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Interactions between Light Waves in a Nonlinear Dielectric*
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The induced nonlinear electric dipole and higher moments in an atomic system, irradiated simultaneously

by two or three light waves, are calculated by quantum-mechanical perturbation theory. Terms quadratic
and cubic in the field amplitudes are included. An important permutation symmetry relation for the non-

linear polarizability is derived and its frequency dependence is discussed. The nonlinear microscopic prop-
erties are related to an effective macroscopic nonlinear polarization, which may be incorporated into Max-
well s equations for an infinite, homogeneous, anisotropic, nonlinear, dielectric medium. Energy and pov er

relationships are derived for the nonlinear dielectric which correspond to the Manley-Rowe relations in the
theory of parametric amplifiers. Explicit solutions are obtained for the coupled amplitude equations, which
describe the interaction between a plane light wave and its second harmonic or the interaction between
three plane electromagnetic waves, which satisfy the energy relationship co3=or1+co&, and the approximate
momentum relationship L3=k1+k2+Ak. Third-harmonic generation and interaction between more waves
is mentioned. Applications of the theory to the dc and microwave Kerr effect, light modulation, harmonic
generation, and parametric conversion are discussed.

I. INTRODUCTION acting on valence electrons, u is the atomic radius, and
5 p

—8 is an average excitation energy of the atom.
In cases where parity considerations prohibit electric
dipole scattering processes, there is an additional factor
of (a/X)'-10 ' in this ra.tio.

Since excellent experimental discrimination between
multiple photon and lower order processes is possible,
nonlinear effects are readily observable for (E&/Et, „&)'

10 "or Ei——3&& 10' V/cm. This corresponds to a light
intensity of 0.25 MW/cm'. Such intensities are available
even in unfocused laser beams. A transient ruby laser

pulse, operated with a Kerr cell shutter, has been
reported" "to have a peak power of 10 MW in a beam
of about 0.5-cm' cross section. Higher densities are
obtainable in focused beams. Much higher peak power
densities than have so far been reported will be
obtainable.

Coherence effects are of paramount importance in the
experiments of Franken' and other investigators" —'"

who have studied the production of light harmonics.
The production of such harmonics may increase as the
square of the number of scattering centers. Even in a
gaseous medium the interest is not so much in the
incoherent scattering of individual molecules, but in the
coherent eGects of an equivalent continuous medium
with the average density. The same distinction arises
in the linear theory of dispersion. The incoherent
Rayleigh scattering gives rise to the blue color of sky,
but the coherent scattering leads to an index of refrac-
tion of the air.

'HE interaction between electromagnetic waves
and atomic matter was carried out to higher

orders of perturbation theory in the early years of
modern quantum mechanics. ' ' The interest in the
absorpton of two or more light quanta and scattering
processes, in which three or more light quanta are
involved, has recently been revived, 4 ' because intense
light Quxes available from laser sources have made
possible the experimental observation of such higher
order processes in the laboratory.

,
'Franken' and co-workers observed the creation of

the second harmonic of light, corresponding to the
elementary processes of the annihilation of two light
quanta and the creation of one new quantum with
twice the energy. Garrett and Kaiser' observed two-

photon absorption.
A crude estimate of the light intensity required for

observation of these e8ects can be obtained as follows.
The intensity of a higher order scattering process will be
smaller than the scattering in the next lower order
process by a factor (Ei/E, t)' )eEG/(Wo —~n)P, if
the scattering is due to electric dipole-type transitions.
E~ is the electric field in the light wave and E,~=3&(10'
V/cm is a measure of the average atomic electric field
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The published theoretical papers4 ' deal adequately
with the incoherent processes, such as multiple photon
absorption. The usual treatment of elementary scatter-
ing processes from an individual molecule leaves the
question of coherence between incident and scattered
photons unsolved. The optical index of refraction is
best derived by a semiclassical method. " After the
expectation value of the induced dipole moment of the
atomic system has been calculated quantum mechani-
cally, one reverts at the earliest opportunity to the
macroscopic polarization and the continuum theory of
Maxwell and Lorentz. ""

In this paper we shall adopt a similar course for the
nonlinear part of the polarization. In Sec. II quantum-
mechanical expressions for the nonlinear, induced
electric-dipole moments are derived to terms quadratic
and cubic in the field strength. They are illustrated with
the example of the anharmonic oscillator. In Sec. III, a
connection between the microscopic nonlinear properties
and the macroscopic field quantities is made. Retarda-
tion and higher order moments are also discussed. In
Sec. IV the nonlinear polarization is incorporated into
Maxwell's equations. Explicit solutions to Maxwell's
equations in the infinite nonlinear, anisotropic dielectric
are given in Secs. V, VI, and VII. They describe the
power transfer between a fundamental wave and its
second harmonic and between three plane electro-
magnetic waves, which satisfy the energy relationship
for the frequencies to& ——to&+cos and approximately
satisfy the momentum relationship for wave vectors,
ks ——k&+k&+&k with ~hk~&&~ks~. The solutions may
be regarded as a generalization of the traveling wave,
parametric amplifier equations. " These follow as a
special case, when the power Row in one of the waves
(the pump) is very much larger than the other two. In
the present paper all three waves are treated on an
equal basis. The extension to the third harmonic and
the interaction between four waves is given in Sec. VII.
Implications of the theory for experimental situations
and devices are brieQy discussed in Sec. VIII.

Multiple photon absorption and harmonic generation
have, of course, been observed previously in the radio-
frequency and microwave range of the electromagnetic
spectrum. There propagation eRects are usually not
important, with the exception of the parametric
traveling wave amplifier. In the optical region, phase
relationships between the waves propagating in the
nonlinear medium play a dominant role. This fact
becomes of particular interest at the boundary of a
nonlinear dielectric. The well-known laws of reQection
and refraction of light in a linear medium can be

"H. A. Kramers, Qnantnrn Mechanics (North-Holland Publish-
ing Company, Amsterdam, 1957), pp. 482-489.

"H. A. Lorentz, The Theory of Electrons (B. G. Teubner,
Leipzig, 1909).' L. Rosenfeld, Theory of 1'.lectrons (North-Holland Publishing
Company, Amsterdam, 1951).' W. H. I.ouisell, Coupled 3fode and Parametric I&'lectronjcg

(J.Wiley ttr Sons, Inc„New York, 1960),

extended to a nonlinear medium. The modified laws of
Snell and Fresnel for light harmonics will be treated in a
separate paper. "

A. Terms in E'

The eRect of the radiation on the system is to induce
changes in the expectation value of its electron current
density. This induced current density is then considered
to be a source of scattered radiation. For the sake of defi-
niteness, the field will be considered to be a superposition
of three harmonic waves whose frequencies satisfy the
the relation tot+tos=cos. The vector potential of this
incident vacuum field is

A=+; r s s tt, I7; cos(k; r—co;t+ch, ), (2.1)

where a; is a unit polarization vector. The perturbation
Hamiltonian is

g2e
x;„,=P ——-A,. pg+ As As,

mc 2mc'
(2.2)

where the sum is over all electrons k. In writing 3C;„~ in
this form we have assumed a Coulomb gauge,

divA= 0, E= —Re[(1/c) (c)A/c)t) j, (2.3)

which implies that p and A commute. Since p is
Hermitian and A is real, 3C;„t is Hermitian. Note,
however, that a particular term in the interaction such
as p a exp(ik r) need not be Hermitian.

The wave functions of the unperturbed system are
denoted by g and have energy eigenvalues W . For
simplicity we assume the p„are products of one-electron
wave functions P„=II„&„(k).If no dc magnetic field is
present (and spin is ignored), the wave functions g can
be assumed real without loss of generality. Denote the
perturbed ground-state wave function by fo. These
wave functions are used to calculate the expectation
value of the induced electron current density. We have

(pvq) «
electrons k

=P foe(k) (eps/rrt e'As/rrtc)fo(k). —(2.4)

nN. Bloembergen and P. S. Pershan, Phys. Rev. (to be
published).

sr O. Klein, Z, Physik 40, 407 (1927).

II. QVANTVM-MECHANICAL CALCULATION OF
NONLINEAR SOURCE TERMS

In this section the semiclassical theory of the inter-
action between radiation and matter, due to Klein, "
will be used to describe the nonlinear interaction of
several monochromatic waves in a stationary radiation
field. Kramers" has discussed in detail how this semi-
classical method conveniently leads to a theory of
coherent scattering and linear dielectric constant. His
method will be extended to higher order in perturbation
theory. This will lead in a natural way to the nonlinear
dielectric properties of the medium.
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The terms in Eq. (2.4), linear in the fields, have been
discussed. in detail by Kramers, who shows how they
lead to the linear dielectric susceptibility of the medium.
In this paper interest centers on the terms quadratic
(and cubic) in the fields A;. In order to obtain all terms
quadratic in the A; the perturbed wave functions must
be calculated to second order in time-dependent
perturbation theory. '

f.(t) =E [~-.+g.")(p A)+g-")(A A)

+g„(2)(p A)$(t e—". (2.5)

The notation makes clear that there are terms both
linear and quadratic in the A; in the first-order expansion
coeKcients.

The terms in Eq. (2.4) quadratic in the A; can be
grouped according to their frequency dependence.
Since the incident field contains three different fre-
quencies, the second-order perturbed wave functions
will display time dependences at nine different fre-
quencies. One may, for example, inquire about the
nonlinear source term at Mi due to the interaction
between fields at M~ and M2, or about the source at 2M~

due to the interaction of the 6eld at M~ with itself, etc.

We will illustrate the significance of Eq. (2.4) by
computing the source term at (02=&ui+~2 due to the
interaction between the waves at Mi and Mg.

Our interest in the nonlinear source term at M3 is
limited to that part which will contribute coherently to
the incident wave at o». We evaluate Eq. (2.4) retaining
only those terms with time dependence exp(&i~at)
and proportional to q~g2.

{pv(era)}«—{pv(era)}«+e' aa+{pv(a&a)}«
—e—~aa (2 6)

Equation (2.6) may be regarded as defining the quanti-
ties {pv}„+.The induced current density Eq. (2.6) has
contributions from the time derivatives of all multipole
moments of the perturbed electron distribution.
However, by suitably retarding this current density,
i.e., by multiplying the term in Eq. (2.6) proportional
to exp(&i&oat) by exp(laika r), and then taking the
expectation value of the resulting expression, the source
term at M3 takes on the form of the time derivative of an

effective dipole moment, Q, (( (cuba).

"'(~)=2 R [V-"'(Ma) ' "3 ( t)

The explicit expression for ((02) exp( —ia&at) is

(for convenience we omit the sum over electrons):

where

5= —mA g

'Lg yg2 8
Ni'((&)a)r& k aa=-(g

~
{pV((a)a)} ~ eXp( —ika ~ r) ~g)(&

'~ra= - —
(& (&&+~2 ~a)r&—'"2 +'~a[i21+p]

4' c A

(( i(k&—ka) rg, ) ., (efik& rg .p), (&i(ka—ka) .r(t ) (&
—iki rg p)

2: (&i(k&—ka) rg ),(eika rg .p)
—+

(2.8)

M jag MZ (&) 2' &+(r) i Mpg M2

and
(a) &' &&+(&)2 Mi M3

(~i(kr—ka} rg ),, ((, ikr r+ —.p), :~ 2 ((i .g ) (&
—ika rp), , (&i(k&+ka) r) 1 (+ . &&, ) (&

ika r—p), , (e i (kr+ka) r)—
-+- -- — +— —(2.9)

~&& 2+(da

721

((&
—ika rp), (&fkr ~ rg .p), , (&&ika rg .p), (e ika rp), ,—(2&

—ik& rg .p), ,
a:

((
—&ka rg . p)+

M jag MZ M&g Mpg M3 M jg Mo

(~
—ika rp), (eika rg .p), (efikr rg . p) (&

ika rp) (e
——ik2 rg .p), , «:(&—ik& rg .p)

Mpg M3 Mjg M& Mpg M3 M jg MI

X((,-ika rO), (&
—ikr r(2 . p) ., 8(&ika rg .p), ar

(&
—ika rp&a), (&ikr rg .p), (&

—ika rg, .p) . 2:

+
M jag My Mg M2 Mj&g M] M jg M9

2
(~

—ika rp), (~ikr r(t .p) (2&
—ik2 rg .p)

&2 2 (e
—ika rp a), , (a&

—iki rg .p) 2:(eilr2 rg . p) .,

+
M&'& g M2 M jg M] Mjrg M2 M jg Ml

(2.10)

Analogous expressions dehne the effective nonlinear
dipole moments at frequencies M& and or&. The correct-
ness of the definitions in Eqs. (2.'/)-(2. 10) may be
checked by writing down the time-independent part of
the third-order perturbed energy (X;„2)«, which is
cubic in the 6eld strengths q. This energy contains, in
principle, contributions from all multipole moments of
the system,

Each term in Eqs. (2.9) and (2.10) contains at least
one matrix element of the form (A p)ki. The complex
exponentials in the expression (2.1) for A may be
expanded in terms of matrix elements of all the multi-

pole moments of the atomic system. If there is a center
of symmetry the wave functions at, will have well-

defined parity. In this case the pure electric-dipole
terms (zeroth order in k) in Q,&(NL will vanish. The
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3C;„c———Q E(t), (2.11)

where '$ is the total electric dipole moment operator of

electric quadrupole (and magnetic dipole) terms, linear
in k, will, however, give a finite result.

The assumption will now be made that the atomic
system lacks an inversion center. In this case the terms
in Q.jj of zeroth order in k will dominate all others
and we may set all factors of exp(&ik r) equal to unity.
In this case a great simplification results, since as was
shown by Goeppert-Mayer, ' the perturbation K;„&may
now be written

the molecule and E(t) is the total (real) local electric
held. Ke again consider the case of three waves with
frequencies related as before and write the electri. c
Geld in the form

E(t) =p. 1,2, E; cos(;tjp;). (2.12)

We also observe that, since A now has only diagonal
matrix elements we can write (pv)„g= (cia/cjt), o and
need only calculate (g~'$ ~g), retaining as before only
terms proportional to E;E; and having time dependence
at ~~, ~2, or A&3. Using the same second-order wave
functions we find for (Q,)„N" the following expression.

(Pa)gg ——cos(Mitjy2 —y2) Pj,; (Qa. .(g;.g E2)(gjg E2)Aj,'jgajg(g; j"E2)(@;O.E2)B;j
jQ...(@jj"E )(Qj, .E2)Cjj ) jcos( tj&2—&1) Q;,j (Q j,(;, "E )('$;, E )A, ,
jV-, ,(~, , E.)(~;, E.)~;; jV...(~, ; E.)(~;, E'.)C„ )
+Cos(M2t j41j$2) Q j,j' ( Pa j'g(Q jj' ' El) ( jg ' E2)A jj'+13aj'g (Q j'j' E2) (Q jg ' El)~j'j

jV.;,(0,', .E)(%. E2)C '); (2»)

where

25 (Mj'g j(02) (MPg jM2)

7

C0 jg GO& GOjg g M3

8"'=,
25 (M;g jM1) (M j g jM&)+, (2.14)

GO jg GO& GO j& g c03

2l'22 (M j,jM1)(co;,—co,)

GOjg My M~& g G)2

Use has been made of the fact that the wave functions
are assumed real.

Note that each Fourier component of (Q NL)«may
be written as a third-order tensor (dimensions 3X9)
operating on an unsymmetrical second-order tensor.
This second-order tensor is the direct product of the
electric 6elds at two diferent frequencies.

$;" (CO1)=COS(M,tjy,—y2)

XZ;,u P'j2(M1=M2 M2)Aj&i„—
PP (CO2) = Cos((02t j$2—$1)

XZg, ap j2(M2=M2 Mi)&2;&u, (2—.1S)

0'"'(») «s(M2t j41jA)
XQ j,2 pC, C(C02~M1 +C02)Eij'Z22.

Comparison of Eqs. (2.13) and (2.14) with Eq. (2.15)
gives explicit quantum-mechanical expressions for the

p;ji, (M). Examination of these explicit formulas gives

the following important set of permutation symmetry

relations,

Pjja (M1=M2 M2) =pijj(M2= M2 Mi)
=p j'2(MR™1+M2) (2.16)

The frequencies may be permuted at will provided the

Cartesian indices i, j, and k are simultaneously per-

muted so that a given frequency is always associated
with the same index. These relations reduce from 81 to
27 the number of constants needed to describe the

microscopic nonlinear polarization due to three waves

in a system with C& symmetry.
Consider now the special case of second harmonic

generation: co~=co2=~~3. Since it is now true that
3 g co]p

and G03 G02= (02 as well as

coijM2 ——M2, more terms must be considered in the
calculation of the second-order wave functions. The
result, however, is simply ta multiply the expression

(2.13) for Q NL by 2. Furthermore, since Q NL was

calculated for a field Ei cos(Mit j&1)jE1cos(Mit jtti)
jE2 Cos(C02t j$2)= 281 Cos(Mit jpi) jE2 COS(M2t j$2))
Ei and E2 in Eq. (2.13) must each be replaced by Ei/2.
Kith the further replacement of co2 by co& and co3 by ~2

in Eq. (2.14) the expression for the nonlinear polari-

zation in the case of second-harmonic generation is

(Pa) gg COS (Mlt j42 Ql) Z j,j {Paj g(g j' j ' Ei) (Q jg E2)A j,j'+ Pag j' (Q j' j' E2) (Q jg '. El)B j,j'
jg„jj('Q; g Ei)('Qjg E2)A';, ;)jcos(2M, tj24,) p, ,' ($.;,(Qj.j"E,)(gj, E,)A';,'

j0-' (%'. Ei)(% ..Ei)(&' '/2)}, (217)
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3. Terms in E'

/
~ I

2A2 (cd,,+M2) (cd;,+cdl)

7

Q)g'g C02 M j/g M j

2" (M jg—+M 1) (M j 3 M 1)

Gl ~'g GDo GOp g COy

(2.18)

%hen the previous calculations are extended to one
higher order in perturbation theory one finds nonlinear
source terms of third order in the electric fields. For
example, an incident wave at co~ interacts with the
system to produce a polarization at 3'~. This is the
process of third-harmonic generation. In general we
deal with an incident field which is a superposition of
four monochromatic waves whose frequencies are all
different and which satisfy the relation Ml+M2+M3 ——M4.

For simplicity the electric dipole approximation is made
again; exp(&8k r) = 1. The quantum-mechanical ex-
pression for the Fourier component of QNL at cd4 which
is proportional to E1E2E3 is the following. For the sake
of brevity we introduce the notation

(Mkg™l)(M j'g+M2+M3) (Mjg™8) (Mkg Ml) (M j'g+M2+M3) (M jg+M3)

etc.

)

COA;g M] COpg M2 Mg 07&'g C03

COS(M4t+$1+ct/2+$3)
NL ~ —X

Vcgk(ekj'Kl)(@j j"E2)(ejg ~3) leuk(ekj'E2)(ej j El)(ejg. E3)
+

(Mkg™4)(Mj'g+M2~M3) (M jg+M8) (Mkg~M4) (M j'g~M1~M3) (M jg~M3)

Vc"(kk' E3)(4'"El)(V . E2) Vc.k('Pkj. E1)%'"E3)(%..E2)

(Mkg+M4) (M/'g+Ml+M2) (M jg~M2) (Mkg+M4) (Mj g+M2~M3) (M jg+M2)

Vcgk(tkj E2)(% /" E3)(%jg El) leuk(tkj'E3)(4'j K2)(@jg Kl)

(Mkg~M4) (M j'g+MI~M3) (M jg+Ml) (Mkg+M4) (M j'g+Ml+M2) (M jg~Ml)

Q ckj (/kg E,)(gj j"E2)(@jg E,) Q,kP(@kg E2)(gj j".E,)(gjg E3)

(Mkg&M1) (Mj'g~M2~M3) (Mjg+M3) (Mkg&M2) (M j'g+Mi+M3) (M jg~M3)

Vckj (ekg E3)(ej j"El)(ejg E2) Vckj ('ekg El)(ej j"E3)(ejg E2)
+

(Mkg~M3) (Mj'g+Ml+M2) (Mjg+M2) (Mkg~M1) (M j'g+M2+M3) (Mjg~M2)

Vckj (%kg E2)(ej j"E3)(%jg Pl) Vckj ('ekg E3)(ej j E2)(ejg El)

(Mkg~M2) (M j'g+Ml+M3) (Mjg~M1) (Mkg~M3) (M j'g~Ml+M2) (M jg~Ml)

Equation (2.19) defines QNL(M4) as

Qc (M4) cos(M4t+$1+ct/2+$8) Qtm, n, g 'Ycm~g(M4 Mi+M2+M, 3)El~raE2nZ8p)

(2.19)

(2.20)

where the frequencies are all different. The y~ „are not zero for the case where the system has an inversion center
and the wave functions have well-de6ned parity. The tensor p& „„has 3X27 components for the case of C& syrn-
metry. The y's for the other three components of polarization. (as a function of three different fields) are obtained
from the p(M4) by the same type of permutations used in the three-wave case.

yc„~g(4= 1+2+3)=y~c„„(1=4—2—3)=y„c„„(2=4—1—3)= y„l „(3=4—1—2). (2.21)

The various special cases in which the four frequencies satisfy additional relations among themselves are most
conveniently treated individually, rather than as special cases of Eq. (3.19). The most important of these is the
case cdi=cd2=cd3= slM4. We define a new incident Geld E=El cos(Mlt+pl)+E2 cos(3Mlt+&2) and calculate the term
in QNL(3Ml) which is proportional to E13 and the term in QNL(M1) which is proportional to El E2. The expressions
are

cos(3Mlt+341) Qcgk(ykp Ei)(yj j"Ei)(yjg. mi) Vckj ('Vkg Ri)(tj j'Ei)(kju Ei)
$3NL(3M1)= — X Q — — +

45' (Mkg+3M1) (MPu&2M1) (Mjg+Ml) (Mkg+M1) (Mj u&2M1) (Mjg+Ml)
(2.22)
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cos (o)tf+ 2)t) t—$s)
NL(o) )— y

A

lgk kj' ' 1 j'j ' 1 jg 2 lgk kj' ' 1 j'j 2 jg 1+
(o)kayo)t)(o)pg+2o)t)(cv)a&3k)y) (Mkg&o)y)(o)pa&2k)t)(o))g&o)t)

)gk kj'' 2 j'j 1 jg' 1 lkj' kg' 1 j'j' 2 jg' 1

(o)kayo)1) (to)'g+ 2o)1) (o))'g &o)1) (o)kayo)1) (o))' g+ 2o)1) (o))'g&o)1)

$kj' kg' 1 j'j 1 jg' 2 Lkj' kg' 2 j'j ' 1 jg'

(~kg —~t)(~)'g —2M~)(~)g —3~~) (~kg+3~k)(~) a 2~—t)(~)a ~~)

9~k)'('4ka E~)(4 ~ "&~)(% . Es) 9~k'(%k. Es)(% '"E~)('4, Ei)+ + — — . (2.23)
(~kg+~~) (~)'a+2~~) (~)a+3~)) (~kg+3~~) (~)'a+2~~) (~)g+~))

C. Nonlinear Ionic Source Terms

The previous treatment has dealt only with $NL due
to electronic motions within atoms or molecules. In
general the electric polarization of a system has ionic
contributions as well, due to the forced vibrations of
charged ions. If the ions vibrate in an anharmonic
potential, they will make a contribution to $NL.

For the case of second harmonic generation the
nonlinear ionic polarization is calculated as follows. A
simplified model of the vibrations of the system is
assumed; a given molecule is treated as a collection of
three independent one-dimensional anharmonic oscil-
lators. In the absence of radiation the Hamiltonian of
the system is:

but it is exactly the result which would be obtained for
this part of Q NL using a purely classical calculation.

This classical calculation is now described briefly and
applied to the generation of third harmonics by an
anharmonic oscillator. The explicit quantum-mechanical
calculation has not been done, but the results are
almost certainly identical with what follows. Consider
the anharmonic oscillator in the x direction described
by the x part of Eq. (2.24). Write the classical
equations of motion of this oscillator in a forcing Geld
E~, cos(tott+Pt). Assume the solution for x can be
written in the form

&= xl cos(o)1/+$1)+&s cos(2o&tf+2$t)

+xs cos (3oatf+ 3$t).
One finds easily that

(2 24)

t)e
(3o)x) =e,xs(&) =E&' cos(3( tt+3&t)~—

~m

In the electric dipole approximation the interaction of
the system with radiation is:

X
2nk (o)l oaog ) (o)o' 4o)P) (o)o' 9o)P)

where
K; )= —P;=.,„,, e,r,E,(/),

ns

(o)P o)o*) (o)oa 9toy )-
(2.26)

R= Et cos(o&tt+)t)t)+Es cos(2tott+ps).

There are two procedures for calculating (|i,NL).

One may use fourth-order perturbation theory involving
matrix elements of X' once, and of BC;„& three times.
Alternatively, one may first use X,' to calculate the
wave functions of the anharmonic oscillators to first
order in the X,."These perturbed wave functions are
then used in Eq. (2.17). In either case the expressions
for the part of Q NL due to Et&t, is

p)aa' ' (o)s=o)t+o)t)Eta cos(2o)1/+2$t)

1 e, ~s E~,s cos(2&ott+2Q&)

2 grs, ) (o)o.s—o)ts)s(o)o.'—4o)t')

This expression was obtained quantum mechanically,

"E.Hutchisson) Phys. Rev. 37, 45 (1931).

However, since for ordinary vibrations the ratio
(2X'/mg) t1/(o)o, '—4o&ts)j is of the order of 10 '—10 ',
if ~& is an optical frequency, only the second term in
Eq. (2.26) is of consequence in producing third-
harmonic polarization.

III. PHYSICAL RELATIONSHIPS BETWEEN
MACROSCOPIC FIELD QUANTITIES

IN NONLINEAR DIELECTRICS

A. Gases

When the optica1 index of refraction is close to unity,
the distinction between the microscopic Geld acting on
an individual molecule and the macroscopic Geld is
negligible. This situation occurs truly only in the case
of gases. The molecules are subjected to an electro-
magnetic field by Eqs. (2.1) and (2.3). The effective
nonlinear polarization in a volume element centered
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where Z is the partition function and l
'.}I+Ij« is

given by Eqs. (2.9) and (2.10).
The nonlinear polarization at co3 will, in general, have

a component parallel to and in phase with the electric
field

Zorag383
E,=Re &i(k3 r~3t+$3) (3.2)

and a component parallel to, but 90' out of phase
with, Ep.

The in-phase component will alter the effective
dielectric constant of the wave at ~3 by an amount
hppNL=PNL(4pp, in phase)qp 'cop 'c. The out-of-phase
component represents a gain or loss of intensity of the
wave at co3. This fact is of foremost practical importance.
It accounts for the generation of light harmonics,
mixing, etc.

The Eqs. (2.9) and (2.10) contain the influence of all

multipole moments of the molecule. Since a gas is an
isotropic medium, the average nonlinear source term
will vanish if only electric dipole terms are retained, i.e., if
exp(ik. r) is put equal to unity in all matrix elements.
Note that LS+8] is real for pure electric dipole terms.
If, however, one of the three matrix elements has electric
quadrupole (or magnetic dipole) character and the
other two retain the electric dipole character, a fourth-
rank tensor relationship exists between P,«N on the
left and three vectors on the right, a~, a~, and a linear
combination of k1, k2, and kp. In this case

l 5+Sj is

pure imaginary.
The components P,qq (pop) at right angles to dp will

create (or attenuate) either waves at ppp with the same

kp, but another polarization, or waves at cop with a
different direction of k3. Furthermore, polarization
components at the difference frequency ~2—co& will

create waves at that frequency with diferent polari-
zations; the new waves interfere with the old ones to
create still more waves, etc. It would seem hardly
justifiable to restrict the problem to just three or four
waves. This can, nevertheless, be done if there is only
one set of waves for which 8k= 0, or at least very much
smaller than for other possible sets. Although initially
several other waves may be created, only the one with
6k= 0 will continue to grow. The phase factor

around the point ro of the gas is obtained by averaging
the effective dipole moment of a molecule, given by
Eqs. (2.7) to (2.10), over all occupied states g with the
appropriate statistical weight and multiplying by the
number of molecules E per unit volume. With the
introduction of t)k=k1+k2 —kp and &&=&1+&2—pp
one obtains for the effective nonlinear polarization
atro,

Zg]$28
PNL(4p 5 & Re p+Z-1 &i(6k ~ rp+64)&i(kprp rrpr+4p)(03' = p

G03C 7S A

XQ LS+Sjppc ~PI"r, (3.1)

exp( —it),k rp) for the other waves will change sign after
they have traveled a certain distance Ar.

At that point, the term PNL(out-of-phase) in Eq.
(2.8) changes sign, and the generation is followed by
attenuation. This process will be analyzed in detail in
the following sections.

Two examples to illustrate these remarks will
describe how such situations may arise even in a
gaseous medium. It will be assumed that only electric
dipole matrix elements are of importance. In that case,
it is necessary to go to fourth order in the electric field
amplitudes qco/c.

Consider first the case that a strong dc electric field
is applied to the gas. One may use the fourth-order
expression for P,APL in Eq. (2.19). Now however, one
of the frequencies, say co&, is zero. One redefines the
frequencies a,nd fields as follows: E&~E«, co2~&&',
4r)p ~ 4r)2, and rd4~ 4pp =Cr)1+4r)2 .I

Assume that all these fields are polarized in the x
direction. Because of the symmetry properties of the
fourth-order tensor in an isotropic medium (averaging
over all orientations of the molecules) Eq. (2.19) leads
to an induced polarization in the x direction. With the
three waves all propagating in the s direction, the
nonlinear polarization becomes

P"L(cop)=cVZ 'Q p jp,e ~ ~'rEpE)E2

XLCOS(kpz —4ppt) COS (LHS+Artr)
—sin(kps —wpt) sin(Aks+AP) j, (3.3)

where the quantity L 7« is real and is given by

P,pkP, k; P„;P„rr( }kP;,
45' I,~', ~

where ( }k, ; is given by Eq. (2.19), in which all
numerators have been replaced by unity and the fre-
quencies have been redefined as above. The frequencies
co& and co2 may be so chosen with respect to the known
energy levels of the molecular species that the linear
optical dispersion matches the phase velocities,

l~kl = lk, —k,—k, l«lk, l.

The phase velocities are not matched for other combina-
tions such as 401—cd2, &p1, 402, or ppp+rd1, o&p, ~1, etc. In this
case, the problem is essentially restricted to the three
linearly polarized waves mentioned above. One may,
for example, take ~~ a,nd co2 to be frequencies just below
the vibrational absorption band of a molecule such as
HCl. The summation in Eq. (3.3) then has to be carried
over the states of an anharmonic oscillator. The dis-
persion associated with the vibrational absorption
may lead to the condition of phase matching k1+k2 ——k p.

Experimentally, the matching can be facilitated by
changing the pressure and admixture of other molecular
species. Although the magnitude of the nonlinear
polarization in a gas is clearly very much smaller than
in a condensed medium, a similar reduction applies to
the linear polarization. One can keep the phase velocities
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matched over a much longer distance in a gas. It may
be argued that the ratio of nonlinear to linear polari-
zation can be made more favorable in a gas than in a
dense medium, because in the latter there will usually
be many atoms or ions which do not contribute much
to the nonlinearity, but are responsible for an appreci-
able fraction of the linear index of refraction.

Consider a point s and initial phases of the waves

QI, Itm, and p3, such that Akz+6&=0. The nonlinear
polarization is then in phase with the electric field.
There will be a nonlinear contribution to the dielectric
constant. Keep the amplitudes EI and R2 of the two
light waves at co~ and ~2 fixed. This gives a fixed ampli-
tude P (Id3) with a time factor in phase with the wave
at Id3 with amplitude E3. If the amplitude of this wave
is changed from 0 to E3, the time-averaged stored
energy is changed by an amount -,'P"L(a») E3 due to
the nonlinearity of the medium. The factor 1/2 comes
from the time average of cos'co3t. The nonlinearity,
therefore, causes a change in the dielectric constant of
the wave at co3 if the waves at co~ and co2 are present.

If lSz+hg=z/2, there is no nonlinear contribution
to the dielectric constant. In this case, the nonlinear
polarization is exactly 90' out of phase with the wave
at co3. It does positive or negative work on the wave.
The work done per unit time by the nonlinear polari-
zation of the material on the wave may be written as

(oII dP"L(o)g)
Wa= — Eg — dt

cycle
=-', (uIIE3PNL(era, out-of-phase). (3.4)

As a consequence, the amplitude of the wave E3 will

change.
If one starts out with two waves co~ and ~2 and

complete matching of the phase velocities, 0 k =0, a wave
at cv3 will start to grow with a phase &3=f2+&I+-,'z..
This phase will persist and the in-phase part of the
nonlinear polarization will remain zero. The growth of
the amplitude for this special case, as well as the general
case of arbitrary initial amplitudes and phases and
nonvanishing Ak will be calculated in Secs. V—VII.

The other example in a gas, to which the same
formalism can readily be applied, is the creation of the
third harmonic wave. Consider a linearly polarized wave
E, cos(kIz ~It). A polarization at the third harmonic
co3——3&v will be created which is given in Eq. (2.26).

The even harmonics are not generated in the absence
of a dc field. Other polarizations are likewise absent.
The hfth harmonic will be assumed to have a poor
phase match. The problem is thus restricted to two in-
teracting electromagnetic waves. Detailed solutions for
the amplitudes and phases will be given in Sec. VII.
Energy relationships similar to the ones discussed
above are readily derived. The free energy of a unit
volume of gas simultaneously subjected to the funda-
mental and the third harmonic linearly polarized
in the same direction has a term proportional to Eg E3.

Phase matching can, in principle, be achieved by
utilizing the resonance dispersion near absorption bands
of the molecules. The anharmonic oscillator will lead
to a very large resonant denominator if the fundamental
is chosen just below the absorption band. The non-
linearity will then be proportional to (a&v'bp (0I)
according to Eq. (2.26).

PL= AnEI. ,
From Eqs. (3.S) and (3.7) it follows that

Ãn A'n 4x
PL F+ PNL

1—-', xSn 1—-', mEn 3
=$(e—1)/4Ir)E+L(e —1)/3jP"

Substitution into Eq. (3.6) yields

(3 7)

D= eR+t (&+2)/3)4~PNL= pR+4~PNLs (3 g)

This equation shows the important result that the
effective nonlinear polarization source term is 3(e+2)
times the true nonlinear polarization which is calculated
from

PSN L=NISEI.,EI.,
=&51 (e,+ 2)/3)[(~2+ 2)/3$EIE2. (3.9)

The difference has its origin in the dipolar energy
between the nonlinear dipole moment at one lattice
site and the linear dipole moment at another site. The
presence of a nonlinear dipole moment at one site
changes the local field and, therefore, the linear dipole
moment at other sites. This in turn changes the dielectric
displacement. The interaction between nonlinear dipole
moments at different sites has been ignored in Eq.
(3.9). This is consistent within the framework of this
paper, in which the nonlinearity is considered as a
small perturbation, It is smaller than the linear polari-
zation by a factor eEIa/(Wo —W ), as explained in the
introduction. The combination of Eqs. (3.8) and (3.9)
leads to a macroscopic nonlinear susceptibility

(~3=~I+~a)

e(I0,)+2 e(I02)+2 e((og)+2=XI1(c03=cdI+c02) (3.10)
3 3 3

3. Isotroyic and Cubic Dense Media

In a dense medium the held acting on an atom or ion

j is the local field. Lorentz has shown that in a Quid, or
in a position of cubic symmetry, one has

EIoo R+ 4&pt E+azpL+ 4~PNL (3 5)

The macroscopic displacement vector D, occurring in
Maxwell's equations, is

0=E+4m PL+4m PN L. (3.6)

The linear polarization can be expressed with the aid of
the linear polarizability n
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This equation can easily be generalized to higher order
relationships between four or more waves. Note that
the macroscopic quantities g follow the same symmetry
rela, tionship (Eq. 2.16) as the microscopic quantities g.
The same arguments about energy stored in the
dielectric and power transferred between the waves,
given in the preceding section for gases, can now be
repeated for the dense dielectric, provided E~L~ is
taken as defined by Eq. (3.8). With this proviso, the
discussion of the examples for gases go through without
any modihcation for dense fluids and cubic crystals with
centers of symmetry.

Cubic crystals with the ZnS structure which lack
an inversion center will have a nonvanishing interaction
between three waves, even if only electric dipole matrix
elements are retained and no external dc electric field is

applied. The third-order tensor x,,~ has nonvanishing
components, if all three indices are different, as in

x,„,. In such crystals, the second harmonic of light will

readily be generated, but it will be dificult to correct
the linear dispersion of the crystal in order to achieve
a ma, tching of the phase velocities of the fundamental
a,nd harmonic waves. Giordmaine" and Maker,
Terhune et al. ,

"have demonstrated how this matching
may be achieved between ordinary and extraordinary
rays in anisotropic crystals. The more complicated
nonlinear relationships in these crystals will be taken
up in the next paragraph. It should be kept. in mind,
however, that the basic physical ideas remain the same.

C. Anisotroyic Crystals

The general case of an arbitrary number of atoms in
the unit cell in a crystal of arbitrary symmetry can be
attacked along the sa,me lines. Instead of one scalar
polarizability and one scalar Lorentz factor equal to
42r/3, one now has many different tensors, which are
discussed in the Appendix. Equations (A11) and (A13)
of the Appendix are reproduced here for future use.

cc (M2™2+Mt)
(M M +M ) ' N (M3) N (M2) + (Ml)) (3.11)

PNL'(M, )= g(M, =MI+M2): EIE2. (3.12)

The macroscopic nonlinear susceptibility (Eq. 3.11)
clearly satisfies the same permutation symmetry
relationships (Eq. 2.16) possessed by the individual
microscopic nonlinear polarizabilities g'. The second-
order tensors N are defined in the Appendix.

In addition, the macroscopic third-order nonlinear
susceptibility tensor has the point symmetry properties
of the crystal lattice as a whole, whereas the individual
nonlinear polarizabilities have the symmetry properties
of individual lattice sites. The procedure can again be
generalized to higher order tensors.

The permutation symmetry relations allow the
definition of a nonlinear pa, rt of the time ctnerctge free
energy density of the dielectric. This quantity can be

de6ned, whereas the instantaneous value of the free
energy has no meaning since in a dispersive medium
the total polarization is not uniquely determined by
the total 6eM at each instant.

F=- U—TS—Ef'
dl&'= —Sd'I"—PdL

(3.13)

+dE, g(M2=M2 —MI): E2KI

+dEI y. (Mi ——M2 —M2): E2K2. (3.14)

Due to the permutation symmetry relations, this
expression is independent of the path of integration. "
It does not matter in which order the three waves are
switched on.

PNL 1F .PNI s(M, )— 1R .PNLs(M )
IRI.PNLs(M ) (3 15

The factor 1/2 comes from the time average. All
quantities represent amplitudes. The nonlinear polari-
zation at the three frequencies may be obtained by
partial differentiation of FN with respect to the
components of E&, K&, and E&, respectively. For the
special case that one has only a linearly polarized
fundamental wave Ej coscvit and a linearly polarized
second harmonic E2 cos2co~t, one may write

pNL 1+g 2p" (3.16)

The nonlinear polarization has amplitudes given by

PN "s(MI) =2xEIE2,
PALS(M ) Xg 2 (3 1&)

A factor two has been restored to obtain amplitudes
from the time-averaged free energy. These relationships
can readily be generalized to quartic and higher order
terms in E.

The energy density of the field caused by the intro-
duction of the nonlinearity of the medium is

VII.I~NL= — E dPNLs(in phase)
2

= —.', g; I 2 2 R,"P, " (in phase)

QPNLs dK
2

3PNL+PNL= 2PNL (3.18)
2' D. Wicicier, AdvaIcced Catczslls (Prentice-Ha11 Inc. , Englewoocl

Cliffs, New Jersey, 1947), p. 213.

The nonlinear part proportional to E&E2E& is given by a
line integral in nine-dimensional space from the origin
to the point K~, K~, E3

1 E1,Eg Eg
F = —— dE2' g(M2=MI+M2): RIE2

2
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E'
cycle

dP;dt dE;
P,"- dt=O. (3.2O)

Cycle

These considerations for the time-averaged free
energy in the presence of three electromagnetic waves
can be extended to magnetic dipole and electric quad-
rupole effects. A crystal without inversion symmetry
may, for example, have a term in the time-averaged
free energy of the form"

=Es ' XEFFH (cok = ror+aF2): H1H2

+Ek gEHH(co2 ——cok—cor): H,H1

+E1 QEHH(ror=cok —co2): HkH2 (3.21)

with permutation symmetry relations of the type,

XE HFHk(ros co1+'co2) XFFFE Hk(rol —roH, &os'), etc. (3.22)

Terms linear in H will not occur, unless the crystal is
ferromagnetic or antiferromagnetic and not invariant
under time reversal.

The assumption of nondegenerate, linearly polarized
modes has been made throughout this paper. The case
of degenerate modes or circularly polarized modes has
not been considered. When circular polarized light
passes through an isotropic material, a sense of time
is built in and a term linear in H becomes important.
SpeciGcally, nonlinear effects of Faraday rotation have
been excluded from our discussion.

In anisotropic crystals with a center of symmetry,
the nonvanishing magnetic-electric dipole terms of
lowest order are quadratic in E and H. This term would,
in general, be small, but might become of importance
for the production of second harmonics or the inter-
action between three waves in the presence of a large
static magnetic field.

In the absence of externally applied dc electric and
magnetic Gelds, crystals with a center of symmetry still

"N. 31oembergen, Proceedings of the Conference on High
Magnetic Fields (Massachusetts Institute of Technology Press,
Cambridge, 1962).

The same relationship holds for a fundamental wave
and the second harmonic. The time-averaged Geld

energy is minus two times the material free energy, if
terms cubic in the Geld amplitudes are considered. For
quartic terms, one has clearly

U" (Er,F2,Fs,Fk) = —3F (Er,P k,L~'k)E4). (3.19)

The out-of-phase components of the nonlinear polari-
zation do not contribute to the free energy, but they
are responsible for work done, as shown by Eq. (3.4).
It should be noted that the 90' out-of-phase com-
ponents, with respect to the E field at the same fre-
quency, of I'NL~ at ~& and co2 have opposite signs from
FNLs(co&, out-of-phase). The net work done by the
nondissipative dielectric on the electromagnetic waves
is zero. So is the total work done by the waves on the
medium.

have a term which is cubic in the 6eld amplitudes.
It is of the mixed dipolar-quadrupolar type, correspond-
ing to a contribution to the time-averaged free energy
F"L= Ir,E3. Q((ok= to,+co2):E„Ek

+k2E2. Q(co2= roe-co, ):EkE1

+kkE1: Q(cok= roe —co2): EsEk. (3.23)

IV. THE COUPLING BETWEEN ELECTRO-
MAGNETIC %'AVES

Maxwell's equations in the lossless, nonlinear
dielectric medium can be written for each frequency
component, as

VXE= —(1/c) (BB/at),

1aD lac E 4n ctPNLs
VXH=+-

c Bt c Bt c Bt

(4 1)

(4.2)

The nonlinear source term has been defined in the
preceding sections. The energy balance may be written
as a balance between the net Aux into a volume element
V bounded by a surface a. and the change in stored
energy of the linear medium plus the work done by the
nonlinear polarization on the linear wave at fre-
quency z3,

EkXHe rtdo.

E, e(cos) Ek+Hk. p(cos). He dV

dPNLS (~ )
Ea dV (43)

dt

All quantities are real in this expression and similar
ones that can be written down at the frequencies co~ and
~2. If the equations at the three frequencies are averaged
over an integral number of cycles and added, the
algebraic sum of the last terms on the right vanishes
according to Eq. (3.20). The usual energy balance in a
lossless dielectric results. On the left, one has the total
power Qow through 0.. It is of more interest to consider
the Poynting vector and energy balance near each
frequency separately.

Consider a wave

Ek ——ReLt4F1, (s)et (kzz—

est�)

]
=ttetoe(s) cosLkss —tost+ps(s)]. (4.4)

In a linear medium, the complex amplitude of a plane
wave is constant. In a nonlinear medium this complex
amplitude will change due to interaction with other
waves at frequencies co& and co2. The wave normal is
taken in the 2' direction, which is quite arbitrary with
respect to the crystallographic axes. In anisotropic
crystals, the polarization vector a3 may make an angle
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Oil
E

FIG. 1.The propagation of light
in an anisotropic crystal. The
phase normal is the s direction.
The energy Rows in the ray
direction s'.

with the s direction. The energy propagates along the
direction 2', in the plane de6ned by 63 and a, normal to
83. The geometrical relationships between macroscopic
field quantities are discussed in detail by Born and
Wolf. In their notation, the angle between g' and s
is denoted by e.

With p, =1, Eq. (4.1) gives a magnetic field perpen-
dicular to E and z with a magnitude

~

H
~

=psksccos ' cosa
Consider the cylinder shown in Fig. 1, bounded by

planes at z and z+hz with 1-cm' cross section. If
Eq. (4.3) is integrated in time over an integral number
of cycles, and spatially integrated over the cylinder,
one obtains

ksc' d(ps')
cos n

=rospsa, s PNLs(cos, out of phase)Az. (4.5)

Substituting Eq. (3.12) for PNLs leads to a diRerential
equation for the amplitude of the wave at &os,

wave, also propagating along s, with another linear
polarization vector as'. It will be assumed that the
phase velocity for this wave is severely mismatched,
hk'&)hk. This wave, as well as waves at other fre-
quencies, are therefore ignored.

Equation (4.6) does not include the eRect of the
in-phase component of PNLs, which changes the phase
tt (z). It is of interest to derive the combined eRect in
a somewhat diGerent manner, starting from the wave
equation. A complex notation will be adopted for Es
and PsNLs, as def'ined by Eq. (4.4). This may safely be
done after the nonlinear operation to obtain the real
P"Ls(ros), with an in-phase and out-of-phase com-
ponent, has been performed. The combination of
Maxwell's Eqs. (4.1) and (4.2) leads to a wave equation
with a nonlinear source term,

1 8'(eE) 4rr it'P»s
~X~XE+-

c' Bt'
(4.7)

The left-hand side put equal to zero is the homogeneous
equation, satisfied in a linear medium by the wave
LEq. (4.4)jwith A (z) taken constant, independent of z.
The inhomogeneous equation can be satisfied if A(z)
obeys another set of differential equations, obtainable
by straightforward substitution. In physically realizable
situations, the relative change in the amplitude per
wavelength is small, since the nonlinear susceptibility
is very small compared to the linear part. Thus, terms
in the second derivative of amplitude are negligible,
O'A/Bz'((krlA/Bz. A scalar multiplication of Eq. (4.7)
with rts and substitution of Eq. (4.4) leads to a differ-
ential equation for the complex amplitude,

dps 2srross (ds g"L:drds)

dz kac cos 0!3
»p, sin(akzy~y). (4.6)

+2rts (&As)XLVXtts exp(iksz —cost)$

4&003
as g: rtr6sA iA s expLi(ki+k )z—i(co +re )tj.

The notation for the phase diGerence between the three
waves was introduced. in Sec. III. The assumption has
been made that the resultant of kr+ks is in the z

direction. In fact, in the remainder of this paper, the
phase velocities of the three waves will be assumed to
be all nearly parallel to each other except in the case of
exact matching, kr+ks ——ks, when the propagation
vectors may have arbitrary directions. EBects arising
from a small mismatch of the phase velocities along the
x and y direction will be ignored.

The ray velocities will, of course, also be nearly
parallel in this case. The physical interaction between
light beams of 6nite cross section takes place along the
direction of energy Row, s'. This derivation shows the
physical signihcance of the occurrence of the term
(cosa) s. It also shows that the component of the
nonlinear polarization parallel to the electric 6eld
vector is the true source. There is, of course, another

"M. Born and E. Wolf, Prirrciptes of Optics (Perganmn Press,
New York, 1959), Chap. 14.

This equation can be transformed as follows,

+2tfsxt V'Xds exp(iksz &est) 1'7A—s
= (4rrros'/c')(t4 g:d,as)ArAs expLi(k, +ks)z —i(est]

+iks cos'as (8A s (z)/Bz')
= (2z.ross/c') (as g:aras)A iA s exptAkz. (4.8)

.There is, of course, another equation of the same form
and larger value of LB for the component of E in the
direction of the other polarization vector. The third
component of E can most conveniently be found from
the condition

V.9=V' E+4nV' P"La=0.

If the derivative in the direction of the wave normal
and the real part of Eq. (4.8) is taken, the result is
again Eq. (4.6). Similar diRerential equations may be
derived for Ai(z) and As(z). Note that one has to
combine As exp(i&est) with As exp( —icost) to get
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cog~C
= —i A2A3A3~eC~3'

kg cos ny
2' 2g

&4'g(Cz&3) ~ dl&4 ~2'g(&2) ~ &4&11
c2 c2

Alexp(i&alt), etc T. he permutation symmetry relations equations are
make it possible to de6ne a real constant

dA

2g=—&11 g(C31):63&32
c2

and the coupled amplitude equations become

dA 1*/dz =+i (cv 12K/kl cos'nl) A 3*A 2e+c &3
"z+~3&

dA2~/dz =+i (co32K/k2 cos'n2)A PA le+c&~3z+~&&

dA 3/dz = i (—co32K/k3 cos'n3) A 1A 2e+c&~ "z+~c'&. (4.9)

In a similar way one obtains the equations which
describe the va, riations in amplitude and phase for a
second harmonic interacting with the fundamental,

dA1*/dz=+i(2c32K/kl cso2n)Al/A e+l& c"'2"&*
(4.10)

dA2/dz i(~2K/k2 cos2n )A 2e+c&231—32&z

These equations can be generalized to higher powers
in the Geld amplitudes. The amplitude equations for
the third harmonic are, for example,

dA1*/dz=i(3a)2/kl cos2nl)[ CA3*A12e'&3"' »&*

+O'A 1*A1A 1*+C"A 1~A 3A3*],
dA3/dz= —i(9&d /k3 cos n3[ CA1 e+'& 31

+3C"A3A 1A 1*+C"'A 3A 3A 3*$.

The constant C is given by

C= (22I/C )&13 g (Cz&3=M1+Ml+Ml):6181CC1

(22/e )&tl' g (ct&1 cz&3 ~1 &1):d3&tl&3lz (4 11a)

with the fourth-rank tensor g' expressible in terms of
the higher order nonlinear polarizability y' given by
Eq. (2.22). The quantities C', C", and C'" can be
referred in a similar way to the nonlinear polarizability.
They occur in terms that are purely reactive in nature.
It is clear from the notation that, e.g. , the term
C"Al*A3A3~=c&A1~/c&z corresponds to a partial contri-
bution to the coherent scattering by a quantum
process, in which photons at ~~ and ~3 get scattered
simultaneously. There is no change of the power Qow
involved. In fact, these reactive terms represent a
quadratic dc Kerr eBect. The propagation constant
for the wave at ~3 changes in a similar way by a term
proportional to C 'Ze, ' as by C"A1A1*+C'"A3A3*.
This question will be discussed further in Sec. VII.

The third-harmonic situation is a special case of
the interaction between four electromagnetic waves. If,
for example, the frequency and momentum relationships

Cz&3+ &ill= Cz&2+Cz&3, lB=+k2+ k3—kl k3

exist between the four waves, the coupled amplitude

Al g C&JA;A;*,
k] cos ny

dA2* (u 'C
=+i A 1*A3*A C~eC~

"z

ds k2 cos n2

'LM2

+ A2* Q C2;A;A;*,
k2 COS n2 i=j

dA 3* co3'C
= +i A 1*A2AC*e'~" z

dS k3 COS n3

4

+ A,*P C„A;A;*,
k3 cos n3

(04 C
A g~A 2A 3e'~"

k4 COS n4

y Cosny=
C Cosny

[(E1XH1*+El*XH1)[
8x

kyC COS ny
A 1A l~, (4.13)

4

and similar relations at the other frequencies. In this
manner, the Manley-Rowe relationships, '6 well known
in the theory of parametric ampliGers" are obtained;

[ Sl [ cosn, /c31+ [ S2 [ cosn2/cd2,

[Sl [ cosnl/~1+ [S3[cosn3/ce3,

[ Sl [ cosnl/Cz&l —
[ S4 f cosn4/Cz&4 (4.14)

are "constants of the motion. " The physical interpre-
tation is that if the number of quanta passing through
one cm' of the wave front per second increases by a
certain amount in the wave at co~, the correspgnding

~6 H. A. Haus, IRK Trans. on Microwave Theory and Tech. 6,
317 (1958).

4

A4 Q C4;A;A;* (4..12)
k4 cos Q4 i=&

The purely reactive, quadratic Kerr eEect terms occur
again on the right-hand side.

Some integrals of these complex amplitude equations
can be obtained. immediately by multiplying the
equations by A~*, A2, A3, and A4*, respectively, and
adding the complex conjugates. The right-hand. sides
become equal. Note that the component of the Poynting
vector along the wave normal may be written as



ARMSTRONG, BLOEM BERGEN, DVCVING, AND PERSHAN

number of photons in the wave at cv4 increases by the
same amount, and the corresponding number of
photons at or& and co3 decreases by this amount. '~ The
Manley-Rowe relations corresponding to Eqs. (4.9),
(4.10), and (4.11) follow in the same manner. For a
complete solution of the coupled nonlinear diGerential
equations, it is necessary to return to the real notation.
This will be carried out in the following sections.

V. SECOND-HARMONIC GENERATION;
EXACT SOLUTION

to get a second constant of integration

usv cos8=I'= (2kr/ks)(c'ks/16muW)"'/'prs(0)ps(0)

Xcos nr cosns cosfgs(0) —2$r(0)]. (5.8)

From Eqs. (5.5), (5.7), and (5.8) one can obtain

(d/d f) (v') =+2/v'(1 —v')' —I' Jt/', (5.9)

where the ~ sign is determined by the sign of sin0 for
z=0. The general solution to Eq. (5.9) can be written
as the elliptic integral,

Using the notation of Eq. (4.4) the complex Eq.
(4.10) for second-harmonic generation can be written
in their real and imaginary parts

v (r) d(vr)

[vs(1 vs)s Psjl/s
(5.10)

dpr/dz= —(2tp'K/kr cos'nr) ptps sin8,

dp,/dz = (4p/sK/ks cos'ns) pts sine,

(5.1a)

(5.1b)

d8/dz =Ak 4o&sK/P—s/kt cos'nr

PP/Psks cos nsf cos8» (5.1c)

where 8=2&r(z) —gs(z)+Akz and LM=2kr —ks. From
the first two of these equations one obtains the Manley-
Rowe relation, which in the case of two waves is
equivalent to the conservation of power Row in the
lossless dielectric,

W= (cs/Srrcp)Lktpp cos nt+sksps cos nsJ. (5.2)

d(v')

Lvs(1 vs)2 Psjl/2
(5.11)

A typical solution is shown graphically in Fig. 2. The
particular initial condition F=O implies v '=0, v~' ——1,
Ilr —+ po. In this case the integration of Eq. (5.10) is
elementary

Since v is real and less than or equal to 1, e' is con-
strained to move between the two lowest positive roots
of v'(1 —v')' —I'=0. Let us call these two roots v, and
v~, z &v~, then z oscillates between ~ and e~ with a
period given by

Substitution of Eq. (5.1a) and Eq. (5.1b) into Eq.
(5.1c) leads to

vr=p(i) = tanh(t +i p),

ur=p(f) =sech(i+i p)
(5.12)

d8/dz=hk+(cos8/sin8)(d/dz) ln(pPps). (5.3)

Further simplification
substitutions,

can be obtained by the

(5.4)

u= I c'kr cos'n&/Svo/Wj'"p&,

v = (c'ks cos'ns/16v-o/W$"sps,

t = (2o/'K/kr cos'nr) (16prn/W/c'ks cos'ns)'/'z.

Equations (5.1) and (5.3) become

The constant of integration i p vanishes if the amplitude
of the second harmonic is initially zero, ps(0) =0. This
is the often encountered initial condition, in which the
second harmonic has to be generated. This solution is
represented in Fig. 3. Correct treatment of the boundary
conditions at the surface of the dielectric will lead,
however, to a slightly different initial condition. In
most crystals the values of cos'n~, and cos'~2 are close
to unity. A characteristic interaction length t can be
de6ned by

where

/tu/d/; = uv sin8-,

dv/di =u' sin8,

d8/df =hs+ (cos8/sin8) (d/di ) ln (u'v),

(5.5)
t '=2o/'Kkt 'pt(0). (5.13)

In this distance about 75 jq of the fundamental power
will have been converted to the second harmonic.

hs= (5.6)
(2tpsK/kt cos'nt) (16v &uW/csk, cos'ns)'/s

and Eq. (5.2) is now
1=u'+v'. (5.'I) Li

A. Matched Phase Velocities

%hen the fundamental and second harmonic have
equal phase velocities, i.e., 2k~=42 and hk=ds=O,
one can immediately integrate the third of Eqs. (5.5)

"M.T. Weiss, Proc. IRE (Inst. Radio Engrs. ) 45, 1012 (1957).
Fn. 2. Variation of the power in the fundamental and second-

harmonic waves for arbitrary initial conditions.
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where

(5.14)
(tte' —&')"' i tsi L(1 X') (1—&Y)7"'

~s —
(ti s e s)/(~ s ~ s)

The quantity y is, therefore, defined as a Jacobian
elliptic function of i . The normalized amplitudes u and
v can now be written as"

"=..+( —.) '5(.'- .')'"(i+~-o),v7,

san=1 —ti '—(tiss v.')sns$—(ti.' v.')"(1—+t o),p7,

where is is determined. by the initial condition [i.e.,
y(0)7 and the value of y.

The results of this analysis are summarized in Fig. 4.
The area bounded by the curves for N2 and v' show the
interval of variation of these quantities as a function
of the initial condition I'. Note that Eqs. (5.7) and
(5.8) give a maximum value, I',„'= (4/27) =0.148.

If the initial amplitude of the fundamental pi(0) ~ 0,
then i's +-—~. The subharmonic pi is not generated
from ps(0) in the ideal traveling wave geometry. The
slightest amount of feedback will, however, start to
generate the subharmonic from the noise level. This
situation has been discussed by Kingston~8.

The Eq. (5.12) can be used, if pi(0)WO, ps(0) &0,
provided @s(0)—2&i(0) =As/2. In the case of perfect
matching this relative phase will be preserved.

Depending on whether sin8(0) = &1, either the
second harmonic or the fundamental will be ampli6ed
first. If the fundamental gets amplified first (i s &0), the
second harmonic will decrease to zero, and then
increase until all the power is in the second harmonic.
If the second harmonic is amplified first (to)0), it
goes directly to complete conversion.

If one defines

y'= (~'—e')/(»' —s')
and labels the third root of the cubic equation
tt'(1 —v')' —I"=0 as tiP)e&')e.s, Eq. (5.10) can be
written

C3,5
N

X

o~
2f

FIG. 3. The growth of the normalized second-harmonic ampli-
tude and decrease of the normalized fundamental amplitude for
perfect phase matching, if the second harmonic builds up from
zero.

As= =Akl,
L(2~'It/ki) pi(0) 7

(5.20)

The generalization of Eq. (5.10) is

~s(r) d(v')

2 "«& fe'(1—")'—(I' —s»L"—"(0)7)')"'
(5.17)

Everything previously said about Eq. (5.10) and the
solutions for 6k=0 can now be carried over to Eq.
(5.17). The solutions for hkAO are given by Eqs.
(5.13) and (5.14) with the same definition of y'. The
three roots, v )vq & v~ &0 are now the roots of

.(1—.) —(r —-', ~s(~'—.(0) 7} =0. (5.18)

For the important case of pi(0)))ps(0) with &k/ki«1,
and cos A y

= cos~o!2~1, the following approximations
are useful

I"=Lp (0)/p (0)7 cosLit', (0)—2$, (0)7 (5.19)

B. Imperfect Phase Matching

If the phase velocities of the fundamental and the
second harmonic are not perfectly matched, Ak/0
and thus As&0, Eq. (5.5) can still be integrated by the
method of the variation of the parameter in the solution
of the homogeneous equation. One thus obtains the
more general solution

tiu' cose+ s

ibsen'=

I'a„(5.15)

where F~,. can be expressed in terms of I' de6ned by
Eq. (5.8)

I's, =I'+-',Esca'(0) . (5.16)
's R.H. Kingston, Proc. IRE (Inst. Radio Engrs) 50, 472 (1962).
~ E. T. Whittaker and G. N. Watson, 2 Coarse of 3/modern

Analysis (Cambridge University Press, New York, 1927), 4th
ed. , p. 490.

C)
I-
CL

e5

tL.o
M
C9

0.005 0.01 0.015 p d

I IG. 4. The range of power variation in the fundamental and
second-harmonic wave for perfect phase matching, as a function
oi the parameter Fs, defined in the text LEq. (5.8)j.
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5O
co

0

Fzo. 5. The growth of the second-harmonic amplitude for
varying degrees of phase mismatch.

'Vg =—=2—
v,' Ds/4+ L1+(hs/4)'g'I'

and the period is given by the elliptic integral

m/2 dt
IIt'—

&c 0 t 1—(vb/v, )' sin'tj'"

(5.21)

(5.22)

If the condition for phase matching is nearly satisfied,

~s= hkl((1. (5.23)

v b and lit, given by Eqs. (5.21) and (5.22), are relatively
insensitive to Ds, and substantial power conversion is
obtained. Examples for several degrees of phase
mismatching are shown in Fig. 5.

If As))1, the approximation to the exact solution
Eq. (5.17) can best be obtained by returning to Eq.
(5.1). The most important experimental situation is
imperfect matching, in which p2 always remains small.
In this case p~ can be regarded as a constant of the
motion.

If the second harmonic is initially zero, the approxi-
mate solutions to Eqs. (5.1b) and (5.1c) are

8= LMs/2+ v./2,

p2 (s) = L4P I (0)/Aklf sin (hks/2).
(5.24a)

Note that the phase advances as d,ks/2 rather than
Akz. The phase velocity of the second harmonic,
initially generated by the nonlinear interaction, is not
the same as the velocity of the usual wave at 2'. If,
however, the second harmonic is initially large enough
so that Akp2(0))&PI(0)/t, its phase velocity is the usual
one for a wave at 2M.

8=hks+8b+~~v,

p2(s) =p2(0)+ (2/Akl)p1(0) (5.24b)

X)sin(8b+Dks) —sin8of,

The power, PP(s), has the period 1/M regardless of
pg(0). For 0&8(v, power is transferred from 01 to 2'.
If s is advanced by v/Dk, power is transferred back

where t is defIned by Eq. (5.13). The roots of Eq.
(5.18) can, in general, be determined graphically. For
the simple case of p2(0) = 0 LI'=0 and v(0) =0j

e,'= 0,

from 2' to co. In neither case does the power in the
second harmonic become large. The justi6cation for
the omission of higher harmonics in the coupled
amplitude equations is, in fact, based on this obser-
vation. In general, they will have a more severe mis-
match than the approximately matched phase velocities
of the fundamental and second-harmonic wave. Conse-
quently, they will only build up to a much smaller
amplitude than the second harmonic.

Rz ——pre',
R2——p2e'.

For 6k=0 one obtains

dR1/dy= —(2sPE/kI cos GI)RIR2 s1118

dR2/dy= (4o'E/k2 cos'a2)RI' sin8,

d8/dy = (cos8/sin8) (d/dy) ln (RI2R2).

(5.26)

(5.27)

The solution now proceeds as for the lossless case. For
a significant power conversion it is necessary that
b((t ~.

VI. THREE COUPLED WAVES:
EXACT SOLUTION

The general amplitude Eqs. (4.9) can be written in
their real and imaginary parts in a manner analogous to
Eq. (5.1) for the second harmonics.

dpI/ds= —(cu1 E/kI cos nI)p2pb s1118,

dp2/ds= —(bI& IC/k2 cos Qz) p3p1 s1118,

dp&/ds= (bIb E/ka cos'nb) p1p2 sin8,

t &b PIP2 ~2 PbP1—=~k+R~
dz '4kb cos'nb p3 k2 cos'n2 p2

~1 P2Pa)
i
cos8, (6.1)

k1 cos IxI p1

where 8=hks+&3(s) —y2(s) —yI(s) and lB= kb —k2 —k1.

C. Lossy Medium

Attenuation, or loss, can of course be incorp6rated
into Maxwell's Eqs. (4.1) and (4.2), and into the wave
Eq. (4.7) in a manner which is customary for a linear
medium. In harmonic conversion, even very slight
losses are intolerable, but it is of some interest to treat
the case where the absorption length is comparable to
or smaller than the interaction length /, defined
previously.

The amplitude Eqs. (5.1) have to be replaced in a
lossy dielectric by

dpI/dz+ bIP I —(2b——1'E/k1 cos'nI) PIP2 sing,

dp2/«+b2P2 (4b1 R/k2 cos ~2)pl

d8/ds= (cos8/sin8) (d/ds) ln(PPP2).

An exact solution can be found in the special case,
b&

——b2 ——b, by the substitutions,

y=(1/b)(1 —s '),
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The power Bow per unit area parallel to the direction
of propagation is

C k1 COS n1 k2 COS n2 ka COSTS"+ "+ p (6.2)
Sx' 402 (d3

The following substitutions greatly simplify the algebra.

C k1 COS n1
Q1= P1)

8m' 125'

t," k2 cos n2
Q2= P2,

Sea)2 5'

cr)

~~ IQ

tr.

tLj
rnx
t3j)
K

f0103

I

77Z/R

~ QJ3

~Oe

NITIAL DISTR I BUTION

n, .o n,P, 'o.o)

C k3 COS n3
Q3= p3)

Sxco328"

8m@' '"
=E

C' k1k2ks COS'n1 COS'n2 COS'n3

—I/2

Equations (6.1) and (6.2) become

dur/di = —usus sin8,

dus/df = usur sln8,

dus/di =u,us sin8,

d8/df'= AS+E cot8(d/di ) ln(urusus),

s. (6.3)

(6.4)

Fn. 6. Relative number of photons, as a function of 2, in three
traveling waves with perfect phase matching, cog =co2+co1,
k3=k2+k&. The wave at or& has a very large number of quanta
and may be considered as the pump in a parametric converter.
(Up from cas to cu3, or down from &o3 to ~3.) The initial distribution
is n3=0, n1=100nP.

TI)e introduction of a quantity

ys= (us' —u3.3)/(u333 —us.') (6.11)

leads to a Jacobi elliptic integral in standard form and
Eq. (6.9) can be written

(6.12)
(u '-u ')"' .&o) I (1-~')(1-v'y')]'"

where hS= LNs/f.

The conservation of power Qow is expressed by

o)rut +o)sus +o)sus = 1.

We can define three other constants m1, m2, m3'.

mt=us +us,2 2

ms ——us+ur,2 2

ma= Q1'—Q2,2

(6 5)

(6.6)

where
y'= (u33' —u3.')/(us. '—u3.').

The general solution for the intensity of three waves is

u '(I) =u '+ (u '—u„.,s)sn'$(us, '—us, ')'"()+I 3),y],
u (f) u (0)+u3 (0) us (u3$ u3gP)

Xsn'L(u .'—u .')'"()+I o) y],
u '(I') —u '(0)+us'(0) u3g —(u3$ us, ')

XSn'L(us, '—u3.')'"(I+I s),y]. (6.13)

cos8= (1 +-,'DSu33)/urusus. (6.7)

Using Eq. (6.7) to eliminate sin8 in Eq. (6.4), we get

(d/di ) (u33) =~2t (u,usus)3 (I'+-', AS—us)'J~s. (6.8)

which constitute the vectorial Manley-lowe relations
taken in the direction of propagation.

The last of Eq. (6.4) can immediately be integrated to

A. Perfect Matching, d A=O

The simplest case of physical interest occurs when
pr(0)))ps(0)&0 and ps(0) =0. This corresponds to one
very strong pump at co1, converting a signal from
frequency co2 to era. In terms of the quantities occurring
in Eqs. (6.12) and (6.13), this case is described by

Q mls~2 Q35 p Q3a 07 V ~~~'
Using the Manley-lowe relations, Eq. (6.6), we get Equation (6.12) can be integrated directly

us(i )=mP' sin(mr'~st').

If one sets cos2a1=cos2n2= cos2a3= 1, the amplitude of
the electric field becomes

ts32(t') d (us')

2 „'(o) [u,'(m, u')(w3, —u') (1'—+-', AS—us')']"'

6.9
The equation (6.15)

has three roots for Q3',. call them Q3. &Q3t, &Q3~&0.2 2) 2)

( )
ps(S) = (o)3/o)3)'~'ps(0) Sin(xs/t),

u '(te —u ') (mr-us')- (&+~3&Sus')'=0 (6 10) where the interaction length t for the process is given by

l '=3r='Eo)so)3(ksks) "spr(0). (6.16)
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And thus,

u3P = upP (0)+urP (0), up p' ——upP (0), up. ' ——0.

The amplified signal at ~r given by Eq. (6.13) is

urP(I) = urP(0)+upP(0)

W

I—

rr. IO '—

DISTRIBUTION

~!"l= cO

/
/l

I/ I
/ I

/

z

up'(0) Ij2-

1—sn' u, (0)(I —I p),
uP(0)+ui'(0)

If we de6ne a length 3,

I—'= Epp, rpp(k, kp)
—'"pp(0),

then Eq. (6.17) can be rewritten

. (6.17)

(6.18)

FIG. 7. Relative number of photons, as a function of s, in three
traveling waves with perfect phase matching, co3=co2+co1,
k3=k&+k1. The wave at co& has a very large number of quanta
initially, and may be considered as the pump in a parametric
amplifier. The initial distribution x&2=0, n3=20n1.

The period of the variation of energy is, in this case,

n, =t.
A typical solution is represented in Fig. 6.

For co3))co2 there is power gain in the conversion of a
photon to a higher frequency. The period, in space, for
maximum gain is inversely proportional to the ampli-
tude of the pump signal at a~. This is the case usually
encountered in parametric converters.

If the initial condition is such that there are initially
equal numbers of photons at co~ and co2 and none at
co3, the solution becomes very simple. These initial
conditions are equivalent to m~ ——m2, m3=0, I'=0. The
period of the interaction is infinite; the photons at co~

and ~2 become depleted at the same rate

ui up ul (0) sech (z/&),

up ——ui(0) tanh(s/l).

This special case is, therefore, similar to second-
harmonic generation with perfect matching.

If m&/m2, the energy is transferred between the
waves with a period in I Lcompare Eq. (5.11) and

Eq. (6.9)j, given by

(m1) 1/2

$(m, upp) (m,—upp) j't'—

When the number of photons is depleted in one of the
waves, the energy transfer reverses.

Consider next the case that a very large number is
initially present at the highest frequency, ~3, a much
smaller number at cur, and none at &pp, i.e., up(0)))ur(0),
up(0) =0. The Manley-Rowe relations LEq. (6.6)$
become

mi ——uP (0)+uP (0),

mp ——upP(0),

mp ——uiP (0).

pr'(s) =pr'(0)+ —pp'(0)

s,/t=-,' inL16,&P(0)/,p, (0)j. (6.20)

Thus, the maximum possible power transferred to the
signal at cvi occurs in a length so,

sp= (E/2)cpirpp(kikp) ' pp(0)
&& lnL16PPiPp'(0)/oipPrP (0)j, (6.21)

and the period of the variation of energy is

II,= 2so.

It is instructive to compare the length so for ap-
preciable power transfer from co3 to cui to the length
necessary for signi6. cant second-harmonic generation
at 2or3. That this last length is approximately the same
as I defined in Eq. (6.18) can be seen by comparison
with Eq. (5.13). Equation (6.20) is thus a direct
measure of the difFiculty in making a frequency con-
verter relative to the difhculty in construction of a
second-harmonic generator. If 16o~ipp'(0)/roppip(0) = 10p,

zp/l is approximately 7.5. Frequency conversion should
not be appreciably more difFicult than second-harmonic
generation.

Equation (6.17) also describes parametric amplifi-
cation in the case where the pump is allowed to be
depleted. One can, for example, use this solution to
estimate the extent to which the ampli6cation is
nonlinear.

~ E. Jahnke, F. Kmde, F.Losch, Tables of FNeckioes (McGraw-
Hill Book Company, Inc. , New York, 1960), 6th ed. , p. 73.

s—sp 1 happ pi (0)
X 1—sn', 1———,(6.19)

2 cpi ppP(0)

where pp(0)))pi(0) has been used. An example of this
case is shown in Fig. 7.

To satisfy the initial condition pz(0)=0 sp// lllust
be set equal to ~ period of the sn function.

For pp(0)))pi(0) a half period can be approxi-
mated by"
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If the initial numbers of photons at co3 and coi have
the same order of magnitude, the energy transfer
between the waves has again a typical oscillatory
behavior. Reversal takes place when the number of
quanta in one of the waves is depleted. Figure 8 shows
the solution for the initial condition u12(0) =1.5us2(0),
u22(0)=0. In this case the period of the variation of
energy is given by

n ~(max)

0 Tora 1.

I
=——

S (m2) I/2

II.= 2-
i. o (2/2 u 2)1/2(222 u 2)1/2

to'—

where the ratio s/f has been defined in Eq. (6.3). These
cases illustrate a generalization of the usual parametric
amplifier theory.

B. Imperfect Matching

The general solution, Eq. (6.13), also describes the
important experimental situation in which Ak&0. In
this case, the energy transfer between the waves
reverses its trend when the relative phase between the
waves has undergone a 180' shift. The discussion for
second-harmonic generation in the case of phase
mismatch can be carried over step by step to the
interaction between three waves. For severe mismatch,
one obtains sinusoidal variations in amplitudes, similar
to Eq. (5.24), which are well known in the conventional
theory of traveling-wave parametric converters. The
influence of the mismatch on the process us(0)))ur(0),
u2(0) is represented in Fig. 9. The maximum number of
photons which can be obtained at M~ is limited by the
degree of mismatch 65.

C. Lossy Medium

The effects of losses can be introduced into Eq. (6.1)
just as they were introduced in Sec. V for the two-wave
problem. The results are that the "decay length" must
not be small compared to the characteristic length for

&o'
1

io

I"xG. 9. The ratio of the maximum number of photons at ~1
(221 max) to the total number of incident photons L22(0)j as a
function of As. Llnitial distribution 222(0)/221(0) =20, n2(0)=0.1

VII. FOUR INTERACTING WAVES—THIRD-
HARMONIC GENERATION

Equations (4.12) describing the general interaction
of four waves and Eqs. (4.11) which are specialized
to third-harmonic generation can be treated in the
same way as the interaction of three waves and second
harmonics were treated in the last two sections. It will

suKce here to point out several salient features of the
extension to higher-order interactions.

The real and imaginary parts of the equations for
third-harmonic generation, Eq. (4.11), are

dp1/ds= —(3o/'Cpr'ps/kr cos'nt) sin8,

dps/dz= (9oo2Cprs/ks COS2ns) Sin8,

(7.1a)

(7.1b)

d8/ds = Ak+ (cos8/sin8) (d/ds) ln(pspr')

+9o/'(3C"/ks cos'ns —C'/k1 cos'crt) pP
+9o/2(C'"/ks COS2as —C"/k1 COS2nr) pss. (7.1C)

interaction between frequencies if the parameter effects
are to occur.

~ ~ 4~
~ ~

~~
~ ~ ~~t~

The only effect from the terms in Eqs. (4.11) containing
the constants C', C", and C"' is to change the phase
velocities of the two waves at ~ and 3~ from the small

signal values. These arise because the time averages of
L~&' and E~' produce the usual dc Kerr effect propor-
tional to the electric field squared. This is also true
even if there is only one wave, say ~, propagating in a
nonlinear medium. For large enough signals the velocity
depends on the amplitude of the wave.

If there is a mismatch in the phase velocities, so that
Ak is larger than either of the last two terms of Eq.
(7.1c), one can assume the relative phase advances as

d8/d»=LM+cot8(d/ds) ln(psp12),

Fro. 8. Relative number of photons as a function of s in three
traveling waves with perfect phase matching. The waves at ~1 and
~3 have numbers of photons of the same order of magnitude. The
initial distribution is n~= 0, n1 = 1.5n3.

since C has the same order of magnitude as C', C", and
C"', p& never changes very much from its initial value
and can be regarded as an approximate constant of the
motion. The discussion now follows exactly as for
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(7.5a)flu/ds= -u'v ,sin8,

second harmonics, Eqs. (5.24). If the third harmonic where W is the total power Row analogous to Eq. (5.2),
is initially generated by the nonlinear interaction, it. reduce Eqs. (7.1) to
does not have the same velocity as the usual wave
at 3'. The solutions are

hks w

8= --+—,
2 2

(7 2)
dv/dk= u' sin8, (7.5b)

9aPCpP (0) sin(hkz/2)
p3(z) =

k~ cos'Q. 3 (Ak/2)
(7 3) d8/ds= As+ cot8(d/dz) ln(vu')+au'+bv' (7.5c)

If the initial value of pq is large enough, 8= &ks+ v/2+8o
and pq is obtained by integration of Eq. (7.1b). The
following substitutions,

( ~2 k I/2

u=
~

—cos 0,'y py,
(8v-W coi

where a, b, As can be obtained directly on making the
substitutions. Equation (7.5c) can be integrated

vu' cos8=I'+(—a+b)(u4/4)+[(ds+b)/2]v'. (7.6)

The conservation of energy equation is

(7.4) u'+ v'= 1. (7.7)

8vrW 3(ux(3a)g')""
=C

g2 (k13k3 cos6(yl cos2~ )1/2

Equations (7.6) and (7.7) substituted into Eq. (7.5b)
lead to the integral equation

& (f) d8

2, (p) [v'(1—v') 8—[r+—;(b—a) (1—v')'+-,' (As+ b)v']']'
(7.8)

For the third-harmonic power initially zero, v(0)=0
and I' = ~~ (a—b). The solution for v' will oscillate
between two roots of

v2((1 v2)3 v2[ (gg+g)+&(b g)v2$2} —0 (7 9)

Equation ('7.9) has for one root v'=0, the lower limit
for e'. The next higher root will be less than unity,
unless a= 0=hs. Physically, one cannot match the
phase velocity of the two waves unless this equality
holds. As p&' and p3' vary, the quadratic Kerr effect
changes the phase velocities of the two waves. Without
perfect phase matching, it is impossible to get complete
conversion of power from co to 3'. This is a rather
academic point, however, since it only- becomes im-
portant after a signi6cant amount of harmonic genera-
tion has taken place. Any general interaction invoIving
more than three waves will show this same eGect.

VIII. APPLICATIONS OF THE THEORY TO
EXPERIMENTAL SITUATIONS

A. Harmonic and Subharmonic Generation

The most studied nonlinear eFfect is, thus far,
second-harmonic generation. The analysis of Sec. V
shows that it is possible, in principle, to convert all
incident power into the second harmonic. Since X,„,NL

is about 10 " esu for KDP," the interaction length /

[Eq. (5.13)) has the order of magnitude of 10' cm for
an incident amplitude p~(0)=30 kV/cm. For phase
matching over a path s= 1 cm, only about one part in

10' of the incident power is converted. It is possible
to increase the peak power considerably, and field
strengths of up to 10' V/cm may be attainable. Even
then the required phase matching over the interaction
length will certainly not be achieved for all rays in the
solid angle of the beam. It will be necessary to apply
phase correction schemes after the waves have traveled
a distance d=vr(Ak) '.

A phase shift of 180' in 8=hkz+2p~ —p~ can be
obtained in several ways. One can pass the waves
through a dispersive linear dielectric phase correcting
plate. It is more expedient from an experimental point
of view to pass the light waves into another crystal
of KDP, whose crystalline orientation is obtained by
inversion of the first crystal, cf. Fig. 10. The sign of the
third-order tensor, and therefore, of the interaction
constant, is inverted in the inverted crystal. This can
be repeated after each thickness d. An even simpler way
to obtain the same result is to reRect both light waves
after they have traversed a distance d. They each
undergo an 180' phase shift on reQection and, therefore,
68= 26&/ ~ 6&2 changes b—y 180'. In this case, the light
waves, rather than the crystal, are inverted in space.

Another phase correcting scheme is to fold the path
of one of the light rays into a resonant structure with
a high-quality factor Q. Assume, e.g. , that the second
harmonic is reflected after a distance d= v (Dk) ', which
corresponds to the spacing of the plates of a Fabry-
Perot interferometer. After the second harmonic has
traveled back to the front plate and is rejected again,
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it is exactly in phase once more with itself and the
incident fundamental traveling wave. The effective
interaction path is increased and conversion eKciency
is increased by a factor Q. If the structure were made
resonant simultaneously to both the fundamental and
the second-harmonic frequency, the maximum size of
the resonant structure is determined by d =a Q '(LN) '.
If both paths are folded, the structure is made smaller,
but there is no gain in the maximum obtainable con-
version. It is clear that very substantial improvements
in the conversion factor could lead to a nearly complete
conversion into the second harmonic. The maximum
conversion reported thus far is 1:10'.

KingstorP' has shown how the laser beam may pump
a cavity tuned at a subharmonic frequency. In this
case, the second harmonic feed power back into the
fundamental. According to the classical Eq. (4.10),
this process can not start to build up for 2~=0. The
fundamental or subharmonic frequency starts from
the zero-point vibrations, or from the spontaneous
emission of two subharmonic quanta for the loss of one
quantum in the laser beam. This buildup is similar to
the buildup of a self-excited oscillator from the noise
level. The classical complex amplitude Eqs. (4.9) to
(4.12) are in a form which is readily subjected to
quantization. The importance of zero-point vibrations
and quantum noise has been discussed in a very
interesting paper by Louisell, Yariv, and Siegman. "
Their technique could be applied to our equations.

3. Frequency Conversion

Similar considerations apply to the phase correction
and the effective interaction length between three waves.
An important application would be the generation of
millimeter wave or far infrared radiation as the beat
note at the difference frequency of two lasers. Two
ruby lasers at different temperatures or two Zeeman
components of a single laser in a strong magnetic field
could provide such a beat. The Manly-Rome relations
show that, with a peak power of 10 MW' in a ruby
laser pulse of about 10 8 sec, 10 k% can be avail-
able at 0.7 mm during this pulse, if perfect phase
matching is obtained. The coupling coefficient is propor-
tional to x,„,(co =o»—~&). This quantity may differ
appreciably from the corresponding quantity for
doubling, because the ionic displacements play a larger
role, if one of the frequencies is below the infrared
absorption band.

An interesting situation arises if the objective is to
detect a weak coherent light signal at co,. In that case,
one may use to advantage parametric up-conversion by
means of a powerful laser beam at the pump frequency
co~. The output is taken at the sum frequency o&r =co,+re„
in an up-converter. If the phase velocity matching is
complete, all available signal power is converted to

3'%.H. Louisell, A. Yariv, and A. E. Siegman, Phys. Rev. 124,
1646 (1961).
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power in a wave at cog. This wave can be detected with
excellent discrimination against the pump power at
co„.I co, is in the infrared and co„ in the red, co& may be
in the green or even blue and may be detected with
high dBciency in a photomultiplier tube. This device is
noiseless in the sense that in the absence of a signal,
there would be no output at coy. There is no spontaneous
emission noise because the pump quanta cannot spon-
taneously create a quantum at MI without violating
the conservation of energy. In this sense, such a device
is better than a laser amplifier which always has an
effective spontaneous emission noise temperature A&a/k.

The effective interaction length for this situation is
described by Eq. (6.16).

C. dc and Microwave Kerr Effect

The theory of the electro-optic Kerr effect was
already developed in the early days of quantum
mechanics. "It is contained in our theory as the special
case that one of the frequencies is zero, coa=cv2=~,
co&=0. Consider, for example, a much used geometry in
KDP. The dc electric field E~, is applied along the
tetragonal s axis. A light wave linearly polarized along
the x axis propagates in the s direction. The nonlinear
coupling coeflicient x„„(cos=o&s+0) will generate a wave
at the same frequency and wave vector, linearly

~ M. Born and P. Jordan, L'Iementcre Qguntenmechunzk
(Springer-Verlag, Berlin, 1930), p. 259.

(c)

FIG. 10. Three experimental arrangements to provide phase
correction, if the phase velocities of the fundamental and second
harmonic are not perfectly matched. (a) After a distance 8
=s (ks —2k') ' the crystal is replaced by its inversion image. The
nonlinear susceptibility p,~, changes sign. The linear optical
properties remain the same. This scheme can, of course, also be
used in noncubic piezoelectric crystals. (b) Both fundamental
and second harmonic undergo multiple total reflections in a crystal
of thickness d=(ks —2k~) 's cos8. On each reflection E~ and Es
undergo a 180' phase shift, the product EsEP changes sign. (c)
The traveling wave at co& pumps the interferometer cavity, which
contains a nonlinear dielectric and is resonant at cos, i=14/
2((ks —2k') 'z. The backward harmonic wave does not interact
with the pump. On each forward pass it has the correct phase for
amplification.
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polarized in the y direction. The coupled amplitude
equations for this case may be written a,s )compare
Eq. (5.1)j,

(did ) .( )=Kp, ( )E" (~.-~,),
(d/ds)p„(to) = Kp, (—co)Eq, sin (4',—p„).

They describe the polarization of the wave under the
influence of the Kerr effect as it progresses along the s
direction. The more conventional description for this
effect is to say that the uniaxial crystal has become
optically biaxial by the application of the dc field. The
normal modes of polarization for a wave propagating
along the 2' axis have a linear polarization along new

axes, x' and y', which make angles of 45 deg with the
crystalline x and y axis. These modes have propagation
constants which differ by an amount proportional to

The description of the Kerr effect in the context of
this paper becomes more interesting if the dc field is
replaced by a microwave field. A traveling-wave version
of a microwave light modulator has been proposed",
and the present theory, although not strictly applicable,
has a bearing on this situation. In a wave guide it is

possible for the microwave field to have a longitudinal
component. It is also possible to choose the dimensions
of the wave guide in such a manner that the
phase velocity of the microwave in the guide, E,
-E, cos(&0 t kts), m—atches the phase velocity of the
light wave E, cos(tost —kss). The latter can, of course,
still be regarded as a wave in free space.

The extension of the formalism from free waves to
guided modes is straightforward. The microwave field
in the light modulator can, however, without any
question be regarded as a parameter, since the photon
Aux in the microwave is so overwhelmingly larger than
the Aux of light quanta. The coupling by the nonlinear
susceptibility X„, (cvs=&o +css) leads to a side band
of light at the sum frequency, polarized in the y direc-
tion. There is, of course, also a wave at the difference
frequency ro4= —rot+tss. The microwave field may, in
turn, interact with these sidebands to produce addi-
tional sidebands. All these light waves are approxi-
mately phase matched, because they differ so little in
frequency. The theory of this paper is then not appli-
cable. The parametric theory of Simon'4 may, however,
be used, since the microwave field can be considered as
a fixed parameter.

This case illustrates the meaning of dispersion in the
nonlinear susceptibility. This quantity is defined for a
frequency triple in the case of quadratic nonlinearities.
The permutation symmetry relations show that the
same constant which describes microwave modulation
of light also describes the generation of the microwave

"P. S. Pershan and N. Bloembergen, Advances in Quantiun
1!'lectrorzsrs, edited by J. R. Singer (Columbia University Press,
New York, 1961), p. 187.

zz J. C. Simon, Trans. IRK MTT 8, lg (1960l.

as a beat between two light waves,

X,".zz(Mm= a's ~s) = Xzzz(~s= tas+rsm)

WXzsz(tos= ros+rom)-

It is necessary, however, to specify the same direction
for the microwave field in each case. Ionic linear and
nonlinear motions are involved to the same extent
in both processes. If all three frequencies are in the
visible region of the spectrum, the value of g will be
appreciably different, because the ionic motions take
no part at all in this case. These results are described
in detail by the microscopic equations of Sec. II.

IX. CONCLUSION

It is necessary to stress three assumptions which have
been made throughout the treatment.

1. Only waves which are strictly monochromatic in
frequency are considered; i.e., no allowance has been
made for the effect of the finite linewidth of the inter-
acting waves.

2. Only waves with perfectly defined propagation
vectors are considered; i.e., no allowance has been made
for the effects of the finite divergence of real light beams.

3. It has been assumed that the dispersion of the
medium makes it permissible to ignore completely all
but the small number of waves whose phase velocities
are well matched. That is, no investigation has been
made of the effects of waves propagating in the medium
with phase velocities which are not well matched.
These waves will have a small, but nonzero, interaction
with the waves considered in the theory.

It is interesting to note that the nonlinearity provides
in principle a means of thermal contact between
electromagnetic modes. A lossless nonlinear dielectric
could take the place of the carbon speck introduced
by Boltzmann to insure thermalization of the electro-
magnetic field enclosed in a cavity.

Finally, it should be stressed that the considerations
given here are restricted to an infinite, homogeneous,
nonlinear medium. The very interesting effects that
occur at the boundary of a nonlinear dielectric will be
treated in another paper.

The following conclusions summarize the theory
presented here. The intrinsic nonlinear properties of
electrons and ions bound in atoms, molecules, and
dense media can be connected with the macroscopic
properties of MaxweH's field quantities in nonlinear
dielectrics. This permits, in turn, a detailed description
of the coherent nonlinear scattering processes in terms
of macroscopic, nonlinear susceptibilities. The inter-
action between coherent light waves leads to a rigorous
solution which shows that it is possible for the idealized
cases considered here to convert power completely
from some frequencies to others. This solution embodies
a generalization of parametric amplifier theory. It
allows for very large signal and/or idler power, with
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concomitant depletion of the pump power. The Manley-
Rowe relations have been derived in a quite general
manner. Since the nonlinear properties have been
incorporated into Maxwell's equation, the theory can
readily be applied to a wide variety of experimental
situations where nonlinearities play a role.

APPENDIX
(e—1)/42r= P;k R'"') n(" (A6)

Summing over all atoms in the unit cell, we obtain

P—PL+.PN L—P . R(ki) .~(i) .E
+Q .„R(ki) .PN L(i) (A3)

On inspection it becomes clear that

The local field at the site of the ith atom in the unit
cell can be written as

E(i)i= E+P . L(ii) . (PL(i)+PNL(i))

with
D((08) = e((o8) E(a&8)+42}-P" (b28)

P "s(~8)=Z'k R""(~8) P"""(~8) (A7)

and the polarizations of the ith atom at frequency co3

are related to the local fields at &ui and cu2 (i.e.,
~,=~2+~2) by

PL(i) (&d8) =(2(i) (~8) .E(i)I((d8) ~

P""(*)(or8) = g("((o8——(u2+a)I) E('"((v2)E""(k)I). (A2)

L"" and n(')(~) are each 3&(3 matrices. From Eqs.
(A1) and (A2) we can obtain

P L(i) (2(i) .E(i)i—(2(i) .E+P . (2(i) . L(ii)
. (PL(i)+.PNL(i)) (A2')

When an equation has only one frequency, we will

drop the co designation. Ke now define a 3)C3 tensor

Write PN "("(~8) as a function of the microscopic
nonlinear polarizability tensors and the macroscopic
Maxwell fields at (di and (d2. If PNL((PL Eqs. (A1) and

(A2) can be combined as

Q. (b . . L(ii) .(2(i)).E(i)i= P (AS)

Energy considerations require the symmetry of polariza-
bility and Lorentz tensors. With

(2(i) —((2(i))&

L('i) —L(ii) —(L(fi)) &

where Ar is the transpose of A, Eq. (AS) can be written
as

(A3) Q . (M (fi))&.E(i))= P (AS' )

so that Eq. (A2') becomes

Q . M(ii) .PL(i) (2(i) . P+,PNL(i)

—Q M(f'f' P ""' (A2")

If we were to write M&'&) in its component form, we

could consider it to be a 3X)&3l'lt matrix, where A is
the number of atomic sites per unit cell. It would then
be obvious that this "supermatrix" has an inverse.
This allows us to define a new set of 3X3 matrices,
R('&), such that

P.M(ii). R()k)=g. R('i). M(ik)=b, .
k (A4)

Equation (A2") can thus be manipulated to give

PI (k)+PNI (k) —Q . R(ki) . (2(i) .E+Q R(ki) .PNL( )i

Taking the transpose of Eq. (A4), this can be converted
to

(k)I —g. (R(ik))&.E (A9)

Combining Eqs. (A9) with Eqs. (A7) and (A2) we get
PNLB(~ ) P, R(~ )(ki)

5"'(»=»+»):Zf t (R""(»))' (»)j
XXI 5(R""(~I))'E( )3.

Define
(A10)

and I.' can be written

P""(~)=K(~8=~2+~)):E(~2)E(»), (A11)

where the (a,b,c) component of y is

ga; b, (~8 ~2+~1) Q Q Pd, f a(M8 (d2+~1)kd, a ((a8)~ a, b ((02)+fa(~1)~,
i d, e f

The permutation symmetry relations are obvious. Equation (A12) can be written in tensor notation as

g(~8 ——k 2+&vi) =Q, g"'(CO8 ——CV2+S)i): N" ((u8) N('}((O2) N(") ((ui). (A13)


