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The simulation of chemistry is among the most promising applications of quantum computing. How-
ever, most prior work exploring algorithms for block encoding, time evolving, and sampling in the
eigenbasis of electronic structure Hamiltonians has either focused on modeling finite-sized systems, or
has required a large number of plane-wave basis functions. In this work, we extend methods for quan-
tum simulation with Bloch orbitals constructed from symmetry-adapted atom-centered orbitals so that one
can model periodic ab initio Hamiltonians using only a modest number of basis functions. We focus on
adapting existing algorithms based on combining qubitization with tensor factorizations of the Coulomb
operator. Significant modifications of those algorithms are required to obtain an asymptotic speedup lever-
aging translational (or, more broadly, Abelian) symmetries. We implement block encodings using known
tensor factorizations and a new Bloch orbital form of tensor hypercontraction. Finally, we estimate the
resources required to deploy our algorithms to classically challenging model materials relevant to the
chemistry of lithium nickel oxide battery cathodes within the surface code. We find that even with these
improvements, the quantum runtime of these algorithms is on the order of thousands of days and further
algorithmic improvements are required to make realistic quantum simulation of materials practical.

DOI: 10.1103/PRXQuantum.4.040303

I. INTRODUCTION

Recently, the first quantization quantum algorithms and
constant factor resource estimation analysis for molecular
systems [1,2] have been adapted to materials [3]. While
the first quantization approach using a plane-wave rep-
resentation is attractive due to the smooth convergence
to the continuum limit [4,5] a local basis representation
such as atom-centered basis sets has other advantages.
Similar to the molecular simulation setting, local basis
functions can be advantageous when describing spatially
localized phenomena such as heterogeneous catalysis or
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efficiently describing cusps [6]. Moreover, local bases are
often more compact than plane waves and are thus more
practical for high-accuracy wave function or embedding
based approaches, which are increasingly being applied to
crystalline solids. As a result, it is important to explore
how advances in classical second quantized wave-function
methods can be adopted for use in quantum algorithms [7].

The desire for systematically improvable electronic
structure methods to treat the many examples of strongly
correlated phenomena [8–10] in the condensed phase has
recently driven the application of ab initio wave-function
theories to the periodic setting [11–23]. Standard treat-
ments of symmetry in wave-function theories [24,25] can
be used to exploit the translational symmetry of periodic
systems, thus enabling the application of post-Hartree-
Fock methods to material systems. Despite these advan-
tages, classical ab initio treatment of such problems is
limited due to the large simulation cells needed to con-
verge to the thermodynamic limit. This drawback has
further driven the use of embedding theories [26–31] and
downfolding [32]. Naturally, one may ask if fault-tolerant
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quantum computers can alleviate the computational bur-
den associated with ab initio simulation of solids within
the local basis framework.

In this paper, we describe how to extend molecu-
lar quantum simulation algorithms of second quantiza-
tion Hamiltonians represented in local basis sets to peri-
odic systems using the qubitization framework [33,34].
Though the general structure of the algorithms is largely
unchanged, introducing symmetry—i.e., symmetry adapt-
ing the block encodings—requires nontrivial modifications
to realize an improvement in the asymptotic complexity.
The first steps in this direction were taken in Ref. [35]
using the “sparse” Hamiltonian representation. We pro-
vide an alternative derivation for block encodings using
this representation and introduce symmetry-adapted block
encodings for three other more performant tensor fac-
torizations of the Hamiltonian: single factorization (SF),
double factorization (DF), and tensor hypercontraction
(THC). The result of these developments is orders of mag-
nitude improvement in the quantum resources required
to simulate materials compared to straightforward sparse
approaches presented in Ref. [35]. Incorporating symmetry
into the block encoding of the Hamiltonian requires effi-
ciently taking advantage of the selection rule between irre-
ducible representation labels of the single-particle basis.
Simply adapting the existing algorithms to iterate over the
additional indices does not lead to the optimal scaling and
would not provide a speedup.

For each of the four Hamiltonian representations we
describe the origin of the asymptotic speedup (or lack
thereof in one case), provide compiled algorithms for
constant factor resource estimates, and compare the perfor-
mance to nonsymmetry-adapted block encodings. We note
that the derived symmetry-adapted block encodings apply
to any Abelian point-group symmetry with minor modi-
fications. For SF, sparse, and DF the symmetry-adapted
block encodings provide an asymptotic speedup for walk
operator construction proportional to the square root of
the number of k points used to sample the Brillouin zone.
For THC, there is no asymptotic improvement due to
the linear cost of unary iteration in the block encoding.
Going beyond asymptotic analysis and compiling to total
Toffolis, we find that for DF and THC using symmetry-
adapted block encodings provides no asymptotic speedup
over their nonsymmetry-adapted counterparts due to the
increased number of applications of the walk operator
for fixed precision phase estimation. DF and THC are
sensitive to the numerical compression of the Hamilto-
nian, and thus we expect the number of walk operator
applications can be decreased. Moreover, there are signif-
icant classical advantages to using the symmetry-adapted
block encodings coming from the reduced classical com-
plexity of representing the Hamiltonian as the system
size is increased towards the thermodynamic limit. Apart
from these practical considerations, the incorporation of

symmetry significantly expands the scope of quantum sim-
ulation of materials. Indeed, the understanding of physical
phenomena in materials is intimately related to symmetry
and symmetry breaking. For example, understanding spin-
orbit coupling [36], topological insulators [37], electron-
phonon interactions [38], thermal and electrical conductiv-
ity [39,40], and superconductivity [41] is either impossible
or extremely challenging without incorporating symmetry
labels into the theoretical description. Here we present a
general framework for incorporating symmetry adaptation
into quantum algorithms.

As was the case in the molecular setting [33], the quan-
tum algorithms in this work rely heavily on unary iteration,
(advanced) quantum read-only memory QRO(A)M [42],
and coherent alias sampling [43]. The leading-order gate
complexity for these algorithms mostly comes from the
need to load data from QROAM, which has a complexity
that scales like O(√�) where � is amount of data needed
to specify the Hamiltonian. At a high level, incorporating
symmetry leads to a reduction in the amount of information
required to specify the Hamiltonian by Nk, where Nk is the
number of k points used to sample the Brillouin zone, and
this is the source of the O(√Nk) speedups derived in this
paper. In the nonsymmetry-adapted case the origin of the
highest complexity subroutine is different for every Hamil-
tonian factorization. We consider four representations of
the symmetry-adapted two-electron integral tensor in this
work: one is a seven tensor containing orbital and symme-
try labels, one is a five tensor containing two symmetry
labels, two orbital labels, and an auxilary label, and two
hypercontraction representations. In the first representa-
tion simply iterating over the seven-index representation
of the electron interaction term is sufficient for providing
the

√
Nk improvement. In the five-index representation we

modify the molecular SF algorithm by outputting the irre-
ducible representation label in the outer prepare so that we
can compute the irreducible representation labels for the
operator to be squared on the fly. Without this additional
information output and the modular computation of the
symmetry label the correct asymptotic scaling would not
be achieved. Finally, in the two-tensor hypercontraction
representations we further compress the representation and
also introduce an ancilla work space, which limits the num-
ber of Givens rotations we need to output data for. Further
details are enumerated in each Hamiltonian representation
section of Sec. III.

In parallel with recent studies estimating quantum
resources required to simulate high-value molecular targets
[33,44–46], we estimate the quantum resources required
to simulate an open materials science problem related
to the cathode structure of lithium nickel oxide (LNO)
batteries. The LNO systems are universally observed in
the high-symmetry R3̄m structure, which is at odds with
the predicted Jahn-Teller activity of low-spin trivalent Ni
[47]; more background can be found in Sec. V A. This
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discrepancy combined with the difficulty of synthesizing
pure LNO, the size of the unit cells [48], and poten-
tial strong correlation at the high-symmetry structure [49]
makes the LNO problem an interesting application target
for quantum simulation advantage. This realistic problem
frames the algorithmic improvements articulated in this
paper and the prospects of the quantum advantage given
modern electronic structure methods. We find that the
required resource estimates for simulating a set of bench-
mark systems and the LNO problem before reaching the
thermodynamic limit are already substantial. In fact, the
large simulation cells required to converge these calcula-
tions to the thermodynamic limit is ultimately a significant
hurdle for ab initio simulations.

The layout of the rest of the paper is as follows: Sec.
II describes the atom-centered basis sets and the Hamil-
tonian that we use, Sec. III describes the qubitization
algorithm and the origin of the asymptotic speedup in
constructing walk operators using each of the four Hamil-
tonian representations. Each subsection is dedicated to
a particular Hamiltonian factorization and describes the
qubitization algorithm and how to calculate associated
parameters. Section IV compares all methods and extrap-
olates quantum resources required to simulate a diamond
crystal converged towards the thermodynamic limit, and
Sec. V reports the accuracy and correlation analysis of var-
ious electronic structure methods for LNO while providing
estimates of quantum computing resources and runtimes.
We close with prospects for this class of methods.

II. ELECTRONIC STRUCTURE HAMILTONIAN
OF MATERIALS IN BLOCH ORBITALS

Although plane-wave basis sets are used in most peri-
odic density-functional-theory (DFT) calculations, there is
a long history of local-basis methods as well. The use
of a localized basis set has a number of advantages over
plane waves: (1) 0D (molecular), 1D, 2D, and 3D sys-
tems can be treated on an equal computational footing. (2)
Calculations on low-density systems with large unit cells
can be more efficient [50–52]. (3) Hartree-Fock exchange
can be more efficiently computed in the smaller, local-
orbital basis [51–54]. (4) The local-orbital representations
can lower the computational cost of correlation corrections
with a more compact representation of the virtual space.
(1)–(3) have spurred the development of local-orbital DFT
and Hartree-Fock methods with Gaussian orbitals [51–
53,55] and numerical atomic orbitals [56], while (4) has
been behind recent work to apply correlated electronic
structure theory to periodic solids [11,12,14–18]. In the
following subsection, we describe the symmetry-adapted
periodic sum of Gaussian-type orbitals used in this work.

A. Basis functions and matrix elements

A local basis function, χ̃p , can be adapted to the transla-
tional symmetry of a lattice to form a periodized function

χp ,k(r) =
∑

T

eik·Tχ̃p(r − T), (1)

where T represents a lattice translation vector and k is a
crystal momentum vector lying in the first Brillouin zone.
The lattice momentum k labels an irreducible representa-
tion of the group of translations defined by the translational
symmetry of the material. Functions of this form are easily
verified to be Bloch functions in that

χp ,k(r) = eik·rup ,k(r), (2)

where up ,k(r) has the same periodicity as the lattice.
Orbitals are constructed from a linear combination of the

underlying Bloch orbitals,

φik(r) = N−1/2
k

∑
p

cp ,i(k)χp ,k(r), (3)

where Nk is the total number of k points. The expansion
coefficients, cp ,i(k) are determined from the appropriate
periodic self-consistent field procedure, usually Hartree-
Fock or Kohn-Sham DFT. The resulting orbitals are nor-
mally constrained to be orthogonal by convention and
can serve as a basis for representing the second-quantized
Hamiltonian.

The matrix elements of a one-electron operator,

Tpkp ,qkq =
∫

dr φ∗
pkp
(r)O1φqkq(r) (4)

are nonzero only when kp = kq as long as O1 has the
translational symmetry of the lattice. We can use a sim-
ilar strategy to derive the structure of the two-electron
integrals, which are given by

Vpkp ,qkq,rkr,sks =
∫ ∫

dr1 dr2 φ
∗
pkp
(r1)φqkq(r1)O2φ

∗
rkr

× (r2)φsks(r2). (5)

The translational symmetry of the Bloch orbitals implies
the two-electron operator O2 matrix elements can only
be nonzero when

(
kp + kr − kq − ks

) = G where G is a
reciprocal lattice vector. We note that this expression for
nonzero matrix elements by symmetry is a specific instance
of the more general expression. More generally, given a
group g with its irreducible representations labeled by {�i},
the two-electron integral is nonzero by symmetry when-
ever �p ⊗ �q ⊗ �r ⊗ �s contains the complete symmetric
representation [24]. For periodic systems g is the set of
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translational symmetries. Despite this sparsity, the evalua-
tion of the nonzero matrix elements for all basis functions
is often a major computational bottleneck whenever local
basis sets are used.

Local orbitals provide a more compact representation
than plane waves, so fewer basis functions are needed.
Unfortunately, there are O(N 3

k N 4) generally nonzero two-
electron matrix elements for Nk k points and N basis func-
tions in the primitive cell. For very large calculations local-
ity can be exploited to yield asymptotically linear-scaling
DFT methods [57,58]. Linear-scaling Hartree-Fock is also
possible for insulators [59]. This linear regime is almost
never reached in practice, and it is usually advantageous to
instead reduce the cost by tensor factorization.

Although our discussion has been thus far general with
regard to the choice of local basis functions, Gaussian basis
functions are by far the most popular choice in molecu-
lar calculations, and crystalline Gaussian orbitals are also
a popular choice for periodic calculations. This popular-
ity is due to the existence of analytic formulas, which
allow for fast, numerically exact evaluation of the matrix
elements of most common operators. Despite the exis-
tence of efficient numerical techniques, the large number
of two-electron integrals that must be evaluated in periodic
calculations requires a more efficient procedure. Tradition-
ally, this is accomplished with the Gaussian plane-wave
(GPW) method [50,60], which requires only storage of
O(N 2

k N 2npw) integrals where npw is the number of plane
waves used to evaluate the integrals. In molecular cal-
culations, the most common decomposition is called the
resolution of the identity (RI) or sometimes density fit-
ting (DF) [61–64]. This procedure requires the storage of
O(N 2

k N 2naux) integrals where naux is the size of the aux-
iliary basis set. Both the GPW and the RI method can be
considered as density-fitting approaches where the former
uses a plane-wave fitting basis and the latter uses a Gaus-
sian fitting basis. For this reason, the RI approach is often
called “Gaussian density fitting” (GDF) in the context of
periodic calculations [65–69].

The two-electron integral tensor can be further factor-
ized into a product of five two-index tensors as was done in
the tensor hypercontraction (THC) method of Martinez and
coworkers [70–72]. Factorizations of this form are most
useful for correlated methods where they have the poten-
tial to lower the computational scaling. In this work we
present a translational symmetry-adapted form of the ten-
sor hypercontraction for the two-electron integral tensors
of periodic systems.

B. The second-quantized Hamiltonian

We can express the second-quantized electronic struc-
ture Hamiltonian as

H = H1 + H2, (6)

H1 =
∑
σ

∑
k

∑
pq

hpk,qka†
pkσaqkσ , (7)

hpk,qk = Tpk,qk − 1
2

∑
r,Q

Vpk,rQ,rQ,qk, (8)

H2 = 1
2

∑
σ ,τ

∑
Q,k,k′

∑
pqrs

Vpk,q(k�Q),r(k′�Q),sk′a†
pkσ

aq(k�Q)σa†
r(k′�Q)τask′τ . (9)

We first introduce summation limits for each symbol as
we will commonly use short-hand summation formulas to
indicate multiple sums. For each variable {p , q, r, s}, sum-
mation is performed over the range [0, N/2 − 1] indexing
the spatial orbital or band, {Q, k, k′} summation is per-
formed over the Brillouin zone (BZ) at a set number of
k points of which there are Nk, and {σ , τ } are electron
spin variables and summed over {↑, ↓}. Nonmodular dif-
ferences of k, Q, and k′ span twice the Brillouin zone.
Because V needs to be indexed by values in the Brillouin
zone, we use modular subtraction indicated by �. That is,
if the number of points in each dimension is Nx, Ny , Nz, we
perform subtraction modulo Nx, Ny , Nz in each direction,
respectively.

The Hamiltonian is generally complex Hermitian with
fourfold symmetry of the two-electron integrals. We note
that the following generic complex Coulomb integral sym-
metries are present

Vpkp ,qkq,rkr,sks = Vrkr,sks,pkp ,qkq = V∗
qkq,pkp ,sks,rkr

= V∗
sks,rkr,qkq,pkp

(10)

from integration index relabeling and complex conjuga-
tion. In the following sections, we demonstrate how the
sparse structure of the two-electron integral tensor affects
the scaling of block encoding the Hamiltonian for imple-
mentation of qubitized quantum walk oracles. The cost of
qubitization is greatly affected by the representational free-
dom of the underlying Hamiltonian expressed as a linear
combination of unitaries. We demonstrate how to construct
the sparse, single-factorization (SF), double-factorization
(DF), and tensor-hypercontraction (THC) integral decom-
positions of Bloch orbital Hamiltonians and analyze the
cost of such simulations for a variety of materials.

For all algorithms, we will make a comparison to the
case of a �-point calculation on a supercell composed
of Nk primitive cells in the geometry described by the
k-point sampling. This allows us to directly observe the
proposed speedup due to symmetry adapting. To demon-
strate the scaling of symmetry-adapted block encoding,
we estimate quantum simulation resource requirements for
the series of systems listed in Table I. Range-separated
density fitting [69] is used to construct integrals with
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TABLE I. Crystal structures lattice parameters used for the systems studied in this work. The lattice parameters were chosen to be at
or near their experimental equilibrium values.

System Structure Atoms in cell Lattice parameters Spin orbitals cc-pVDZ Spin orbitals cc-pVTZ

C diamond 2 3.567 [75] 52 116
Si diamond 2 5.43 [75] 52 116
BN zinc blende 2 3.616 [75] 52 116
LiCl rocksalt 2 5.106 [76] 52 98
AlN wurzite 4 (a) 3.11 (c) 4.981 [75] 104 220
Li bcc 2 3.51 [77] 52 80
Al fcc 2 4.0479 [78] 52 104

Dunning-type correlation-consistent basis sets [73] and the
Goedecker-Teter-Hutter (GTH) family of pseudopotentials
for Hartree-Fock [74]. For each Hamiltonian, cutoffs for
the factorization are selected so that the Møller-Plesset
second-order perturbation theory (MP2) error in the total
energy is below one millihartree per cell or formula
unit depending on the system. While prior works used
coupled-cluster theory, MP2 is used here for computational
efficiency.

III. QUBITIZATION OF MATERIALS
HAMILTONIANS

Similar to fault-tolerant resource estimates for molec-
ular systems represented in second quantization [2,33,45,
46,79], we compare the number of logical qubits and num-
ber of Toffoli gates required to implement phase estimation
on unitaries that use block encoding [80] and qubitiza-
tion [34] to encode the Hamiltonian spectrum in a Szegedy
walk operator [81] for various linear combination of uni-
tary (LCU) [82] representations of the Hamiltonian. All
LCUs represent the Hamiltonian as

H =
L∑
�=1

ω�U�, (11)

where ω� ∈ R, ω� ≥ 0, and U� is a unitary operator. One
can then construct the operators

PREPARE|0〉⊗ log(L) �→
L∑
�=1

√
ωl

λ
|�〉 ≡ |L〉, (12)

SELECT|�〉|ψ〉 �→ |�〉U�|ψ〉, (13)

λ =
L∑
�=1

ω�, (14)

where |ψ〉 is the system register, and |�〉 is an ancilla
register used to index each term in the LCU. The walk
operator constructed from SELECT and a reflection operator
built from PREPARE, R = 2|L〉〈L| ⊗ 1 − 1, has eigenval-
ues proportional e±i arccos En/λ where En is an eigenvalue of
the Hamiltonian in Eq. (11).

It was shown in Refs. [2] and [33] when ensuring that
SELECT is self-inverse, only the reflection operator R needs
to be controlled on the ancilla for phase estimation and not
SELECT. Therefore, the Toffoli cost of phase estimating the
walk operator scales as

⌈
πλ

2εPEA

⌉ (
CS + CP + CP† + log(L)

)
, (15)

where CS is the cost for implementing the SELECT oracle
and CP is the cost for implementing the PREPARE oracle,
CP† is the cost for the inverse PREPARE oracle, and εPEA is
the target precision for phase estimation. Thus the main
costs for sampling from the eigenspectrum of a second
quantized operator are the costs to implement SELECT, PRE-
PARE, and PREPARE†. These costs need to be multiplied by a
factor proportional to λ/εPEA for the number of walk steps
needed for phase estimation. Note that when computing
intensive quantities, such as the energy per cell, the λ factor
is scaled by 1/Nk.

The particular choice of LCU changes all of these costs.
Prior works have investigated the resource requirements
for simulating molecules with four different LCUs. While
all these methods can be used without modification in
supercell calculations at the � point, the construction of
molecular SELECT and PREPARE do not exploit any symme-
tries and are not applicable away from the � point—e.g.,
at the Baldereschi point [83].

The leading costs in constructing SELECT and PREPARE
for second-quantized Hamiltonians is the circuit primi-
tive that functions similar to a read-only-memory (ROM)
called QROM. The QROM primitive is a gadget that takes
a memory address, potentially in superposition, and out-
puts data, also potentially in superposition. There are cur-
rently two variations of QROM that have different costs;
traditional QROM that has linear Toffoli complexity when
outputting L items with any amount of data associated with
each item, and advanced QROM (called QROAM) with
reduced non-Clifford complexity [84]. It uses a select-swap
circuit construction with Toffoli cost

⌈
L
k

⌉
+ m(k − 1), (16)
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TABLE II. Generically, qubitized quantum walks scale as O(√�) in space and O(λ√�/ε) in time where � is the amount of
information required to specify the Hamiltonian within a particular representation. For double factorization,  is the sum of the
average rank of the second factorization, which is expected to scale as O(NkN ), which is the number of orbitals in the primitive cell
or bands. ̃ is the average rank of the second factorization in the supercell calculation and is also expected to scale as O(NkN ). The
tilde on O is used to account for logarithmic factors, and can include variables not explicitly given in the scaling. λ for each LCU is
different and is denoted as a subscript indicating the LCU type and if it is λ for the supercell version.

Representation Qubits Toffoli complexity SC qubits SC Toffoli

sparse Õ(N 3/2
k N 2) Õ(N 3/2

k N 2λsparse/ε) Õ(N 2
k N 2) Õ(N 2

k N 2λsparse,SC/ε)

SF Õ(NkN 3/2) Õ(NkN 3/2λSF/ε) Õ(N 3/2
k N 3/2) Õ(N 3/2

k N 3/2λSF,SC/ε)

DF Õ(√NkN
√
) Õ(√NkN

√
λDF/ε) Õ(NkN

√
̃) Õ(NkN

√
̃λDF,SC/ε)

THC Õ(NkN ) Õ(NkNλTHC/ε) Õ(NkN ) Õ(NkNλTHC,SC/ε)

where k is a power of 2 for outputting L items of data where
each item of data is m bits long. The notation k here for
an integer should not be confused with k for the crystal
momentum vector. It needs m(k − 1) ancillas, so increases
the logical ancilla count in exchange for reduced Tof-
foli complexity. Given that L � m in the case of periodic
calculations, we can minimize this function by selecting
k ≈ √

L/m and thus the Toffoli and ancilla cost generically
go as O(√Lm). It is also possible to adjust k to reduce
the ancilla count while increasing the Toffoli count. Hav-
ing QROAM output the minimal amount of information
to represent the Hamiltonian is at the core of the

√
Nk

improvements we derive in many of the block encodings.
We will also demonstrate that for all LCUs the lowest scal-
ing can be linear in the Bloch orbital basis size O(NkN )
due to the requirement to perform unary iteration at least
once over the entire basis.

Another primitive that becomes the dominant cost in
constructing symmetry-adapted SELECT is the multiplexed-
controlled swap between two registers. The controlled
swap between two registers uses unary iteration [2] on L
items to swap M elements between two registers at the cost
of O(LM ) Toffolis. For simulating materials, this prim-
itive is commonly encountered when swapping all band
indices with a particular irreducible representation label, or
k point, into a working register at a cost of O(NkN ). The
necessity of coherently moving data thus puts a limit on the
total savings one can achieve by leveraging Abelian sym-
metries. The cost of moving data must be weighed against
the benefits, which we describe in each section below. In
Table II we summarize the space complexity, in terms of
logical qubits, and time complexity, in terms of Toffolis
of the four LCUs when considering translational symme-
try on the primitive cell and without (denoted as SC for
supercell).

For the sparse LCU, exploiting primitive cell transla-
tional symmetry reduces the amount of symmetry unique
information in the Hamiltonian by a factor of Nk, which
translates to a reduction of

√
Nk savings in Toffoli com-

plexity and ancilla complexity. For sparse PREPARE, the
square-root savings originates from the QROAM cost of

outputting “alt” and “keep” values for the coherent alias
sampling component of the state preparation. For sparse
SELECT controlled application of all Pauli terms has lin-
ear cost in the basis size O(NkN ) and is not the dominant
cost. The supercell calculation does not exploit the k-point
symmetry of the Hamiltonian matrix elements and thus has
worse scaling.

The single factorization LCU leverages the fact that the
Coulomb integral tensor is positive semidefinite and can be
written in a quadratic form. For molecular systems with-
out symmetry—i.e., C1 symmetry, the factorization results
in a three tensor where there are two orbital indices and
one auxiliary index that scales as the number of orbitals in
the system [85]. For simulations where orbitals now have
point-group symmetry labels, such as k points, each three-
tensor factor can now be arranged into a five-tensor; two
symmetry labels (irreducible representation labels), two-
band labels (orbital labels), and one auxiliary index, which
still scales with the number of bands due to density fitting
of the cell periodic part of the density [69,86], i.e.,

(pq|rs) =
∑

n

Lpq,nL∗
sr,n →︸︷︷︸

symmetry

∑
n

Lkp kqpqnL∗
kskrsrn. (17)

Thus the origin of the
√

Nk improvement for the symmetry-
adapted block encoding with a single-factorization LCU
lies in the fact that the auxiliary index has Nk lower scaling
in comparison to a supercell variation where the Cholesky
factorization or density fitting is performed on the entire
supercell two-electron integral tensor. The single factor-
ization algorithm is also dominated by the QROM cost
of PREPARE—of which there are two state preparations.
The inner-state preparation [33] for the k-point symmetry-
adapted algorithm requires outputting O(N 2

k N 3) to be used
in the state preparation leading to O(NkN 3/2) Toffoli and
qubit complexity. Contrasting this to the supercell calcula-
tion, we see a

√
Nk savings due to the fact that the inner

state preparation requires only N 2
k information and not N 3

k
information. We elaborate on this point further in Sec.
III B. SELECT is implemented in a similar fashion to sparse,
scaling as O(NkN ), and is not a dominant cost.
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The double factorization LCU represents the Hamilto-
nian in a series of nonorthogonal bases and leverages that
a linear combination of ladder operators can be constructed
by a similarity transform of a single fermionic ladder
operator, or Majorana operator, by a unitary generated
by a quadratic fermionic Hamiltonian. In the molecular
case, the dominant cost for these algorithms is the QROM
to output the rotations for the similarity transform and
implementing the basis rotations with the programmable
gate-array circuit primitive [33,45] for SELECT. When tak-
ing advantage of primitive cell symmetry we reduce the
amount of data needed to be output by QROM by Nk,
which results in a

√
Nk savings in the Toffoli complex-

ity. Because we are using advanced QROM, this output
size advantage is also observed in the logical qubit require-
ments. As mentioned previously, computing the total num-
ber of Toffolis requires scaling the walk operator cost by
a linear function of λ. We find that using a canonical
orbital basis set, the total Toffoli cost is higher than the
commensurate supercell total Toffoli cost because λ for
the symmetry-adapted case increases. The origin of the
increase is related to a reduced variational freedom when
selecting nonorthogonal bases and is further discussed in
Sec. III C.

Finally, in the THC LCU there is no asymptotic speedup
because the molecular algorithm had the lowest possible
scaling for second quantized algorithms. This stems from
the fact that even iterating over the basis once with unary
iteration to apply an operator indexed by basis element has
a Toffoli cost of O(NkN ). As we will discuss in Sec. III D
our symmetry-adapted algorithm offers other benefits such
as enabling the classical precomputation of the THC fac-
tors by exploiting symmetry and lowering the number of
controlled rotations.

We now describe the Hamiltonian factorization used
in each LCU, the calculation of λ associated with each
Hamiltonian factorization, and outline the construction of
the qubitization oracles. Detailed compilations are pro-
vided for each LCU in the Appendices. In each section
we provide numerical evidence that the symmetry-adapted
oracles have the reported scaling by plotting the Tof-
foli requirements to synthesize SELECT + PREPARE +
PREPARE−1 compared against the number of k points sam-
pled (Nk).

A. The sparse Hamiltonian representation

In the “sparse” method, the Hamiltonian described in
Eq. (8) and Eq. (9) is directly translated to Pauli oper-
ators, which form the LCU. Under the Jordan-Wigner
transformation, we take

apkσ �→ �Z(Xpkσ + iYpkσ )/2, (18)

a†
pkσ �→ �Z(Xpkσ − iYpkσ )/2, (19)

where the notation �Z is being used to indicate that there is
a string of Z operators on qubits up to (not including) that
on which Xpkσ or Ypkσ acts upon. This requires a choice of
ordering for the qubits indexed by p , k, and σ . We need
only apply the string of Z operators for the same value
of σ , because we always have matching annihilation and
creation operators for the same spin σ (so any Z gates on
the other spin would cancel). We also adopt a convention
that the ordering of qubits for the Jordan-Wigner transfor-
mation takes k as the more significant bits, with qubits
for all p with a given k grouped together. For most of
the discussion, we will not need to explicitly consider this
ordering.

With the Jordan-Wigner transform the one-body compo-
nent of the Hamiltonian takes on the form

H1 = i
4

∑
σ∈{↑,↓}

∑
k

∑
p ,q=1

Re(hpk,qk)

× {�ZXpkσ �ZYqkσ − �ZYpkσ �ZXqkσ
}

+ i
4

∑
σ∈{↑,↓}

∑
k

∑
p ,q=1

Im(hpk,qk)

× {�ZXpkσ �ZXqkσ + �ZYpkσ �ZYqkσ
}+

∑
k

∑
p=1

hpk,pk1.

(20)

We provide the full derivation for this expression in
Appendix A 1. To derive the two-body operator LCU we
use only complex conjugation symmetry in contrast to the
molecular derivation that used eightfold symmetry. The
two-body Hamiltonian can be written as

H2 = 1
4

∑
σ ,τ∈{↑,↓}

Nk∑
Q,k,k′

N/2∑
p ,q,r,s=1

[
Vpk,q(k�Q),r(k′�Q),sk′a†

pkσ

aq(k�Q)σa†
r(k′�Q)τask′τ + V∗

pk,q(k�Q),r(k′�Q),sk′

a†
q(k�Q)σapkσa†

sk′τar(k′�Q)τ

]
, (21)

where � indicates modular subtraction as defined above.
In the case where Q �= 0 or p �= q and r �= s, we can move
the creation and annihilation operators using the fermionic
anticommutation relations to give the term on the second
line as

V∗
pk,q(k�Q),r(k′�Q),sk′apkσa†

q(k�Q)σar(k′�Q)τa
†
sk′τ . (22)

The Jordan-Wigner representation then gives the expres-
sion in square brackets in Eq. (21) as
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1
16
{
Vpk,q(k�Q),r(k′�Q),sk′[�Z(Xpkσ − iYpkσ )][�Z(Xq(k�Q)σ + iYq(k�Q)σ )][�Z(Xr(k′�Q)τ − iYr(k′�Q)τ )]

[�Z(Xsk′τ + iYsk′τ )] + V∗
pk,q(k�Q),r(k′�Q),sk′[�Z(Xpkσ + iYpkσ )]

[�Z(Xq(k�Q)σ − iYq(k�Q)σ )][�Z(Xr(k′�Q)τ + iYr(k′�Q)τ )][�Z(Xsk′τ − iYsk′τ )]
}

. (23)

Then we can separate Eq. (23) into real and imaginary components as

1
8
{
Re(Vpk,q(k�Q),r(k′�Q),sk′)[�ZXpkσ �ZXq(k�Q)σ + �ZYp ,k,σ �ZYq,k�Q,σ )][�ZXr(k′�Q)τ �ZXsk′τ + �ZYr(k′�Q)τ �ZYsk′τ ]

− Re(Vpk,q(k�Q),r(k′�Q),sk′)[�ZYp ,k,σ �ZXq(k�Q)σ − �ZXpkσ �ZYq(k�Q)σ )][�ZYr(k′�Q)τ �ZXsk′τ − �ZXr(k′�Q)τ �ZYsk′τ ]

+ Im(Vpk,q(k�Q),r(k′�Q),sk′)[�ZYpkσ �ZXq(k�Q)σ − �ZXpkσ �ZYq(k�Q)σ )][�ZXr(k′�Q)τ �ZXsk′τ + �ZYr(k′�Q)τ �ZYsk′τ ]

+Im(Vpk,q(k�Q),r(k′�Q),sk′)[�ZXpkσ �ZXq(k�Q)σ + �ZYpkσ �ZYq(k�Q)σ )][�ZYr(k′�Q)τ �ZXsk′τ − �ZXr(k′�Q)τ �ZYsk′τ ]
}

. (24)

In accounting for cases where Q = 0 with p = q or
r = s, the same expression is obtained, but there are also
one-body terms obtained. These result in a total one-body
operator

H̃1 = H1 +
∑

σ∈{↑,↓}

Nk∑
k

N/2∑
p ,q=1

(N/2∑
r=1

Nk∑
k′

Vpk,qk,rk′,rk′

)
a†

pkσaqkσ .

(25)

A full derivation of this expression can be found in
Appendix A 2.

Using the representation of the one-body and two-
body operators as Pauli operators, we have a linear com-
bination of unitaries form. The λ associated with this
LCU is

λ = λH̃1
+ λH2 (26)

λH̃1
=
∑

k

∑
pq

⎧⎨
⎩
∣∣∣∣∣∣Re[hpk,qk] + Re

⎡
⎣∑

k′,r
Vpk,qk,rk′,rk′

⎤
⎦
∣∣∣∣∣∣+
∣∣∣∣∣∣Im[hpk,qk] + Im

⎡
⎣∑

k′,r
Vpk,qk,rk′,rk′

⎤
⎦
∣∣∣∣∣∣

⎫⎬
⎭ (27)

λH2 =
∑

k,k′,Q

∑
pqrs

{∣∣Re(Vpk,q(k�Q),r(k′�Q),sk′)
∣∣+ ∣∣Im(Vpk,q(k�Q),r(k′�Q),sk′)

∣∣} . (28)

In determining λH̃1
there is a factor of 2 due to the sum-

mation over spin σ and then a factor of 2 accounting for the
fact that each expression in braces in Eq. (20) is the sum
of two different Pauli strings. As a result these factors have
canceled the original 1/4 prefactor. In the expression for
λH̃1

we have also summed over the native one-body terms
and the contributions from the two-body terms. For λH2 we
had a factor of 1/8 in Eq. (24), which is multiplied by the
factor of 1/4 in Eq. (21). The two sums over spin σ and
τ give a factor of 4. Then for each of the real and imag-
inary parts in Eq. (24) there were sums over eight Pauli
strings, giving a factor of 8. As a result these factors have
also canceled in the expression for λH2 . Note that there is
a factor of 2 between this expression and that in Ref. [33],
even when we just consider V that is real. The reason is that

in Ref. [33] there was eightfold symmetry, where here we
have only fourfold symmetry. That is, here we have sym-
metry when simultaneously swapping the pairs p , q and
r, s, whereas in Ref. [33] there are two symmetries from
swapping p , q or r, s on their own. That meant it was possi-
ble to express the Hamiltonian as in Eq. (A2) of that work,
then in Eq. (A3) of that work the Jordan-Wigner mapping
was used in the form

a†
pσaqσ + a†

qσapσ �→ Xpσ �ZXqσ + Ypσ �ZYqσ

2
. (29)

In this mapping there has been a cancelation of half the
Pauli strings, which results in λ being reduced by a factor
of 2. Here we have only fourfold symmetry, so the value
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of λ for the two-body term is a factor of 2 larger than that
in Ref. [33].

In order to implement the Hamiltonian as a linear com-
bination of unitaries, the first step is to perform a state
preparation on Q, k, k′, p , q, r, s. This state preparation cor-
responds to the sum, then we will perform controlled
operations for each of the operators in Eq. (24). The state
preparation is applied using coherent alias sampling as
described in Ref. [79]. Because there are multiple variables
that the state needs to be prepared over, it is convenient
to use the QROM to output “ind” values as well as “alt”
and “keep” values. Both “ind” and “alt” give values of all
variables Q, k, k′, p , q, r, s. Then an inequality test is per-
formed between keep and an equal superposition state, and
the result is used to control a swap between ind and alt.

There are both real and imaginary values of
Vpk,q(k�Q),r(k′�Q),sk′ , so we also include a qubit to distin-
guish between these values in the state preparation. We
also do not prepare all values of {pk, q(k � Q), r(k′ �
Q), sk′}. There is symmetry in swapping pk, q(k � Q)
with r(k′ � Q), sk′, or simultaneously pk with q(k � Q)
and r(k′ � Q) with sk′. Only those values of {pk, q(k �
Q), r(k′ � Q), sk′} that give unique values of V will be
prepared. Then the full range can be obtained by using
qubits to control these swaps. There is also a complex con-
jugate needed in the symmetry, which can be applied with
a Clifford gate.

The dominant complexity in the preparation comes from
the QROM. The number of items of data is O(N 3

k N 4), and
by using the advanced form of QROM the complexity can
be made approximately the square root of the total amount
of data (number of items of data times the size of each).
The size of each item of data is logarithmic in Nk and N
as well as the allowable error. Therefore, the scaling of the
complexity can be given ignoring these logarithmic parts
as Õ(N 3/2

k N 2).
To describe the controlled operations needed in order

to implement the operation as in Eq. (24), we need to
account for the fact that there are two lines for each of
the real and imaginary components of V. In addition, for
each line in Eq. (24) there is a product of two factors, each
of which is a sum of two terms. To describe the linear
combination of unitaries we therefore introduce three more
qubits.

(a) The first is used to distinguish between the two lines
for each of the real and imaginary parts in Eq. (24).

(b) The second distinguishes between the two terms in
the first set of square brackets.

(c) The third distinguishes between the two terms in the
second set of square brackets.

When implementing the controlled operations, we perform
four operations of the form of �ZX or �ZY, with X or Y
being applied on target qubits indexed by pk, q(k � Q)

and so forth. These Pauli strings are applied using the
approach of Ref. [33], but in this case there is the addi-
tional complication that we need to select between X or
Y. This selection can be performed simply by performing
the controlled Pauli string twice, once for X and once for
Y. The complexity is proportional to NkN , which is triv-
ial compared to the complexity of the state preparation.
The choice of whether X or Y is performed depends on
the value of the three qubits selecting between the terms,
as well as the qubit selecting between the real and imag-
inary parts. The processing of these qubits to determine
the appropriate choice of X or Y can be performed with a
trivial number of gates.

The last part to consider is how the implementation of
the one-body part of the Hamiltonian is integrated with the
implementation of the two-body part. In the state prepara-
tion, amplitudes corresponding to the real and imaginary
parts of hpk,qk will be produced, as well as a qubit select-
ing between the one- and two-body parts. That qubit will
be used to also select between the choice of X and Y. For
the one-body part there is a product of only two of the
Pauli strings, so the other two will not be applied at all for
the one-body part. See Appendix A 3 for a more detailed
description of the implementation.

In Fig. 1 we plot the Toffoli complexity to imple-
ment SELECT + PREPARE + PREPARE−1 for simulating the
aforementioned sample systems using a symmetry-adapted
SELECT and PREPARE at different Monkhorst-Pack grids
and different number of bands (cc-pVDZ and cc-pVTZ).
We compare the symmetry-adapted calculations to super-
cell calculations using the same SELECT and PREPARE. The
supercell calculations do not explicitly take into account
the symmetry of the primitive cell in the full simulation
cell. To demonstrate the symmetry-adapted Hartree-Fock
orbitals do not appreciably change the overall scaling with
respect to a supercell calculation we plot the total λ for
the supercell calculation (which reruns Hartree-Fock on
the supercell) and the symmetry-adpated version.

Although Fig. 1 indicates some computational advan-
tage for the symmetry-adapted case the expected

√
Nk

improvement over the supercell case is not easily observed.
The cost of the sparse method largely depends on the
number of nonzero elements of V, which is generically
expected to go as O(N 3

k N 4) for the symmetry-adapted
case and O(N 4

k N 4) for the supercell case. The scaling
ultimately depends on the number of nonzero elements
in each block of integrals (indexed by three-momentum
indices), which we expect to be independent of super-
cell size Nk. For Diamond we plot this dependence in
Fig. 2 and demonstrate that convergence is slow and there
is a strong Nk dependence in the number of nonzero
elements in each two-electron integral block. This depen-
dence makes observing the improvement in Toffoli cost
for symmetry-adapted oracles difficult in the low Nk
regime.
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(a) (b)

FIG. 1. (a) Sparse Toffoli step complexity versus the number of k points for systems in Table I using the cc-pVDZ and cc-pVTZ
basis set �-centered Monkhorst-Pack grids of size [1, 1, 1] to [3, 3, 3]. Each point is a single system described at a particular basis
set and k mesh where the threshold for zeroing each nonzero two-electron integral coefficient is determined by MP2 as described
earlier. The scaling for implementing the block encoding is shown in the legend. To isolate the Nk scaling behavior we divide the
Toffoli step complexity by the square of the number of basis functions (N 2). For supercell we expect a scaling going as O(N 2

k ) and for
symmetry-adapted block encodings we expect a scaling going as O(N 1.5

k ). The ideal symmetry-adapted scaling is not reached due to
finite-size effects, which are further discussed in Fig. 2. (b) Total λ for the symmetry-adapted version (denoted UC) and the supercell
calculation without explicit primitive cell symmetry (denoted SC) demonstrating no deterioration of λ by symmetry adapting. Similar
to (a) all points are a particular system from the benchmark set in a fixed basis and k mesh.

B. The single-factorization Hamiltonian representation

For the “single-factorization” method, the Cholesky
decomposition of the two-electron integral tensor can be
applied iteratively or the factorized forms can be directly
recovered from a density fitted representation of the atomic

FIG. 2. Nk dependence on the number of nonzero elements in
each two-electron integral block indexed by irrep. labels for dia-
mond in a single-ζ -valence basis with a k mesh shifted to (1/8,
1/8, 1/8) of the simulation cell. In the thermodynamic limit this
value should be independent of Nk and thus both supercell (SC)
and symmetry-adapted (UC) should have no correlation with
Nk–i.e., a slope of zero. The Nk dependence for small Nk makes it
difficult to observe the asymptotic improvements from symmetry
adapting the sparse qubitization oracles.

orbital integral. The quadratic representation of the two-
electron integral tensor is

Vpkp ,qkq,rkr,sks =
∑

n

Lpkp qkq,nL∗
sksrkr,n, (30)

where kp + kr = kq + ks modulo a reciprocal lattice vec-
tor G, or kp − kq − (ks − kr) = G. We can identify kp −
kq = Q + G = ks − kr. Thus the two-body interaction
operator can be written as

Ĥ ′
2 = 1

2

Nk∑
Q

M∑
n

⎛
⎝ ∑
σ∈{↑,↓}

Nk∑
k

N/2∑
pq

Lpkq(k�Q),na†
pkσaq(k�Q)σ

⎞
⎠

×
⎛
⎝ ∑
τ∈{↑,↓}

Nk∑
k′

N/2∑
rs

L∗
sk′r(k′�Q),na†

r(k′�Q)τask′τ

⎞
⎠ .

(31)

Due to the reduced symmetry of the complex valued two-
electron integral tensor we take additional steps to form
Hermitian operators, which can be expressed as Pauli oper-
ators under the Jordan-Wigner transform. We express each
one-body operator in the product of particle-conserving
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one-body operators forming the two-electron operator as

ρ̂n(Q) =
⎛
⎝ ∑
σ∈{↑,↓}

Nk∑
k

N/2∑
pq

Lpkq(k�Q),na†
pkσaq(k�Q)σ

⎞
⎠ ,

ρ̂†
n(Q) =

⎛
⎝ ∑
σ∈{↑,↓}

Nk∑
k

N/2∑
pq

L∗
pkq(k�Q),na†

q(k�Q)σapkσ

⎞
⎠ .

(32)

We now take a linear combination of ρ̂n(Q) to form Her-
mitian operators and represent our two-electron integral
operator as a sum of squares of Hermitian operators that
are amenable to the approach for the qubitization of one-
body sparse operators via a linear combination of unitaries.
These operators are denoted Ân(Q) and B̂n(Q) and are

defined as

Ân(Q) = 1
2
(ρ̂n(Q)+ ρ̂†

n(Q)), (33)

B̂n(Q) = i
2
(ρ̂n(Q)− ρ̂†

n(Q)), (34)

to give

Ĥ ′
2 = 1

2

Nk∑
Q

M∑
n

(
Â2

n(Q)+ B̂2
n(Q)

)
. (35)

We have taken advantage of the translational symmetry by
performing the sum over Q outside the squares of Â and
B̂, which reduces the amount of information needed in the
representation. In the case Q �= 0 we can write Ân as

Ân(Q �= 0) = 1
2

∑
σ∈{↑,↓}

Nk∑
k

N/2∑
pq

(
Lpkq(k�Q),na†

pkσaq(k�Q)σ + L∗
pkq(k�Q),na†

q(k�Q)σapkσ

)

= 1
2

∑
σ∈{↑,↓}

Nk∑
k

N/2∑
pq

Re[Lpkq(k�Q),n]
(

a†
pkσaq(k�Q)σ + a†

q(k�Q)σapkσ

)

+ i
2

∑
σ∈{↑,↓}

Nk∑
k

N/2∑
pq

Im[Lpkq(k�Q),n]
(

a†
pkσaq(k�Q)σ − a†

q(k�Q)σapkσ

)
. (36)

Applying the Jordan-Wigner representation then gives

Ân(Q �= 0) =
∑

σ∈{↑,↓}

Nk∑
k

N/2∑
pq

(
iRe[Lpkq(k�Q),n]

4
(�ZXpkσ �ZYq(k�Q)σ − �ZYpkσ �ZXq(k�Q)σ

)

+ iIm[Lpkq(k�Q),n]
4

(�ZXpkσ �ZXq(k�Q)σ + �ZYpkσ �ZYq(k�Q)σ
))

. (37)

The same reasoning can be performed for B̂n(Q �= 0), which gives the plus and minus signs between a†
pkσaq(k�Q)σ

and a†
q(k�Q)σapk in Eq. (36) reversed, so the roles of the real and imaginary parts are reversed. As a result we obtain

B̂n(Q �= 0) =
∑

σ∈{↑,↓}

Nk∑
k

N/2∑
pq

(
iIm[Lpkq(k�Q),n]

4
(�ZXpkσ �ZYq(k�Q)σ − �ZYpkσ �ZXq(k�Q)σ

)

+ iRe[Lpkq(k�Q),n]
4

(�ZXpkσ �ZXq(k�Q)σ + �ZYpkσ �ZYq(k�Q)σ
))

. (38)

Accounting for the cases with Q = 0, we may use the same expressions with an extra identity, which yields a one-body
correction when squaring. We show in Appendix B 1 that this results in the total one-body operator

H̃1 =
∑

σ∈{↑,↓}

Nk∑
k

N/2∑
p ,q=1

(
hpk,qk +

N/2∑
r=1

Nk∑
k′

Vpk,qk,rk′,rk′

)
a†

pkσaqkσ (39)
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as before. Therefore, the associated λ is again λH̃1
as

given in Eq. (26). The λ for the two-body term is then

λV = 1
2

∑
Q

M∑
n

⎛
⎝∑

k,pq

(|Re[Lpkq(k�Q),n]|

+ |Im[Lpkq(k�Q),n]|)
)2

. (40)

This expression can be obtained by first summing the abso-
lute values of the weights in the linear combination of
unitaries for Â and B̂ to give

∑
k,pq

(|Re[Lpkq(k�Q),n]| + |Im[Lpkq(k�Q),n]|). (41)

This is obtained by noting that the sum over the spin gives
a factor of 2, and there are two unitary operators for each
of the real and imaginary parts; together these cancel the
factor of 4. Then this expression is squared for each of Â
and B̂, and there is a sum over Q and n in Eq. (35). A
further factor of 1/2 is obtained because we use amplitude
amplification on each operator as described in Ref. [33],
thus giving our expression for λV.

Next we describe the method to block encode the Hamil-
tonian in this single-factorized representation. The key
idea is to perform a state preparation over Q and n, then
block encode the squares of Ân(Q) and B̂n(Q) using a sin-
gle step of oblivious amplitude amplification (which saves
a factor of 2 for the value of λ). That is, we perform
block encodings of Ân(Q) and B̂n(Q), reflect on an ancilla
register, then apply the block encodings again.

For the initial state preparation on Q, n, the number of
items of data is MNk + 1, where the +1 is for the one-
body part of the Hamiltonian. This state preparation is via
coherent alias sampling, so the dominant cost is from the
QROM needed to output ind and alt values. That has com-
plexity scaling as Õ(√MNk), where the tilde accounts for
the size of the items of data.

For both Ân(Q) and B̂n(Q) we have weightings accord-
ing to the real and imaginary parts of Lpkq(k�Q),n, but
the difference is in what operations are performed in the
sum. Therefore, for an LCU block encoding, the state-
preparation step may be identical between Ân(Q) and
B̂n(Q). For each value of Q, n, the number of unique values
of k, p , q to consider is NkN 2/4. Unlike the supercell case
we cannot take advantage of symmetry between p and q,
because we have pk and q(k � Q). The relation between k
and k � Q is governed by the value of Q, which is given in
the outer sum, and so we cannot exchange p and q. There
is a further factor of 2 for the number of items of data,
because both real and imaginary parts are needed.

Accounting for the values of Q, n, the total number of
items of data that must be output by the QROM used

in the state preparation is (MNk + 1)NkN 2/2 = O(N 2
k N 3),

given that M scales as O(N ). Again because the size of
the items of data is logarithmic, this gives a complexity
Õ(NkN 3/2). In contrast, in the supercell calculation, each
Ân and B̂n would have O(N 2

k N 2) entries, and the rank
would be O(NkN ), for a total number of items of data
O(N 3

k N 3). That would give a complexity Õ(N 3/2
k N 3/2), so

there is a factor of
√

Nk improvement obtained by taking
advantage of the symmetry.

In the state preparation we prepare only p , q for p ≤ q,
and the full range of values should be produced using a
swap controlled by an ancilla register. A further subtlety
in the implementation as compared to prior work is that
the complex conjugate is needed as well. This may be
implemented using a sign flip on the qubit indicating the
imaginary part, so it is just a Clifford gate.

A major difference is in the selection of operations for
Ân(Q) and B̂n(Q). We see that there are two steps where
we need to apply an operation of the form �ZX or �ZY, and
the choice of X or Y. The selection of where the X or Y is
applied (indicated by the subscript) can be implemented in
the standard way. The choice of whether X or Y is applied
depends on four qubits.

1. The qubit selecting between the one- and two-body
parts.

2. A qubit selecting between A and B, which can sim-
ply be prepared in an equal superposition using
a Hadamard because there are equal weightings
between these operators.

3. A qubit selecting between the real and imaginary
parts of Lpkq(k�Q),n, which was prepared in the state
preparation.

4. A qubit selecting between the two terms shown
above in each line of the expressions for Ân(Q)
and B̂n(Q). This qubit can also be prepared using
a Hadamard.

Using a trivial number of operations on these qubits we can
determine whether it is X or Y that needs to be performed.
The cost of the controlled unitary is doubled because we
apply a controlled �ZX and a controlled �ZY, but this cost is
trivial compared to the state-preparation cost so has little
effect on the overall complexity.

A further subtlety in the implementation is that in the
second implementation of Ân(Q) and B̂n(Q), we simply
use the qubit flagging the one-body part to control whether
the Pauli string �ZX or �ZY is applied at all. This ensures
that the square is not obtained for the one-body part. For a
more in-depth explanation of the implementation, see the
circuit diagram in Fig. 3 and the explanation in Appendix
B 2.

Figure 4 demonstrates the
√

Nk improvement in con-
structing the walk operator by symmetry adapting. Even
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|ψ↓〉 × sel sel × × sel sel ×
|ψ↑〉 × × × ×

FIG. 3. The circuit for performing the state preparation and controlled operations for the single factorization approach. The register
labeled � is a contiguous register for Q, n, with Q also output in the state preparation. The inner state preparation uses � as a control.
Then the minus on Q controlled by k is to compute k � Q, with that register reset to Q later with a controlled addition. A qubit is
used to swap p and q to generate that symmetry, and another is used to swap the spin-up and spin-down components of the system so
the selection need act only on the spin-down component. The qubits labeled Re/Im, A/B, and “term” are the qubits selecting the real
versus imaginary parts, A versus B, and the two terms in each line of the Hamiltonian. These correspond to b1, b2, b3 in Appendix B 2,
and the Toffoli and CNOT gates are used so that the “term” qubit can be used to select whether the Pauli string with X or Y is applied.
The selection is performed twice, once for each of the Pauli strings and so is controlled by k � Q and q the first time, then k and p the
second time. A controlled phase between Re/Im and “term” (also controlled by the success flag qubits) is used to generate the correct
sign for the term. The block encoding of A/B is performed twice, with the reflection on the ancilla qubits in the middle generating
the step of oblivious amplitude amplification. The third register flags that we have the two-body part of the Hamiltonian, and is used
to control the block encoding of A/B the second time to ensure it is not performed for the one-body part. The dashed boxes enclose
the two most expensive parts of the circuit, which implement the bulk of the PREPARE and SELECT steps. The first box (reading left to
right), which implements prepare has two steps, an outer prepare (labeled prep) and an inner prepare (prepl). The inner prepare’s cost

is dominant and scales like Õ(
√

N 2
k N 3) resulting from a QROAM load over the (l, k, p , q) registers. The outer prepare has complexity

of Õ(
√

NkN ) from the l register. The complexity of the selected Majorana operator in the second box is O(NkN ) and is dominated by
the unary iteration.

for small Nk there is a clear separation between the cost
of SC and symmetry-adapted oracles that agrees with the
theoretical scalings of 1.5 and 1.0, respectively.

C. The double-factorization Hamiltonian
representation

In the sparse and SF LCU approaches we have found
that there is a factor of

√
Nk savings in Toffoli costs

and logical qubit costs for symmetry-adapted block-
encoding constructions over their nonsymmetry-adapted

counterparts (supercell calculations). The double-
factorization (DF) representation continues this trend,
though the origin of the speedup is different. In the double-
factorization circuits each unitary of the LCU is a rank-one
one-body operator that can be thought of as the outer prod-
uct of two vectors of ladder operators, where each vector of
ladder operators is obtained by a Givens rotation with mul-
tiqubit control based on other indices. First notice that for
SF there is O(N 2

k N 3) data to output to specify the Hamilto-
nian via the Cholesky factors. The factors come from two
momentum indices k, Q, two band indices p , q, and one
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(a) (b)

FIG. 4. (a) Number of k points versus Toffoli cost to implement the block encoding for the single factorization LCU evaluated
for the benchmark systems listed in Table I described using the cc-pVDZ and cc-pVTZ basis sets and �-centered Monkhorst-Pack
grids of size [1, 1, 1] to [3, 3, 3]. Each point is a single system described at a particular basis set and k mesh where the range of
the auxiliary index of the Cholesky factorization is selected to produce two-electron integrals corresponding to an MP2 error of one
1 millihartree per unit cell with respect to an untruncated auxiliary index range. We divide the Toffoli complexity for implementing
SELECT + PREPARE + PREPARE−1 by N 3/2, which is the shared scaling in the number of bands. The different scaling in number of k
points becomes clear: Nk for symmetry-adapted block encodings and N 3/2

k for supercell nonsymmetry-adapted block encodings. We
observe similar behavior for qubit count and for plotting oracle Toffoli complexity versus the number of bands. (b) The value of λ per
unit cell (λ/Nk) as a function of the total system size NNk for the same systems described with the same cutoffs used in (a).

auxiliary index n. In this section we demonstrate that by
using a workspace register to apply Givens rotations to
pairs of band indices, {k, k � Q}, the complexity of the
DF LCU can also be improved by a factor of

√
Nk over

supercell calculations.
To construct the DF LCU, we will separate Ân(Q) and

B̂n(Q) out into sums over k. To express this, instead of
having ρn(Q), we define ρn(Q, k)

ρ̂n(Q, k) =
⎛
⎝ ∑
σ∈{↑,↓}

N/2∑
pq

Lpkq(k�Q),na†
pkσaq(k�Q)σ

⎞
⎠ ,

ρ̂†
n(Q, k) =

⎛
⎝ ∑
σ∈{↑,↓}

N/2∑
pq

L∗
pkq(k�Q),na†

q(k�Q)σapkσ

⎞
⎠ ,

(42)

so then the Hermitian one-body operators that are squared
to form the two body part of the Hamiltonian are

Ân(Q) =
∑

k

1
2
(ρ̂n(Q, k)+ ρ̂†

n(Q, k)), (43)

B̂n(Q) =
∑

k

i
2
(ρ̂n(Q, k)− ρ̂†

n(Q, k)). (44)

Just as in the single factorization case, we have the two-
body part of the Hamiltonian

Ĥ ′
2 = 1

2

Nk∑
Q

M∑
n

(
Â2

n(Q)+ B̂2
n(Q)

)
. (45)

We can write Ân(Q) as

Ân(Q) =
∑

k

⎡
⎣UA

n (Q, k)

⎛
⎝∑

σ

Q,n,k,A∑
p

f A
p (Q, n, k)npkσ

⎞
⎠UA

n (Q, k)†

⎤
⎦ , (46)

where the basis rotation unitary Un(Q, k) acts on orbitals
indexed by k and k � Q,Q,n,k,A corresponds to a rank cut-
off for A, and f A

p (Q, n, k) is the eigenvalue of the one body

operator that is diagonalized by Un(Q, k). The expression
for B̂n(Q) is similar, and we use Q,n,k,B to denote the rank
cutoff.
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In practice, for the implementation we would apply a
different basis rotation for each individual value of p . As
explained by Ref. [33], when doing that the number of
Givens rotations needed only corresponds to the number
of orbitals it is acting upon, instead of the square. Here we
have two momentum modes {k, k � Q} with N orbitals for
each, suggesting there should be 2N . However, there is no
mixture between the different spin states indexed by σ , so
that gives the number of orbitals as N .

To quantify the amount of information needed to specify
the rotations for the Hamiltonian, there is a Q summation,
n summation, k summation, p summation, and we need to
specify N Givens rotations for each. In turn, each Givens
rotation needs two angles. The total data here therefore
scales as

Õ
⎛
⎝N

∑
Q,n,k

(Q,n,k,A +Q,n,k,B)

⎞
⎠ , (47)

where a factor of N comes from the number of Givens rota-
tions, and the tilde accounts for the bits of precision given
for the rotations. By analogy with the supercell case, it is
convenient to define an average rank

 := 1
2NkM

∑
Q,n,k

(Q,n,k,A +Q,n,k,B). (48)

This has division by Nk for the Q sum and M for the n
sum, but no division by a factor accounting for k. That is,
it is the average rank for each value of Q and n, with the
sum over k regarded as part of the rank. Then it is most
closely analogous to the rank in the supercell case, and it is
found that it similarly scales as O(NkN ). In terms of, the
scaling of the amount of data can be given as Õ(NkN 2),
using M = O(N ).

Next we describe in general terms how to perform the
block encoding of the linear combination of unitaries, with
the full explanation in Appendix C. As in the case of sin-
gle factorization, the general principle is to perform state
preparation over Q and n, then block encode the squares
of Ân(Q) and B̂n(Q) using oblivious amplitude amplifica-
tion. The difference is that Ân(Q) and B̂n(Q) are now block
encoded in a factorized form. In more detail, the key parts
are as follows.

1. Perform a state preparation over Q and n, as well
as a qubit distinguishing between Ân(Q) and B̂n(Q).
Using the advanced QROM, the complexity of this
state preparation scales approximately as the square
root of the number of items of data, so as Õ(

√
NkN ).

The tilde accounts for logarithmic factors from the
size of the output. For convenience here we use a
contiguous register for combined values of Q and n.

2. Apply a QROM, which outputs the value of Q, as
well as an offset needed for the contiguous register
needed in the state preparation for Ân(Q) and B̂n(Q).

3. Perform the inner state preparation over k and p .
Here the number of items of data is O(NkN),
accounting for the sums over Q, n, k, p . The com-
plexity via advanced QROM is approximately the
square root of this quantity, Õ(√NkN).

4. Apply the QROM again to output the rotation angles
for the Givens rotations needed for the basis rota-
tion. This time the size of the output scales as
O(N ), so the complexity of the QROM scales as
Õ(N√

Nk). This is the dominating term in the
complexity.

5. Use control qubits to swap the system registers into
the correct location. This is done first controlled by
a qubit labeling the spin, σ , which is similar to what
was done in prior work. The new feature here is that
registers containing k and k � Q are also used to
swap system registers into N target qubits.

6. Apply the Givens rotations on these N target qubits.
The complexity here scales only as Õ(N ), so is
smaller than in the other steps.

7. Apply a controlled Z for part of the number operator.
This comes from representing the number operator
as (1 − Z)/2 and combining the identity with the
one-body part of the Hamiltonian.

8. Invert the Givens rotations, controlled swaps,
QROM for the Givens rotations, and state prepa-
ration over k, p . The complexities here are similar
to those in the previous steps, but the complexities
for QROM erasure are reduced. This completes the
block encoding of Ân(Q) and B̂n(Q).

9. Perform a reflection on the ancilla qubits used for
the state preparation on k, p . This is needed for the
oblivious amplitude amplification.

10. Perform steps 3 to 8 again for a second block encod-
ing of Ân(Q) and B̂n(Q). This together with the
reflection gives a step of oblivious amplitude ampli-
fication, and therefore the squares of Ân(Q) and
B̂n(Q).

11. Invert the QROM from step 2. This has reduced
complexity because it is an erasure.

12. Invert the state preparation from step 1.

A quantum circuit for the procedure is shown in Fig. 5.
This is similar to Fig. 16 in [33], except it is including the
extra parts needed in order to account for the momentum
k used here. In particular, � shown here is a contiguous
register for Q, n, and p shown in the diagram is actually a
contiguous register for k, p . The values of Q and k need
to be output via QROM after the state preparations. Then
k � Q is computed and k and k � Q are used to swap the
required part of the system register into N target qubits
where we apply the Givens rotations.
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FIG. 5. The circuit for performing the state preparation and
controlled operations for the double factorization approach. The
register labeled � is a contiguous register for preparing Q, n, with
Q output next in the QROM. The register labeled p is actually
a contiguous register for preparing both k and p . The value of
k is output in the next step together with the rotations. Then the
minus on Q controlled by k is to compute k � Q. The “×” on
|ψ↓〉 controlled by the Q and k registers indicates that these reg-
isters are used to swap the required part of the system register into
N target qubits that the Givens rotations R act upon. The dashed
boxes represent the two most expensive parts of the circuit, which
implement the bulk of the PREPARE and SELECT steps. The pre-
pare box has three steps, an outer prepare has a Õ(

√
NkN ) Toffoli

complexity while the inner prepare scales like Õ(
√

NkN ). The
second dashed box loads the Givens rotation angles at a cost of
Õ(N

√
Nk) and performs the controlled rotations at cost Õ(N ).

The λ value for the Hamiltonian can be calculated by
determining the total L1 norm of the coefficients of the uni-
taries used to represent the Hamiltonian. To determine this
norm, note first that the number operator is replaced with
(1 − Z)/2, and the identity is combined with the one-body
part of the Hamiltonian. For Ân(Q), what is implemented
therefore corresponds to

− 1
2

∑
k

⎡
⎣UA

n (Q, k)

⎛
⎝∑

σ

Q,n,k,A∑
p

f A
p (Q, n, k)Zpkσ

⎞
⎠

UA
n (Q, k)†

]
. (49)

Summing the absolute values of coefficients here gives

∑
k

Q,n,k,A∑
p

|f A
p (Q, n, k)|, (50)

where the sum over the spin σ has given a factor of 2,
which canceled the factor of 1/2. In implementing the
square of Ân(Q) we use oblivious amplitude amplification,
which provides a factor of 1/2 to λ. Combining this with
the 1/2 in the definition of Ĥ ′

2 gives 1/4, and combining
with the contribution from B̂n(Q) then gives

λDF,2 = 1
4

∑
Q,n

⎡
⎢⎣
⎛
⎝

NkQ,n,k,A∑
k,p

|f A
n (p , Q, k)|

⎞
⎠

2

+
⎛
⎝

NkQ,n,k,B∑
k,p

|f B
n (p , Q, k)|

⎞
⎠

2
⎤
⎥⎦ , (51)

where the superscript B on f indicates the corresponding
quantity for B̂n(Q).

The one-body Hamiltonian is adjusted by the one-body
term arising from the identity in the representation of the
number operator in the two-body Hamiltonian. This yields
an effective one-body Hamiltonian (see Appendix C)

H ′
1 =

∑
k,p ,q,σ

⎛
⎝hpk,qk +

∑
k′,r

Vrk′,rk′,qk,pk

⎞
⎠ a†

pkσaqkσ . (52)

We can rewrite this as

H ′
1 =

∑
k,σ

[
UC(k)

(N/2∑
p

λk,pnpkσ

)
UC(k)†

]
, (53)

where λk,p are eigenvalues of the matrix indexed by p , q in
the the brackets in Eq. (52). Thus the L1 norm of H ′

1 is the
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(a) (b)

FIG. 6. (a) The number of k points versus Toffoli cost to implement the block encoding for the double factorization LCU evaluated
for the benchmark systems listed in Table I described using the cc-pVDZ and cc-pVTZ basis sets and �-centered Monkhorst-Pack
grids of size [1, 1, 1] to [3, 3, 3]. Each point is a single system described at a particular basis set and k mesh where the threshold to keep
eigenvalues and vectors of the second factorization is selected to produce two-electron integrals corresponding to an MP2 error of one
1 millihartree with respect to an untruncated double factorization. On average this corresponds to a threshold value of 1 × 10−4 for
the benchmark systems. The expected O(√Nk) scaling improvement for symmetry-adapted walk operators is demonstrated. (b) The
value of λ per unit cell as a function of the total system size NNk for the same systems described with the same cutoffs used in (a). The
reduced variational freedom in compression of the two-electron integral tensors for the symmetry-adapted walk operator construction
translates to an increased value of λ at all system sizes.

sum

λDF,1 =
∑

k

∑
p

|λk,p |. (54)

Figure 6 demonstrates the improved
√

Nk scaling of the
block encodings coming from reducing the number of con-
trolled rotations by Nk. Unlike the SF case λ for DF has
worse scaling in the symmetry-adapted setting compared
to the supercell case. This is rationalized by the fact that
there is a larger degree of variational freedom in the sec-
ond factorization for supercell calculations (and thus more
compression) compared to the symmetry-adapted case.
The λ value is basis-set-dependent and can potentially be
reduced by orbital optimization [87].

D. The tensor hypercontraction Hamiltonian
representation

In the tensor hypercontraction (THC) LCU representa-
tion the fact that the two-electron integrals can be repre-
sented in a symmetric canonical polyadiclike decomposi-
tion is used to define a set of nonorthogonal basis functions
in which to represent the Hamiltonian, and we use a similar
infrastructure to the DF algorithm to implement each term
in the factorization (which is in a different nonorthogonal
basis) sequentially. In the following section, we describe
the Bloch orbital version (symmetry adapted) of the THC
decomposition and the resulting LCU, λ calculation, and
qubitization complexities. First we review the salient fea-
tures of tensor hypercontraction for the molecular case

before introducing symmetry labels. Recall that in the
molecular THC approach we expand densitylike terms
over a grid of M points (labeled μ) and weight each grid
point with a function ξμ(r)

φp(r)φq(r) ≈
∑
μ

ξμ(r)φp(rμ)φq(rμ), (55)

which allows us to write the two-electron integral tensor as

Vpqrs =
∑
μν

χ(μ)p χ(μ)q ζμνχ
(ν)
r χ(ν)s , (56)

where the central tensor is defined as

ζμν =
∫

dr
∫

dr′ ξμ(r)ξν(r
′)

|r − r′| . (57)

In order to incorporate translational symmetry into the
THC factorization, the decomposition of the density is per-
formed on the cell periodic part of the Bloch orbitals as
[88,89]

u∗
pkp
(r)uqkq(r) ≈

∑
μ

ξμ(r)u∗
pkp
(rμ)uqkq(rμ), (58)
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where upkp (r) = e−ikp rφpkp (r). Then the two-electron
integral tensor has the form

Vpkp ,qkq,rkr,sks =
∫

dr
∫

dr′φ∗
pkp
φqkqV(r, r′)φ∗

rkr
φsks

=
∑
μν

u∗
pkp
(rμ)uqkq

× (rμ)ζ
kp ,kq,kr,ks
μν u∗

rkr
(rν)usks(rν)

=
∑
μν

χ
(μ)∗
pkp

χ
(μ)
qkq
ζ

kp ,kq,kr,ks
μν χ

(ν)∗
rkr
χ
(ν)
sks

, (59)

where χ(μ)qkq
= uqkq(rμ), V(r, r′) = |r − r′|−1, and

ζ
kp ,kq,kr,ks
μν =

∫
dr
∫

dr′e−i(kp −kq)·rξμ(r)

× V(r, r′)ξν(r′)ei(ks−kr)·r′
. (60)

Some care needs to be taken when bringing this into
a form similar to Eq. (5). First recall that we have
kp − kq + kr − ks = Gpqrs, where Gpqrs is a reciprocal
lattice vector, and we are working with a uniform �-
point centered momentum grid with dimensions N =
[Nx, Ny , Nz] and Nk = NxNyNz. To eliminate one of the
four momentum modes, we identify Q = kp � kq, and
Q = ks � kr, and set kp = k, kq = k � Q, ks = k′ and
kr = (k′ � Q). To evaluate the ζ tensor we still need to
know the values of kp − kq in absolute terms given a
value for Q and k. We note that mapping the difference
kp − kq back into our k-point mesh amounts to adding a
specific reciprocal lattice vector GQ

pq = (kp − kq)− Q =
(k − (k � Q))− Q ≡ Gk,k−Q, with a similar expression
for k′ (the subtraction here is not modular). Thus, given a
Q and k we can determine k − Q and Gk,k−Q. With these
replacements we can write

Vpkp ,qkq,rkr,sks → Vpk,q(k�Q),r(k′�Q),sk′ =
∑
μν

χ
(μ)∗
pk χ

(μ)

qk�Qζ
Q,k,k′
μν χ

(ν)∗
r(k′�Q)χ

(ν)

sk′

=
∑
μν

χ
(μ)∗
pk χ

(μ)

qk�Qζ
Q,Gk,k−Q,Gk′ ,k′−Q
μν χ

(ν)∗
r(k′�Q)χ

(ν)

sk′ , (61)

where we have used

ζ
kp ,kq,kr,ks
μν → ζQ,k,k′

μν =
∫

dr
∫

dr′e−i(Q+Gk,k−Q)·rξμ(r)V(r, r′)ξν(r′)ei(Q+Gk′k′−Q)·r′)

= ζ
Q,Gk,k−Q,Gk′ ,k′−Q
μν . (62)

In practice there are at most eight values of G, so we need only to classically determine at most 82Nk values of ζ , as
opposed to N 3

k .
We can then write

H2 = 1
2

∑
Q,k,k′

∑
pqrs

∑
στ

Vpk,q(k�Q),r(k′�Q),sk′a†
pkσaq(k�Q)σa†

r(k′�Q)τask′τ

= 1
2

∑
Q,k,k′

∑
pqrs

∑
στ

∑
μν

χ∗
pk,μχq(k�Q),μζ

Q,Gk,k−Q,Gk′ ,k′−Q
μν χ∗

r(k′�Q),νχsk′,νa
†
pkσaq(k�Q)σa†

r(k′�Q)τask′τ

= 1
2

∑
Q,G1,G2

∑
μν

∑
στ

ζQ,G1,G2
μν

⎛
⎝ ∑

k|Gk,k−Q=G1

∑
pq

χ∗
pk,μχq(k�Q),μa†

pkσaq(k�Q)σ

⎞
⎠

×
⎛
⎝ ∑

k′|Gk′ ,k′−Q=G2

∑
rs

χ∗
r(k′�Q),νχsk′,νa

†
r(k′�Q)τask′τ

⎞
⎠ , (63)
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• •
μ × In In In In

ν × In In

2 − body • • • • • •

Q InQ • × × • InQ

k′ prep Ink′ • Ink ′ • Ink ′ − × Ink ′−Q • Ink ′−Q • Ink ′−Q × + prep

k
|+〉 •
rot data In In data data In In data

spin H

spin H • •

|ψ↓〉 × × R† c R × × R† c† R × ×
|ψ↑〉 × ×

• •

pr
ep

†

× In In In In In In ×
× ×

• •

InQ • × × • InQ

× prep − × Ink−Q • Ink−Q • Ink−Q × + Ink • Ink • Ink prep†

×
X •

data In In data data In In data

× H

× • • H

× × R† c R × × R† c† R × ×
× ×

FIG. 7. The quantum circuit for the block encoding of the THC representation, split into two parts with the right half at the bottom.
The top shows the portion of the circuit for the first part controlled by k′ and ν, and the bottom shows the (right) part of the circuit
where it is controlled by k and μ. The dotted rectangles show the regions for implementing the c and c† operators together with
the Givens rotations needed to change the basis. These steps eventually dominate the cost of the algorithm, with the asymptotic cost
scaling like O(NkN ). The swaps controlled by the k′ and k registers are to move the appropriate qubits into target registers in order
to apply the Givens rotations. The c and c† are applied using a superposition of X and iY applied using an ancilla qubit (not shown
for simplicity), together with a string of Z gates for the Jordan-Wigner representation. The preparation at the beginning includes an
inequality test between μ and ν to give a qubit flagging whether the real or imaginary part is produced. To make the implementation
self-inverse, the μ, ν and k, k′ pairs of registers are swapped in the middle (the left of the lower half). Also, an X gate is applied to the
qubit that controls the swaps at the beginning and end.

where in going from the second to the third line of Eq. (63)
we have rewritten the sum over k and k′ as a double sum
over all 82 values of G1 and G2, and a restricted sum on k
such that for a given G1 and Q we only sum over those
k, which satisfy Gk,k−Q = G1. Here the notation Gkp ,kq
is used as equivalent to Gpq above. The fourfold symme-
try of the two-electron integrals carries over to analogous
symmetries in ζ , which are listed in Appendix D.

We will then define χ̃ , which are individually
normalized for each k and μ so

∑
p χ̃

∗
pk,μχ̃pk,μ = 1

and

Nk,μχ̃pk,μ = χpk,μ (64)

with Nk,μ :=
√∑

p |χpk,μ|2. We then use these normalized
χ̃ to give transformed annihilation and creation operators

cμkσ =
∑

p

χ̃pk,μapkσ , c†
μkσ =

∑
p

χ̃∗
pk,μa†

pkσ . (65)
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We can then write the two-body Hamiltonian as

Ĥ2 = 1
2

∑
Q,G1,G2

∑
μ,ν

∑
στ

ζQ,G1,G2
μν

×
⎛
⎝ ∑

k|Gk,k−Q=G1

Nk,μNk�Q,μc†
μkσ cμ(k�Q)σ

⎞
⎠

×
⎛
⎝ ∑

k′|Gk′ ,k′−Q=G2

Nk′�Q,νNk′,νc
†
ν(k′�Q)τcνk′τ

⎞
⎠ .

(66)

A complication for the implementation is that we would
like to be able to choose the relative weighting between ζ
and χ such that

∑
k|Gk,k−Q=G

Nk,μNk�Q,μ = 1. (67)

The difficulty here is that the values of Nk,μ depend only
on k,μ, because they are based on χpk,μ. This sum is also
dependent on Q and G, so for this normalization condi-
tion to hold it would mean we need to have χpk,μ also
dependent on Q and G in a multiplicative factor (so a non-
μ-dependent way). That will leave the normalized χ̃pk,μ
unaffected, but means that the values of Nk,μ need to have
dependence on Q, G, which will need to be taken account
of in the state preparation.

The form in Eq. (66) then gives us a recipe for block
encoding the Hamiltonian as a linear combination of uni-
taries.

1. First prepare a superposition state proportional to

∑
Q,G1,G2,μ,ν

√
|ζQ,G1,G2
μν ||Q, G1, G2,μ, ν〉. (68)

This state may be prepared via the coherent alias
sampling approach with a complexity dominated by
the complexity of the QROM. Accounting for sym-
metry the dimension is about 32NkM 2 and the size
of the QROM output is approximately the log of that
plus the number of bits for the keep probability. That
gives a Toffoli complexity scaling as

√
32NkM 2[log(32NkM 2)+ ℵ]. (69)

2. For each of the two expressions in brackets in
Eq. (66), a preparation over k or k′ is needed to give

a state of the form

∑
k|Gk,k−Q=G

√
Nk,μNk�Q,μ|k〉. (70)

As explained above, the values of Nk,μ need to
be chosen with (implicit) dependence on Q, G for
this to be a normalised state. This means that the
amplitudes here need to be indexed by k, Q, G1,
and μ. The restricted range of values in the sum
over k means that the indexing over k, Q, G1 gives
N 2

k items of data, which is multiplied by M for
the indexing over μ. So there are N 2

k M items of
data needed, which is smaller than that in the first
step, because it is missing the factor of 32 and
typically Nk < M . Given that the output size is
approximately log(Nk)+ ℵ, the Toffoli complexity
is approximately

√
N 2

k M [log(Nk)+ ℵ]. (71)

This cost is incurred twice, once for each of the
factors in brackets in Eq. (66).

3. For each of the c annihilation and creation operators
we perform a rotation of the basis from a. This is
done in the following way.

(a) First use the spin σ or τ to control a swap of the
system registers. This is done once and inverted
for each of the two c†c factors. Each of these
four swaps has cost NkN/2.

(b) Then use k or k � Q to control the swap of the
registers we wish to act on into working regis-
ters. The value of k � Q is used for cμ(k�Q)σ ,
and needs to be computed to use as a control.
Each of these eight swaps may be done with
a Toffoli complexity approximately as half the
number of system registers NkN/2.

(c) Next k (or k � Q) and μ (or ν) are used as a
control for a QROM to output the angles for
Givens rotations. There are two angles for each
of N/2 Givens rotations, so if they have � each
the size of the output is N�. Then the QROM
complexity is about

√
NkN 2�. (72)

This must be done 4 times (and has a smaller
erasure cost).

(d) The sequence of N/2 Givens rotations is per-
formed, each with four individual rotations on
�, for a cost of 2N�. This cost is incurred 8
times, twice for each of the annihilation and
creation operators.
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4. After the rotation of the basis, we simply need to
perform the linear combination of �ZX and �ZY for c†

and c. The X or Y is applied in a fixed location, but
the �Z needs to be applied on a range of qubits chosen
by k or k � Q. We therefore have approximately Nk
for the unary iteration for each �Z for a total cost of
about 4Nk.

Lastly we would perform reflections on control ancillas
as usual to construct a qubitized quantum walk from the
block encoding. This cost is trivial compared to that in the
other steps. For a more detailed explanation, see the circuit
diagram in Fig. 7 and the discussion in Appendix D.

The λTHC value has a one-body component and two-
body component. Unlike molecular THC where the two-
body component is reduced because we evolve by number
operators in the nonorthogonal basis, in this version of the
THC algorithm we will evolve by ladder operators in a
nonorthogonal basis, and thus there is no one-body part
to remove. The one-body contribution to λTHC, λTHC,1, is
computed in a similar way as for the double factorization
algorithm but noting that the extra factor of 1/2 coming
from the Z operator is no-longer present to cancel the fac-
tor of 2 from spin summing. The one-body contribution to
λTHC is

λTHC,1 = 2
∑

k

∑
p

|λp ,k|. (73)

The two-body contribution to λTHC, λTHC,2, is determined
by summing over all unitaries in the LCU. This summation
can be rewritten in the form

λTHC,2 = 2
∑

Q

∑
μ,ν

∑
G1,G2

(|Re[ζQ,G1,G2
μν ]| + |Im[ζQ,G1,G2

μν ]|)

×
⎛
⎝ ∑

k|Gk,k�Q=G1

Nk,μNk�Q,μ

⎞
⎠

×
⎛
⎝ ∑

k′|Gk′ ,k′−Q=G2

Nk′�Q,νNk′,ν

⎞
⎠ (74)

using the expression for ζ described in Eq. (62).
To obtain resource estimates for THC with k points we

follow a similar procedure to previous molecular work
[33] and first compress the rank of the THC factors (M =
cTHCN/2, where cTHC is the THC rank parameter). In
particular, we use the interpolative separable density fit-
ting (ISDF) approach [88,90,91] as a starting point before
subsequently reoptimizing these factors in order to com-
press the THC rank while regularizing λ [33,46], which
we will call k-THC. Further details of this procedure are
provided in Appendix G. In Fig. 8 we demonstrate that a
cTHC = 8 is sufficient to obtain MP2 correlation energies
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FIG. 8. Violin plot of absolute errors in the k-THC-MP2
energy per cell for the benchmark set in Table I. Here we com-
pare the MP2 errors as a function of the THC rank parameter
cTHC using ISDF or subsequent reoptimization to generate the
THC factors.

within approximately 0.1 mHa/cell for a subset of the sys-
tems considered in the benchmark set. We note that the
equivalent ISDF rank may be on the order of 10-15 for
comparable accuracy, which would correspond to a much
larger value for λ.

Figure 9(a) demonstrates a
√

Nk scaling improvement of
the block encodings in the symmetry-adapted case. Note
that this

√
Nk speedup for the block encodings is partially

a finite-size effect. In Fig. 10 we plot the Toffoli complex-
ity per step as a function of Nk using artificially generated
data to explore the large Nk behavior. We see that depend-
ing on the fitting range employed, the extracted scaling
trends towards the expected linear regime. It is interesting
to note that although asymptotically we expect the THC
algorithm to scale linearly with the system size, this is not
observed in practice, with the cost of controlled rotations
dominating over the cost of controlled swaps. While ulti-
mately both the symmetry-adapted and supercell encod-
ings should scale linearly with the system size due to the
cost of unary iteration over all basis states, there are several
factors that yield a

√
Nk saving in the symmetry-adapted

case, and the relative size of the prefactors becomes impor-
tant. Similar to DF, we find from Fig. 9(b) that λ in
the symmetry-adapted setting exhibits slightly worse scal-
ing than for supercell calculations. This worsening of λ
in the symmetry-adapted case can be understood again
as a reduction in variational freedom in the symmetry-
adapted case, leading to smaller compression. Note that
while Eq. (74) nominally scales cubicly with Nk, we expect
each individual matrix element to decay like N−1

k , which
yields the expected quadratic dependence of λ, or a linear
dependence of λwhen targeting the total energy per cell. In
the supercell case, there are simply M 2 = (NkN )2 elements
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FIG. 9. (a) The number of k points versus Toffoli cost to implement the block encoding for the THC factorization LCU evaluated for
the benchmark systems listed in Table I described using the cc-pVDZ and cc-pVTZ basis sets and �-centered Monkhorst- Pack grids
of size [1, 1, 1] to [3, 3, 3]. Each point is a single system described at a particular basis set and k mesh where the range of the auxiliary
index of the THC factorization is selected to produce two-electron integrals corresponding to an MP2 error of one 1 millihartree with
respect to an untruncated auxiliary index range. This corresponds to an auxiliary index that is 8 times the number of orbitals in the
primitive cell for symmetry adapted THC, and eight times the total number of orbitals (NkN ) for supercell THC. We divide the Toffoli
complexity for implementing SELECT + PREPARE + PREPARE−1 by N , which is the shared scaling in the number of bands. While we
observe a

√
Nk scaling improvement for symmetry-adapted walk operations, we believe this is a finite-size effect and both methods

should scale linear with Nk for sufficiently large Nk. The value of λ as a function of the total system size NNk for the same systems
described with the same cutoffs used in (a). The reduced variational freedom in compression of the two-electron integral tensors for
the symmetry-adapted walk operator construction translates to an increased value of λ at all system sizes.

in the central tensor, which in turn controls the scaling of
λ. From Table II and Fig. 9 we can conclude that there
is asymptotically no advantage to incorporating symmetry
in the THC factorization for the Toffoli complexity, with
both the supercell and symmetry-adapted methods exhibit-
ing approximately quadratic scaling with system size for a
fixed target accuracy of the total energy per cell.

IV. SCALING COMPARISON AND RUNTIMES
FOR DIAMOND

We now compare runtimes and estimate total physi-
cal requirements to simulate diamond as a representative
material. In Fig. 11 we plot the total Toffoli complexity
for the sparse, SF, DF, and THC LCUs using symmetry-
adapted block encodings and supercell calculations for
diamond with cc-pVDZ and cc-pVTZ basis sets at var-
ious Monkhorst-Pack samplings. In sparse and SF there
is a clear asymptotic separation between supercell and
symmetry-adapted Toffoli counts. This is expected from
the fact that both block-encoding constructions are asymp-
totically improved and λ does not increase. For the DF
case, total Toffoli complexity for supercell and symmetry-
adapted cases is similar due to the larger λ for the
symmetry-adapted algorithm. For THC, the total Toffoli
complexity is similar in the supercell and symmetry-
adapted case, but the asymptotic scaling is identical for the

supercell and symmetry-adapted algorithms. This is due to
the increase in λ for the symmetry-adapted algorithm.

In Table III we tabulate the quantum resource require-
ments and estimated runtimes after compiling into a sur-
face code using physical qubits with error rates of 0.01%
and a 1 µs cycle time. We assume four Toffoli facto-
ries similar to Refs. [33,46] and observe that for systems
with 52-1404 spin orbitals the quantum resource estimates
are roughly in line with extrapolated estimates from the
molecular algorithms.

It is important to note that while the THC resource
requirements look competitive for these small systems,
in its current form it is not a practical way to simulate
materials at scale. This is due to the prohibitive cost of
reoptimizing the THC factors, which significantly limits
the system sizes that can be simulated. Moreover, as dis-
cussed in Sec. III D, we caution that the THC trend lines
are only valid within the fitting range, and we expect that
asymptotic THC Toffoli count will trend more towards
O(N 2

k ) in the thermodynamic limit.

V. CLASSICAL AND QUANTUM SIMULATIONS
OF LNO

In this section, we compare modern classical compu-
tational methods with quantum resource estimates in the
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FIG. 10. Synthetic data for the number of Toffolis required to
implement the qubitization oracles with the k-THC factorization
demonstrating the challenge of extracting the correct asymptotic
scaling with limited finite-size data. To generate the data we used
the system parameters of carbon diamond in the cc-pVDZ basis
set (N = 52, M = 208).

context of a challenging problem of industrial interest: the
ground state of LiNiO2.

A. LNO background

Layered oxides have been the most popular cathode
active materials for Li-ion batteries since their commer-
cialization in the early 1990s. While LiCoO2 is still the
material of choice in the electronics industry, the increas-
ing human, environmental, and financial cost of cobalt

spells out the need for cobalt-free cathode active materials,
especially for automotive applications [92,93].

The isostructural compound LiNiO2 (LNO) had been
identified as an ideal replacement for LiCoO2 already in
the 1990s, due to its comparably high theoretical capac-
ity at a lower cost [94,95]. Despite its numerous draw-
backs, LNO still serves as the perfect model system for
many derivative compounds, such as lithium nickel-cobalt-
manganese (NCM) and lithium nickel-cobalt-aluminum
oxides (NCA) that are nowadays the gold standard in the
automotive industry [47]. Moreover, the constant demand
for better performing materials pushes the amount of sub-
stituted Ni to the dilute regime and the research trend is
approaching the asymptotic LiNiO2 limit, making LiNiO2
a system of interest in battery research [47].

Even the nature of the ground state of LNO is still under
debate. The universally observed rhombohedral R3̄m sym-
metry [47], with Ni being octahedrally coordinated to six
oxygen atoms through six equivalent Ni—O bonds con-
flicts with the renowned Jahn-Teller (JT) activity of low-
spin trivalent Ni, which has been experimentally proven
on a local scale [47]. In a recent DFT study [48], we
argued that this apparent discrepancy might be resolved
by the dynamics and low spatial correlation of Jahn-Teller
distortions. In that work, the energy distance between
Jahn-Teller distorted and nondistorted candidates (Fig. 12)
compared to zero-point vibrational energies makes a strong
argument in favor of the dynamic Jahn-Teller effect. A
non-JT distorted structure resulting from the dispropor-
tionation of Ni3+ has also been reported as a ground-state
candidate [49] despite the 1:1 ratio between long and
short Ni—O bonds, which conflicts with the experimen-
tally determined 2:1 ratio. In the original study, the stability
of this structure has been found to depend heavily on the

N
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FIG. 11. (a) Total Toffoli requirements for diamond in a cc-pVDZ basis at various Monkhorst-Pack samplings of the Brillouin zone
with �-point centered grids of size [1,1,1] to [3, 3, 3]. Dashed lines are fits to the supercell data that is not plotted. Solid lines are fits to
the symmetry-adapted data shown as data points. (b) Total logical qubits for symmetry-adapted oracles and supercell (dotted lines). All
values are estimated from 0.1 mHa per unit cell thresholds on the MP2 energy. In the case of THC we plot only the symmetry-adapted
data due to limited THC data arising from difficulty in optimizing the supercell THC factors.
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TABLE III. Diamond represented in a cc-pVDZ basis (52 spin orbitals in the primitive cell) at various k-mesh sizes and the associated
quantum resource requirements to compute the total energy per cell to within 1 kcal/mol. The surface code runtime is estimated using
four T-factories, a physical error rate of 0.01%, and a cycle time of 1 µs [33,46]. The physical qubit count is given in millions.

LCU k mesh Toffolis Logical qubits Physical qubits (M) Surface code runtime (days)

Sparse [1, 1, 1] 4.84 × 109 2478 2.20 9.10 × 10−1

[2, 2, 2] 2.66 × 1012 75287 90.57 5.77 × 102

[3, 3, 3] 1.06 × 1014 374274 543.76 2.61 × 104

SF [1, 1, 1] 3.20 × 109 2283 2.05 6.02 × 10−1

[2, 2, 2] 3.27 × 1012 20567 24.91 7.11 × 102

[3, 3, 3] 1.13 × 1015 47665 69.52 3.10 × 105

DF [1, 1, 1] 9.61 × 108 2396 1.55 1.81 × 10−1

[2, 2, 2] 6.74 × 1010 18693 18.47 1.27 × 101

[3, 3, 3] 1.09 × 1012 68470 82.39 2.37 × 102

THC [1, 1, 1] 1.67 × 1010 18095 14.20 3.14
[2, 2, 2] 4.85 × 1011 36393 35.60 1.05 × 102

value of the on-site Hubbard correction applied to the PBE
functional. With the SCAN-rVV10 functional (with and
without on-site Hubbard correction) [48], this candidate
is consistently less stable than the JT-distorted models; it
is also worth mentioning that the on-site Hubbard correc-
tion considerably increases the stability of the JT-distorted
models. The dependence of Jahn-Teller stabilization ener-
gies on the functional had already been observed by Radin
[96] and is ascribed to the difficulty to adequately describe
the doubly degenerate high-symmetry, undistorted state.

In light of previous studies, we will focus on four candi-
date structures for the LNO ground state. These structures
are shown in Fig. 12. We will furthermore focus only on
the energetics of the problem. The goal is to compute
the relative energies of these different crystal structures
without the uncertainty of DFT.

B. Correlated k-point calculations

Local-basis quantum chemistry methods for electron
correlation have been increasingly applied to periodic sys-
tems as an alternative to DFT with more controllable
accuracy. Here we apply two such methods, second-order
Møller-Plesset perturbation theory (MP2) [97,98] and cou-
pled cluster singles and doubles (CCSD) [99,100], to the
three distorted structures of LNO (Fig. 12). Local basis
methods like these can be directly compared to quantum
algorithms described in this work, since both are formu-
lated within the same framework of a crystalline Gaussian
one-particle basis. While these methods cannot be easily
applied to the symmetric structure, which is metallic at
the mean-field level, they should provide accurate results
for the distorted structures provided that the finite-size and
finite-basis errors can be controlled. All mean field, MP2

FIG. 12. The four known LiNiO2 polymorphs: high-symmetry R ¯3m, collinear JT-distorted C2/m, zig-zag JT-distorted P21/c, and
disproportionated P2/c. Green spheres represent Li, gray polyhedra are NiO6 octahedra, and elongated Ni—O bonds are depicted as
bold blue arrows.
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FIG. 13. Convergence of the total MP2 energy for the C2/m
structure using the minimal basis set as a function of n−1/3

k , where
nk is the number of k points. �-centered and shifted k-point grids
are compared with and without twist averaging (TA).

and CCSD calculations were performed with the PySCF
program package [101,102]. QMCPACK [103,104] was
used to perform the ph-AFQMC calculations, where we
used at least 600 walkers and a timestep of 0.005 Ha−1.
The population control bias was found to be negligible. In
all calculations, we use separable, norm-conserving GTH
pseudopotentials [74,105] that have been recently opti-
mized for Hartree-Fock [106]. In all calculations on LNO
we use the GTH basis sets [50,107] (GTH-SZV and GTH-
DZVP specifically) that are distributed with the CP2K
[51] and PySCF [102] packages. In Fig. 13 we show the
convergence of the minimal-basis MP2 energy as a func-
tion of effective cell size for increasingly large k-point
calculations. This demonstrates the essential difficulty in
converging to the bulk limit for correlated calculations: the
finite-size error will converge slowly with the system size.
Though the MP2 energy should eventually scale with the
inverse volume (N−1

k ) [108], the apparent scaling is more
like N−1/3

k for a small number of k points. Shifting the k-
point grid to (1/8, 1/8, 1/8) and/or twist averaging (TA)
does not change the asymptotic behavior of the energy.
In all other LNO calculations, we use �-centered k-point
grids. In all calculations, the density of k points along each
reciprocal lattice vector was chosen so that the density of
k points is as close to constant as possible.

TABLE V. Energies in meV relative to the energy of the P21/c
structure for each method. The P21/c structure is lowest in
energy for all methods except MP2.

Structure ROHF MP2 CCSD ph-AFQMC

C2/m 260 184 208 218(18)
P2/c 416 −1317 4 155(17)

While a minimal basis is useful for a qualitative under-
standing of the finite-size error, it is does not provide
sufficient accuracy to resolve the different LNO struc-
tures examined in this work. The double-ζ basis set
(GTH-DZVP) is large enough to provide qualitative accu-
racy, but converging the result to the bulk limit is pro-
hibitively expensive for the systems considered here. We
can nonetheless provide some estimates of the ground-state
CCSD and MP2 (DZVP) energies as shown in Table IV
and V. Since there is no evidence of particularly “strong
correlation” in any of these systems (see Appendix E for
a more detailed discussion), MP2 and CCSD should pro-
vide qualitatively correct estimates of the ground state
energy. The unusually large MP2 correlation energy for
the P2/c structure suggests it may not be as reliable for
this structure, and this suspicion is confirmed by the CCSD
and ph-AFQMC calculations. For CCSD and ph-AFQMC,
the P21/c structure is lowest in energy, which agrees
qualitatively with the DFT calculations in Ref. [48]. How-
ever, this prediction carries with it a great deal of uncer-
tainty due to the small simulation size, small one-particle
basis set, and error in the MP2/CCSD/ph-AFQMC approx-
imations.

C. Single-shot density-matrix embedding theory

Another way to apply high-level correlated methods to
periodic solids is through quantum embedding methods in
which a local impurity is treated with a high-level method
and the remainder of the system, the bath, is treated at a
lower level of theory. For periodic solids, dynamical mean-
field theory (DMFT) is perhaps the most widely success-
ful such method [21,109–112]. Density-matrix embedding
theory (DMET) is an efficient quantum embedding method
for the ground state of quantum systems [113,114], and it
has recently been applied to periodic solids with a fully ab
initio Hamiltonian [21].

TABLE IV. ROHF total energy and MP2, CCSD, and ph-AFQMC correlation energies computed with a double-ζ basis set and a
small k mesh, the equivalent of four primitive formula units (16 atoms total) for each distorted structure. All units are Hartrees per
formula unit.

Structure k points ROHF MP2 CCSD ph-AFQMC

C2/m 2 × 2 × 1 −206.557491 −0.750524 −0.767350 −0.7997(5)
P21/c 1 × 2 × 1 −206.567049 −0.747717 −0.765445 −0.7982(5)
P2/c 1 × 1 × 1 −206.551767 −0.811386 −0.780580 −0.8078(4)

040303-25



NICHOLAS C. RUBIN et al. PRX QUANTUM 4, 040303 (2023)

Although very large impurities are necessary to con-
verge to the bulk limit of the correlated method used for the
impurity, a fixed impurity size provides a local, systemat-
ically improvable approximation to the correlation energy.
This is particularly useful in cases where a local treatment
of correlation is sufficient for a qualitatively correct solu-
tion. Here we apply DMET with a CCSD impurity solver
to the distorted structures in a minimal basis set (GTH-
SZV). The libdmet code [20] was used for the DMET
calculations with the PySCF program package [101,102]
used in the impurity solver.

Figure 14 shows the minimal-basis DMET results for
each of the three distorted structures. In the context of
DMET, we can effectively converge the mean-field part of
the problem. Unfortunately, the small one-particle basis set
and modest impurity size make it unable to meaningfully
resolve these three structure of LiNiO2. Quantum simu-
lation can potentially overcome some of these limits by
acting as a lower scaling, unbiased impurity solver [115].

D. Quantum resource estimates for LNO

Quantum resource estimates for LNO using the SF and
DF LCUs are reported in Table VI. THC is not reported
due to the difficulty of reoptimizing the THC tensors to
have low L1 norm as discussed in Refs. [33,46,87]. For the

FIG. 14. Convergence of the total DMET energy for a four-
formula unit (16-atom) impurity with respect to effective size of
the mean-field calculation for the different distorted structures.

sparse LCU, a threshold of 1 × 10−4 was determined by
averaging the thresholds for the systems in Table I required
to achieve 1 mEH per unit cell. For the SF LCU, the trun-
cation of the auxiliary basis was set to 8 times the number
of molecular orbitals, which was determined by requir-
ing the error in the MP2 energy for the smallest C2/m

TABLE VI. Quantum resource estimates for all four LNO structures normalized by the number of formula units represented in each
simulation cell. R3̄m and C2/m are both one formula unit while P2/c is four formula units and P21/c is two formula units. The sparse
threshold is selected to be 1.0 × 10−4, the SF the auxiliary index is truncated at eight times the number of molecular orbitals, and the
DF the second factorization is truncated at 1.0 × 10−4.

System LCU k mesh λ No. spin orbs. Toffolis Logical qubits Physical qubits (M) Runtime (days)

R3̄m Sparse [2, 2, 2] 120382.037 116 6.16 × 1013 166946 242.72 1.51 × 104

[3, 3, 3] 718377.133 116 3.57 × 1015 1625295 2808.82 9.82 × 105

SF [2, 2, 2] 183778.821 116 7.86 × 1013 89162 129.77 1.93 × 104

[3, 3, 3] 2966279.293 116 4.60 × 1015 404723 699.68 1.27 × 106

DF [2, 2, 2] 10730.422 116 4.97 × 1012 149939 180.16 1.08 × 103

[3, 3, 3] 44794.803 116 7.28 × 1013 598286 869.02 1.79 × 104

C2/m Sparse [2, 2, 1] 58422.522 116 1.03 × 1013 83532 100.47 2.53 × 103

[4, 4, 2] 893339.394 116 5.37 × 1015 3051285 5272.93 1.48 × 106

SF [2, 2, 1] 95803.204 116 2.05 × 1013 44657 53.90 5.05 × 103

[4, 4, 2] 2899609.300 116 5.23 × 1015 405310 700.69 1.44 × 106

DF [2, 2, 1] 4873.648 116 1.18 × 1012 75178 90.44 2.56 × 102

[4, 4, 2] 51416.281 116 9.82 × 1013 598736 869.68 2.41 × 104

P2/c Sparse [1, 1, 1] 84977.359 464 2.06 × 1013 99918 120.21 5.07 × 103

[2, 2, 2] 1627121.892 464 1.67 × 1016 3182362 6454.14 4.59 × 106

SF [1, 1, 1] 201894.726 464 8.74 × 1013 92786 135.04 2.15 × 104

[2, 2, 2] 5666363.179 464 2.07 × 1016 839487 1450.95 5.68 × 106

DF [1, 1, 1] 2753.901 464 9.72 × 1011 75834 91.23 2.11 × 102

[2, 2, 2] 40788.113 464 1.40 × 1014 1192900 1732.40 3.44 × 104

P21/c Sparse [1, 2, 1] 105584.297 232 3.39 × 1013 182864 265.83 8.34 × 103

[2, 4, 2] 1714723.913 232 1.50 × 1016 3116825 6321.24 4.12 × 106

SF [1, 2, 1] 271178.934 232 8.92 × 1013 96882 140.98 2.19 × 104

[2, 4, 2] 7798992.981 232 2.13 × 1016 438080 757.32 5.85 × 106

DF [1, 2, 1] 3958.111 232 1.27 × 1012 75383 90.69 2.76 × 102

[2, 4, 2] 46189.645 232 1.23 × 1014 1192758 1732.20 3.02 × 104
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system to be less than 1 mEh per formula unit. For DF, the
same requirement was used to determine a cutoff for the
second factorization of 1 × 10−3. The trends are consis-
tent with what was observed in Sec. IV: DF is consistently
more efficient than either sparse or SF LCUs.

VI. CONCLUSION

In this work we developed the theory of symmetry-
adapted block encodings for extended system simulation
using four different representations of the Hamiltonian as
LCUs in order to improve quantum resource costs for
reaching the thermodynamic limit when simulating solids.
In order to realize an asymptotic speedup due to symme-
try, we substantially modify the block encodings compared
with their molecular counterparts. To demonstrate these
asymptotic improvements we compiled constant factors
for all four LCUs and compared their performance on
a suite of benchmark systems and a realistic problem in
materials simulation. We find that despite a clear asymp-
totic speedup for walk operator construction there are
competing factors (such as lower compression in Hamilto-
nian tensor factorizations) that make it difficult to observe
a large speedup using symmetry. It was recently shown that
variationally constructing tensor compressions for Hamil-
tonian simulation can improve quantum resource require-
ments [46,87,116] and thus we believe the compressions
can be improved to ultimately demonstrate a speedup for
these types of simulations.

For the sparse and SF LCUs we derive a O(√Nk)

speedup in constructing SELECT and PREPARE by ensuring
only the minimal amount of symmetry unique informa-
tion is accessed by the quantum circuit through QROM.
In both cases a speedup is observable, though it is much
clearer in the SF case. Observing the sparse LCU speedup
is more challenging due to the difficulty of converging
the Nk and N dependence of the two-electron integrals.
Compared with the molecular case where sparse was com-
petitive with the DF and THC algorithms [33,79], largely
due to the simplicity of SELECT, we find that sparse is
not viable for converging to the thermodynamic limit of
solids.

The DF and THC tensor factorizations yield LCUs as
unitaries in nonorthogonal bases and lead to much higher
compression than sparse and SF LCUs. In the DF case
we derive an asymptotic O(√Nk) improvement in Toffoli
complexity and qubit cost when constructing the qubitiza-
tion walk operator. Unfortunately, λ is increased in these
cases. The increase is attributed to the lower variational
freedom in constructing nonorthogonal bases when rep-
resenting the two-electron integral tensor in factorized
form compared with the nonsymmetry-adapted setting.
For the THC case, no asymptotic speedup is formally
possible. This stems from the linear cost of unary itera-
tion over all basis states. Nevertheless, due to competing

prefactors between unary iteration and state preparation,
we do observe a

√
Nk scaling improvement in the Toffoli

per step and logical qubit cost for the range of systems
studied. This is likely a finite-size effect, but may be prac-
tically important when considering which algorithm to
chose in the future. Thus, improving the λ value of THC
through more sophisticated and affordable means is worth
further investigation.

Reaching the thermodynamic and complete basis-
set limit is very challenging, even for classical wave-
function methods like CCSD and ph-AFQMC. Previous
ph-AFQMC results for simple insulating solids with two-
atom unit cells suggest that at least a 3 × 3 × 3 and 4 ×
4 × 4 sampling of the Brillouin zone is required to extrapo-
late correlation energies to the thermodynamic limit [117].
Similarly, it has been found that quadruple-ζ quality basis
sets are required to converge the cohesive energy to less
than 0.1 eV/atom, while a triple-ζ quality basis is likely
sufficient for quantities such as the lattice constant and bulk
modulus [118]. Similar system sizes and basis sets were
found to be required for CCSD simulations of metallic sys-
tems [19]. Although the theory of finite-size corrections
[119–122] is still an area of active research [123,124],
the simulation of bulk systems even with these correc-
tions typically requires on the order of 50 atoms, which
in turn corresponds to hundreds of electrons and thousands
of orbitals. For excited-state properties, particularly those
concerning charged excitations, even larger system sizes
may be required without the use of sophisticated finite-size
correction schemes [125]. Thus, we suspect that simulat-
ing large system sizes will continue to be necessary in
order to obtain high accuracy for condensed phase simu-
lations. It is important to note that high-accuracy classical
wave-function methods are often considered too expen-
sive for practical materials simulation, and DFT is still the
workhorse of the field. Appendix F shows that simulating
even simple solids with coarse k meshes can take on the
order of hours, which would otherwise take seconds for
a modern DFT code. From the quantum computing per-
spective, it is clear that several orders of magnitude of
improvement in resources are necessary before practical
materials simulation is possible. Despite this, the fairly low
scaling of phase estimation as a function of system size
serves as encouragement to pursue quantum simulation for
materials further.

Our estimates begin to demarcate the boundary for
quantum advantage in the context of ab initio materials
simulation. In particular, taking ph-AFQMC as a proxy
for a high-accuracy classical method, we see compar-
ing Table III and Fig. 16 that we would need roughly 2
orders of magnitude runtime improvements in the quantum
algorithm for it to become competitive from a wall-time
perspective. With that being said, it is important to caveat
this estimate with the fact that one would not necessarily
need to use a quantum computer (or QMC) to simulate
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a largely single reference system like carbon, and, more
importantly, for strongly correlated systems this boundary
is likely much closer as the runtime of methods like QMC
will, in principle, scale exponentially if more sophisticated
trial wave functions are required in order to obtain a fixed
accuracy. Failing any further algorithmic breakthroughs, it
is likely that quantum computers will be most effective for
simulating a fragment of the whole system with dynamical
correlation being accounted for using some approximate
(classical) approach or through embedding.

The aforementioned convergence difficulties are demon-
strated in our classical calculations on the LNO sys-
tem when attempting to resolve the discrepancy between
band-theory predictions and experimental observations of
the ground-state geometry. Furthermore, the variance in
energy between CCSD, MP2, ph-AFQMC, and DMET
(and their expenses) make it difficult to select an efficient
method for determining Hamiltonian parameter cutoffs
to use in quantum resource estimation. If anything, this
highlights the need for high-accuracy classical compu-
tation when performing quantum resource estimates and
ultimately picking an algorithm for quantum simulation.
The quantum resource estimates for LNO simulations are
exorbitantly expensive even at small k mesh; estimated
to run in O(102)− O(103) days using the DF LCU and
requiring O(106) logical qubits and O(1014) Toffoli gates.
Just as resource estimates for chemistry fell drastically
with algorithmic developments clearly further algorithmic
improvements are needed to make a LNO-sized problem
feasible on a quantum computer.

Qubitization is a general tool for Hamiltonian simula-
tion and there may be other simulation scenarios when the
improved walk operators yield faster simulations. There
are also areas to further improve the quantum algorithms
by taking advantage of space-group symmetry along with
translational symmetry. In classical calculations this can
lead to substantial computational savings even at the
mean-field level. Just as in the case of quantum algo-
rithms for molecular simulations, we expect the quantum
resource costs to fall with further exploration of algorith-
mic improvements.
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APPENDIX A: SPARSE REPRESENTATION
DERIVATIONS

1. The Pauli-operator representation of the one-body
term

Here we derive the Pauli-operator form of the one-body
operator amenable to implementation as a Majorana select
operation. The one-body operator is rewritten as

N/2∑
p ,q=1

hpk,qka†
pkσaqkσ �→ 1

4

N/2∑
p ,q=1

hpk,qk[�Z(Xpkσ − iYpkσ )][�Z(Xqkσ + iYqkσ )]

= 1
8

N/2∑
p ,q=1

hpk,qk[�Z(Xpkσ − iYpkσ )][�Z(Xqkσ + iYqkσ )] + 1
8

N/2∑
p ,q=1

hqk,pk[�Z(Xqkσ − iYqkσ )][�Z(Xpkσ + iYpkσ )]

= 1
8

N/2∑
p �=q=1

hpk,qk[�Z(Xpkσ − iYpkσ )][�Z(Xqkσ + iYqkσ )] − 1
8

N/2∑
p �=q=1

h∗
pk,qk[�Z(Xpkσ + iYpkσ )][�Z(Xqkσ − iYqkσ )]

+ 1
4

N/2∑
p=1

hpk,pk[�Z(Xpkσ − iYpkσ )][�Z(Xpkσ + iYpkσ )]

= 1
8

N/2∑
p �=q=1

Re(hpk,qk)
{
[�Z(Xpkσ − iYpkσ )][�Z(Xqkσ + iYqkσ )] − [�Z(Xpkσ + iYpkσ )][�Z(Xqkσ − iYqkσ )]

}

+ i
8

N/2∑
p ,q=1

Im(hpk,qk)
{
[�Z(Xpkσ − iYpkσ )][�Z(Xqkσ + iYqkσ )] + [�Z(Xpkσ + iYpkσ )][�Z(Xqkσ − iYqkσ )]

}
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+ 1
2

N/2∑
p=1

hpk,pk(1pkσ − Zpkσ )

= 1
4

N/2∑
p �=q=1

Re(hpk,qk)
{−i�ZYpkσ �ZXqkσ + i�ZXpkσ �ZYqkσ

}

+ i
4

N/2∑
p ,q=1

Im(hpk,qk)
{�ZXpkσ �ZXqkσ + �ZYpkσ �ZYqkσ

}+ 1
2

N/2∑
p=1

hpp(k)(1pkσ − Zpkσ )

= i
4

N/2∑
p �=q=1

Re(hpk,qk)
{�ZXqkσ �ZYpkσ + �ZXpkσ �ZYqkσ

}

+ i
4

N/2∑
p ,q=1

Im(hpk,qk)
{�ZXpkσ �ZXqkσ + �ZYpkσ �ZYqkσ

}+ 1
2

N/2∑
p=1

hpp(k)(1pkσ − Zpkσ )

= i
2

N/2∑
p ,q=1

Re(hpk,qk)�ZXpkσ �ZYqkσ + i
4

N/2∑
p ,q=1

Im(hpk,qk)
{�ZXpkσ �ZXqkσ + �ZYpkσ �ZYqkσ

}+ 1
2

N/2∑
p=1

hpk,pk1. (A1)

In the last line we have used the symmetry of Re(hpk,qk)

to combine �ZXqkσ �ZYpkσ and �ZXpkσ �ZYqkσ , then used the
fact that iXY = −Z to combine the sum with p �= q with
that for p . The complete expression for the Hamiltonian
has the sum over σ and k, which we have left out for sim-
plicity here. Including those gives the expression in Eq.
(??).

2. One-body correction for sparse case

Next we derive the effective one-body term from the
two-electron part of the Hamiltonian. In the case p = q and
Q = 0, the second term in square brackets in Eq. (21) can
be written as

− V∗
pk,q(k�Q),r(k′�Q),sk′a†

pkσaq(k�Q)σar(k′�Q)τa
†
sk′τ

= V∗
pk,q(k�Q),r(k′�Q),sk′apkσa†

q(k�Q)σar(k′�Q)τa
†
sk′τ

− V∗
pk,q(k�Q),r(k′�Q),sk′(apkσa†

q(k�Q)σ

+ a†
pkσaq(k�Q)σ )ar(k′�Q)τa

†
sk′τ

= V∗
pk,q(k�Q),r(k′�Q),sk′apkσa†

q(k�Q)σar(k′�Q)τa
†
sk′τ

− V∗
pk,q(k�Q),r(k′�Q),sk′ar(k′�Q)τa

†
sk′τ . (A2)

In the last line we have used the fact that for p = q and
Q = 0, apkσa†

q(k�Q)σ + a†
pkσaq(k�Q)σ is just the identity, so

this becomes a one-body operator.

Similarly, if r = s and Q = 0 (but p �= q), the second
term in square brackets in Eq. (21) can be written as

− V∗
pk,q(k�Q),r(k′�Q),sk′apkσa†

q(k�Q)σa†
r(k′�Q)τask′τ

= V∗
pk,q(k�Q),r(k′�Q),sk′apkσa†

q(k�Q)σar(k′�Q)τa
†
sk′τ

− V∗
pk,q(k�Q),r(k′�Q),sk′apkσa†

q(k�Q)σ (ar(k′�Q)τa
†
sk′τ

+ a†
r(k′�Q)τask′τ )

= V∗
pk,q(k�Q),r(k′�Q),sk′apkσa†

q(k�Q)σar(k′�Q)τa
†
sk′τ

− V∗
pk,q(k�Q),r(k′�Q),sk′apkσa†

q(k�Q)σ . (A3)

Thus we see that in either case (p = q or r = s), we have
the same expression as in Eq. (22), plus a one-body opera-
tor. Moreover, because of the symmetry of V (in swapping
the pq pair with the rs pair), these corrections are equal.
Note also that we can relabel swapping p with q and r
with s to replace V∗

pk,qk,rk′,sk′apkσa†
qkσ with (now explicitly

taking Q = 0)

V∗
qk,pk,sk′,rk′aqkσa†

pkσ = −Vpk,qk,rk′,sk′a†
pkσaqkσ . (A4)

This means that the contribution of these corrections is

∑
σ∈{↑,↓}

Nk∑
k

N/2∑
p ,q=1

(N/2∑
r=1

Nk∑
k′

Vpk,qk,rk′,rk′

)
a†

pkσaqkσ . (A5)

In this expression the constant factor is determined as fol-
lows. There is a factor of 1/4 in Eq. (21). Next, there is a
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factor of 2 because we have the contribution from p = q
as well as that from r = s. Last, there is the factor of 2
from the summation over the spin τ . As a result, these fac-
tors cancel to give 1 above. Therefore, for p �= q, we can
combine this one-body term with hpq as

h′
pq = hpq +

N/2∑
r=1

Nk∑
k′

Vpk,qk,rk′,rk′ . (A6)

Next we consider the case where p = q, r = s, and Q = 0.
Then the second term in square brackets in Eq. (21) can be
written as

V∗
pk,q(k�Q),r(k′�Q),sk′a†

pkσaq(k�Q)σa†
r(k′�Q)τask′τ

= V∗
pk,q(k�Q),r(k′�Q),sk′apkσa†

q(k�Q)σar(k′�Q)τa
†
sk′τ

+ V∗
pk,q(k�Q),r(k′�Q),sk′(a†

pkσaq(k�Q)σa†
r(k′�Q)τask′τ

− apkσa†
q(k�Q)σar(k′�Q)τa

†
sk′τ ). (A7)

The operators in brackets in the final line can be written as,
taking p = q, r = s, and Q = 0,

a†
pkσapkσa†

rk′τark′τ + apkσa†
pkσa†

rk′τark′τ

− apkσa†
pkσa†

rk′τark′τ − apkσa†
pkσark′τa

†
rk′τ

= a†
rk′τark′τ − apkσa†

pkσ

= a†
rk′τark′τ + a†

pkσapkσ − 1. (A8)

By symmetry of swapping p and q, and swapping r and s,
we must be able to simplify the final line of Eq. (A7) to

Vpk,pk,rk′,rk′(a†
rk′τark′τ + a†

pkσapkσ − 1). (A9)

That is, this value of V is real. We can also relabel r and p
and use symmetry to show the contribution from the first
term in Eq. (A9) is equivalent to

Vrk′,rk′,pk,pka†
pkσapkσ = Vpk,pk,rk′,rk′a†

pkσapkσ . (A10)

Hence the contribution of these corrections is

∑
σ∈{↑,↓}

Nk∑
k

N/2∑
p=1

(N/2∑
r=1

Nk∑
k′

Vpk,pk,rk′,rk′

)
(a†

pkσapkσ − 1/2).

(A11)

In this case, the constant factor comes from 1/4 in Eq. (21),
and a factor of 2 from the sum over τ . As a result the
expression in Eq. (A9) is divided by 2 here, and apart from
the identity we have the same expression as that account-
ing for only one of the pairs p , q and r, s being equal. The
operator proportional to the identity can be ignored in the
implementation of the Hamiltonian because it just gives a
global shift in the eigenvalues.

3. Complexity for sparse implementation

The fundamental operator we are aiming to implement is
in the form of Eq. (20) for the one-body term and Eq. (24)
for the two-body term. In both we have a real part and an
imaginary part; for the one-body term this is hpq, and for
the two-body term this is Vpk,q(k�Q),r(k′�Q),sk′ . We need to
perform a state preparation that provides real amplitudes
for the real and imaginary parts of h and V on separate
basis states (not just real and imaginary parts of an ampli-
tude on each basis state). This means the number of items
of data to output is doubled in order to give the real and
imaginary parts. The state preparation is otherwise essen-
tially unchanged from that in Ref. [79], as described in Eq.
(48) of that work and the accompanying explanation.

Recall that in the sparse state preparation procedure, we
use a register indexing the nonzero entries [see Eq. (43) of
Ref. [79]]. That is used to output “ind”, “alt,” and “keep”
values via QROM [see Eq. (44) of Ref. [79]]. The “ind”
values are values of p , q, r, s, as well as the sign needed,
and a qubit distinguishing between the one- and two-body
terms. The “alt” values are alternate values of these quanti-
ties, and “keep” governs the probability of swapping these
registers for the state preparation via coherent alias sam-
pling. Since we need a bit to flag whether the amplitude
being produced is for the real or imaginary part, that would
indicate we need two extra bits output, one for the “ind”
value and one for the “alt” value. However, we can use
one bit in the register indexing the nonzero entries to flag
between real and imaginary parts. It is most convenient to
make this register the least significant bit. Then we just
need to produce “alt” values of this register, so the output
size is only increased by 1 bit instead of 2. A requirement
for this approach is that the nonzero entries of V that are
retained are the same for the real and imaginary parts.

A further increase in the size of the output register is
because we need to output values of k, k′, and Q. The num-
ber of bits needed to store k is not simply �log Nk� because
k is a vector. The number of bits will be denoted nk. If we
assume that the number of values is given by the product
of numbers in the three dimensions Nk = NxNyNz, then

nk = �log Nx� + �log Ny� + �log Nz�. (A12)

Therefore, k, k′, and Q increase the size of both the ind
and alt registers by 3nk, for a total of 6nk. The size of
the output is given in Eq. (A13) of Ref. [33] as m =
ℵ + 8�log(N/2)� + 4, and would here be increased to

ℵ + 8�log(N/2)� + 6nk + 5, (A13)

where we have also increased the size of the output by 1 to
account for selecting between real and imaginary parts, as
discussed above. The quantity ℵ is the number of bits for
the “keep” register.
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The remaining consideration for the sparse state prepa-
ration is the symmetry. In prior work there were three
symmetries, with a swap of p , q with r, s as well as swaps
within the p , q and r, s pairs. The method to take advan-
tage of this was described from Eq. (49) in Ref. [79]. There
you perform only the preparation for a restricted range of
p , q, r, s, then use three qubits to control swaps to generate
the symmetries.

Here we have the symmetry with a swap of p , q with r, s,
but we can only swap the p , q and r, s pairs simultaneously.
We also need to take the complex conjugate when perform-
ing that swap. In order to implement the symmetries here,
we will have two control qubits. One qubit will be in a |+〉
state and control swap of the p , q with r, s as before, except
we now have the registers containing k, k′, k � Q, k′ � Q
to swap. That qubit is only set to |+〉 for the two-body term,
since that symmetry does not make sense for the one-body
term. The second qubit is used to simultaneously swap the
p , q and r, s pairs, as well as the registers containing k, etc.
It will also be used as a control for a Z phase gate on a qubit
flagging imaginary components. That is a Clifford gate and
is not included in the Toffoli count.

The net result is that the cost of the swaps to produce
these symmetries is unchanged from that in Ref. [79],
except in that we are counting the qubits needed to store
k, etc, as well as p , q, r, s. Since a controlled swap of two
qubits can be performed with a single Toffoli (and Clifford
gates), the Toffoli cost of the two controlled swaps of reg-
isters is the total number of qubits used to store p , q, r, s as
well as k, k′, k � Q, k′ � Q, which is 4�log(N/2)� + 4nk.
Note that in the state preparation we will be producing
k, k′, Q, and need to compute k � Q and k′ � Q before
performing the swaps for these symmetries.

Assuming for the moment that Nx, Ny , Nz are all powers
of 2, then the number of Toffolis needed for the modular
subtractions of the three components will be nk − 3, unless
one or more of Nx, Ny , Nz is equal to 1. It is simpler to give
the cost as nk Toffolis, to avoid needing to address spe-
cial cases. A further complication is when one or more of
Nx, Ny , Nz are not powers of 2. In this case, the subtraction
can be performed in the usual way for two’s complement
binary. Then you can check if the result for any component
is negative, and if it is then add the appropriate Nx, Ny , Nz
to make it non-negative. The controlled addition of a clas-
sically given number has complexity nk, so this at worst
doubles the complexity to 2nk for the modular subtraction.

The other major feature that we need to account for is
the modified SELECT operation needed. The basic circuit
primitive was given in Fig. 13 of Ref. [33], in order to
apply �ZYp ,σ followed by �ZXq,σ . A more complicated circuit
primitive was given in Fig. 1 of Ref. [79], which included
testing p = q, which is not needed in the approach of
Ref. [33]. Here the scheme is more complicated, because
instead of having a fixed sequence where we need to apply
Y followed by X we have every combination. This can be

achieved by simply performing each twice; once with a
controlled �ZY and once with a controlled �ZX , with a dou-
bling of the Toffoli complexity. That can be seen easily
from the diagram in Fig. 9 of Ref. [2]. There a control qubit
is used, so that can be used to control application of this cir-
cuit with Y, then to control application of this circuit with
X .

To understand how X versus Y is selected, note that
there are effectively five bits controlling here. Let us call
the bit selecting between the one- and two-body terms b0;
this is created in the sparse state preparation. Let us call the
bit selecting real versus imaginary parts b1; this is again
created in the state preparation. There also needs to be a
bit b2 for selecting between the two lines for real and the
two lines for imaginary in the expression in Eq. (24). Then
we have b3 to select between the two terms in the first set
of square brackets in each line of Eq. (24), and a bit b4
selecting between the two terms in the second set of square
brackets.

Now, considering the operators indexed by r, s first,
these are applied for the two-body terms but not the one-
body term. This control of the operations adds only one
Toffoli to the cost. For the first operation, �ZXsk′τ or �ZYsk′τ ,
we can see that the selection between X and Y depends
only on bit b4. For the second operation, the selection is
independent of whether we have the real or imaginary part.
We select X if we have b4 = 0 (the first term) and b2 = 0
(the first line), or if we have b4 = b2 = 1. To create a bit
selecting between X and Y we can simply perform a CNOT
between these bits, with no Toffoli cost.

Next, consider the operators indexed by p , q. For sim-
plicity we will first consider just the two-body terms.
Again the first operation can select between X and Y just
by using the bit b3 selecting between the terms. Then for
the second operation, we select X if we have b1, b2, b3
equal to 0, 0, 0, or 0, 1, 1, or 1, 0, 1, or 1, 1, 0. It is easily
seen that if we apply CNOTs with b1 then b2 as control and
b3 as target, then we should apply X if we have b3 = 0.
This selection can be performed without Toffolis again.

Now to take account of how the one-body terms are
applied, it is convenient to rewrite the first line of Eq. (20)
as

− i
4

N/2∑
p ,q=1

Re(hpk,qk)
{�ZYpkσ �ZXqkσ − �ZXpkσ �ZYqkσ

}
.

(A14)

Then the selection between the operations is identical
to that for b2 = 1 (second lines) for the two-body part.
Therefore, for the above analysis of the two-body imple-
mentation, we can replace b2 with a bit that is 1 if b2 = 1
OR b0 = 0. This operation requires one more Toffoli.

Another modification we need to make is to compute
k′ � Q and k � Q to use in the selection for the two-body
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operations. As explained above, these modular subtrac-
tions have complexity at worst 2nk. The calculation k � Q
needs to be controlled on the bit b0 selecting between the
one- and two-body terms, which increases its complex-
ity by nk. Therefore, the complexity of this arithmetic is
3�log Nk� Toffolis. We can keep the working qubits in
order to uncompute this arithmetic with Clifford gates.

Finally, we should account for the phase factors needed
in the implementation. The phase factors needed are as
follows.

1. We should apply an i phase factor on the one-body
term. That can be implemented with an S gate,
which is Clifford.

2. If we have the one-body term (flagged by b0 = 0)
we should flip the sign of the real part (flagged by
b1 = 0). This can be done with a controlled phase,
which is again Clifford.

3. For the two-body term (b0 = 1), real (b1 = 0), and
second line (b2 = 1) we should flip the sign. This
doubly controlled phase has a cost of one Toffoli.

4. We should flip the sign with b3 = 1 if we have
the two-body term (b0 = 1) and the second line for
real (b1 = 0, b2 = 1) or the first line for imaginary
(b1 = 1, b2 = 0). We should also flip the sign with
b3 = 1 if we have the one-body term (b0 = 0) and
real (b1 = 0). To achieve this we can first perform
a CNOT with b1 as the control and b2 as the tar-
get. Then, if b0 = 0, b1 = 0 OR b0 = 1, b2 = 1 we
should apply a Z gate to the qubit containing b3. This
can be achieved with two double controlled phase
gates, so has Toffoli cost 2.

5. We should flip the sign for b4 = 1 if we have the
second line b2 = 1. That is just a controlled phase
with no non-Clifford cost.

As a result, the total complexity of implementing these
phase factors is three Toffoli gates.

The total additional complexity is therefore two Toffo-
lis for the selection of X versus Y when we account for
needing to perform the one-or two-body term, 3�log Nk�
Toffolis for subtractions, three Toffolis for phase factors,
and doubling the selection cost to select between X and
Y. The two Toffolis to account for the one-body term were
one for selecting performing the operators indexed by r, s,
and another Toffoli to perform an OR between b0 and b2
for the operators indexed by p , q.

A further complication arises where the h and V are
dependent on the spins σ and τ . This is easily accounted
for by outputting the values of σ , τ as part of the state
preparation. This means that the size of both the “ind” and
“alt” outputs are increased by 2, making the total size of
the output increase by 4 to be

ℵ + 8�log(N/2)� + 6nk + 9. (A15)

Often there is the symmetry that for V the value with σ =↑,
τ =↓ are the same as for σ =↓, τ =↑. This means that we
can omit the case σ =↓, τ =↑, and use a swap of these
two qubits controlled by an ancilla qubit in the usual way
for obtaining symmetries. In the detailed costing below, we
give results for the case where h and V are not dependent
on spin for simplicity.

The QROM output size is

m = ℵ + 8nN + 6nk + 5, (A16)

where nN = �log(N/2)�. This output size is increased
above that analyzed in Ref. [33]. Then, using that output
size, the formula for the cost of the preparation with d
unique nonzero entries is

�d/k1� + m(k1 − 1) (A17)

and of the inverse preparation is

�d/k2� + k2. (A18)

Here k1 and k2 must be chosen as powers of 2. This formula
is the same as in Ref. [33], but with the modified value of
m.

To begin the state preparation, we need to prepare an
equal superposition state over d basis states. The analysis is
described in Ref. [33], which gives the costing 3�log d� −
3η + 2br − 9 Toffoli gates. Here η is a number such that 2η

is a factor of d, and br is a number of bits used for rotation
of an ancilla qubit to improve the amplitude of success.
This is a cost needed both for the preparation and inverse
preparation.

Other minor Toffoli costs are as follows. We use extra
ancillas to save cost, because a large number of ancillas
were used for the QROM, and can be reused here without
increasing the maximum number of ancillas needed. In the
following, we use the notation nN = �log(N/2)�.

1. Perform SELECT as shown in Fig. 13 of Ref. [33]
twice, but controlling between X and Y. This com-
plexity is 4NNk − 6, since we have 8 times a com-
plexity of NNk/2 − 1 for each of the selected oper-
ations, plus two Toffolis to generate the qubits we
need for the control. There were two Toffolis needed
to account for selecting between one- and two-body
terms, and otherwise the selection to account for the
various terms can be performed using Clifford gates.
In addition to this, we need to perform swaps con-
trolled by spin qubits twice for each of the two spin
qubits, with a complexity 2NNk. That then gives a
total complexity of this step 6NNk − 6.

2. The state preparation needs an inequality test on
ℵ qubits, as well as controlled swaps. The con-
trolled swaps are on nN + 3nk + 2 qubits. Here
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4�log(N/2)� are for the values of p , q, r, and s,
the 3nk is for the k, k′, and Q values, a +1 is for
the qubit that distinguishes between the one- and
two-electron terms, and a further +1 comes from
the qubit for selecting between the real and imagi-
nary parts. There are also ind and alt values of the
sign, but the correct phase can be applied with Clif-
ford gates, so this does not add to the Toffoli cost.
The cost of the inequality test on ℵ qubits is ℵ. As
in Ref. [33], we can eliminate the non-Clifford cost
of the inverse preparation using ancillas and mea-
surements, so the Toffoli cost is ℵ + 4nN + 3nk +
2.

3. The controlled swaps used to generate the symme-
tries have a cost of 4nN + 4nk. This is increased by
4nk over that in Ref. [33], since we need to swap k
registers as well. Although there are only two con-
trolled swaps rather than three in Ref. [33], two
of the controlled swaps in Ref. [33] together act
on as many qubits as one controlled swap here, so
the factor of 4 is the same as in Ref. [33]. A fur-
ther 4nk cost is for computing k � Q and k′ � Q
(or 2nk if Nx, Ny , Nz are powers of 2), and an extra
nk is needed to make the computation of k � Q
controlled. Again these controlled swaps can be
inverted for the inverse preparation with measure-
ments and Clifford gates. Thus the total Toffoli cost
here is 4nN + 9nk.

4. For the qubitization construction a reflection on the
ancilla is needed as well. The qubits that need to be
reflected on are as follows:

(a) the �log d� qubits for preparing the state;
(b) ℵ qubits for the equal superposition state in

coherent alias sampling;
(c) two qubits that are used for controlled swaps to

generate the symmetries of the state;
(d) the two spin qubits;
(e) the ancilla qubit that is rotated to produce the

equal superposition state;
(f) and the qubits storing b2, b3, b4, which are also

used in the linear combination of unitaries.

There is no non-Clifford Toffoli cost for the prepara-
tion on b2, b3, b4, since an equal superposition may
be prepared with a Hadamard. They are control
qubits that need to be reflected upon for the qubitiza-
tion, so add a cost of three Toffolis to the reflection
giving a total cost �log d� + ℵ + 6.

5. As before, the control for the phase estimation
uses unary iteration on the control registers, with
one more Toffoli for each step. The control by
these registers is implemented simply by control-
ling the reflection, which needs just one Toffoli per
step.

6. An extra three Toffolis are needed for the phase
factors.

Adding all these minor costs together gives, in the spin-
independent case

2(3�log d� − 3η + 2br − 9)+ (6NNk − 6)+ (ℵ + 4nN

+ 3nk + 2)+ 4nN + 9nk + �log d� + ℵ + 6 + 2 + 3

= 6NNk + 8nN + 10�log Nk� + 2ℵ + 7�log d�
− 6η + 4br − 8. (A19)

The total cost for a single step is then
⌈

d
k1

⌉
+ m(k1 − 1)+

⌈
d
k2

⌉
+ k2 + 6NNk + 8nN

+ 12nk + 2ℵ + 7�log d� − 6η + 4br − 8, (A20)

with m = ℵ + 8nN + 6�log Nk� + 5, nN = �log(N/2)�, η
an integer such that 2η is a factor of d, and br the number
of bits used for rotation of an ancilla qubit.

We may count the qubit costs by considering the max-
imum used during the QROM, as the advanced QROM
has a high qubit usage that will not be exceeded in other
parts of the algorithm. The qubit costs are therefore as
follows.

1. The control register for the phase estimation uses
�log(I + 1)� qubits, and there are �log(I + 1)� − 1
qubits for the unary iteration.

2. The system uses NNk qubits.
3. The �log d� + ℵ + 8 qubits that need to be reflected

upon listed above.
4. A qubit is needed to flag success of the equal

superposition state preparation.
5. The phase gradient state uses br qubits.
6. The QROM uses qubits (including the output)

mk1 + �log(d/k1)�.

This gives a total number of logical qubits

2�log(I + 1)� + NNk

+ �log d� + br + ℵ + mk1 + �log(d/k1)� + 8, (A21)

with m = ℵ + 8nN + 6�log Nk� + 5.

APPENDIX B: SINGLE-FACTORIZATION
DERIVATIONS

1. One-body correction for single factorization

For the single factorized form of the Hamiltonian, we
may use the same expressions for Â and B̂ for the case
Q = 0 as for Q �= 0, with an additional correction propor-
tional to the identity. This yields a one-body correction in
the case of Â but not B̂. For Ân(Q = 0) we obtain a term
proportional to the identity, as follows:
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Ân(Q = 0) = 1
2

∑
σ∈{↑,↓}

∑
k

∑
p �=q

(
Lpk,qk,na†

pkσaqkσ + L∗
pk,qk,na†

qkσapkσ

)
+
∑

σ∈{↑,↓}

∑
k

∑
p

Lpkpk,na†
pkσapkσ (B1)

=
∑

σ∈{↑,↓}

Nk∑
k

N/2∑
p �=q

(
iRe[Lpkq(k�Q),n]

4
(�ZXpkσ �ZYq(k�Q)σ − �ZYpkσ �ZXq(k�Q)σ

)

+ iIm[Lpkq(k�Q),n]
4

(�ZXpkσ �ZXq(k�Q)σ + �ZYpkσ �ZYq(k�Q)σ
))+

∑
σ∈{↑,↓}

Nk∑
k

N/2∑
p

Lpk,pk,n

2
(1 − Z)

=
∑

σ∈{↑,↓}

Nk∑
k

N/2∑
pq

(
iRe[Lpkq(k�Q),n]

4
(�ZXpkσ �ZYq(k�Q)σ − �ZYpkσ �ZXq(k�Q)σ

)

+ iIm[Lpkq(k�Q),n]
4

(�ZXpkσ �ZXq(k�Q)σ + �ZYpkσ �ZYq(k�Q)σ
))+

∑
σ∈{↑,↓}

Nk∑
k

N/2∑
p

Lpkpk,n

2
1. (B2)

Here we have used the symmetry of L, so Lpkpk,n is real. This derivation is similar to that for the one-body term in
Appendix A 1.

Because Ân(Q = 0) is squared, the identity term gives rise to a one-body correction

i
4

∑
σ∈{↑,↓}

M∑
n

Nk∑
k

N/2∑
p ,q

(
Re[Lpkqk,n]

(�ZXpkσ �ZYqkσ − �ZYpkσ �ZXqkσ
)

Im[Lpkqk,n]
(�ZXpkσ �ZXqkσ + �ZYpkσ �ZYqkσ

)) Nk∑
k′

N/2∑
r=1

Lrk′rk′,n

= i
4

∑
σ∈{↑,↓}

Nk∑
k

N/2∑
p ,q

Nk∑
k′

N/2∑
r=1

(
Re[Vpk,qk,rk′,rk′]

(�ZXpkσ �ZYqkσ − �ZYpkσ �ZXqkσ
)

Im[Vpk,qk,rk′,rk′]

+ (�ZXpkσ �ZXqkσ + �ZYpkσ �ZYqkσ
))

. (B3)

Here there was a factor of 1/2 on the square of Ân(Q =
0), a factor of 2 from the cross term in the square, a factor
of 2 from the sum over the spin on the identity, and so a
factor of 1/2 has been canceled. The form of this correction
is identical to that for the one-body term, except hpk,qk is
replaced with

N/2∑
r=1

Nk∑
k′

Vpk,qk,rk′,rk′ . (B4)

For B̂n(Q = 0), it is easily seen that the symmetry
Lpkqk,n = L∗

qkpk,n implies that B̂n(Q = 0) = 0. If we use
the form for B̂n(Q = 0) in terms of Pauli operators given
in Eq. (38), then it will be proportional to the identity
due to the case p = q. Squaring then just gives a correc-
tion proportional to the identity (which can be ignored
in the implementation because it is just an energy shift),
and it gives no one-body correction. As a result we add
the expression in Eq. (B4) to hpq to obtain the complete
one-body Hamiltonian given in Eq. (39).

2. Complexity for single-factorized representation

To see the changes we need to make to the algorithm
for the single-factorized representation, recall that the two-
body term was of the form [33]

W′ = 1
8

L∑
�=1

⎛
⎝ ∑
σ∈{↑,↓}

N/2∑
p ,q=1

W(�)
pq Qpqσ

⎞
⎠

2

, (B5)

where Qpqσ was an individual Pauli string. So the changes
in the representation are as follows:

(a) The sum over � up to L has been replaced with a sum
over Q and n, as well as a sum over the squares of A
and B.

(b) Inside the square, the sum over just σ , p , q now also
has a sum over k.

(c) Inside the sum, instead of just having a single
Pauli string, we have a sum over 4, with real and
imaginary parts of Lpkq(k�Q),n.
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The amendments we will make to the original algorithm
(according to the description in Ref. [33]) to implement
the block encoding are as follows.

(a) For the sum over Q and n we can combine them
into �, and use the same state-preparation method as
before. The value of Q will need to be used in the
SELECT operation, so needs to be output as part of
that state preparation.

(b) In the preparation for the block encoding of A and
B, the index k will be needed as well as p and q.

(c) We no longer take advantage of p , q symmetry.
(d) We need to perform arithmetic to compute k � Q

and k′ � Q, with a cost of 4nk (or 2nk if Nx, Ny , Nz
are powers of 2).

(e) A number of qubits can be used for selecting
between the parts of the linear combination of uni-
taries, similar to the sparse case. We have b0 to
select between the one- and two-body terms, b1 for
selecting between the real and imaginary parts, and
b3 selecting between the two terms in one applica-
tion of A or B. The qubit b2 can be used for selecting
between A and B, which is a change from the sparse
case, where it was used for selecting between lines.

We do not need b4 because we are implementing A
or B twice (and creating the bit b3 both times).

(f) There needs to be a doubling of the selection cost to
select between X and Y as in the sparse case.

(g) The creation of the qubits for controlling between
X and Y can be performed with one additional Tof-
foli. Note first that the terms in A are equivalent to
the one-body part, and the terms in B are the same
except with the real and imaginary lines swapped
around. This means that we can use b0 and b2 as a
control to flip b1, which effectively swaps the real
and imaginary parts for B so it can be implemented
in the same way. Now, for the first selection of X
versus Y, we can apply a CNOT with b1 as control and
b3 as target, and use that as control. For the second
selection we can simply use b3 as control.

(h) For the phase factors, we just need a sign flip if b1 =
0 and b3 = 1, which is a Clifford controlled phase.

To explain the modifications needed for the costings, here
we give the sequence of steps with the same numbering as
in Ref. [33], explaining the differences.

1. We first prepare a state as

1√
λ

⎛
⎝|0, 0, 0, 0〉

√∑
p ,q

(
|Re(h′

pq)| + |Im(h′
pq)|
)

+ 1√
2

∑
Q,n

|�, Q, n, 1〉
∑
k,pq

(|Re[Lpkq(k�Q),n]| + |Im[Lpkq(k�Q),n]|)
⎞
⎠ , (B6)

where |�, Q, n〉 indicates �, which starts from 1
indexing values of Q, n, but Q and n are also out-
put in registers. That is, we will be preparing �while
outputting values of Q, n. We are assuming the more
difficult case where the number of values of Q or
n are not powers of 2, but if they are then further
simplifications are possible. This has complexity as
follows.

(a) Preparing an equal superposition on MNk + 1
basis states has complexity 3nMN + 2br − 9,
where br is the number of bits used for the
rotation on the ancilla,

nMN = �log(MNk + 1)�. (B7)

(b) A QROM is applied with output size

bMN = ℵ1 + nMN + 2nk + 2, (B8)

with ℵ1 being the number of bits used for the
keep values (which govern the precision of the
state preparation via the inequality test). Here
nMN and 2nk are for � and Q, with the factor of 2
accounting for ind and alt values of Q. The extra
two qubits are for outputting a qubit showing if
� = 0 (for selecting between the one- and two-
body parts). The complexity is

⌈
MNk + 1

kMN

⌉
+ bMN (kMN − 1). (B9)

(c) An inequality test is performed with complexity
ℵ1.

(d) A controlled swap is performed with complex-
ity nk + �log M� + 1.

2. Next, we prepare a state on the second register as
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1√
λ

(
|0, 0, 0, 0〉

∑
p ,q

[√
2|Re(h′

pq)||θ(0)pq0〉|0, p , q, 0〉 +
√

2|Im(h′
pq)||θ(0)pq1〉|0, p , q, 1〉

]

+ 1√
2

∑
Q,n

|�, Q, n, 1〉
√∑

k,rs

(|Re[Lrks(k�Q),n]| + |Im[Lrks(k�Q),n]|)

×
∑
k,p ,q

[√
|Re(Lpkq(k�Q),n)||θ(�)kpq0〉|k, p , q, 0〉 +

√
|Im(Lpkq(k�Q),n)||θ(�)kpq1〉|k, p , q, 1〉

]⎞⎠ |+〉|+〉, (B10)

where θ(�)kpq0, θ(�)kpq1 are used to obtain the correct signs
on the terms, and the |+〉 states at the end are used
to select the spin and control the swap between the
p and q registers.
Now we have a distinction from Ref. [33] in that we
have separate real and imaginary parts, and a sep-
arate prepared qubit to flag between the real and
imaginary parts. Because of the large number of
variables, we will again use a single variable for iter-
ation, and use it to output k, p , q. The complexity of
this state preparation is then as follows.

(a) First, prepare an equal superposition over the
variable for iteration. There are P = NkN 2/2
values to take, which includes a factor of 2
for the real and imaginary parts, Nk for k, and
N 2/4 for the values of p , q. Then the com-
plexity of preparing the equal superposition is
3nP − 3η + 2br − 9, where nP = �log P�, with
η being the largest number such that 2η is a
factor of P.

(b) The size of the QROM output is

bp = 2nk + 4nN + ℵ2 + 3, (B11)

where the first term is for the three components
of k, the second is for p and q. The third is for
ind and alt values of the qubit to store the correct
sign, as well as an alt value of the extra qubit for
selecting between the real and imaginary parts.
We do not include an ind value for that qubit,
because it is part of the register we are iterating
over. The complexity of this QROM will be

⌈
MNk + 1

kp1

⌉⌈
P

kp2

⌉
+ bp(kp1kp2 − 1), (B12)

where we are accounting for the cost to select
based on both the index from the factorization
and the index for k, p , q, and using the result for
the complexity of QROM on two registers from
Appendix G of Ref. [33].

(c) Perform the inequality test with cost ℵ2, which
is the bits of precision for this state preparation.

(d) Perform the controlled swap with the alt values
with cost nk + 2nN + 1. Here we are swapping
the ind and alt values of k, p , q, as well as
the qubit selecting between real and imaginary
parts. The sign required for the sign qubits can
be implemented with Cliffords as in Ref. [33],
so does not add to this Toffoli cost.

3. We no longer perform swaps of p and q for symme-
try, but we do need to perform arithmetic to compute
k � Q and k′ � Q, with a cost of 4nk.

4. Perform SELECT by performing the sequence of four
controlled �ZXp ,σ or �ZYp ,σ operations. The cost is
4(NNk/2 − 1) Toffolis since it must be controlled,
and there is a cost of one more Toffoli to create the
qubits to control on. In order to select the spin we
also perform a swap controlled by the spin selection
qubit before and after, with a cost of NNk Toffolis.

5. Reverse steps 2 and 3, where the complexities are
the same except the QROM complexity, which is
changed to

⌈
MNk + 1

k′
p1

⌉⌈
P

k′
p2

⌉
+ k′

p1k′
p2. (B13)

6. Reflect on the qubits that were prepared in step 2.
The qubits we need to reflect on are as follows.

(a) The nP qubits for the variable of iteration.
(b) We need to reflect on the ℵ2 registers that are

used for the equal superposition state for the
state preparation.

(c) One that is rotated for the preparation of the
equal superposition state.

(d) One for the spin.
(e) One for controlling the swap between the p and

q registers.
(f) One for selecting between the real and imagi-

nary part.
(g) One for selecting between A and B.
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That gives a total of nP + ℵ2 + 5 qubits. The reflec-
tion needs to be controlled on the success of the
preparation on the � register, and � �= 0, making the
total cost nP + ℵ2 + 5 Toffolis.

7. Perform steps 2 to 5 again, but this time MNk + 1
is replaced with MNk in Eq. (B12) and Eq. (B13).
Also, the SELECT operation needs to be controlled on
� �= 0, which flags the one-body term. That requires
another four Toffolis.

8. Invert the state preparation on the � register, where
the complexity of the QROM is reduced to

⌈
MNk + 1

k′
P

⌉
+ k′

P. (B14)

9. To complete the step of the quantum walk, perform
a reflection on the ancillas used for the state prepara-
tion. There are nMN + nP + ℵ1 + ℵ2 + 5, where the
qubits we need to reflect on are as follows.

(a) The nMN qubits for the � register.
(b) The nP qubits for the registers in the state

preparation for A and B.
(c) The ℵ1 qubits for the equal superposition state

used for preparing the state on the � register
using the coherent alias sampling.

(d) The ℵ2 qubits for the equal superposition state
for preparing the state for A and B.

(e) Two qubits rotated for the boosting the success
probability for the equal superposition states.

(f) One qubit for the spin.
(g) One qubit for controlling the swap of the p and

q registers.
(h) One for selecting between the real and imagi-

nary part.
(i) One for selecting between A and B.

This reflection has cost nMN + nP + ℵ1 + ℵ2 + 4.
10. The steps of the walk are made controlled by using

unary iteration on an ancilla used for the phase
estimation. Each step requires another two Toffo-
lis for the unary iteration and making the reflection
controlled.

In this list of steps we have not explicitly included the part
for applying the phase factors, but that has no non-Clifford
cost.

Next we consider the total number of logical qubits
needed for the simulation via this method.

1. The control register for the phase estimation, and
the ancillas for the unary iteration, together need
2�logI� − 1 qubits.

2. There are NNk qubits for the target system.
3. There are nMN + 2 qubits for the � register, the qubit

rotated in preparing the equal superposition, and

the qubit flagging success of preparing the equal
superposition.

4. The state preparation on the � register uses bMN =
2nk + 2�log M� + 2ℵ1 + 2 qubits. Here 2nk +
2�log M� is for the ind and alt values of Q and n,
ℵ1 are for keep values, ℵ1 are for the equal super-
position state, 1 is for the output of the inequality
test, and 2 are for the qubit flagging � �= 0 and its
alternate value.

5. There are nP + 2 qubits needed for the register
preparing p , q, k values, a qubit that is rotated for the
equal superposition, and a qubit flagging success of
preparing the equal superposition.

6. The equal superposition state used for the second
preparation uses ℵ2 qubits.

7. The phase gradient register uses br qubits.
8. The qubits for the spin, controlling the swap of p

and q, selection between the real and imaginary
parts, and selection between A and B for a total of
4.

9. The QROM needs a number of qubits bpkp1kp2 +
�log[(MNk + 1)/kp1]� + �log[L/kp2]�.

The QROM for the state preparation on the second register
uses a large number of temporary ancillas, which can be
reused by later parts of the algorithm, so those later parts
of the algorithm do not need the number of qubits counted.
The total number of qubits used is then

2�logI� + NNk + nMN + nP + 2nk + 2�log M� + 2ℵ1

+ ℵ2 + br + 9 + bpkp1kp2 + �log[(MNk + 1)/kp1]�
+ �log[L/kp2]� (B15)

with bp = 2nk + 2nN + ℵ2 + 3, nN = �log(N/2)�, nP =
�log P�, L = NkN (N + 2)/4. This completes the costing
of the low-rank factorization method.

APPENDIX C: DOUBLE-FACTORIZATION
DERIVATIONS

1. One-body correction

Here we derive the correction for the one-body Hamilto-
nian as given in Eq. (52). The λ value for the Hamiltonian
can be calculated by determining the total L1 norm using
the second factorization

Ĥ ′
2 = 1

2

Nk∑
Q

M∑
n

(
Â2

n(Q)+ B̂2
n(Q)

)
(C1)
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with

2Ân(Q) =
∑

k

⎡
⎣UA

n (Q, k)

⎛
⎝∑

σ

Q,n,k,A∑
p

f A
p (Q, n, k)(1 − Zpkσ )

⎞
⎠UA

n (Q, k)†

⎤
⎦

=
∑

k

UA
n (Q, k)1̂A

kUA
n (Q, k)† −

∑
k

UA
n (Q, k)ẐA

k UA
n (Q, k)† (C2)

where 1̂A
k =∑σ

∑Q,n,k,A
p f A

p (Q, n, k)1 and ẐA
k =∑σ

∑Q,n,k,A
p f A

p (Q, n, k)Zpkσ , and

2B̂n(Q) =
∑

k

⎡
⎣UB

n (Q, k)

⎛
⎝∑

σ

Q,n,k,B∑
p

f B
p (Q, n, k)(1 − Zpkσ )

⎞
⎠UB

n (Q, k)†

⎤
⎦

=
∑

k

UB
n (Q, k)1̂B

kUB
n (Q, k)† −

∑
k

UB
n (Q, k)ẐB

k UB
n (Q, k)† (C3)

where 1̂B
k =∑σ

∑Q,n,k,B
p f B

p (Q, n, k)1 and ẐB
k =∑σ

∑Q,n,k,B
p f B

p (Q, n, k)Zpkσ . The factor of 1/2 from the Jordan-
Wigner transform is squared to 1/4, which is moved outside each term and combined with the prefactor 1/2 to produce a
prefactor of 1/8. We note that Ân(Q)2 can be written as

4Ân(Q)2 =
(∑

k

UA
n (Q, k)1̂A

kUA
n (Q, k)† −

∑
k

UA
n (Q, k)ẐA

k UA
n (Q, k)†

)

×
(∑

k′
UA

n (Q, k′)1̂A
k′UA

n (Q, k′)† −
∑

k′
UA

n (Q, k′)ẐA
k′UA

n (Q, k′)†
)

= 2
∑

k

UA
n (Q, k)1̂A

kUA
n (Q, k)†Ân(Q)+ 2Ân(Q)

∑
k

UA
n (Q, k)1̂A

kUA
n (Q, k)†

+
∑
k,k′

UA
n (Q, k)ẐA

k UA
n (Q, k)†UA

n (Q, k′)ẐA
k′UA

n (Q, k′)†

−
∑

k

UA
n (Q, k)1̂A

kUA
n (Q, k)†

∑
k′

UA
n (Q, k′)1̂A

k′UA
n (Q, k′)†. (C4)

The last term in the above equation is proportional to the identity and is ignored. A similar expression can be derived for
B̂n(Q)2 and thus the component of the two-body term involving two Pauli Z operators is written as

V = 1
8

∑
Q,n,k,k′

UA
n (Q, k)ẐA

k UA
n (Q, k)†UA

n (Q, k′)ẐA
k′UA

n (Q, k′)†

+ 1
8

∑
Q,n,k,k′

UB
n (Q, k)ẐB

k UB
n (Q, k)†UB

n (Q, k′)ẐB
k′UB

n (Q, k′)†, (C5)

which implies the two-body L1 norm, λDF,2, is

λDF,2 = 1
4

∑
Q,n

⎡
⎢⎣
⎛
⎝

NkQ,n,k,A∑
k,p

|f A
n (p , Q, k)|

⎞
⎠

2

+
⎛
⎝

NkQ,n,k,B∑
k,p

|f B
n (p , Q, k)|

⎞
⎠

2
⎤
⎥⎦ , (C6)

where the factor of 1/8 becomes a factor of 1/2 accounting for spin. This factor of 1/2 is further divided by two
because we perform oblivious amplitude amplification—i.e., the inner step of qubitization evolving by 2Ân(Q)2 − 1 and
2B̂n(Q)2 − 1.
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Next, the one-body terms in the third line of Eq. (C4)
can be rewritten as

2
∑

k

1̂A
kÂn(Q)+ 2Ân(Q)

∑
k

1̂A
k . (C7)

This expression needs to be divided by 8 to give the
contribution to the Hamiltonian, and there is a similar con-
tribution from B̂n(Q)2 to give the overall contribution to
the one-body Hamiltonian

1
2

∑
n,Q

(∑
k

1̂A
kÂn(Q)+

∑
k

1̂B
kB̂n(Q)

)
. (C8)

Taking the trace of Eqs. (C2) and (C3) then implies

∑
k

1̂A
k = 1Tr(Ân(Q)) = 1

1
2
[
Tr(ρ̂n(Q))+ Tr(ρ̂†

n(Q))
]

,

(C9)

∑
k

1̂B
k = 1Tr(B̂n(Q)) = 1

i
2
[
Tr(ρ̂n(Q))− Tr(ρ̂†

n(Q))
]

.

(C10)

The trace of ρ̂n(Q) is nonzero only for Q = 0. In that case

Tr(ρ̂n(0)) = 2
∑

k

(N/2∑
r

Lrkrk,n

)
, (C11)

which is real. Moreover, it is easily seen that ρ̂(0) is Her-
mitian using the symmetry Lpkqk,n = L∗

qkpk,n, so Ân(0) =
ρ̂n(0) and B̂n(0) = 0. Therefore,

∑
k

1̂A
kÂn(0)+

∑
k

1̂B
kB̂n(0) = 2

∑
k,p ,q,σ⎛

⎝∑
k′,r

Lpkqk,nLrk′rk′,n

⎞
⎠ a†

pkσaqkσ . (C12)

Therefore, the contribution to the one-body Hamiltonian
becomes

1
2

∑
n,Q

(∑
k

1̂A
kÂn(Q)+

∑
k

1̂B
kB̂n(Q)

)

=
∑

k,p ,q,σ

⎛
⎝∑

k′,r
Vpk,qk,rk′,rk′

⎞
⎠ a†

pkσaqkσ . (C13)

As a result, the complete one-body Hamiltonian is

H ′
1 =

∑
k,p ,q,σ

⎛
⎝hpk,qk +

∑
k′,r

Vpk,qk,rk′,rk′

⎞
⎠ a†

pkσaqkσ . (C14)

This is identical to the result that was obtained in the
single-factorization case as in Eq. (B4). Thus the L1 norm
of H ′

1 is the sum

λDF,1 =
∑

k

∑
p

|λk,p |, (C15)

where λk,p is an eigenvalue of the matrix representing
H ′

1(k), which are the coefficients in the parenthesis of
Eq. (C14).

2. Complexity of the double-factorized representation

Our form of the two-body part of the Hamiltonian is

Ĥ ′
2 = 1

2

Nk∑
Q

M∑
n

(
Â2

n(Q)+ B̂2
n(Q)

)
, (C16)

with

Ân(Q) =
∑

k

⎡
⎣UA

n (Q, k)

⎛
⎝∑

σ

Q,n,k,A∑
r

f A
r (Q, n, k)nr,k,σ

⎞
⎠

UA
n (Q, k)†

]
(C17)

and similarly for B̂n(Q). In comparison, the double-
factorized Hamiltonian from Refs. [33,45] is

F ′ = 1
8

L∑
�=1

U�

⎛
⎝ ∑
σ∈{↑,↓}

(�)∑
p=1

f (�)p Zp ,σ

⎞
⎠

2

U†
�. (C18)

So, in contrast to the decomposition before, instead of a
sum over �, we have a sum over Q, n, and a qubit indexing
over Â, B̂. This difference can be accounted for easily in
the method as presented in Ref. [33]. That method may be
summarized as follows.

1. Perform a state preparation over � for the first
factorisation.

2. Use a QROM on � to output some parameters
needed for the state preparation for the second
factorization (the operator that is squared).

3. Perform the inner state preparation over p .
4. Apply a QROM to output the sequence of rotations

dependent on � and p .
5. Apply the Givens rotations.
6. Apply a controlled Z.
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7. Invert the Givens rotations, QROM, and state prepa-
ration over p .

8. Perform a reflection on the ancilla qubits used for
the state preparation over p .

9. Perform steps 3 to 7 again.
10. Invert the QROM from step 2.
11. Invert the state preparation from step 1.

Note that this is distinct from the procedure in Ref. [45],
which combined the � and p preparations.

To account for the changes here, the index � can be used
to iterate through all possible values of Q, n, and the qubit
indexing over Â, B̂. Most of the steps can be performed
ignoring these values, but we will need to know Q before
performing the Givens rotations. It is convenient to out-
put this value in the QROM used in step 2, which slightly
increases the output size of this QROM. We will also need
to output k values, and these will be given in the second
state preparation used in step 3. But, that preparation will
produce a joint index of p and k without giving k explicitly
(similar to our preparation over � not giving Q explicitly).
This can be output by the QROM in step 4.

In order to apply the Givens rotations, we will need to
perform controlled swaps of system registers k, k � Q into
working registers, then apply the Givens rotations on those
working registers. Since k � Q is not given directly by the
state preparation, it needs to be computed with cost 2nk
(or nk if Nx, Ny , Nz are powers of 2). The controlled swaps
have a Toffoli cost of 2nk for the unary iteration, and NNk
for the controlled swaps. The cost of NNk is because we
need to run through NNk/2 system qubits twice. These con-
trolled swaps are performed 4 times, because they need
to be performed before and after each application of the
Givens rotations. That gives a total cost from this part

4NNk + 12nk. (C19)

Then for the QROM outputting the Givens rotations, the
number of items of data can be given as

∑
Q,n,k

(Q,n,k,A +Q,n,k,B), (C20)

whereQ,n,k,A andQ,n,k,B are the cutoffs in the sums for Â
and B̂. As per Eq. (48), we define as this quantity divided
by L = 2NkM , so we can write the number of items of data
as L.

The Givens rotations need to be on 2N orbitals, so there
are 2N Givens rotations. For each of these rotations two
angles need to be specified, in contrast to one in Refs.
[33,45]. The size of the data output for the QROM for the
Givens rotations is increased to 2N�, because there are
two registers of size N/2, and there are two rotations of
� of precision for each Givens rotation. The total com-
plexity of applying the Givens rotations is increased to

16N (� − 2). This is an increase of a factor of 4 over that
in Ref. [33], with a factor of 2 from using two working reg-
isters, and a factor of 2 because there are two rotations for
each Givens rotation.

The other changes in the cost are relatively trivial. There
is a swap on the system registers controlled on the spin
register. Since this is now on NNk qubits instead of N , the
cost is multiplied by Nk.

So, to summarize the complexity using the same num-
bering of steps as in Ref. [33], we have the following.

1. The cost of the state preparation over � is

(3nL − 3η + 2br − 9)+
⌈

L + 1
kp1

⌉

+ bp1(kp1 − 1)+ ℵ1 + nL, (C21)

where L is now 2NkM and as before bp1 = nL + ℵ1,
nL = �log L�.

2. The complexity of the QROM on � is now

⌈
L + 1

ko

⌉
+ bo(ko − 1), (C22)

with

bo = nk + n + nL, + br + 1, (C23)

with the extra nk being to output Q. Here n is the
number of bits needed for k,p values of p , and nL,

nL, = �log(L+ NkN/2)� (C24)

is the number of bits needed for the offset.
3. The cost of the second stage of state preparation is

4(7n + 2br − 6)+ 4(nL, − 1)

+
(⌈

L+ NNk/2
kp2

⌉
+
⌈

L
kp2

⌉
+ 2bp2(kp2 − 1)

)

+ 4(ℵ2 + n), (C25)

where the brackets are used to indicate the cost of
parts (a) to (d) of step 3. As well as using our modi-
fied definition of, the only change over the costing
in Ref. [33] is replacing N/2 with NNk/2 for the
range of values for the one-body term. In this cost
we are including the second use of the preparation
in part 7.
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4. The cost of the number operators via QROM is
⌈

L+ NNk/2
kr

⌉
+
⌈

L
kr

⌉
+ (4N� + nk)(kr − 1)

+
⌈

L+ NNk/2
k′

r

⌉
+
⌈

L
k′

r

⌉

+ 2k′
r + 4(nL, − 1)+ 16N (� − 2)+ 2NNk + 2.

(C26)

Here the term 4N�(kr − 1) has been increased by a
factor of 4 over that in Ref. [33], because we have
2 times as many qubits that the Givens rotations
need to act on, and there are twice as many rotations
needed for each Givens rotation. (This term is cor-
responding to the output size for the QROM.) We
have also added nk for the output size so we can
output the value of k needed to select the register.
Again N/2 is replaced with NNk/2 for the one-body
term. The quantity 16N (� − 2) is for the cost of the
Givens rotations, and is also multiplied by a factor
of 4 over that in Ref. [33]. The 2NNk for the con-
trolled swaps for spin, and is increased over 2N in
Ref. [33] because we now have k.

5. The inversion of the state preparation has cost

2(7n + 2br − 6)+ 2(nL, − 1)

+
(⌈

L+ NNk/2
k′

p2

⌉
+
⌈

L
k′

p2

⌉
+ 2k′

p2

)

+ 2(ℵ2 + n). (C27)

This cost is the same as in part 3, except the cost of
erasing the QROM is reduced. We are again includ-
ing both uses (with the second described in step
7).

6. The reflection for the oblivious amplitude amplifi-
cation has an unchanged cost

n + ℵ2 + 2. (C28)

7. The cost of the second use of the block encoding to
give the square are already accounted for above.

8. The cost of inverting step 1 is

(3nL − 3η + 2br − 9)+
⌈

L + 1
k′

p1

⌉
+ k′

p1 + ℵ1 + nL,

(C29)

and for inverting step 2 is
⌈

L + 1
k′

o

⌉
+ k′

o, (C30)

where we are using the improved cost for erasing
QROM.

9. The reflection cost is unchanged at

nL + n + ℵ1 + ℵ2 + 1. (C31)

10. The extra cost of unary iteration on the control reg-
ister and of controlling the reflection on that register
is two Toffolis.

11. The new costs of performing controlled swaps into
working registers and arithmetic to compute k � Q
and k′ � Q are

4NNk + 12nk. (C32)

Adding all these costs together gives the total cost for
block encoding the Hamiltonian.

The cost in terms of logical qubits is very similar
to that for the original double-factorized approach. The
differences are as follows.

1. There are registers needed to store k, Q, k � Q.
Because k � Q can be computed in place in the
Q register, we need only storage for 2. Moreover,
because k is given in the QROM output in part 4
above, it does not need to be added to that qubit
costing.

2. There are N qubits used for the working registers (2
of size N/2).

3. A number of parameters are changed, in particular,
the number of system qubits is now NNk, and L is
computed from the number of values of Q and n.

4. The size of the output for the Givens rotations is
multiplied by a factor of 4.

APPENDIX D: TENSOR HYPERCONTRACTION
DERIVATIONS

1. THC symmetries

In this section we derive the symmetry relationships
for the central tensor based on the fourfold symmetry
of the two-electron integral tensor as used in Eq. (63).
Recall an element of the two-electron integral tensor can
be represented in THC form as

Vpk,q(k�Q),rk′�Q,sk′ =
∑
μ,ν

χ∗
pk,μχq(k�Q),μζ

Q,G1,G2
μν

χ∗
r(k′�Q),νχsk′,ν , (D1)

where G1 is shorthand for Gk,k−Q and G2 is shorthand for
Gk′,k′−Q. The fourfold symmetry of the complex valued
two-electron integral tensor is reflected in the central ten-
sor ζ . We recover the symmetry by first noting the four
equivalent two-electron integrals
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Vpk,q(k�Q),rk′−Q,sk′ =
∑
μ,ν

χ∗
pk,μχq(k�Q),μζ

Q,G1,G2
μν χ∗

r(k′�Q),νχsk′,ν ,

V∗
q(k�Q),pk,sk′,rk′−Q =

(∑
μ,ν

χ∗
q(k�Q),μχpk,μζ

(�Q),!G1,!G2
μν χ∗

sk′,νχr(k′�Q),ν

)∗
,

Vr(k′�Q),sk′,pk,q(k�Q) =
∑
μ,ν

χ∗
r(k′�Q),μχsk′,μζ

(�Q),!G2,!G1
μν χ∗

pk,νχq(k�Q),ν ,

Vsk′,r(k′�Q),q(k�Q),pk =
(∑
μ,ν

χ∗
sk′,μχr(k′�Q),μζ

Q,G2,G1
μν χ∗

q(k�Q),νχpk,ν

)∗
,

which implies

ζQ,G1,G2
μν = (ζ (�Q),!G1,!G2

μν

)∗ = ζ (�Q),!G2,!G1
νμ = (ζQ,G2,G1

νμ

)∗
.

(D2)

Here (�Q) is used to indicate a modular negative of Q,
similar to modular subtraction. In the above expression the
complement of G1, !G1, is defined through

kp − kq = Q + G1,

kq − kp = (�Q)+!G1,

!G1 = − (Q + G1 + (�Q)) , (D3)

and it is important to note that (�Q) is defined to be in the
original set of k points and it is useful as we build only ζQ.
A similar expression can be derived for !G2. It is helpful
to consider some concrete examples, which are given in
Table VII.

2. Complexity of the tensor hypercontraction
representation

The following is a detailed costing for the qubitization
oracles using the THC LCU. In the initial state preparation,
we need to prepare a superposition over Q, G1, G2,μ, ν

with weights
√

|ζQ,G1,G2
μν |. The state can be prepared via the

coherent alias sampling procedure, starting with QROM to
output keep and alt values. One option here is to produce
an equal superposition over Q, G1, G2,μ, ν, then calcu-
late a contiguous register from these values to use for the
QROM. That procedure is fairly complicated, because it
requires preparing equal superpositions over three com-
ponents of Q as well as G1, G2,μ and ν, then arithmetic
for the contiguous register. To simplify the procedure we
give the complexity for giving ind values like for sparse
state preparation. That is, we prepare the contiguous regis-
ter, and use the QROM to output both ind (index) and alt
values of Q, G1, G2,μ, ν.

There is the symmetry ζ
Q,G1,G2
μν = (ζ

Q,G2,G1
ν,μ )∗, which

indicates only half the range of μ, ν, G1, G2 values need

be prepared. It is convenient to prepare the full range, but
use part of the range for real and part for imaginary com-
ponents. If we only were considering μ, ν, we could use
μ ≤ ν for real components and μ > ν for imaginary com-
ponents. To account for G1, G2 as well, we can combine
them with μ, ν as least-significant bits for combined inte-
gers to use in inequality tests. This inequality test between
μ, G1 and ν, G2 is used to give a qubit flagging that the
component should be imaginary. A further qubit in a |+〉
state is used to control a swap of μ, G1 with ν, G2 registers,
and a controlled Z gate on the qubit flagging the imagi-
nary component gives the desired complex conjugate. As
a result the range for μ, ν is M 2 taking account of giving
real and imaginary components.

For Q there is also the symmetry where ζQ,G1,G2
μν =

(ζ
(�Q),!G1,!G2
μν )∗, so it is only necessary to produce approx-

imately half as many values of Q. This is complicated
by the cases where Q = �Q. If Nx, Ny , Nz are odd, then
the only case where this can be true is that Q = 0, so
the number of values of Q that need be considered is
(NxNyNz + 1)/2. If one of Nx, Ny , Nz is even and the other
two are odd, then for the one that is even there will be
a second value of that component of Q that is equal to
its negative. That means there are two value of Q over-
all satisfying Q = �Q, and the number of unique values
is NxNyNz/2 + 1. Similarly, if there are two even values of
Nx, Ny , Nz, then there are four values of Q satisfying Q =
�Q, and the number of unique values is NxNyNz/2 + 2.
For all three of Nx, Ny , Nz even the number of unique val-
ues is NxNyNz/2 + 4. We also need NNk/2 values for the
one-body term. The number of values is then

d = 32[NxNyNz + 2v]M 2 + NNk/2, (D4)

where v is the number of even values of Nx, Ny , Nz.
The size of the output is then

m = 2(2�log M� + nk + 8)+ ℵ. (D5)

where ℵ is the number of bits for the keep register. There
is a factor of 2 at the front to account for ind and alt values,
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TABLE VII. Some examples of the values that the different momentum labels can take in Eq. (D3). We restrict k, Q, (�Q) to be in
the original k-point set.

k mesh kp kq kp − kq Q G kq − kp (�Q) !G

[1, 1, 4] (0, 0, 3) (0, 0, 1) (0, 0, 2) (0, 0, 2) (0,0,0) (0, 0, −2) (0, 0, 2) (0, 0, −4)
[1, 4, 4] (0, 2, 1) (0, 3, 1) (0, −1, 0) (0, 3, 0) (0, −4, 0) (0, 1, 0) (0, 1, 0) (0, 0, 0)
[1, 4, 4] (0, 2, 1) (0, 3, 3) (0, −1, −2) (0, 3, 2) (0, −4, −4) (0, 1, 2) (0, 1, 2) (0, 0, 0)
[1, 4, 4] (0, 1, 2) (0, 1, 3) (0, 0, −1) (0, 0, 3) (0, 0, −4) (0, 0, 1) (0, 0, 2) (0, 0, 0)
[1, 4, 4] (0, 1, 3) (0, 1, 2) (0, 0, 1) (0, 0, 1) (0,0,0) (0, 0, −1) (0, 0, 3) (0, 0, −4)
[4, 4, 4] (2, 1, 3) (3, 1, 2) (−1, 0, 1) (3, 0, 1) (−4, 0, 0) (1, 0, −1) (0, 0, 3) (0, 0, −4)
[4, 4, 4] (2, 1, 2) (3, 3, 3) (−1, −2, −1) (3, 2, 3) (−4, −4, −4) (1, 2, 1) (1, 2, 1) (0, 0, 0)

then �log M� for each of μ and ν, and nk for the compo-
nents of Q. There is a further qubit distinguishing between
the one- and two-electron terms, a qubit giving the sign of
the real or imaginary component of ζ , and six qubits for
G1, G2, for a total +8.

1. There is a cost of NkN/2 for controlled swaps for the
spin. In principle, this is performed 4 times, because
it is performed before and after the two c†c oper-
ators. The middle pair can be combined, with the
single controlled swap being controlled by the parity
of the two spin qubits, for a total cost of 3NkN/2.

2. Before the state preparation, we need to prepare an
equal superposition over d basis states, with costing
3�log d� − 3η + 2br − 9 Toffoli gates. As before, η
is a number such that 2η is a factor of d, and br
is a number of bits used for rotation of an ancilla
qubit to improve the amplitude of success. This cost
is incurred twice, once for the preparation and once
for the inverse preparation.

3. The complexity of the QROM being used for the
state preparation is

⌈
d
kp

⌉
+ m(kp − 1), (D6)

with kp being a power of 2. The inverse preparation
then has a cost

⌈
d
k′

p

⌉
+ k′

p . (D7)

4. We perform an inequality test with cost ℵ. Account-
ing for the inverse of the preparation gives a total
cost 2ℵ.

5. The controlled swap based on the result of the
inequality test is on

2�log M� + nk + 7 (D8)

pairs of qubits, so has this Toffoli cost. Note that
we have +7 here rather than +8. This is because
we do not need to swap the sign qubits; the sign

can be applied with Z gates controlled on the result
of the inequality test, not adding to the Toffoli cost
(as usual). This cost is incurred again in the inverse
preparation for a total of 4�log M� + 2nk + 14.

6. As described above, we perform an inequality test
between μ, G1 and ν, G2 to give the qubit flagging
whether we have a real or imaginary component.
Then we perform a controlled swap of μ, G1 with
ν, G2 to generate one symmetry for the state prepa-
ration, with the complex conjugate applied using a
Clifford gate. This part therefore has Toffoli cost
2�log M� + 6. This cost is incurred again in the
inverse preparation giving a total cost 4�log M� +
12. In addition to this controlled swap, we perform a
controlled swap in the middle, but it is not controlled
so does not add to the Toffoli complexity.

7. For the symmetry where ζQ,G1,G2
μν = (ζ

(�Q),!G1,!G2
μν )∗,

we can use a second control qubit to flip the sign on
Q, negate G1 and G2, and apply the complex con-
jugate. The complex conjugate again can be applied
with a Clifford gate, and so can the controlled-NOT
gates on G1, G2. A controlled sign flip of Q can be
performed with 2nk Toffolis, simply by flipping the
sign in usual two’s complement binary, then control-
ling addition of Nx, Ny , Nz in each component.

8. Next we need to prepare a superposition over
allowed values of k, because k − Q − G needs to be
in the allowed range of k values (using G to indicate
G1 or G2 depending on which part we are perform-
ing). In particular, for the x component we have
an allowed range for kx from Qx to Nx − 1 when
Gx = 0, or 0 to Qx − 1 when Gx �= 0. It is similar
for the other two components. We can therefore pre-
pare a superposition over the appropriate range then
add Qx if Gx = 0.
Creating an equal superposition requires Hadamards
on the appropriate subset of qubits, as well as a
Qx, Gx-dependent rotation to give a high success
probability for the amplitude amplification. This
information can be output with Toffoli cost 2Nx − 2
on the qubits representing Qx, Gx. The complexity of
the controlled Hadamards is then �log Nx� Toffolis,
assuming we use a catalytic T state as in Ref. [33].

040303-43



NICHOLAS C. RUBIN et al. PRX QUANTUM 4, 040303 (2023)

The complexity of preparing the equal superposition
is then 6�log Nx� + 2br − 6, including 3�log Nx� for
three rounds of �log Nx� controlled Hadamards. The
reason why there is −6 rather than −9 is the inequal-
ity test is with a value in a quantum register (in each
of three tests), which requires one more Toffoli than
an inequality test with a classically given value.
The controlled addition of Qx has complexity
2�log Nx�. The total complexity of the preparation
of the superposition for the three components of k is
therefore

Nx + Ny + Nz + 8nk + 6br − 24. (D9)

This cost is incurred 4 times for the preparation and
inverse preparation of k and k′.

9. In order to account for the one-body term, we note
that the one-body term has a single μ and k rather
than Q. We also do not want the operations we
perform in the two-body part for the symmetry to
affect the one-body part. We can therefore output
μ = ν for the one-body part in the QROM, so the
swap of μ and ν has no effect. The value of k
for the one-body part can be stored in the same
register as used for Q for the two-body part. To
prevent the operations used to generate the symme-
try ζQ,G1,G2

μν = (ζ
(�Q),!G1,!G2
μν )∗ being applied for the

one-body part, we can simply apply a Toffoli to pro-
duce a new control qubit. The remaining part above
is the preparation of the superposition over the k
values controlled on Q; this does not need to be
amended to account for the one-body part because
there we will not be using this value in the extra
register.

10. Now that we have prepared the register that is in an
equal superposition over the appropriate range of k,
we need to use that in combination with Q and μ to
prepare a superposition with the correct weights. To
do this, we will use coherent alias sampling in the
usual way, but will need to construct an appropri-
ate register to iterate over from registers k, Q, G,μ.
First we compute k − Q − G in an ancilla register.
These two subtractions have cost 2nk. Since it needs
to be computed and uncomputed for each of the two
factors in the Hamiltonian, the total cost is 8nk.
Now, because k and k � Q uniquely specify Q, G,
these two registers can be used for the iteration
instead of Q, with the additional advantage that they
are both over the full range of the Brillouin zone.
Now we need to compute a contiguous register

(((((kxNy + ky)Nz + kz)Nx

+ k′
x)Ny + k′

y)Nz + k′
z)M + μ, (D10)

where we are using k′ for k � Q. This contiguous
register includes many multiplications by classically
chosen constants, which has complexity depending
on how many ones are in these constants. The worst
case is where these numbers are all ones, so we will
give the cost for that case even though it is rare.
As discussed in Ref. [126] the cost of multiplying
two integers when one is given classically is no
more than the product of the numbers of bits. For
the additions, the cost is no more than the number
of bits on the larger number. So, we have a cost as
follows.

(a) For multiplying kxNy a cost of �log Nx��log Ny�.
Here Ny would have more bits if it were a power
of 2, but then the multiplication cost would be
zero.

(b) For adding +ky a cost of �log NxNy�.
(c) For multiplying ×Nz the cost is �log NxNy�

�log Nz�.
(d) For adding +kz the cost is �log Nk�.
(e) For multiplying ×Nx the cost is �log Nk�

�log Nx�.
(f) For adding +k′

x the cost is �log NxNk�.
(g) For multiplying ×Ny the cost is �log NxNk�

�log Ny�.
(h) For adding +k′

y the cost is �log NxNyNk�.
(i) For multiplying ×Nz the cost is �log NxNyNk�

�log Nz�.
(j) For adding +k′

z the cost is �log N 2
k �.

(k) For multiplying ×M the cost is �log N 2
k �

�log M�.
(l) For finally adding +μ the cost is �log N 2

k M�.

We need to add all these items together to give the
total cost, and it needs to be multiplied by 4 because
we compute and uncompute for each of the two
factors in the Hamiltonian.
Next we have a QROM on this contiguous register
with cost

⌈
N 2

k M
knrm

⌉
+ (knrm − 1)(nk + ℵ). (D11)

with knrm a power of 2. This is because there are
N 2

k M items to iterate over, and we need to output nk
bits for the alternate value of k and ℵ for the keep
value. We have twice this cost because of the two
factors in the Hamiltonian, but the erasure cost for
each factor is

⌈
N 2

k M
kera

⌉
+ kera. (D12)

The last two steps of the coherent alias sampling are
an inequality test with cost ℵ and a controlled swap
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with cost nk. These costs are incurred 4 times, once
for preparation and once for inverse preparation for
each of the two factors for the Hamiltonian.

11. We will need to prepare a register that is k − Q − G
again. We previously computed this, but we need to
compute it again because we have performed a state
preparation on k. This has a cost of 2nk again, and
needs to be done 4 times for a total cost of 8nk.
A further subtlety is that we are storing the value
of k to use in the Q register in the one-body case.
We can perform a controlled swap into the working
register for k or k � Q, which has a total cost of 4nk.
Combined with the arithmetic cost this is 12nk.

12. To use the register with k or k � Q to control the
swap of system registers into working registers, we
can use each qubit to control swaps of the system
registers in a similar way as is used for advanced
QROM. The cost for selecting each qubit out of Nk
is Nk − 1, similar to the use in advanced QROM,
despite the use of multiple components. In particu-
lar, we can perform swaps of system registers based
on the x component of k with cost (Nx − 1)NyNz.
Then swapping the registers based on the y compo-
nent out of the subset of NyNz has cost (Ny − 1)Nz.
Then the cost of swapping based on the z com-
ponent has cost Nz − 1. Adding these three costs
together gives NxNyNz − 1 = Nk − 1. This is per-
formed for each of the N/2 qubits we need, for cost
N (Nk − 1)/2. We need to swap and inverse swap 8
times on NNk/2 system registers, for a total cost of
4N (Nk − 1).

13. Next, we consider the output of the rotations for
the c modes. These will be controlled by the reg-
isters with μ and k (or k � Q), as well as the qubit
selecting between the one- and two-body terms. A
difficulty is that we would need a contiguous register
in order to be able to effectively apply the advanced
QROM. A method around this is to use a QROM on
the selection qubit and k to output an offset, then add
μ. The complexity of that QROM is 2Nk, then the
complexity of the addition is �log Nk(M + N/2)�.
That is in the case where we need to apply the one-
body term as part of the implementation. Recall that
we need only to do that once when we are applying
c†c twice for the two-body term. In the part where
we are not applying the one-body term we instead
have complexity Nk + �log NkM�.
The size of the QROM output for the rotations is
then N�. That is again because we need Givens
rotations on N/2 qubits, and need two angles for
each Givens rotation with � each. The complexity
is then, in the case with the one-body term,

⌈
Nk(M + N/2)

kr

⌉
+ N�(kr − 1), (D13)

and for the case where we do not need the one-body
term

⌈
NkM

kr

⌉
+ N�(kr − 1), (D14)

with kr being a power of 2. The cost of the Givens
rotations is 2N (� − 2), because we have N/2 qubits
and two angles for each Givens rotation.
The cost of erasing the QROM for the two cases is

⌈
Nk(M + N/2)

k′
r

⌉
+ k′

r, (D15)

⌈
NkM

k′
r

⌉
+ k′

r. (D16)

Lastly we note that we need to apply the sequence
of Givens rotations 8 times to account for the four
c† and c operators, and similarly we need to apply
the QROM and invert it 4 times. That gives a total
complexity for the QROM-based basis rotations

2
⌈

Nk(M + N/2)
kr

⌉
+ 2N�(kr − 1)+ 2

⌈
NkM

kr

⌉

+ 2N�(kr − 1)+ 2
⌈

Nk(M + N/2)
k′

r

⌉
+ 2k′

r

+ 2
⌈

NkM )

k′
r

⌉
+ 2k′

r + 16N (� − 2)

+ 12Nk + 4�log Nk(M + N/2)� + 4�log NkM�,
(D17)

where 16N (� − 2) is for the Givens rotations them-
selves, and the terms from 12Nk on are for creating
and erasing contiguous registers.

14. The next part of the complexity that needs to be
accounted for is the selection of �ZX and �ZY for the
implementation of the c† and c operators. We need
only to select between �ZX and �ZY, but not select
the location the X or Y is performed since these are
applied in the working registers. This selection can
therefore be performed entirely with Clifford gates.
However, we do need additional control to avoid
performing these operators for one of the c†c for
the one-body component. That is a cost of just one
Toffoli for each of c† and c.
A complication is that we need to perform Z gates
on remaining system registers (that have not been
swapped into the working registers). We perform
unary iteration on the register containing k (or k �
Q), and use that to apply the appropriate Z operators
with a Toffoli cost Nk − 1. The Toffoli complexity
is independent of N , because we only have a Toffoli
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cost for the unary iteration, not for the controlled-Z
gates.

15. The last part to the complexity when constructing
the qubitized operator is the reflection on the con-
trol ancillas. The qubits we need to reflect on are as
follows.

(a) The �log d� qubits used for the equal superposi-
tion state for the initial preparation, and another
qubit rotated for this preparation.

(b) The ℵ used for the equal superposition state for
the inequality test in state preparation.

(c) The two qubits for the two spins in the sum.
(d) There are nk qubits that an equal superposition

of k values is prepared in, and this is done twice
for 2nk qubits. To save on qubit use we can also
reuse these qubits and flag that they are equal
to zero in between preparing k and k′, but that
does not affect the Toffoli count.

(e) There are ℵ used for the equal superposition
state for two rounds of state preparation for k.
Again these can be reused but that does not
affect the qubit count.

(f) There are four qubits to select between X and Y
for each of the c†, c.

(g) There are two qubits used to generate the sym-
metries.

This is a total of

�log d� + 3ℵ + 2nk + 9 (D18)

qubits for the control, and the reflection cost is 2
less than this. We do require an additional Toffoli
for the control by the phase-estimation registers, and
another for unary iteration on the phase-estimation
registers. Therefore, this expression can be used for
the additional Toffoli cost.

Next we account for the qubit costs.

1. There are NNk system qubits.
2. The control register for the phase estimation, and

the ancillas for the unary iteration, together need
2�logI� − 1 qubits.

3. There are all the qubits needed for controls as
described in the last item in the Toffoli costing
above. Taking the inversion of the equal superpo-
sition over k to be flagged by a single qubit, the 2nk
can be replaced with nk + 1. Similarly flag qubits
can be used on the qubits used for the equal super-
position state for the inequality test to replace 3ℵ
with ℵ + 2 qubits. That gives a number of qubits

�log d� + ℵ + nk + 12. (D19)

4. A phase gradient state of size � is used for rotations.
5. A single T state is used for the controlled

Hadamards.
6. The QROM used for the first state preparation out-

puts m qubits.
7. This first state preparation also uses m(kp − 1)+

�log(d/kp)� − 1 temporary qubits.
8. A single qubit is used for the result of the inequality

test for the coherent alias sampling.
9. A single qubit is used for the result of the inequality

test between μ, G1 and ν, G2.
10. There are nk + 3br qubits used as the output of the

QROM used to give the information needed for the
preparation of the equal superposition over k, as
well as br for k.

11. In the preparation of the state for k we compute k �
Q in an ancilla needing nk qubits, and compute a
contiguous register that needs �log(N 2

k M )� qubits.
12. The state preparation for k uses nk + � output

qubits.
13. The state preparation uses

(knrm − 1)(nk + �)+
⌈

log
(

N 2
k M

knrm

)⌉
− 1 (D20)

temporary qubits.
14. We also use ℵ in this state preparation for a super-

position state, and another qubit for the result of the
inequality test.

15. There are �log Nk(M + N/2)� qubits used for the
contiguous register for the QROM for the qubit
rotations.

16. There are N�kr used for the QROM for the rota-
tions, with another

⌈
log
(

Nk(M + N/2)
kr

)⌉
− 1 (D21)

temporary qubits.

Accounting for the maximum total involves determining
the maximum number used, which depends on the use of
temporary ancillas. We first need to determine whether the
temporary qubits described in part 13 or the total qubits in
parts 14 to 16 are larger. We take the maximum of these,
and add it to the qubits used in parts 8 to 12. Then we
compare that to the number of temporary qubits in part 7.
The maximum of that is added to the qubits in parts 1 to 6.

Next we give a little more detail on how the construction
is made self-inverse. As explained in Fig. 6 of Ref. [33]
(shown above as Fig. 15) the THC construction may be
made self-inverse by using the qubit in the |+〉 state, which
controls the swap of the |μ〉 and |ν〉 registers. As can be
seen in Fig. 6, we are using a similar procedure, where
the |+〉 state controls the swap of μ and ν at the top left
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|μ〉 × In × In × |μ〉 × In ×

|ν〉 × × × ≡ |ν〉 × In ×

|+〉 • X • |+〉 • • X

|ψ〉 V V |ψ〉 V V

FIG. 15. This shows how to construct a self-inverse procedure for block encoding two-electron terms, as in Fig. 6 of Ref. [33]. The
left side is the manifestly self-inverse form, and the right side is a more intuitive form where the |+〉 state is used to generate the
symmetry between μ and ν, and the two V operations are controlled by μ and ν in succession.

and at the lower right. The X gate and swaps on the lower
left corresponds to the X gate and swap in the middle of
Fig. 15.

We have currently just drawn the quantum circuit as
having c and c†, but these would be implemented using
ancilla qubits to control the election between X and Y
in X ± iY. For the implementation to be self-inverse, we
would want the qubit used to control the first c to be the
same as that for the final c†. This can be achieved by tak-
ing the four qubits for control of each of the c and c† so the
top one can be used as the control each time. In particu-
lar, after the first c, swap the first two qubits, then after the
c† swap the first pair with the second pair, then after the
next c swap the first two qubits again. As a result, the first
qubit can be used as the control each time. Moreover, this
arrangement of swaps is obviously self-inverse.

The application of the controlled X and iY gates is also
automatically self-inverse. The reason is that iY squared is
−1. In the block encoding we perform Z gates for the con-
trol qubits for c but not c†. Then performing the unitaries
for the block encoding twice, we have first that the final
controlled c† in the first block encoding is matched with
the first c for the second block encoding. The same control
qubit is used, so the two controlled X operations cancel,
and the two controlled iY operations give −1. This can-
cels with the Z gate on that control qubit. In this way all
the operations can be canceled, and because each time we
have controlled c and c† matched, which cancel the Z gate
on the control qubit. There is no additional Toffoli cost for
these swaps and phase gates, because they are all Clifford
gates.

APPENDIX E: CORRELATION DIAGNOSTICS
FOR LNO

For insulators like the distorted structures of LiNiO2,
there are several common diagnostics that are used in
molecular calculations to identify cases of “strong corre-
lation.” Here we examine the maximum elements of the
CCSD T1 and T2 tensors (max(|t1|) and max(|t2|)), which
are commonly used as a measure of correlation [127], as
well as the T1 [128] and D1 [129,130] diagnostics com-
puted from the ROHF k-point CCSD calculations. We also

show the expectation value of the S2 operator for the UHF
solution because spin contamination in the UHF calcula-
tion can be a signature of strong correlation. The results
are shown in Table VIII. As expected, these results do not
suggest particularly strong correlation. Only the max(|t1|)
values for the C2/m and P21/c structures and the UHF S2

for the P2/c structure are larger than might be expected.
The larger max(|t1|) is likely an indication that the ROHF
orbitals are far from optimal, and the symmetry breaking
in the UHF calculations does not mean that CCSD cannot
provide reliable energies.

APPENDIX F: CLASSICAL TIMING
BENCHMARKS

In order to compare the quantum algorithm runtime to
state of the art classical algorithms we measured the cost
to compute the CCSD and ph-AFQMC total energy for the
benchmark systems listed in Table I in double- and triple-
ζ basis sets. The results of these timings are presented in
Fig. 16.

For CCSD we used pyscf [101,102] and timed the data
on a node with 30 3.1 GHz Intel Xeon CPUs (30 OpenMP
threads).

For ph-AFQMC, which is considerably more expensive
than CCSD for small system sizes, we estimated the run-
time by performing a short ph-AFQMC calculation for
each system using 8 Nvidia V100 GPUs. From this data we
can then estimate the runtime to achieve an statistical error
bar (per atom) of 1 × 10−4 Ha through the assumption
that the statistical error of ph-AFQMC decays like N−1/2

s ,

TABLE VIII. Some common diagnostics of strong correlation
from the ROHF-CCSD calculations for each of the distorted
LiNiO2 structures. The UHF S2 values in the final column are
given per formula unit and should be compared with the exact
doublet (〈S2〉 = 0.75). The basis set (GTH-DZVP) and other
details of the calculations are described in Sec. V B.

Structure max(|t1|) max(|t2|) T1 D1 UHF S2

C2/m 0.2538 0.0330 0.0482 0.1912 0.7783
P21/c 0.2313 0.0322 0.0472 0.2178 0.8027
P2/c 0.1688 0.0571 0.0371 0.2089 1.0447
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FIG. 16. CCSD and ph-AFQMC timings for the benchmark
systems in Table I (hydrogen omitted) in the cc-pVDZ basis set.
The CCSD data follow a O(N 3.4

k ) scaling, which is consistent
with the expected O(N 4

k ) scaling [18].

where Ns is the number of Monte Carlo samples. Formally,
ph-AFQMC should asymptotically scale like O(N 3

k ) [23]
assuming the number of samples required to reach the
desired precision does not scale with the system size. Inter-
estingly, we found that the statistical error bar per atom
for a fixed number of samples actually decreased with Nk,
which implies the variance of ph-AFQMC is increasing
sublinearly with the system size. For smaller system sizes
it is important to note that practically one can saturate the
GPU with walkers with nearly no loss speed [117], thus
reducing the error bar given a fixed wall time. As a result,
the small Nk AFQMC numbers represent a large overes-
timation in runtime one would practically need to obtain
the desired statistical error. Another confounding factor,
which may affect the scaling of ph-AFQMC is the time-
step error (we fixed the time step at 0.005 Ha−1 for all
systems). Recent results suggest that ph-AFQMC suffers
from a size extensivity error [131], which is practically
remedied through time-step extrapolation. This may break
the assumption of a constant number of Monte Carlo steps
required to reach the desired precision (with a fixed time
step) [131]. Due to these factors we decided not to fit a
trend line to the ph-AFQMC data.

We should stress that these comparisons are for illus-
trative purposes only, the absolute timings will differ with
different classical implementations, codes and architec-
tures and the runtimes should be considered with these
factors in mind.

APPENDIX G: GENERATING THE THC FACTORS

To generate the k-point-dependent THC factors we used
the interpolative separable density fitting approach (ISDF)
[88,90,91] as a starting point, which has recently been

adapted to incorporate translational symmetry [88,89,132].
Recall from Eq. (58) that the goal is to approximate the cell
periodic orbital product evaluated on a dense real-space
grid using a much reduced set of grid points. In particular,
we aim to solve

Z = u∗
pkp
(r)uqkq(r) ≈

∑
μ

ξμ(r)u∗
pkp
(rμ)uqkq(rμ) = �C,

(G1)

for ξμ(r), where Nμ = cTHCN/2, {rμ} is a subset of the
real-space points {r}, and cTHC is the THC rank parameter.
We used the K-means clustering centroidal Veronoi tesse-
lation (CVT) algorithm to find the initial grid points [91].
The interpolating vectors �μr = ξμ(r) can be found via

� = ZC†(CC†)−1, (G2)

where both ZC† and CC† can be efficiently formed due to
their product separable form [90].

Once the interpolating points ({rμ}) and vectors (ξμ(r))
have been found we can form any ERI block via

Vpkp ,qkq,rkr,sks =
∑
μν

χ
(μ)∗
pkp

χ
(μ)
qkq
ζ

Q,Gpq,Gsr
μν χ

(ν)∗
rkr
χ
(ν)
sks

, (G3)

where

ζ
Q,Gpq,Gsr
μν =

∫
dr
∫

dr′e−i(Q+Gpq)·rξμ(r)

V(r, r′)ξν(r′)ei(Q+Gsr)·r′
. (G4)

To evaluate Eq. (G4) we follow the Gaussian plane-wave
density-fitting recipe [50,60] and perform the following
steps:

1. ξμ(G) = FFT
[
ξμ(r)

]
,

2. ṼQ,Gpq
μ (r′) = e−i(Q+Gpq)·r′

IFFT[
ξμ(G)V(|G − (Q + Gpq)|)

]
,

3. ζQ,GpqGsr
μν =∑r′ �r′ξν(r′)ei(Gsr−Gpq)·r′

ṼQGpq
μ (r′),

where �r′ = �/Ng , � is the unit-cell volume, Ng is the
number of real-space grid points, and V(G) is the Coulomb
kernel in reciprocal space.

An important consideration for the quantum implemen-
tation of THC is the minimization of the L1 norm of the
central tensor ζQ

μν as this value directly affects the scaling
of the algorithm. Following previous work for molecu-
lar systems [33,46], we attempt to reduce λ by further
compressing the THC factors through a regularized opti-
mization scheme. This is an important step as λ can grow
considerably with the THC rank. We use the ISDF solution
for χpkp (rμ), and ζQGG′

μν as an initial guess and perform a
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subsequent optimization of the following cost function:

L(χ , ζ ) =
∑

Q

∑
kk′

∑
pqrs

(∣∣(kpk � Qq|rk′ � Qsk′)

−
∑
μν

χ
(μ)∗
pk χ

(μ)

qk�Qζ
Q,G,G′
μν χ

(ν)∗
r(k′�Q)χ

(ν)

sk′

∣∣∣∣∣
2

+p

∣∣∣∣∣
∑
μν

N μ

pkq(k�Q)ζ
QGG′
μν N ν

r(k′�Q)sk′

∣∣∣∣∣
)

, (G5)

where the penalty parameter p was set such that the L1 part
of the objective function was of similar magnitude to the L2
part. To optimize the cost function we used the L-BFGS-
B implemented in Scipy with gradients evaluated using
JAX. Like Ref. [33] we found it necessary to perform an
additional optimization of the L2 part of the loss function
after the BFGS optimization in order to obtain good MP2
correlation energies. As these subsequent optimizations
are quite costly we limited the number of optimization
steps to 3000 for both the L-BFGS-B and AdaGrad stages.
With these additional steps we found a rank parameter
of cTHC = 6 − 8 was sufficient to obtain an MP2 error of
roughly 0.1 mHa error per cell across a range of systems,
which is consistent with that found in molecular systems
[46].
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