOT and by 50 % for the B-state MOT. However,
the extra frequency has the effect of reducing the range of
velocities where the damping force is strong, and this reduces
the MOT capture velocity. The extra frequency component
could be added to tighten the confinement once the MOT has
already been loaded.
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