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Fast computation of spherical phase-space functions of quantum many-body states
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Quantum devices are preparing increasingly more complex entangled quantum states. How can one effectively
study these states in light of their increasing dimensions? Phase spaces such as Wigner functions provide a
suitable framework. We focus on spherical phase spaces for finite-dimensional quantum states of single qudits or
permutationally symmetric states of multiple qubits. We present methods to efficiently compute the correspond-
ing spherical phase-space functions which are at least an order of magnitude faster than traditional methods.
Quantum many-body states in much larger dimensions can now be effectively studied by experimentalists and
theorists using spherical phase-space techniques.
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I. INTRODUCTION

Current (and near-term) quantum devices are expected to
prepare increasingly more complex entangled quantum states
[1–4]. How can one effectively illustrate and analyze these
states in light of their increasing dimensions? Phase spaces
[5–13] such as Wigner functions have been widely used to
meet this challenge. We will focus in this work on repre-
senting (finite-dimensional) quantum states of single qudits
or permutationally symmetric states of multiple qubits using
spherical phase spaces [14,15].

Permutationally symmetric states include, e.g.,
Greenberger-Horne-Zeilinger (GHZ) and squeezed states and
they have immediate applications in quantum metrology for
optimally estimating, e.g., magnetic-field strengths [16–19].
Phase spaces are a useful tool for visualizing experimentally
generated quantum many-body states of atomic ensembles
[1,2,20,21], Bose-Einstein condensates [22–30], trapped ions
[31–33], and light polarization [34–36]. On the theoretical
side, phase spaces provide the necessary intuition as they
naturally reduce to classical phase spaces in the limit of
a vanishing Planck constant [37–42]. Such phase-space
techniques, as well as related quantization methods [43–45],
also play a vital role in harmonic analysis and in the theory of
pseudodifferential operators [12,46–49].

In this work, we consider spherical phase spaces of finite-
dimensional quantum states and we develop an approach to
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efficiently compute these phase-space representations. For up
to which dimensions can spherical phase spaces be practi-
cally utilized? Our approach has a significant advantage in
this regard as it allows for much larger dimensions to be
addressed in a reasonable time frame. Therefore, spherical
phase-space descriptions of quantum many-body states are
now feasible for dimensions which were beyond the reach of
prior approaches. In summary, our results will enable prac-
titioners and experimentalist, but also theorists, to visualize
and study complex quantum states in considerably larger
dimensions.

This is accomplished by applying an efficiently com-
putable Fourier series expansion and a fast Fourier transform
(FFT) [50]. In particular, Fig. 1(a) compares the runtime of
our method C (as detailed in Sec. V) to the traditional methods
A and B (see Sec. III) and, indeed, our method C is at least an
order of magnitude faster. Moreover, Fig. 1(b) highlights that
the root-mean-square error of certain test cases is comparable
to machine precision for the considered dimensions and this
suggests that our approach is numerically stable. We provide
implementations in various programming environments (see
Sec. V D and [59]), including C [60], MATLAB [61], MATHE-
MATICA [62], and PYTHON [63].

Our work has the following structure. We first discuss
our motivation and highlight applications in Sec. II. Prior
computational approaches to determine spherical phase-space
representations of finite-dimensional quantum systems are
considered in Sec. III. In order to set the stage, we shortly
recall the parity-operator description of spherical phase spaces
which we have developed in [14]. Section V constitutes the
main part of our paper where we develop our approach to
efficiently compute spherical phase-space representations up
to arbitrarily fine resolutions. We continue with a discussion
of our results and further applications in Sec. VI. We sum-
marize in Sec VII. Important details are explained in the
Appendixes.
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FIG. 1. (a) Runtimes of earlier methods A and B relative to our method C for computing phase-space functions of quantum states with an
increasing dimension d = 2J + 1 are at least an order of magnitude slower. Methods A and B both employ tensor-operator decompositions
(Sec. III). Method A relies on MATHEMATICA’s built-in method to compute Clebsch-Gordan coefficients and method B uses an efficient recursive
algorithm [51–54]. Our method C (Sec. V) combines spherical sampling techniques [55,56], explicit descriptions of rotation operators [57,58],
Fourier series expansions, and fast Fourier transforms. The runtimes depend only on d and not the quantum state. (b) Root mean square (rms)
errors for certain quantum states relative to their analytically known formula. (We computed Wigner functions of tensor operators of high rank
j > 1, whose functional form we also know analytically as spherical harmonics; these decompose into a large number of nontrivial Fourier
components.) Method C shows a high numerical precision comparable to machine precision.

II. MOTIVATION AND APPLICATIONS

Various quantum-technology efforts (such as quantum
computing or metrology) aim at creating large entangled
multiqubit states. Here we focus in particular on the impor-
tant class of states that are symmetric under permutations
of qubits. These states include important families such as
GHZ or squeezed states which are central in, e.g., quantum
metrology [16] or entanglement verification [2,3]. They are
also typically illustrated and analyzed in their phase-space
representation (see, e.g., [3,16]) which can be naturally plotted
on the surface of a sphere. This reflects the inherent symme-
tries and reduced degrees of freedom as compared to general
multiqubit states. Before starting the technical discussion in
Sec. III, we will now present the motivation for our topic and
highlight applications.

We first recall that permutationally symmetric states with
N = 2J qubits can be mapped to states of a single spin
J (or qudit with d = 2J + 1), where J denotes a positive
integer or half-integer [14,15,64–68]. Permutation symme-
try appears in various applications including probe states
in quantum metrology for optimal sensing, e.g., magnetic
fields [16–19]. Permutationally symmetric qubit states can
be efficiently reconstructed and are used for entanglement
verification [2,3,16,66–68]. We will illustrate a few practically
relevant, high-dimensional examples for which traditional
methods (see Sec. III) take an impractically large amount of
time in order to determine the desired phase-space function.
Further discussions and applications are deferred to Sec. VI.

The first example considers and highlights the GHZ state
(|0〉⊗N + |1〉⊗N )/

√
2 as the superposition of the all-zero and

all-one state for N qubits which can be interpreted as the
spin-up and spin-down state of a single qudit. Their high
degree of entanglement supports the ultimate quantum pre-
cision in metrology, which is known as the Heisenberg limit
[16]. Greenberger-Horne-Zeilinger states have been success-
fully created in numerous experiments with, e.g., trapped ions
[33], superconducting qubits [3], and Rydberg atoms [2] for
up to 20 qubits. Although phase-space functions of GHZ
states can be analytically approximated for large dimensions
[14,64], we are interested in computing them exactly within
numerical precision and without relying on approximations.
Figure 2(a) shows Wigner functions of GHZ states for an

increasing number of qubits with N ∈ {8, 16, 32, 64}. Already
the case N = 32 is currently beyond the experimental state of
the art [2,3], but near-term quantum hardware is expected to
deliver GHZ states of larger dimensions via, e.g., linear-depth
quantum circuits [4].

We also consider so-called symmetric Dicke states [65],
which are defined [15,66] as a superposition of all permu-
tations of computational basis states with a fixed number of
zeros and ones in a multiqubit system. In particular,

|Nn〉 := 1√
p

p∑
k=1

Pk| 1, 1, . . . , 1︸ ︷︷ ︸
n

, 0, . . . , 0︸ ︷︷ ︸
N−n

〉, (1)

where the sum runs over all p = (N
n

)
distinct permutations Pk

of the N qubits. These states are isomorphic to the single-qudit
states |Jm〉 by mapping N to J/2 and m to (N/2 − n). We
plot the Dicke state |Jm〉 with d = 2J + 1 = 129 and m = 0
in Fig. 2(b). This corresponds to a highly entangled quantum
state of 128 indistinguishable qubits where 64 qubits are in
the |0〉 state and 64 qubits are in the |1〉 state [refer to Eq. (1)].
One observes an axial symmetry (i.e., invariance under global
Z rotations) and strong entanglement results in heavily oscil-
lating Wigner functions in Fig. 2(b).

Finally, squeezed states |ξ 〉 := exp[−iξI2
x ]|0〉⊗N are ob-

tained from the spin-up state of a single qudit or, equivalently,
the all-zero state of N qubits under the influence of a squeez-
ing interaction Hamiltonian I2

x . The corresponding evolution
time ξ is known as the squeezing angle [69] and Ix is the
x component of the total angular momentum operator, i.e.,
proportional to the sum of all Pauli σx operators that act on
different qubits. These states have been created in various
experiments including Bose-Einstein condensates [22–30,70]
for up to thousands of atoms. In such experiments, these
finite-dimensional squeezed states correspond to the internal
degrees of freedom (which we treat as an effective qu-
dit) of fundamentally indistinguishable atoms. We plot their
Wigner functions for the case of d = N + 1 = 500 and an
increasing squeezing angle ξ in Fig. 2(c). For such large
dimensions squeezed states with small squeezing angles can
be approximated well using the techniques described in
[14,64]. In particular, the spin-up state |0〉⊗N for ξ = 0 in
Fig. 2(c) is a Gaussian-like function because the sphere can be

062421-2



FAST COMPUTATION OF SPHERICAL PHASE-SPACE … PHYSICAL REVIEW A 102, 062421 (2020)

N

t

N

t

N

t

N

t

N

t

d d d d d

FIG. 2. Applications highlighted by numerically computed Wigner functions of single-qudit states with d = 2J + 1 which are equivalent
to permutation-symmetric states of N = d − 1 qubits: (a) GHZ states for N ∈ {8, 16, 32, 64} and (b) Dicke state |Jm〉 for N = 128 and m = 0.
The runtime (without three-dimensional graphics and rasterization) using method D (Sec. V) on a laptop in MATHEMATICA is dominated by the
FFT on a 1024 × 1024 grid. (c) Similarly, Wigner functions of squeezed states |ξ〉 := exp[−iξI2

x ]|0〉⊗N with varying squeezing angle ξ and
fixed d = N + 1 = 500 in a plane for a small spherical subset (runtime approximately equal to 1 min): Gaussian for ξ = 0 (leftmost panel)
and squeezed Gaussians for ξ < 0.05. Larger ξ � 0.05 lead to nontrivial and rapidly oscillating shapes which are nicely recovered, while
analytical approximations fail in this regime. Red (dark gray) and green (light gray) represent positive and negative values, respectively. The
brightness indicates the absolute value of the function relative to its global maximum η.

approximated locally as a plane. For small squeezing angles,
these states can be analytically approximated using star prod-
ucts [64,71]. Their phase-space representations are squeezed
Gaussian functions which are very similar to the ones known
in quantum optics [5,69]. This is illustrated in Fig. 2(c), where
the aforementioned approximations apply to the cases ξ = 0,
0.003 125, and 0.0125. For larger squeezing angles, Wigner
functions will however deviate strongly from simple squeezed
Gaussian states and nontrivial, heavily oscillating contribu-
tions become dominant as is shown in Fig. 2(c) for ξ = 0.05
and 0.2. This justifies our numerical approach to exactly de-
termine phase-space functions for large spinlike systems (and
permutationally symmetric multiqubit states) where analytical
approximations usually fail. In summary, our methods enable
subtle predictions [as for ξ = 0.05 and 0.2 in Fig. 2(c)] on
the structure of experimentally relevant quantum states which
would not be apparent from the density matrix. Hence our
work helps to effectively illustrate and analyze experimental
findings and guide future experimental directions.

III. TRADITIONAL METHODS TO COMPUTE
SPHERICAL PHASE-SPACE FUNCTIONS

We now discuss traditional methods to compute phase-
space functions of qudit states with d = 2J + 1 and consider
the full class of s-parametrized phase spaces with −1 � s �

1. This includes Wigner functions (s = 0) [72], Husimi Q
functions (s = −1) [73], and Glauber P functions (s = 1).
Spherical phase spaces are parametrized by two Euler angles
(θ, φ) with 0 � θ � π and 0 � φ < 2π . Building on the pio-
neering work by Agarwal [72,73], s-parametrized phase-space
functions [14]

Fρ (θ, φ, s) = 1

R

2J∑
j=0

j∑
m=− j

(γ j )
−sc jmY jm(θ, φ) (2)

can be expanded into spherical harmonics Y jm(θ, φ) [74].
The constant γ j := R

√
4π (2J )![(2J + j + 1)!(2J − j)!]−1/2

and the spherical radius R := √
J/2π are used in Eq. (2). The

expansion coefficients c jm := Tr[ρT †
jm] are computed from

the density matrix ρ and the tensor-operator components T jm

[75–78]. The matrix elements

[T jm]m1m2 =
√

(2 j + 1)/(2J + 1)CJm1
Jm2, jm (3a)

= (−1)J−m2C jm
Jm1,J,−m2

(3b)

are determined by Clebsch-Gordan coefficients CJm1
Jm2, jm, where

m1, m2 ∈ {J, . . . ,−J} [79–83].
Equation (2) describes the standard approach for nu-

merically computing spherical phase-space functions. In
the first step, it relies on efficient approaches to calcu-
late Clebsch-Gordan coefficients. The calculation of the
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FIG. 3. Runtimes for computing phase-space functions with methods A–D (Secs. III and V) for dimensions d = 2J + 1 � 500, while ig-
noring asymptotically negligible contributions from spherical-harmonic transformations (for methods A and B) or FFTs (for methods C and D).
Methods A–C show a similar asymptotic behavior O(d4), but our method C is at least an order of magnitude faster (using C code), which allows
for much larger dimensions. Building on method C, method D is even faster and empirically shows a lower asymptotic time complexity O(d3)
but relies on precomputations and additional disk storage (Table I). The runtimes depend only on d and not the quantum state. (All data points
were obtained on a desktop computer with an Intel® Xeon® W-2133 processor at 3.60 GHz using a single thread.)

expansion coefficients c jm is however computationally ex-
pensive for large dimensions d = 2J + 1 � 1. In particular,
one needs to determine O(d2) distinct tensor-operator com-
ponents T jm and their matrix entries. Appendix A clarifies
that O(d3) Clebsch-Gordan coefficients have to be calculated,
which dominates the runtime for computing all of the O(d2)
expansion coefficients c jm in Eq. (2).

Two different approaches to calculate Clebsch-Gordan co-
efficients result in two different methods (methods A and B)
to compute the coefficients c jm. Method A uses the built-in
MATHEMATICA [62] function that performs arbitrary-precision
integer arithmetic. In method B, the runtime can be signif-
icantly reduced by numerically computing Clebsch-Gordan
coefficients using a FORTRAN [84] implementation [54] of a
recursive algorithm [51–53]. Methods A and B are compared
in Fig. 3. For method A (B), all tensor operators for certain
dimensions d � 300 (d � 500) have been determined and we
estimate a complexity of O(d4) in this range.

After the expansion coefficients c jm have been obtained,
the phase-space function Fρ (θ, φ, s) is spherically sampled
in the second step by applying a fast spherical-harmonic
transform which might rely on equiangular samples or Gauss-
Legendre grids. The second step requires a practically and
asymptotically negligible time of O(d3) when compared to
the first step. Spherical-harmonic transforms are widely used
in various scientific contexts and efficient implementations are
available [55,85–89].

IV. PARITY-OPERATOR DESCRIPTION OF SPHERICAL
PHASE SPACES

We recall the parity-operator description of spherical phase
spaces developed in [14] in order to develop faster methods
to compute spherical phase-space functions in Sec. V. We
keep the notation introduced in Sec. III and specify the ro-
tation operator as R(θ, φ) := eiφJz eiθJy , where Jz and Jy are
components of the angular momentum operator [90]. Building
on [73,80,81,91,92], the s-parametrized phase-space functions
are defined in [14] as expectation values of rotated parity

operators Ms by

Fρ (θ, φ, s) := Tr[ρR(θ, φ)MsR†(θ, φ)]. (4)

This extends work [93–97] on rotated parity operators to all
s-parametrized phase spaces. The parity operator

Ms := 1

R

2J∑
j=0

√
2 j + 1

4π
(γ j )

−sT j0 (5)

TABLE I. Disk storage, RAM, and computing times for (a)
method C and (b) method D (Result 1 and Fig. 3) with empirical
complexities O(dk ); matrices K
 are computed on the fly (C) or have
been precomputed (D). In method C we store the parity operator
and the eigenvalues of Jy for convenience (see Sec. V D). Estimated
times for d = 1000 are 16 min (method C) and 21 s (method D).

(a) Method C without precomputation

Dimension Disk storage RAM Time
d O(d2) O(d2) O(d4)

10 1.76 kB 8.98 kB 15.4 μs
50 40.8 kB 236 kB 8.18 ms

100 161 kB 953 kB 122 ms
200 643 kB 3.82 MB 1.81 s
500 4.00 MB 23.9 MB 1.07 min

1000 16.0 MB 95.9 MB

(b) Method D with precomputation

Dimension Disk storage RAM Time
d O(d3) O(d2) O(d3)

10 30.4 kB 8.97 kB 2.89 μs
50 3.96 MB 236 kB 720 μs

100 31.8 MB 953 kB 7.75 ms
200 255 MB 3.82 MB 83.4 ms
500 3.99 GB 23.9 MB 1.93 s

1000 31.9 GB 95.9 MB
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is defined by its expansion into diagonal tensor-operator
components T j0 of order zero. The corresponding matrix ele-
ments are given by [T j0]mm′ = δmm′

√
(2 j + 1)/(2J + 1)CJm

Jm, j0

for j ∈ N∪{0} and m, m′ ∈ {−J, . . . , J}. Equation (2)
could be recovered by applying the rotation operators to
the tensor operators in Eq. (5) as R(θ, φ)MsR†(θ, φ) =
1
R

∑2J
j=0

∑ j
m=− j (γ j )−sT †

jmY jm(θ, φ).
For an increasing spin number J , spherical phase spaces

converge to their infinite-dimensional counterparts while rota-
tions transform into translations along the tangent of a sphere
[14,15,64,98]. While we focus here on single qudits (and per-
mutationally symmetric quantum states of multiple qubits),
generalizations of the parity-operator approach to arbitrary
coupled quantum states are also available [95,96,99–101].

V. EFFICIENT COMPUTATION OF SPHERICAL
PHASE-SPACE FUNCTIONS

We develop now our main results on efficiently comput-
ing spherical phase-space functions. Section V A presents an
approach using parity operators (see Sec. IV), an explicit
form for rotation operators, and a spherical sampling strategy.
By itself, this does not lead to an effective approach, but it
provides the necessary ingredients to specify spherical phase-
space functions as a finite Fourier series in Sec. V B, which
includes our efficient algorithm for computing the correspond-
ing Fourier coefficients directly from the density matrix. A
fast Fourier transform is then applied as detailed in Sec. V C to
recover an equiangular spherical sampling of the phase-space
function. Finally, we discuss implementations of our efficient
algorithms in Sec. V D.

A. Approach via parity operators, matrix entries of rotations,
and spherical sampling

Equation (4) can be directly applied to calculate phase-
space functions as expectation values of rotated parity
operators. The parity operators are determined by Eq. (5) and
the matrix entries of the rotation operator [R(θ, φ)]m1m2 =
DJ

m1m2
(θ, φ) [82] are analytically given as Wigner-D functions

(which are widely available in software environments such as
MATHEMATICA). We also use the results of [57,58] to compute
the matrix entries of the rotation operator using fast Fourier
transforms (see Appendix B). The phase-space function is
then computed as the trace of the matrix product of the op-
erators in (4).

One additional part in this approach is the equiangular
spherical sampling scheme of [55,56]. As phase-space func-
tions are band limited (0 � j � 2J) with regard to their
spherical-harmonic decompositions, we can apply spherical
sampling schemes with a discretized grid of spherical angles
(θk, φ
). One can uniquely represent a phase-space function
by sampling on an equiangular grid

(θk = πk/n, φ
 = 2π
/n) for k, 
 ∈ {0, . . . , n − 1}, (6)

with n2 � (4J + 2)2 = (2d )2 rotation angles [55,56]. One
then evaluates Eq. (4) at all angles in Eq. (6) to obtain an
equiangular spherical sampling of the phase-space function.
However, this approach requires matrix multiplications for
each of the O(d2) spherical angles. This leads to inefficien-

cies and an overall runtime of O(dm), where 4.2 � m � 5,
depending on the efficiency of the matrix-multiplication algo-
rithm (m = 5 corresponds to a naive implementation).1 More
effective methods are presented in Sec. V B. The presented
approach can be combined with the algorithm of [55,56] to
recover the spherical-harmonic expansion coefficients c jm in
Eq. (2).

B. Efficient algorithms for the Fourier coefficients

We now expand on the approach in Sec. V A by exploiting
the structure of the rotated parity operators and by analytically
evaluating the matrix products in Eq. (4). This facilitates a
computational scheme for computing the Fourier expansion
of spherical phase-space functions which significantly dif-
fers from the methods in [57,58]. We begin by computing
the Fourier expansion coefficients of the rotation operators
R(θ, φ). Recall that any (unitary) matrix can be written in
terms of its spectral resolution, which also holds for

R(θ, φ) = eiφJz eiθJy =
J∑


,m=−J

ei
θeimφA
Bm. (7)

As detailed in Appendix B, A
 and Bm are projection operators
that project onto the eigenvectors of the spin operators Jy

and Jz, respectively. The dependence on the rotation angles
has been completely absorbed into the Fourier components
ei
θ eimφ .

We can now analytically evaluate the trace of matrix
products in Eq. (4) and we prove in Appendix C that the
phase-space function

Fρ (θ, φ, s) =
2J∑


,m=−2J

ei
θ eimφF
m (8)

can be decomposed into a finite band-limited Fourier series.2

The Fourier expansion coefficients F
m implicitly depend on
the density matrix ρ and the parity operator Ms (as well as s)
and they can be obtained from ρ via a linear transformation.

Result 1. The Fourier expansion coefficients in Eq. (8) of a
spherical phase-space function Fρ (θ, φ, s) of a quantum state
ρ of dimension d = 2J + 1 are given by

F
m =
min(J,J−m)∑

λ=max(−J,−J−m)

ρλ,λ+m[K
]λ,λ+m, (9)

where −2J � 
, m � 2J and ρm1,m2 := 〈Jm1|ρ|Jm2〉 are the
density-matrix entries in the standard qudit basis.

A proof of Result 1 is given in Appendix C. The transfor-
mation matrices K
 ∈ Cd×d implicitly depend on the parity

1We remark that when implementing this approach, one should
choose a minimal resolution of N = 2d . After performing the com-
putation, one can refine the resolution by Fourier transforming the
result, then zero filling it, and finally applying an inverse Fourier
transform.

2The coefficients F
m in Eq. (8) are computed directly from ρ. This
completely avoids the spherical-harmonic expansion coefficients in
Eq. (2) and any transformation of them into the F
m using, e.g.,
methods from [89].
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operator Ms (and s). They can be efficiently calculated as a
finite sum (see Appendix D)

K
 =
min(J,J−
)∑

ν=max(−J,−J−
)

[M̃s]ν,ν+
|Uν〉〈Uν+
|. (10)

Here M̃s denotes the parity operator Ms transformed into the
eigenbasis of the operator Jy and |Uν〉 are the eigenvectors of
Jy such that Jy|Uν〉 := ν|Uν〉. The matrix entries of M̃s are
therefore given as [M̃s]ab = 〈Ua|Ms|Ub〉.

Result 1 leads to two different algorithms to compute
the Fourier coefficients in Eq. (8) (as detailed in Appendix
D). These algorithms are then combined with a fast Fourier
transform (which has a much shorter runtime) in order to
effectively compute an equiangular spherical sampling of the
spherical phase-space function (as discussed in Sec. V C). The
first algorithm to compute the Fourier coefficients is referred
to as method C: The transformation matrix K
 is computed
for a fixed 
 via Eq. (10) in O(d3) time. Then K
 is used
to compute the Fourier coefficients F
m for a fixed 
 via (9)
in O(d2) time (which is less than the previous step). This
is repeated for every 
 ∈ {−J, . . . , J}. Computing F
m takes
overall O(d4) time and O(d2) memory.

The runtime of a C implementation of method C is com-
pared in Fig. 3 to the traditional methods A and B from
Sec. III. We empirically observe an asymptotic scaling of
O(d4) for all three methods and d � 500, which is visible
as near-parallel lines in the log-log plot of Fig. 3. However,
method C is evidently much faster. Figure 1(a) shows the
relative runtimes of methods A and B compared to method C,
highlighting that method C is at least an order of magnitude
faster. Consequently, method C can be used for much larger
dimensions.

The second algorithm to compute the Fourier coefficients
in Eq. (8) is referred to as method D: The matrices K
 are
precomputed for every 
 ∈ {−J, . . . , J} via Eq. (10) and then
stored on a disk for later use. This requires O(d3) disk storage
and O(d4) precomputation time. The stored matrices K
 are
used to sum Eq. (9) in only O(d3) time. This results in a signif-
icantly faster implementation (see Fig. 3), which also suggests
a better asymptotic scaling (with a smaller slope in Fig. 3).
The disk storage and RAM requirements for methods C and
D are detailed in Table I while assuming double precision.
Method D is preferable (at least) for dimensions d � 500 as it
significantly reduces the runtime with a reasonable amount of
disk storage. For larger dimensions, one has to balance speed
with storage requirements.

C. Spherical sampling of the phase-space function via a fast
Fourier transform

We now utilize the Fourier series from Sec. V B to obtain
an equiangular spherical sampling of a phase-space func-
tion by applying a fast Fourier transform. We start with the
(4J + 1) × (4J + 1) Fourier coefficients F
m from Eq. (8) and
Result 1 and recall that the spherical phase-space functions are
band limited with frequency components between −2J and
2J . The fast Fourier transform has in this case an asymptoti-
cally negligible O(d2 log2 d ) time complexity and results in a
grid with (4J + 1) × (4J + 1) spherical samples of the phase-

space function. However, this is only the coarsest grid possible
for a complete reconstruction [refer to Eq. (6)] and finer girds
can correct for nonuniformities and lead to smoother spherical
representations.

In order to obtain a finer grid, it is preferable to add
zero padding to the Fourier coefficients, which results in
an n × 2n coefficient array with additional zeros where n �
4J + 2. Many FFT implementations are optimized for n being
a power of 2. After applying the FFT, one essentially ob-
tains two copies of the phase-space function as θ varies over
0 � θ < 2π in the result (while the phase-space function is
only defined for 0 � θ < π ). However, by straightforwardly
discarding the redundant half, one recovers the desired n × n
sampling of the phase-space function.

Note that this equiangular sampling is compatible with
(equiangular) spherical-harmonic transforms (see Sec. 6 and,
e.g., [55,56,85]) that could be used to compute the coefficients
c jm in Eq. (2). We also remark that performing fast Fourier
transforms is usually preferable to fast spherical transforms
(which are used in methods A and B). This is particularly
relevant when one aims at sampling phase-space functions
for a fixed dimension d to an arbitrarily high resolution n.
The two-dimensional FFT takes O(n2 log2 n) time. Practical
spherical-harmonic transforms have, however, a time com-
plexity between O(n5/2 log n) and O(n3) depending on the
implementation [55,85–89] and asymptotically faster imple-
mentations might introduce numerical errors and only become
superior for very fine resolutions [86].

D. Implementations of our algorithms

We have made implementations of our algorithms for com-
puting spherical samplings of phase-space functions freely
available [59]. The algorithm for precomputing the coeffi-
cients K
 in Eq. (10) for a fixed dimension d has been
implemented in C without any external dependencies. For con-
venience, we provide a program (with external dependencies
as LAPACK [102]) to precompute the parity operators [Ms]ξξ

and eigenvectors |Uν〉 (Appendix B 2), even though their com-
putation time and storage requirements are negligible (see
Table I). We currently interface with the precomputed data
for d � 500. Using the precomputed data, implementations of
method D with suitable zero padding (Sec. V C) are available
for C, MATLAB, MATHEMATICA, and PYTHON.3

VI. DISCUSSION

Traditional approaches to efficiently compute spherical
phase-space functions rely heavily on expensive evaluations
of Clebsch-Gordan coefficients and use spherical-harmonic
transformations (see Sec. III). We provide much faster algo-
rithms by going beyond these techniques and by applying
a suitable Fourier expansion and a fast Fourier transform.

3The current implementation of method D has an additional bottle-
neck as it reads all of the disk storage into RAM when computing
a phase-space function. For large dimensions as d � 1000, this can
be avoided without affecting the efficiency of our implementation by
reading the matrices sequentially.
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This leads to the two variants (methods C and D) which
involve different time-memory tradeoffs. Method C calculates
the transformation matrices K
 on the fly and they are then
employed to spherically sample the phase-space function in
O(d4) time. Method D precomputes the transformation ma-
trices K
 and stores them using O(d3) disk space. The stored
transformation matrices enable us to spherically sample the
phase-space functions in O(d3) time. We have implemented
our algorithms in various programming environments such as
C, MATLAB, MATHEMATICA, and PYTHON [59].

We also remark that our C implementation can be fur-
ther optimized, e.g., with regard to memory handling and
loops. The overall runtime of the discussed algorithms could
be reduced by truncating spherical-harmonic or Fourier co-
efficients which could be motivated by prior knowledge or
symmetry considerations. In addition, the disk storage of
method D can be optimized to O(d ) if the summation in
Eq. (8) can be restricted to Fourier coefficients F
m with

, m � t for some suitable constant t . However, this might not
be a good approximation for general quantum states and we
are focusing on computing phase-space function exactly up to
numerical precision.

We finally discuss how our results could be applied to com-
pute analytical derivatives with respect to spherical rotation
angles. Following Sec. V and Result 1, one obtains the Fourier
coefficients F
m and this representation helps us to compute
derivatives analytically by multiplying the coefficients F
m

with i × 
 (or i × m):

∂θFρ (θ, φ, s) =
2J∑


,m=−2J

ei
θ eimφ i
F
m,

∂φFρ (θ, φ, s) =
2J∑


,m=−2J

ei
θ eimφ imF
m.

These derivatives are particularly relevant for the computation
of star products of phase-space functions (see [64]). This can
be extended to analytical gradients

∇[Fρ (θ, φ, s)] = (∂θFρ (θ, φ, s), ∂φFρ (θ, φ, s)),

which enables us to search for local extrema of phase-
space functions (e.g., minima of locally negative regions) via
gradient-descent optimizations.

VII. CONCLUSION

In this work, we have considered spherical phase spaces
of large quantum states and have provided effective compu-
tational methods for them. Our methods allow now for much
larger dimensions than before. Going beyond approaches us-
ing tensor-operator decompositions and spherical-harmonic
transforms, we can directly harness the efficiency of the fast
Fourier transform applied to an efficiently computable Fourier
series expansion. Our C implementation [59] is at least an
order of magnitude faster than prior implementations when
compared for up to dimension 500 (or up to 499 qubits in
permutationally symmetric states). Our data also suggest an
asymptotic speedup by utilizing suitable precomputations.

The presented computational methods for spherical phase
spaces of single-qudit and permutation-symmetric multiqubit

states enable applications to many-body physics, quantum
metrology, and entanglement validation. We have illustrated
many-body examples in Sec. II, some of which are pur-
sued in current quantum hardware. Our results will enable
both theoreticians and experimentalists to more effectively
work with phase-space representations in order to study high-
dimensional quantum effects. This will help to guide future
experimental advancements in generating complex quantum
states of high fidelities [1–4].
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APPENDIX A: COMPUTING TENSOR-OPERATOR
DECOMPOSITIONS

One can obtain phase-space functions via the tensor-
operator decomposition in Eq. (2). This requires the evalua-
tion of O(d2) operations as c jm = Tr[ρT †

jm]. Tensor operators
can be specified in terms of Clebsch-Gordan coefficients via
Eq. (3), but most of their matrix elements are zero due to
the condition CJm1

Jm2, jm = 0 for m1 − m2 
= m. Even though a
tensor operator is sparse in this representation due to its O(d )
nonzero elements, obtaining all decomposition coefficients
c jm still requires the numerical evaluation of overall O(d3)
Clebsch-Gordan coefficients. This can be seen by expressing
the trace explicitly as

c jm = Tr[ρT †
jm] =

J∑
m1=−J

[ρ]m1,m1+m[T jm]m1+m,m1 ,

where we have used the condition [T jm]m1m2 = 0 if m1 − m2 
=
m. It is clear from the above summation that computing all
the coefficients c jm requires one to evaluate O(d3) Clebsch-
Gordan coefficients for the matrix elements [T jm]m1+m,m1 . The
elements [ρ]m1,m1+m should be directly available in memory
and the overall computation time of this approach is therefore
dominated by evaluating the Clebsch-Gordan coefficients. We
expect that computing a single one of them requires O(dn)
time with n > 0 and based on our numerical computations in
Fig. 3 we speculate that n ≈ 1.

APPENDIX B: FOURIER SERIES REPRESENTATION
OF THE ROTATION OPERATOR

We now establish how the rotation operator in Eq. (4) can
be decomposed into a Fourier series. This step is crucial for
deriving our Result 1, which finally allows us to efficiently
decompose a phase-space function into Fourier components.

Recall that the rotation operator defined in Eq. (4) is
parametrized in terms of Euler angles as R(θ, φ) = eiφJz eiθJy
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via the spin operators Jy and Jz. These spin operators are
defined via their commutation relations [J j,Jk] =
i
∑


 ε jk
J
 for j, k, 
 = x, y, z and ε jk
 is the Levi-Cività
symbol (refer to, e.g., [90,103]). For an N-qubit system these
are proportional to sums of Pauli operators J j = 1

2

∑N
k=1 σ

(k)
j

acting on individual qubits and j ∈ {x, y, z}. These
operators are unitarily equivalent and have the eigenvalues
m ∈ {−J,−J + 1, . . . , J} due to the eigenvalue equations

Jy|Um〉 := m|Um〉, Jz|Jm〉 := m|Jm〉. (B1)

Note that in an N-qubit system 2J = N . Here we denote
eigenvectors of the Jy operator by |Um〉 and recall the
orthogonality condition 〈Um|Un〉 = 〈Jm|Jn〉 = δmn. The spec-
tral resolution of these spin operators is obtained in terms of
the rank-1 projectors |Um〉〈Um| =: Am and |Jm〉〈Jm| =: Bm as

Jy =
J∑

m=−J

mAm, Jz =
J∑

m=−J

mBm. (B2)

It immediately follows that rotation operators decompose into
the sum of rank-1 projectors

eiθJy =
J∑

m=−J

eiθmAm, eiφJz =
J∑

m=−J

eiφmBm. (B3)

Note that the dependence on the rotation angles θ and φ is
now completely absorbed by the Fourier components eiθm and
eiφm. The rank-1 matrices Am and Bm are projections onto the
eigenvectors of the spin operator Jy from Eq. (B2) and we
define their matrix elements as

[Am]m1m2 = 〈Jm1|Am|Jm2〉 (B4)

and trivially [Bm]m1m2 = δm1m2 .
Matrix elements of Am have been used in [57,58] for ef-

ficiently computing Wigner-d matrices via the Fourier series
decomposition

dJ
m1,m2

(θ ) :=〈Jm1|eiθJy |Jm2〉

=
J∑

m=−J

eiθm[Am]m1m2 . (B5)

Note that here [Am]m1m2 appear as Fourier series decomposi-
tion coefficients of the Wigner-d matrix elements. This form
was originally proposed in [57] for efficiently calculating
dJ

m1,m2
(θ ) via fast Fourier transforms as the advantage of this

representation is that the summation in Eq. (B5) is numeri-
cally stable due to the boundedness of the matrix elements
as |[Am]m1m2 | � 1. Instead of computing Wigner-d matrix
elements, our approach in Result 1 relies directly on the
matrices Am.

1. Analytical expression for [Am]m1m2

The explicit form of the Fourier coefficients [Am]m1m2 has
been analytically derived in [57] as

[Am]m1m2 =
b∑

k=a

w
(m1m2 )
k Im(J, 2k + m1 − m2)

with summation bounds a = max (0, m2 − m1) and b =
min (J − m1, J + m2). The explicit forms of the coefficients

appearing in the above summation are

w
(m1m2 )
k = (−1)k+m1−m2

×
√

(J + m1)!(J − m1)!(J + m2)!(J − m2)!

(J − m1 − k)!(J + m2 − k)!(k + m1 − m2)!k!
,

Im(J, λ) = 2−2J
d∑


=c

(−1)
−λ/2

(
2J − λ

J + m − 


)(
λ




)
,

with summation bounds c = max (0,−J + m + λ); here d =
min (λ, J + m) and (· · · )! denotes the factorial function, while(
λ




)
are the binomial coefficients.

2. Numerical computation of the eigenvectors

A simple and efficient way for numerically evaluating the
coefficients [Am]m1m2 in Eq. (B5) was proposed in [58]. This
approach first computes the eigenvectors |Um〉 from Eq. (B1)
by numerically diagonalizing the spin operator Jy. One then
obtains the numerical representation of the eigenvectors |Um〉
that define the rank-1 projector Am = |Um〉〈Um|. Its matrix
elements can then be obtained straightforwardly,

[Am]m1m2 = [Um]m1 [Um]∗m2
, (B6)

as products of vector entries of eigenvectors of Jy from
Eq. (B1); here [· · · ]∗ denotes complex conjugation. The ma-
trix Jy can be diagonalized to numerical precision (it is
tridiagonal and Hermitian), which provides a high-precision
numerical representations of [Am]m1m2 . This has been demon-
strated in [58] using the ZHBEV diagonalization routine of the
software package LAPACK [102]. We use this approach in this
work to numerically compute eigenvectors.

APPENDIX C: DERIVATION OF RESULT 1

Substituting the expansion of rotation operators from
Eq. (B3) into our definition of phase spaces in Eq. (4) and
using that the rank-1 projectors Am and Bm are self-adjoint,
we obtain

Fρ (θ, φ, s) = Tr[ρeiφJz eiθJy Mse
−iθJy e−iφJz ] (C1)

=
J∑

μ,ν,κ,λ=−J

ei(κ−λ)φei(μ−ν)θ

× Tr[ρBκAμMsAνBλ]. (C2)

This is a Fourier series decomposition of the phase-space
functions. It is our aim now to express its Fourier coefficients
explicitly. In particular, one can rearrange the terms in the
trace and obtain

Tr[ρBκAμMsAνBλ] = Tr[BλρBκAμMsAν],

where the first term in the trace is simply a projection
of the density matrix onto a single matrix element in the
z basis as BλρBκ = |Jλ〉〈Jκ|ρλκ . Here matrix elements of
the density operator are defined as ρλκ := 〈Jλ|ρ|Jκ〉, as-
suming the standard z basis. Now the Fourier components
Tr[ρBκAμMsAνBλ] = ρλκTr[|Jλ〉〈Jκ|AμMsAν] in Eq. (C2)
can be simplified into the form ρλκ〈Jκ|AμMsAν |Jλ〉, which
is a product of single matrix elements in the standard z basis
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as

Tr[ρBκAμMsAνBλ] = ρλκ [AμMsAν]κλ.

Equation (C2) finally reads

Fρ (θ, φ, s) =
J∑

μ,ν,κ,λ=−J

ei(κ−λ)φei(μ−ν)θρλκ [AμMsAν]κλ.

We now explicitly express this phase-space function as a
Fourier series and define its expansion coefficients as F
m via

Fρ (θ, φ, s) =
2J∑


,m=−2J

eimφei
θ F
m.

The expansion coefficients are given by a finite sum using the
new indices μ → ν + 
 and κ → λ + m; it follows that

F
m =
J∑

ν, λ = −J
−J � (ν + 
), (λ + m) � J

ρλ,λ+m[Aν+
MsAν]λ+m,λ.

We slightly simplify this equation by applying the transpose
of the matrix product [Aν+
MsAν]λ+m,λ = [AνMsAν+
]λ,λ+m,
which results in our final expression

F
m =
J∑

λ = −J
−J � (λ + m) � J

ρλ,λ+m[K
]λ,λ+m.

Here we have introduced the set of matrices K
 which simply
multiply the density matrix elementwise and we define their
explicit form as a summation over the matrix products

K
 :=
J∑

ν = −J
−J � (ν + 
) � J

AνMsAν+
. (C3)

Note that the Fourier coefficients F
m depend both on the den-
sity operator ρ and on the parity operator Ms, and implicitly
on the eigenvectors of Jy. We have introduced the matrices
K
, which completely determine the dependence on the parity
operator and on the eigenvectors of Jy. These matrices can be
precomputed and stored or computed on the fly. The Fourier
coefficients can then be completely determined via the effi-
cient summation

F
m =
J∑

λ = −J
−J � (λ + m) � J

[ρ ◦ K
]λ,λ+m (C4)

of the elementwise matrix products [ρ ◦ K
].

APPENDIX D: CALCULATING THE TRANSFORMATION
MATRICES Kλ

The coefficient matrices in Eq. (C3) can be calculated effi-
ciently by using the earlier definition |Um〉〈Um| =: Am, which
results in

K
 =
J∑

ν = −J
−J � (ν + 
) � J

|Uν〉〈Uν |Ms|Uν+
〉〈Uν+
|.

We define the basis-transformed parity operator M̃s :=
UMsU † using the unitary operator U whose column vectors
are composed of the eigenvectors |Uν〉 and which diagonalizes
Jy as discussed in Appendix B. The expression for computing
the matrices simplifies to the form

K
 =
J∑

ν = −J
−J � (ν + 
) � J

[M̃s]ν,ν+
|Uν〉〈Uν+
|. (D1)

We evaluate this expression numerically by first computing
eigenvalues and eigenvectors of the y component of the an-
gular momentum operator as discussed in Appendix B 2. This
step requires O(d3) time where d = 2J + 1. We then compute
and basis transform the parity operator to obtain M̃s, which
requires O(d3) time (via a naive matrix multiplication algo-
rithm) and storing the result requires O(d2) space.

We now fix 
 and evaluate Eq. (D1) for this fixed 
. We
compute the matrix K
 element-wise as [K
]ab using the ex-
plicit expression [|Uν〉〈Uν+
|]ab = [U ]νa([U ]ν+
,b])∗, where
the asterisk denotes complex conjugation. Computing such a
matrix K
 in Eq. (D1) requires O(d3) time for a fixed 
. We
therefore conclude that computing every coefficient matrix K


with 
 ∈ {−2J, . . . , 2J} requires O(d4) time.
After computing K
 for a fixed 
, one can proceed accord-

ing to two distinct strategies, which we refer to as methods
C and D in the main text. In the case of method D, we
store the matrix K
 and repeat this procedure for each 
 ∈
{−2J, . . . , 2J}. This requires O(d3) disk storage space. These
precomputed matrices can be used later in Result 1 for com-
puting phase spaces in O(d3) time, which requires only O(d2)
memory, i.e., for ρ, U , and M̃s, and one can read a single
matrix K
 at a time into the RAM. In the case of method C, we
compute K
 for a fixed 
 and use it immediately for evaluating
the summation in Result 1 for a fixed 
. We can then repeat
this procedure for each 
 ∈ {−2J, . . . , 2J}. Therefore, method
C does not require disk storage space for the matrices K
, but
allows for calculating phase spaces via Result 1 in O(d4) time
and similarly using O(d2) memory.
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